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Abstract 

Charged particles are used to infer the extent of compression in implosions on OMEGA. 

Statistically significant variances in particle yield have been observed at different 

locations around the target. These variations are unexpected because the fusion reaction 

that produces the charged particles is isotropic. One possible cause for this deviation 

could be the existence of magnetic fields in the target. Magnetic fields can result from 

hydrodynamic instabilities in the implosion. Large fields would be able to bend the 

trajectories of charged particles significantly, possibly causing this variation in the 

particle yield. Using results from a two-dimensional hydrodynamic simulation of an 

implosion, the magnetic field source term and resulting deflection of charged particles 

have been estimated. The estimated strength of the magnetic field should be regarded as 

an upper limit as it does not include effects of return currents etc. The calculated 

deflection is small, but not irrelevant when compared with the slit size of the 

measurement devices. This suggests that magnetic fields cannot be ruled out as a possible 

cause for the variation in charged particle yields. 

Introduction 

Direct dnve fusion implosions are a very important field of research in today's 

scientific community. They may hold the keys to unlimited power supply and also offer 

a laboratory for the study of astrophysical phenomena. Thus, it is important that we 

understand all that we can about these implosions. Scientists use the distribution of 

charged particles produced in the fuel core to infer about compression. Since particle 

production is isotropic, scientists expect a very even distribution of particle yield with 



respect to placement of the detector. This should be true even if there are nonuniformities 

in the target. However, instead, scientists find a distribution that varies greatly in places 

(see Figure 1). In fact, there is deviation by as much as a factor of two between detectors. 

There are a variety of possible reasons for this unusual distribution; one possible cause is 

the presence of magnetic fields, which can be created internally in direct drive 

implosions. 

Density and temperature gradients in inertial confinement fusion implosions result 

in hydrodynamic instabilities. These instabilities result in non-collinear gradients in the 

density of charge and electron temperature around the fuel shell and ablation surface of 

the implosion. These gradients lead to the formation of magnetic fields at the surfaces. 

These fields can cause particles, even the most energetic, to change trajectories, and 

deflect as they pass through the field. To determine whether or not internally created 

magnetic fields are actually responsible for the altered variance, we used a DRACO 

hydrocode simulation to estimate the magnitude of the fields and the resultant deflection 

of charged particles. In section 11, we will describe the simulation. Section III describes 

the steps involved in the calculation of the magnetic field. Section IV discusses the 

results in the context of particle trajectories, and we conclude in section V. 

About the DRACO Simulation 

DRACO is a two dimensional hydrocode that models the conditions of an 

implosion, similar to those at the LLE. In the simulation considered, DRACO takes into 

account nonuniformities in the laser. It should be noted that the magnetic field 

computations we have performed are post-processing computations. Had the magnetic 

field computations been placed inside of the actual simulation, there would need to be 



adjustment for back-current and convection which are formed by the movement of 

plasma, and which partially counteract the effects of the magnetic fields. Thus, what is 

estimated is an upper limit on the magnitudes of the magnetic fields. 

Background 

Nonunifonnities in the incident laser light are imprinted on the plastic shell of the 

core. These imprinted perturbations grow during the ablation phase. Furthermore, 

through a process known as feedthrough, these perturbations travel through the plastic 

shell and are imprinted on the fuel surface. During the compression phase, these 

perturbations grow as Rayleigh-Taylor instabilities, and can give rise to the magnetic 

fields during the time of peak particle production. 

In the absence of fields, since particle production is isotropic, the particles should 

be evenly incident on different placements of the detector. However, if the magnetic field 

is significant and nonuniform enough, the trajectories will be altered, and the particles 

will deflect, leading to an altered distribution. 

Computational Processes 

NonCollinear Gradient Computation 

Maxwell's laws were used to compute the strength of the magnetic fields. 

Maxwell's laws express magnetic field strength as the cross product of the gradients of 

electron density and temperature (see appendix A). We therefore compute the gradients 

of electron density and temperature in order to compute the magnitude of the magnetic 

fields at the time of peak particle production. Figures 2 through 5 show contour plots of 



charge density and cell temperature, as well as vector diagrams of their respective 

gradients. The grahents are computed numerically from the values of a given cell and its 

neighbors, and the distances between cells. Because the gradients are computed using the 

neighboring cells, the gradients of the innermost and outermost cells are not calculated. 

However, by looking at the contour plots of electron density and temperature, it is clear 

that the values near the origin and very far from the center are very uniform. Thus, the 

magnetic fields at these places are so trivial as to be irrelevant to further computations. 

Curl Calculation 

Figure 6 depicts the values of the partial time derivative of the magnetic field at 

the time of 1.9 ns, which is the time of peak particle production. The values of this 

partial derivative were computed using the Maxwell equations for magnetic fields. The 

time derivative is expressed as a function of the cross product of the gradients of electron 

density and cell temperature at the time step. Notice that there are two places where the 

derivative is exceptionally high. The closer of the two, located approximately 35 microns 

from the center, is the fuel shell interface; the farther away of the two is from residual 

gradients arising from instabilities in the ablation surface earlier in the implosion during 

the acceleration phase. Finally, notice that the derivative takes both positive and negative 

values. This shows that the magnetic field assumes both positive and negative 

directions. 

Field Calculation 

Figure 7 shows the magnitude of the magnetic field's strength after the implosion 

has gone on for 1.9 nanoseconds. This time step is of particular interest because this is 



the time at which particle production is greatest. Unfortunately, the simulation records its 

output only once every 20 picoseconds, and the fuel cell surface of the target traverses a 

distance of almost 4 microns in the 20 picoseconds between measurements at 1.88ns and 

1.9 ns, thus, it is almost impossible to create an accurate time integral over even such a 

small period of time. Instead, the magnetic field strength was computed by multiplying 

the interpolated values of the field strength gradient by the time interval of 30 

picoseconds to obtain an approximate integral value. This time interval was computed by 

dividing the approximate length of the significant fields (10 microns) by the velocity at 

which the fluid moves (about 30,000,000 cmls). This gives a timescale for which the 

motion of the field is, more or less, reasonable (Appendix A). The magnetic field is 

greatest, the order of 1 to 10 MegaGauss, at a distance of about 35 microns from the 

center of the target. The magnitude of the earth's magnetic field is approximately one 

quarter of a Gauss, and the largest fields ever created in a lab setting are on the order of 

1-10 KiloGauss, which is about one thousand times less potent than the implosion's 

fields. Clearly the magnetic fields in these implosions are immensely powerful. Recall 

that this distance almost exactly correlates to the boundary of the fuel-shell surface. 

These instabilities have created noncollinear temperature and density gradients that 

resulted in the formation of the magnetic field. There is also a smaller field at about 70 

microns out, which is a remnant from earlier instabilities that were created at the 

boundary of the ablation surface during the early parts of the implosion. At all other 

places, the magnetic fields are only on the order of a few gauss, and thus comparatively 

negligible. Notice the width of the band of high field strength at the fuel shell interface. 

It is on the order of 2 to 10 microns, however, it is generally only 2 to 4 microns wide. 



Length Scale Calculations 

Figures 8 and 9 show the computed scale length with respect to both electron 

density and cell temperature at the time of peak particle production. These lengths were 

computed by taking the values of electron density and cell temperature and dividing them 

by the norms of their respective gradients. The figures show that these fields have 

lengths of between 2 and 10 microns. Notice that the temperature length scales at the 

fuel shell surface are much greater than density length scales. This is because at the fuel 

shell interface, the electron density changes drastically across a very small distance, 

however, as we have seen in Figures 2 through 5, the temperature changes gradually 

across a relatively large distance. 

Results 

Trajectory Bend Calculations 

Figures 10 and 11 depict the amount of bending that 14.5 MeV protons and 10 

MeV deuterons experience as they pass through magnetic fields of varying strength and 

width. These particles are of interest as they are used to infer compression in fusion 

implosions. The values for these were computed outside the simulation and the 

postprocessing code. The Larmor radius and the magnitude of the field were calculated 

from the postprocessing data, and plotted separately to determine an approximate range 

of deflection values. The angles by which the particles were deflected were on the order 

of one tenth of a degree, or one six-hundredth of a radian. Notice that the amount of 

deflection varies more or less hyperbolically with changes in either field strength or scale 

length. Also observe that fields of strength of one or more MegaGauss require a 



relatively small scale to alter the trajectory of these highly energetic protons and 

deuterons. These relevant magnitudes are present near the fuel shell interface. In a 

number of places, the particles may be subjected to such fields for distances of five to ten 

microns if they are deflected back into the field. These distances are more than enough to 

cause some very energetic particles like the protons and deuterons to deflect by as much 

as a third to a half of a millimeter as they travel the distance, about 20 centimeters, 

between their egress from the significant magnetic fields and their incidence upon the 

detector. This deflection is significant when compared to the slit width of the detector, so 

although the angles of deflection are tiny, the distance the particles travel, 20 cm, is large 

enough compared to the detector's slit width to lead to significant deflection. 

Other Possible Issues 

Internally created magnetic fields may not be the only things to alter the 

trajectories of charged particles. The most obvious explanation for the varied distribution 

may be related to the detectors themselves. One possible error may be a lack of cross 

calibration. However, the producers of the spectrometer which was used as a detector are 

reasonably sure that no such faults exist in their devices. Thus, we will not consider the 

experimental apparatus as a source for such large errors. There are a number of other 

possible properties of the implosion that may also play a role. First, it has been 

hypothesized that there exist external magnetic fields that are formed during the 

implosion. These externally created magnetic fields may have some impact on the paths 

of the particles, but we have no estimate of their size, and it seems very unlikely that, 

without the massive gradients of electron density and temperature present at the fuel shell 

interface, the external fields are large enough to bend the trajectories significantly. 



(Recall that the magnetic fields at the fuel shell interface during the time of peak particle 

production are on the order of a thousand times greater than any ever created in a 

controlled environment.) Second, it is possible that the laser itself influences the motion 

of the particles. However, since the laser has been turned off almost one whole 

nanosecond before the time of peak particle production, the magnitudes of the magnetic 

fields intrinsic to the laser beams may have decayed to irrelevant trace levels. Thus, the 

lasers themselves may have little if any effect on the trajectories, especially those of such 

energetic charged particles. Finally, it is possible that particle production is actually 

anisotropic with respect to angle. Plasma properties, such as a polarization of the spin of 

the fusing ions, may result in nonuniformities in particle production. If this were the case 

the distribution of energetic, charged particles would not be uniform, regardless of the 

presence of magnetic fields. However, there have been many tests done, showing that the 

processes involved in the particle production in lower temperature laboratory situations 

are isotropic. It is logical to extend this generalization to high temperatures and densities. 

In doing so, we can assume that the contribution from spin polarization is small. 

Conclusions 

It should be noted that the hydrodynamic properties of the plasma are not 

affected by the magnetic fields very much. The absolute maximum pressure exerted by 

the magnetic fields is on the order of one million atmospheres, approximately two orders 

of magnitude lower than the minimum value of the intrinsically created pressure of the 

plasma. Thus, there is approximately a 1% deviation in hydrodynamic attributes as a 

result of these magnetic fields. Considering that this is at the time when the magnetic 



fields are at some of their greatest values, it is indicative that there will never be much 

greater than 1% deviation as a result of the magnetic fields. 

Clearly, it is possible that the magnitudes of the internally created magnetic 

fields at the time of peak particle production are large enough to cause the trajectories of 

highly energetic particles to bend by as much as a few tenths of a millimeter after they 

travel 20 cm from the field. To accurately determine how large the deflection is and what 

the effect on the distribution is, two things need to be done. First, there need to be self 

consistent calculations which take into account back current and convection. Second, 

there also needs to be a particle trajectory-tracking program that determines the amount 

of deflection as a function of angle of emission. Furthermore, this program would 

actually compute the yield for the changing magnetic fields. This work indicates that 

magnetic fields cannot be ruled out as the cause of this variation in particle yields around 

an imploding target. 
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Appendix A: Equations 

Variables And Constants: 

n,: electron density 

e: elementary charge of an electron 

E: electric field strength 

k: Boltzmann constant 

t,: electron temperature 

c: light speed 

B: magnetic field strength 

v: the velocity of the fluid 

I :  the length scale for the field 

r: the radial coordinates of a cell in the simulation 

6 : the polar coordinate of a cell in the simulation 



The formula for the electric field in terns of the electron pressure gradient: 

neeE = V (nekre) 

Faraday's Law; the law which gives the time dependent partial derivative of magnetic 

field strength as a function of the curl of electric field strength: 

The formula used to calculate the time dependent partial derivative of the magnetic field 

as a function of the cross product of the gradients of electron temperature and density; 

this formula is a combination of the electrical field formula and Faraday's law: 

These gradents were computed numerically by taking a Taylor series approximation of 

the differences in values of te and ne over a set of cells, around one cell a, in the radial 

and polar directions, yielding: 

Here the subscripts correspond to the values of r, 8 ,  n,, and t, at the four cells 

neighboring a. From here we can express our gradients in terms of these partial 

derivatives. 



The formula for the time scale of integration (a sensitivity analysis for the scale length 

was incorporated into the deflection calculation): 

Calculations of Tra-ieetow Bending 

As long as a moving, charged particle is acted on by a magnetic field it will bend 

along a circular path. The radius of this circle is given by: 

where m, v, and q are the particle's mass, velocity and charge respectively, and B is the 

magnetic field's magnitude. We know the values of m, v, and q for different particles, so 

using trigonometry, we can compute the amount of deflection when the particles reach 

the detector, which is a distance of 20 cm, as a function of r and d,  the distance over 

which the field acts on the particle. 



8. Appendix B: Figures 

Figure 1: This graph shows particle yield as a function of the placement of the detector. 
There are statistically significant differences between yield at different placements; KO-1 
and TIM-5 for example. 



Figure 2: This contour plot shows the electron density in the imploding target at the time 
of peak particle production (about 1.9 ns). Notice the two "layers" of the graph. The 
sharp change between these layers represents the fuel shell surface. The irregularities in 
this interface are caused by the nonuniformities in the laser that are modeled in the 
DRACO simulation. 
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Figure 3: This contour plot shows electron temperatures in the imploding target at the 
time of peak particle production. 
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Figure 4: This diagram shows the vector gradients of the electron temperature at the 
time of peak particle production. Notice that the vectors at the fuel shell surface are 
orders of magnitude larger than those farther away. Also notice that the nonuniformities 
imprinted on the surface by the laser have led to gradients which do not follow a nice 
flow. 
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Figure 5: This diagram shows the vector gradients of the electron density at the time of 
peak particle production. Notice that while the vectors at the fuel shell surface are 
somewhat larger than those farther away, there is more uniformity here both in magnitude 
and direction of the vectors. 
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Figure 6: This contour plot shows the partial time derivative of magnetic field strength 
at the time of peak particle production. 
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Figure 7: This contour plot shows the value of the magnetic field strength in the target at 
the time of peak particle production. Notice that the fields are (relatively) small except 
near the fuel shell interface where they are immense. 
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Figure 8: This contour plot shows the "scale length" for density grahents, or the 
approximate distance over which particles are subjected to magnetic fields caused by 
density gradients. 
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Figure 9: This contour plot shows the "scale length" for temperature gradients, or the 
approximate distance over which particles are subjected to magnetic fields caused by 
temperature gradients. Notice that the temperature change is gradual compared to the 
"quick" changes in density across the shell interface, so the scale lengths for temperature 
gradients are larger than those of density gradients. 
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Figure 10: This contour plot shows the deflection for 14.5 MeV protons as a function of 
magnetic field strength and scale length. Particles in these implosions are subject to 
fields of magnitudes between 500 KiloGauss and 5 MegaGauss, over distances of 
between 2 and 4 microns, so that section of the graph has been highlighted. 
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Figure 11: This contour plot shows the deflection for 10 MeV deuterons as a function of 
magnetic field strength and scale length. Particles in these implosions are subject to 
fields of magnitudes between 500 KiloGauss and 5 MegaGauss, over distances of 
between 2 and 4 microns, so that section of the graph has been highlighted. 
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