

Controlling Scientific Instruments Using JAVA on LINUX

Christine Beaty

Controlling Scientific Instruments Using JAVA on LINUX

C. Beaty
Advised by Dr. Christian Stoeckl

Laboratory for Laser Energetics
University of Rochester

250 East River Road
Rochester, NY 14623

Abstract

Motivated by the increased use of the Linux operating system at LLE, a program

has been built in that environment to control the operation of CCD cameras. CCD

cameras are used in several diagnostics, including UV spectrometers and streak cameras,

that analyze the 60 of the OMEGA laser. This program, written in Java, allows users with

little or no knowledge of the intricacies of CCD camera command logic to set up the

camera and acquire data in the form of an image. Among the issues examined during

programming lay the optimization of reading the image, leading to faster acquisition of

the image, and the synchronization of threads in a multi-threaded program, which ensures

that the camera control program will adequately respond to the user. The program was

created using special care to facilitate easy reuse of the code for similar applications

without requiring considerable modification.

Introduction

The Laboratory for Laser Energetics (LLE) at th~e University of Rochester

conducts inertial confinement fusion (ICF) experiments with the sixty-beam OMEGA

laser. Several of the diagnostics used in OMEGA both to measure the laser performance

and in the target experiments are dependent upon the images acquired by CCD (Charged

Couple Device) cameras. Therefore, controlling CCD cameras is vital to the success of

the experiments at LLE.

Several versions of software for controlling CCD cameras
-- - - --

have been developed by scientists at LLE in the past, all

designed for use in the Microsoft Windows operating system.

1

However, with an increasing interest in the Linux operating!

system at LLE, it was interesting to explore if software to

operate CCD cameras could be created in the Linilx,

environment. Since the Java programming language has several Figure 1
CCD camera

built-in features useful for software development, such as multi-

threading, it was logical to write the software in that language.

Uses of CCD Cameras at LLE

CCD cameras are utilized in a variety of areas at LLE, including ultra-violet (UV)

spectroscopy, X-ray diagnostics, and streak cameras. The images acquired by the cameras

in use in the UV spectrometers capture the spectral lines of a laser beam. These spectral

lines are then used to analyze the wavelength of the beam. In this manner, the different

wavelengths of the sixty beams in ONIEGA can be analyzed.

The CCD cameras are also crucial when coupled with a streak tube and

implemented as streak cameras in the generic streak camera p1.atform. Light from a laser

beam passes through the streak tube and is converted to a beam of electrons through the

use of a photocathode. Any change in the intensity of the laser beam changes the intensity

of the electron beam, so the electron beam is an accurate copy of the laser beam. This

electron beam is then swept across a phosphor plate, causing it to glow. The changing

intensities of the electron beam cause the glow to reflect the intensity variations of the

laser beam. The CCD camera on the other side of this phosphor plate then photographs

the glowing phosphor and, in effect, the intensity of light in the laser beam. Images from

the camera can then be analyzed to measure the time history of the laser beam.

Program Function

The purpose of the CCDControl program is to provide an easy-to-use interface

between the user and the CCD camera. The camera itself is connected to a device driver

in the computer through a fiber-optic cable. The computer inside the camera recognizes

certain letters as commands to perfonn a specified task. For example, sending the

command "J" to the camera causes the camera to prepare itself to receive 32

configurations from the user's computer, and the command "L" causes the camera to send

those configurations back to the user's computer. The CCDControl program

automatically sends the specific commands to initialize the camera when it begins

running, and other commands are sent during the course of the run as the user wishes.

The user, therefore, does not need to have any knowledge about which command to use

to perform a task.

During the process of programming, several minimum values for the proper

functioning of the camera were discovered. For example, the camera cannot safely

process exposure times fewer than ten milliseconds (ms) for a timed image acquisition.

Any exposure time less than ten ms may result in a failure to acquire the image, so an

exposure time limit was encoded to ensure that the camera operates correctly at all times.

In addition, monitoring the remaining exposure time, which is done by sending a

command at regular intervals, cannot be done faster than every 50 ms and has to stop 200

ms before the end of the exposure. Smaller values may cause the camera to function

incorrectly when acquiring the image.

User Interface

The GUI (Graphical User

R l t Ealt V l m Tool5
sdE5

Interface) of the CCDControl m.:i~-! , - 1 : ~ - -& m cco T.m.cnturt: 29.0. 1

program was based upon an earlier

program written in Java that

operates in Windows, with a few

additions. It was meant to be as

, . .. , ,

user-friendly as possible, with

clear intentions of how it should be

utilized. It provides important and
Figure 2

CCDControl GUI

real-time information regarding the status of the camera and each image acquisition, so

the user knows exactly what the camera is doing. The temperature of the CCD is

displayed in the GUI and automatically updated every second, and progress bars show the

remaining exposure time and percent of the image read. The values of the 32

configurations and readout parameters are also displayed in a panel in the GUI to allow

for easy user alteration. Any applied changes are then stored and used for subsequent

initializations.

Program Structure

One advantage that the Java language brought to the program was the ability to

create reusable code through the layering of the classes, allowing for easy future

- 1

CCDStatusLog
-- ---

Figure 3
Program Structure

modification. Since very little of the program is hardcoded, the classes are more versatile.

The layered classes can easily be reused for other, similar applications without requiring

major alterations in the code. The organization of the individual classes increases code

readability and makes program comprehension much easier. Understandable code is

crucial for a program which may undergo future modifications, and the layering provides

for easy alteration of one class without drastically affecting the others around it.

The majority of the programs within CCDControl were written in Java; however,

the methods of the interface that controls the camera needed to be written using the Java

Native Interface and C because Java cannot interact directly with devices. There are

several layers of software, beginning with the device driver which interacts directly with

the camera, followed by the interface in C and Java, and then the CCDControl program.

Optimization

One of the key issues in designing this program was the efficiency at which the

image could be acquired and displayed. Since the image is acquired in a grid of 2200 by

2200 pixels, and the typical size of a computer monitor is 1280 by 1024 pixels, it was

clear that the image had to be reduced in size. It was determined that the image should be

reduced in size to 550 by 550 pixels, or one-sixteenth of the original size, for test

readings. This was done by a process called undersampling, displaying only every fourth

pixel in every fourth row.

Several algorithms were tested to find the most efficient method of condensing the

image, as it is often the case with CCD cameras that the image needs to be displayed very

soon after the reading commences. The method that is used in the program takes
r - -- --

Algorithm A 1 r Algorithm B
approximately six ms

Per image, a

reasonably small

amount of time. The

original algorithm

whlle (1<550*550) { ~ n t k = 0;
I = I + 550;

I

for (int i=0; 1<2200*2200; I++) {
for (~ n t k = I , k<l;k++) { 1 1 ~f ((1/2200)%4 == 0 && 184 == 0) {

 mage elk] = ImgArrayb]; I ~mage[k] = ImgArrayI I] ,
J = J + 4 ; ' k++,

Figure 4
Undersampling Algorithms

tested took about 166 ms per image, so the speed of the final algorithm was increased by

a factor of 28. This remarkable increase is due to the number of operations performed.

The first algorithm, algorithm "B" in the above table, has two divisions in each of

4840000 (2200 by 2200) iterations. Because division is a very time-consuming operation

and there were so many divisions per run of the algorithm, the time required for the

algorithm to complete its task was much greater than that of the final algorithm,

algorithm "A." The latter has two multiplication operations, which are less time-

consuming than divisions, in each of 550 iterations and one addition and one

multiplication in each of 302500 iterations. Not only does algorithm " A avoid the use of

divisions, it also has fewer loops to go through, which both contribute to the remarkable

increase in efficiency. Thus, the user of the program significantly benefits from the

optimization of the undersampling process.

Svnchronizinn Threads

Another issue examined in the development of this program was the

synchronization of the threads that accessed the camera at different points in the program.

Because the camera is a resource that many parts of the program have to share, it was

necessary to synchronize the running of these threads so as to ensure that every thread

could execute as planned and the camera wouldn't have any problems functioning as the

user intended.

If the threads were not synchronized, several potential problems would arise. The

CCD camera is a device that can only handle one task at once, whether that task be

reading the image, sending the status, or configuring itself to the users' specifications. If

the camera is assigned one task, and

then assigned another task without

having first completed the first,

serious problems can arise that range

from sending back wrong data to

freezing the system. In the diagram,

potential problem spots are circled.

The first and third circles indicate
Figure 5

Threads Without Synchronization -. - - - - -

points at which the camera has been given two commands, "Expose Camera" and "Get

Status", without having the chance to reply to the first command. These errors could

result in incorrect data being sent back. The second circle illustrates two problems. One

problem is that the camera has been commanded to send back two replies (Reply and

Status) without first getting the command to acquire the status. The second problem is

much more serious, as it affects the acquisition of the image. The camera has been

designed so that the command to read the camera must be sent directly after the

command to expose the camera. However, in the diagram, the camera has been directed

to "Send Status" in between the "Send Reply" and "Read Camera." This could easily

result in the freezing of the system or other disruptive events.

Synchronization, however, prevents such errors from occurring by allowing only

one set of commands to be sent to the CCD camera at one point. The synchronizing logic

blocks all other threads from accessing the camera until the camera has finished. This

blocking is represented by the shaded

oval. When the "Reserve Camera"

command is sent, a shield of sorts is

constructed, and the commands from

the "Update Status" thread cannot get

at the camera. Only after the camera

has finished its task is the camera

released and another set of commands

may be sent by a different thread and
Figure 6

Threads With Synchronization

a new task performed. Thus, the "Update Status" thread resumes. This solves the

problems posed by the first and third circles in the above diagram, and some additional

logic solves the problem of exposing and reading in the second circle.

Advantages

The advantages of the CCD Control program include real-time status updates and

increased flexibility in manipulating the acquisition of the image. The temperatures of the

CCD and the backplate, as well as the vacuum chamber pressure, are newly acquired and

displayed every second, and progress bars indicate remaining exposure time and

acquisition time each time an image is acquired. These serve to keep the user informed as

to the camera's current status.

Several methods were employed that increase the user's ability to manipulate the

image acquisition. A panel was constructed that holds a few of the most used settings in

one place. This allows for easier modification of the settings, as the user does not need to

know the number of the specific configuration or parameter that holds the value of the

desired setting.

The scaling process was also updated to keep in place with new technologies in the

CCD cameras. Older models of the camera sent image data back in 12-bit format. while

the newer ones have changed to 16-bit. To accommodate this, the scaling was changed

from 12-bit to 16-bit, the highest value (represented by white) changing from 4096 (212)

to 65536 (216). Because of this rise in values, the process of selecting a value was made

somewhat easier and more exact with the addition of text boxes where the user can input

the desired scale values, instead of depending on the accuracy of the slider.

Conclusion

The successful development of a Linux-based program to control CCD cameras is

of great assistance to diagnostic scientists at LLE. Scientists now have the ability to

choose which operating system to use to control CCD cameras, which is of importance as

Linux use increases. The CCD Control program allows users with little knowledge of the

individual commands sent to the camera to interact with the CCD camera efficiently and

effectively. The program has been tested in the Generic Streak Camera Platform (GSCP)

and will undergo further improvements in the future before its implementation.

Acknowlednments

First and foremost, I would like to extend my greatest thanks to Dr. Christian

Stoeckl for advising me on this project. Without a doubt, it is due to his expertise and

guidance, as well as his remarkable patience and dedication, that this was completed. I

would also like to thank Dr. R. Stephen Craxton for giving me the opportunity to

participate in this program.

	Beaty.pdf
	Controlling Scientific Instruments Using JAVA on LINUX
	Christine Beaty

