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Abstract 

In inertial confinement fusion, laser beams irradiate a spherical CH shell filled with 

deuterium-tritium gas, causing it to implode. The deceleration at the end of the implosion 

creates a Rayleigh-Taylor (RT) instability at the interface between the DT gas and the solid CH 

shell where small perturbations grow and quench the fusion reaction. Anderson and Betti have 

proposed reducing RT growth rates by altering the DT composition, thereby smoothing the 

density profile. Their estimated growth rates however, are inaccurate. A computer program for 

calculating RT growth rates was adapted to spherical geometry. Growth rates from this program 

and realistic density profiles confirm that the proposed technique is effective. 

I. Introduction 

In inertial confinement fusion (ICF), laser beams irradiate a small spherical capsule, 

causing i t  to implode. The compression of the capsule during the implosion creates conditions 

for fusion, a reaction where deuterium (D) and tritium (T), two isotopes of hydrogen, collide and 

fuse, forming a larger Helium-4 atom as well as a neutron, thereby converting mass into kinetic 

energy. The spherical capsule, or "target", consists of a thin plastic CH shell filled with DT. 

The targets used at the OMEGA laser, located at the Laboratory for Laser Energetics (LLE) of 

the University of Rochester, are approximately lmm in diameter. The OMEGA laser is a 60- 

beam, 30-kJ, 351-nm wavelength laser used for direct-drive ICF'. The heat created by the 

compression of implosion on OMEGA-which can produce ion temperatures of 2 to 3 keV- 
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sustains the reaction. 

In the first stage of ICF, called the acceleration phase, the initial heat of the 

absorbed laser pulse causes the CH shell to evaporate, or ablate. The pressure created by the 

ablation mimics rocket exhaust, forcing the target to implode. During the acceleration phase, 

there are three density regions: the hot ablating CH shell, the solid CH shell, and the cold DT 

core. After the laser pulse is complete, the target continues to converge as it enters the second 

phase called the coasting stage. In the third and final stage, the deceleration phase, the target 

reaches its maximum density and compression; fusion reactions occur in the core. Following the 

point of peak compression, the target bounces outwards, bringing an end to the process. 

A major problem associated with ICF is the Rayleigh-Taylor i n s t a b i ~ i t ~ . ~  When a 

fluid of lower density accelerates a fluid of higher density, the interface is said to be Rayleigh- 

Taylor unstable. The force applied to the system causes the initial imperfections, or 

perturbations, of an unstable interface to grow as an exponential function of time. 

As seen in Fig. 1, instability occurs within the plasma target at one of two interfaces. 

There is an outer location at the ablation surface-between the ablating CH shell and solid CH 

shell-and an inner location, at the fuel-shell interface-between the DT fuel and CH shell. The 

two instabilities do not occur simultaneously. Instability occurs at the exterior interface as the 

ablating CH shell drives the implosion during the acceleration phase and at the interior interface 

as the target compresses during the deceleration phase. Although both sites are important, this 

project focuses on the interior fuel-shell interface. 
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Figure 1: A cross-section of an imploding target. The RT instability 
occurs at the interfaces between different layers of contrasting density. 

The sharp changes in density at the interfaces and the acceleration of the shell are 

what primarily determine the growth rate of the perturbations. The Rayleigh-Taylor instability is 

detrimental to the fusion reaction, because when the cooler shell dips into the hotter core, the 

shell quenches the process by drawing heat away from the fusion reactions. To reduce the 

growth rate of the instability, LLE scientists Kenneth Anderson and Ricardo Betti propose 

smoothing the density jump at the fuel-shell interface by altering the molecular composition of 

DT gas3, making it heavier, so there is a more gradual increase in density between the fuel core 

and the shell. The method they use to estimate the change in growth rate, however, does not take 

into account the realistically varying density profiles. A numerical method can provide a more 

reliable value for the growth rate than a simple estimate because it takes into account the whole 

density profile. Thus, the objectives of this project are to: (a) calculate Rayleigh-Taylor growth 
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rates in spherical geometry by using a numerical method that considers the details of the shell's 

density profile, and (b) apply this method to Anderson and Betti's density profiles to verify that 

their technique is effective. 

11. Finding a Rayleigh-Taylor Equation 

The Rayleigh-Taylor instability is accurately modeled by a partial differential 

equation which expresses the instability in terms of the velocity of the perturbation, the growth 

rate of the perturbation, the acceleration of the system, and the density profile. S. Chandrasekhar 

presents such an equation4 for a perturbation of an incompressible fluid that takes the form of a 

sinusoidal ripple along a perturbed planar surface. In the derivation of this equation Ui, (i=x,y,z) 

represents the components of the velocity perturbation, p represents the unperturbed density, 6p 

is the density perturbation, 6p is the pressure perturbation, and g is the acceleration. li denotes a 

unit vector in the z direction, the direction of the acceleration of magnitude g. We then know the 

following three equations: 

and 

Eq.1 is Newton's second law, F=ma, Eq.2 tells us that the fluid does not diverge, meaning that it 

does not spread. Finally, Eq.3 tells us that as we follow a fluid that does not diverge, its density 
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does not change. Eq.3 come from the conservation of mass. The next step is to rewrite Eq.l in 

the x, y and z directions (u, v and w) separately: 

and 

Eq.2 states that the sum of the velocity gradients in the x, y and z directions must equal 0. This 

is mathematically expressed as: 

Stipulating that the unperturbed density profile is a function of z only, we have: 

and Eq.3 can be rewritten as: 

Chandrasekhar assumes that the temporal and spatial dependence of the perturbation velocity and 

density are modeled by exponentials. This technique is called "separation of variables." One 

advantage of this technique is that it is relatively easy to integrate and differentiate exponentials. 

The equations are: 

and 
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6 6 ( 2 , ? )  = 6 6 ( z ) e  i(k,x+k,v) e .  ( 1  1 )  

The wave number, k, is defined as 2n/A where A is the wavelength and y is defined as the 

dimensioned growth rate (in units of inverse time). If we take the derivatives with respect to t ,  x, 

y and z we can make some simplifications: 

We can also say that: 

u=SU, ,  v = & , , a n d  w = S v , .  

This changes Eq.4-7, and Eq.9 respectively into: 

p p  = -ik,& , 

p p  = -ik,& , 

D $ = - p p - g S p ,  

ik,u + ik,v = -Dw , 

and 

y& = - w D p .  (18) 

Next, Chandrasekhar multiplies Eq.14 and 15 by ik, and ik, respectively and adds the products 

together, yielding: 

(k i  + k t ) $  = py(ik,u + ik,v) . 

Substituting Eq. 17 and 18 into Eq.19 produces: 

k2& = -ypDw, 

where k2 is defined as: 
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In order to eliminate the pressure perturbation we will need one more equation, obtained by 

substituting Eq. 18 into Eq. 16: 

Chandrasekhar eliminates 6p using Eq.20 and Eq.22, producing a differential 

equation for the perturbation velocity in planar geometry: 

This equation assumes no surface tension and no viscosity. In the equation, y2/kg is a 

dimensionless squared growth rate of the perturbations, where y is the dimensioned growth rate. 

Dimensionless quantities are used because they allow the simplification of complex 

mathematical expressions in computer code. Also, seeking the dimensionless quantities of a 

problem reveals the characteristic scales, such as time, (kg)-In, and distance, k-'. 

To find an analytic solution to Eq.23, we need a sample case. For a simple step 

density jump, where p2 is greater than pl, the dimensionless squared growth rate is equal to the 

Atwood number 

defined as: 

Anderson and Betti used the Atwood number to gauge the effectiveness of their proposed 

smoothing technique. The formula assumes that there is a discontinuity in the density profile and 

that the rest of the density along the profile is constant. However, the density profiles that 
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Anderson and Betti consider are continuously variable, not simple in shape. Therefore the 

Atwood number's use in the situation is likely to be a poor approximation of the true 

dimensionless squared growth rate. 

To investigate how one finds an analytic solution to the differential equation, I 

solved Eq.22 for a square-wave density profile. The square wave creates a second interface from 

which instability can arise, as well as a third density region, p3. However, for simplicity, we 

assume that p3 is equal to pl .  

Figure 2 illustrates the square-wave problem. The function which peaks on the left 

is the perturbation velocity, and the square wave is the density profile. The z labels will be used 

later to explain the analytic solution for the equation. 

Figure 2: The solid line represents the density profile of the shell, and the dashed line 
represents the perturbation velocity. The perturbation velocity peaks at the first interface. 
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The set of solutions to eigenvalue equations is a set of eigenfunctions each with a corresponding 

eigenvalue. In this case, w(z), the velocity perturbation is the eigenfunction, and y2/kg, the 

dimensionless squared growth rate, is the eigenvalue. To solve the differential equation and 

obtain the eigenfunction, one must integrate it and apply matching and boundary conditions, 

which depend on the chosen case. 

How we expect the function to act as it goes to negative and positive infinity are the 

boundary conditions. We know the solution to the differential equation over the different 

constant regions of the density profile. Logically, the perturbation speed cannot be growing 

infinitely large when we are very far from the interface. The boundary conditions state that the 

velocity perturbation must approach zero as we travel away from the density jump. Assuming 

that 

within the constant density regions. The solution to the differential equation for the first region, 

for the second region, p ~ ,  is: 

and for region, p3, is: 

w3 = ~ e - ~ ' .  (29) 

The matching conditions are found at the interfaces where two perturbation velocity 

equations come into contact. Because the velocities of Eqs.27 and 28 are continuous at the first 

peak in Figure 2, we know that Eqs.27 and 28 give equal values for the perturbation at z =-L/2. 
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Using this information we get: 

A =  B + c e k L .  (30) 

The other matching condition is at the second density discontinuity at z=W2 where Eqs.28 and 

29 are continuous. The equation we get from this is: 

D = BekL + C .  (31) 

An expression for the dimensionless growth rate can be found much the same way 

as in the single-jump case. We integrate Eq.23 over the first density discontinuity, getting: 

dw, dw, gk2 
p2--p,-+7(~2 - - P I ) W ~  = o .  

dz dz Y 

Doing the same over the second density discontinuity yields: 

dw3 dw, gk2 
P3 -- P , - + ~ ( P )  -P,)w, = o .  

dz dz Y 

After allowing p,=p-?, we have enough information to solve for the dimensionless growth rate, 

expressed as: 

y4/7?g2 is the square of the squared growth rate quantity, which is what we are trying to find, the 

heavy fluid mass density is p* and the light fluid mass density is p l ,  g is the acceleration of the 

implosion, and L is the thickness of the shell. Because the product k L is dimensionless, we are 

expressing the thickness of the shell in units of the wavelength. This makes kL more significant 

than just L. I verified the analytic solution using Jue Liao's program5, which calculates the 

dimensionless growth rate of the perturbation velocities in the planar geometry when given a 

shell length, L, and a density profile. 

If we evaluate Eq.34 for the limit of kL approaching infinity, the dimensionless 
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squared growth rate, y2/kg, becomes the Atwood number, the rate given by Eq. 24 for a single 

interface. In this limit where a large number of wavelengths separate the two interfaces, the 

perturbations act independently as they do at single-step interfaces. They are isolated and do not 

influence each other. 

111. A Rayleigh-Taylor equation in spherical geometry 

The next step was to write a program that calculates Rayleigh-Taylor growth rates 

in spherical geometry. To do this I needed a differential equation for the velocity perturbation in 

spherical geometry. Dr. Epstein assisted me by deriving the equation6, which is: 

There are striking similarities between this spherical equation and the planar Eq.23, with the 

wave number k replaced by l/Ro. 1 is called the modal index and Ro is the radius of the target at 

the instant where the shell is momentarily static, or at the "bounce." The change in k makes the 

new dimensionless squared growth rate y:~r/g found inverted in the formula. The perturbation 

function is expressed as y, which is defined as y=w$ where w is the perturbation velocity and r is 

the radial coordinate. The shell radius is made dimensionless by letting x=r/Ro. Finally, the 

(1+1) term arises due to properties of spherical harmonics. Harmonic functions such as those we 

use to model the perturbations behave differently in spherical geometry than sine and cosine do 

in planar geometry in subtle but important ways. 

Another significant difference between Eq.35 and 23 is that the boundary conditions 

in the spherical case are now expressed as a power law and no longer exponential functions. The 

solution to Eq.35, assuming constant density, is for a radius, r near r=O: 

1 + 1  y = x  (36) 
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and for a radius, r far greater than Ro, 

y =x- '  . (37) 

We see that Eqs.36 and 37 satisfy the boundary conditions requiring that the inner and outer 

velocity perturbations be equal to zero. This is similar to the boundary conditions in planar 

geometry, except that the inner boundary condition now applies at r=O rather than at z=-m. 

IV. Adapting an existing program to function in the spherical geometry 

Next, I adapted Jue Liao's program to function in spherical geometry. To do this, 

equations in the program used to solve Eq.23 were reworked to solve Eq.35. In spherical 

geometry, the user must enter Ro and 1 instead of kL. Also, the program allows the user to enter 

an arbitrary density profile, by importing i t  through a data file. This is a significant improvement 

over the old program where the user entered simple density profiles by hand. 

The numerical method used by the program to determine the growth rate is called 

the "shooting method. The shooting method works as follows: The user enters an initial guess 

for the growth rate (eigenvalue) into the program, and the perturbation velocity is calculated for 

the whole density profile by integrating Eq.35 from r=O to the end of the density profile. We are 

shooting for a perturbation velocity of zero as r approaches infinity. If the boundary condition is 

not satisfied, the guess of the growth rate is adjusted based whether or not the perturbation 

velocity was overestimated or underestimated at the right boundary, and the perturbation velocity 

is recalculated for the entire density profile. The iteration process continues until the program 

converges on the growth rate which allows the perturbation velocity to satisfy the boundary 

conditions. When the perturbation velocity satisfies the boundary condition, the dimensionless 

squared growth rate is the eigenvalue, and the perturbation velocity is the eigenfunction. 
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In order to input the equation into the computer, one must split the second-order 

differential equation into two first-order differential equations. The equation becomes easier to 

work with once some substitutions are made: 

~ 3 0  r=- and A = - - .  1 d~ 

The dimensionless squared growth rate will now be referred to as T. Entering these substitutions 

into Eq.35 yields: 

Next, we can carry out the indicated differentiation on the second term, making the equation: 

This creates another A  term making the equation: 

One more substitution will greatly simplify the equation before the final split: 

Now the equations can be split by defining: 

ay a2Y - av v  = - and therefore - - - , ax ax2 ax 
This results in two first-order differential equations: 

3~ av - = v  and -= B y - A v .  ax ax 
To convert these equations into a form suitable for entry in a programming 
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language, FORTRAN in my case, I needed to write these as simple step equations. Numerical 

methods utilize step equations, which calculate values for y and v at each iteration. In the 

program J denotes which spatial point the program has calculated last. As the program creates 

the whole integration grid, J increases until it reaches its final value (specified by the user). The 

step equations are centered half-way between each integration point: 

and 

Making the substitution 

into Eqs. (45) and (36) and solving the two equations simultaneously, we obtain the step 

equations used in the FORTRAN program: 

and 

V. Application of the program to proposed density profiles 

The next step was to apply the working program to realistically important density 
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profiles. Kenneth Anderson and Ricardo Betti simulated density profiles where the fuel-shell 

density jump is smoothed out in order to reduce the growth rate of the instability. They did this 

by altering the composition of deuterium-tritium gas proportions of the fuel in hydrodynamic 

simulations of OMEGA implosions. As stated earlier, the Atwood number is not an accurate 

estimate because i t  is defined for a single interface separating fluids of constant density, which is 

not a good description of the density profile of the shell of an ICF implosion near peak 

compression. The numerical program can find a growth rate in spherical geometry for the 

proposed density profile. 

Figure 3 below shows a graph of the perturbation velocities calculated by the 

program, as well as three corresponding density profiles that Anderson and Betti used. The 

density profiles are functions that peak on the right, and the perturbation velocities are the 

functions that peak on the left. Each line corresponds to a different composition of DT gas. The 

solid line is the altered DTs gas that creates a smoothed density profile. The ratio of tritium 

molecules to deuterium molecules is eight to one. Since more of the heavy molecule is used, the 

mass density increases, accounting for the smoothing effect. The dashed. line represents the 

density obtained using standard DT gas as the fill gas, and the dotted line is obtained using DD 

gas. The program gives us values for the dimensionless growth rates which we can convert back 

to dimensional units. We assume there are 100 points of spatial integration, and the I mode 

index value is 5; making the wavelength h=56.5 pm for Ro=45pm. 100 points of integration 

insures that the shape of the eigenfunction will be resolved without creating unnecessary steps, 

while still accurately describing the eigenfunction's form. The value for Ro=45pm is chosen 

because it is the radius at which the fuel-shell interface is located at peak compression. The 

dimensionless squared growth rate (T) produced by the program for DTs is 0.65. The 
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dimensionless squared growth rates for standard DT and DD are I- = 0.75 and 0.81, respectively. 

Anderson and Betti's estimates using the Atwood number are as follows: I- = 0.0 for DT8, 0.26- 

0.33 for standard DT and 0.43-0.47 for DD gas. It is clear that the numerical solution has 

provided a better estimate of the instability's growth rate and makes an important correction. 

We also have enough evidence to state that even for low I mode values, smoothing 

the density ramp by altering the composition of the DT gas reduces the growth rate of the 

Rayleigh-Taylor instability. It is important to note that an infinite number of possible 

eigenfunctions for smaller values of r ex i s t ;  we are primarily interested, however, in the function 

with the highest eigenvalue. For instance, the program produces an eigenfunction with a lower 

growth rate. This function dips far below the x-axis before returning up to meet the right 

boundary condition. 

The perturbation velocity in Fig.3 is expressed in terms of "arbitrary units" because 

changing the normalization of the eigenfunctions by a constant factor does not affect the growth 

rates. One can multiply any of the eigenfunctions by constants and the calculated growth rates 

will remain the same. 
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Interior 

Exterior Interface 

Figure 3: The three representative density profiles peak on the right, while the 
perturbation velocity profiles peak on the left. The smoothed DT8 density profile produces 
the lowest peak of the three meaning that the perturbation velocity and the instability is the 

lowest of the three. 

VI. Conclusions 

The spherical Rayleigh-Taylor program is a useful tool that can be used to see the 

impact of altering the density profile on the growth rate of the Rayleigh-Taylor instability. In 

addition to this primary purpose, the program also provides the perturbation velocity across the 

whole density profile. The results show us a variety of interesting features of the perturbation 

velocities: First, the velocity perturbation is significantly larger at the fuel-shell interface than 

the ablation surface. This is interesting because the second density jump, the one located at the 

ablation surface, is far greater than the one at the fuel-shell interface. Intuitively, one would 

expect the more conspicuous features of the density profile to have a greater effect on the 

perturbation velocity; however, this I S  not so. This verifies that the instability is greatest at the 

fuel-shell interface at peak compression. As we move to higher 1 values, the second peak will 
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become better defined. This is because the wavelength of the velocity perturbations at high 1 

values is very small; accordingly the interaction between the perturbations is less. Another 

interesting result is that the smooth DTs profile has a significantly larger second velocity 

perturbation peak, relative to the DT and DD gases. 

A problem with the program is that the step equations are "stiff', which makes it 

difficult for the program to function with high 1 mode values. The step equations used in the 

program are very sensitive at high 1 values, meaning that results vary greatly with minor changes 

in input. If the program is given a guess that is slightly too high or too low it will not give the 

eigenfunction with the highest eigenvalue, the one we seek. In the future, it would be beneficial 

to apply the program to high 1 mode values. This can give us even more information about the 

perturbation velocity and the growth rate. At this stage of development, however, the program 

still serves as a valuable tool because it more accurately calculates RT growth rates for arbitrary 

density profiles in spherical geometry than previous approximate methods. 
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