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ABSTRACT 
Inclusion models of laser damage were constructed using Mathematica v. 4.0. These 

models predict the effect of the inclusion interface on the damage threshold, by comparing 
inclusions with perfect and totally imperfect interfaces. The perfect interface models were based 

on the Goldenberg and Tranter heat conduction solution. With these models, the effects of 
variables such as pulse length and inclusion radius could be studied. An equation for the totally 
imperfect interface was then developed using relationships between these variables, and by 

taking into account that no heat conduction occurs between this interface and the surrounding 
matrix. With these models, scaling of the damage threshold was developed, and the models 

showed the effects of the different initial interfaces. 

1. OVERVIEW 
1.1 Introduction 

Today, the study of laser damage is one of the most important and rapidly advancing 

fields in all of laser physics. This field of study investigates all aspects of damage in the laser 

system, ranging from physical damage on the laser, the lens, and the target, to the theoretical 

study of why this damage is occurring. This research is instrumental in the future of laser 

physics, and it is these various lens defects which are becoming a prominent obstacle in the 

creation of an efficient and practical laser-based system. The damage caused by lens defects is 
extremely costly, and prevents the laser system from working to its full potential. If this damage 

can be prevented, thousands of dollars can be saved, and the laser systems will be more efficient 

and productive. 

1.2 Outline 
To work with the theoretical aspect of why laser damage occurs in the optics of the laser, 

it was necessary to create computational models that duplicated the physical properties of the 

laser lens. To develop these models, programs were created and conditions were simulated using 



Mathematica v. 4.0. With the assistance of this program, the necessary calculations could be 

constructed and organized. 

In order to correctly duplicate the physical properties of the lens, its material properties, 

as well as those of the defect, were examined. The material properties that were investigated 

mainly dealt with the properties of the absorbing inclusion, which were density, specific heat, 

thermal conductivity, and thermal diffusivity. Since these properties vary according to the 

composition of the defect, the calculations were performed using values from the most common 

types of inclusions. 

After reviewing the physical properties of the absorbing inclusion, it was also necessary 

to consider the thermal interaction (heat conduction and heat flux) between the defect and the 

surrounding lens matrix. To examine this interaction, the investigation of the interface between 

these two materials was crucial. The two interface models used for these calculations were the 

perfect and totally imperfect interfaces. These types of interfaces are the extreme possibilities, 

and although they rarely occur, they provide the limits to a range of simulations in which all 
other interfaces are included. 

After taking into account many of the possible variables that influence laser damage, the 

computational models could be run. These models were created using the laws of 
thermodynamics and the heat conduction equation, as well as the Goldenberg and Tranter 
solution (when looking at the perfect interface model). Through experimentation and simulation 

of different combinations of variables, I studied the effect of the radius of the inclusion on the 
damage threshold of the inclusion: it was determined that a specific combination of variables 
produced a worst case scenario. In this scenario, the lens was most prone to melting and damage. 

After this situation was examined, the effect of the individual variables was also determined, and 

a scaling of damage threshold for both the perfect and totally imperfect interface was 

constructed. 

2. DEVELOPMENT OF INCLUSION MODELS 
2.1 Absorbing Inclusion Inside Non-Absorbing Matrix 

In order to set up the theoretical calculations in Mathematica, the physical properties of 

an inclusion model had to be duplicated. The model that was simulated was an absorbing 
spherical inclusion embedded inside a non-absorbing infinite matrix. In this model, the defect is 

located inside the non-absorbing lens. This is important because as the laser light is passed 

through the lens, the inclusion is the only material that will absorb any of the energy from the 

laser. The other light passing through the lens matrix is not absorbed, and does not have any 

effect on the system. 

When programming this model into Mathematica, it was also necessary to make 
assumptions about the properties of defect, the interface, the matrix, heat flux, the laser pulse, 



and the rise time of the laser. These assumptions simplified the calculations so that a general 

model could be used for all of the calculations. The first assumption that was made concerned 
the idea of how the inclusion absorbed energy from the laser. In this model, it was assumed that 

the energy absorbed by the inclusion was equal to the laser's energy flux (J/m2) multiplied by the 

inclusion cross sectional area ( X R ~  for a spherical inclusion of radius R.) There were also 

assumptions regarding the point at which damage actually occurs. In this model, it was assumed 

that damage occurs when the temperature at the center of the inclusion is equal to the inclusion's 

melting point. 
The assumptions regarding the interface dealt with the difference between the perfect and 

imperfect interface. For the perfect interface, it was assumed that this interface allowed for 
compIete heat conduction between the inclusion and the surrounding matrix. The opposite was 

assumed for the totally imperfect interface. In this interface, it was assumed that the interface 

was so insulating that it did not allow for any heat conduction or energy flow between the two 

materials. The shape and rise time of the laser pulse were also assumed. For this model, it was 
assumed that there was no rise time for the laser, meaning that as soon as the laser was activated, 

the beam was at its maximum power. Although these two assumptions are not very practical, 

because the laser pulse generally does have a curved shape with a rise time, they were used to 

develop the general model. The last assumption that was used in the creation of this inclusion 

model was that heat absorption is instantaneous and uniform over the inclusion. This was done to 
assure that the whole defect was affected by the laser energy, and that absorption was uniform 

across the whole inclusion. 

The assumptions are summarized as follows: 

Spherical inclusion; 

Inclusion absorbs energy = ( E x: R2); 

Damage occurs when T ,,,,, = T,,; 
Perfect interface: Complete heat conduction across interface; 

Totally imperfect interface: No heat conduction across interface; 

Laser: Square pulse shape and no rise time; 

Instantaneous and uniform heat absorption. 

2.2 Interface Equations 
After the physical properties of the inclusion model had been created, the Mathematica v. 

4.0 equations had to be designed and programmed. For these equations, the problem was divided 

into two different sections. One section deals with the perfect interface, and the other dealing 

with the totally imperfect interface. Each of these interface models needed a different equation 

because they each had different physical properties. For the perfect interface scenario, the 
Mathematica program could be based on the Goldenberg and Tranter solution [1952]. This 



equation was used because it considered the effects of heat conduction across the perfect 

interface, and it allowed for the comparison between the damage threshold and the size of the 

inclusion. See Appendix 1 for a copy of the Mathematica v. 4.0 program [Wolfram, 19961. 

The Goldenberg Tranter result for the perfectly conducting interface is 

Here subscript 1 denotes the inclusion, and subscript 2 the matrix. k is thermal conductivity 

(W/m.K), D is thermal diffusivity (m2/s), tp is pulse duration, R is the inclusion radius, p is mass 

density (kg/m3), and C is heat capacity (J/kg.K). The quantity A (units W/m3) is power absorbed 

per unit volume in the inclusion, and found from the absorbed energy (E .n R2) divided by the 
pulse duration (t) and the inclusion volume (4 .n R3/3). The form of the function F can be found 

in Goldenberg and Tranter [1952]. 
For the totally imperfect interface scenario, a new equation had to be created. In order to 

develop this formula, it was necessary to review the equation relating energy absorbed Q and 

temperature change AT in a body of mass m and specific heat C: 

Q = m  CAT (2) 

In order to manipulate this into a useable formula, it was necessary to substitute in for the mass 

m. Since mass is equal to density R multiplied by volume V, those new equations could be 

inserted instead in place of the mass: 

E .nR2=p  V C AT, or 

This formula could then be solved for the temperature change AT and manipulated into a form 

that could be programmed into Mathematica. The result for the temperature rise at the center of 

inclusion with the totally imperfect interface equation is 

2.2 Material Properties 
After the perfect and totally imperfect interface equations had been programmed in 

Mathematica, their variables needed to be researched and examined. The variables that needed 

to be researched for the two equations were density, specific heat (at both room temperature of 



three hundred degrees K and one thousand degrees K), and thermal conductivity (at both three 

hundred degrees K and one thousand degrees K). In order for this data to be relevant, these 

properties were recorded for thirteen different, but common defect materials. After recording all 

the values, it was then possible to further investigate the properties of these variables. For each 

defect material, both (p C) and thermal diffusivity (D = k / (p C)) were calculated and their 

values were compared for all the materials, see Appendix 2. 
The interesting fact that was discovered from this comparison was that while the density, 

thermal conductivity, and thermal diffusivity differed greatly among the various materials, the 

value of (p C) remained approximately constant. This was an important discovery which 

allowed the interface equations to be simplified by removing the variable (p C). Since the (p C) 

value was approximately constant for all defect materials, it would not have any distinct 

influence in the damage threshold calculations. 

3. CALCULATION RESULTS 
3.1 Procedure 

The object of the interface calculations was to determine if a minimum radius hi, 
existed, and if it caused a minimum damage threshold E,,,. In order to answer these questions, it 

was necessary to perform many calculations using the interface equations programmed into 

Mathematica. For each calculation, one variable was changed to determine how it affected both 

the R,, and E,,, values. For each test, it was also necessary to determine the smallest R,,,,, value 
in order to calculate an accurate damage threshold value. While one variable was being tested, all 

others were kept constant to ensure that the calculations illustrated only the effects of one 

variable. After completing the calculations for the variable, the results were graphed and 

analyzed. The different variables tested were thermal conductivity of the inclusion (k,), thermal 
conductivity of the matrix (k,), thermal diffusivity of the inclusion (D,), time pulse of the laser 

(tp), and the melting point of the inclusion (T,,), 

3.2 Perfect Interface Results 
The first calculations that were done with the perfect interface equation revolved around 

determining the damage threshold of the inclusion. In these calculations, the initial goal was to 

compare the size of the inclusion to the damage threshold at that point. In these damage 

threshold calculations, the radius size R varied from 0 . 1 ~  10.~ meters (0.1 pm) to 3 ~ 1 0 - ~  meters (3 

pm). 
After these results were graphed, an interesting fact was revealed, see Fig. 1 .  The graphs 

showed that there was a specific defect size (R,,) that caused the damage threshold to be at its 

lowest point (E,,,). This showed that there was a worst defect size where the lens was most 

prone to damage. This calculation was then recreated using various pulse times tp, from l ~ l O - ~  



seconds to 5 0 ~ 1 0 - ~  seconds. These calculations also showed that the worst defect size existed at 

all the various time pulse lengths, although both the R,, and E,,, values changed at the different 

time pulse values tp. 

After comparing how the time pulse influenced the R,, and E,,, values, it was time to 

calculate the effects of the other variables: thermal conductivity of both the inclusion and matrix, 

(p C), thermal diffusivity of the inclusion, and the melting point of the inclusion. In these 

calculations, both the R,, and E,,, values were calculated while observing the effects of the 

other variables. 

After repeating the damage threshold calculations with the inclusion's melting point as 
the variable, it was observed that the E,,, varied proportionally to melting point, see Fig. 2, 
while the melting point had no effect on the value of R,,, see Fig. 3. 

After repeating the damage threshold and minimum radius calculations with the time 

pulse of the laser as the variable, it was observed that both E,, and R,, varied proportionally to 

the square root of the time pulse tp. See Figures 4 and 5. 

Then, the damage threshold and minimum radius calculations were repeated using first, 

the thermal conductivity of the matrix as the variable, and then, using (p C) as the variable. With 

the thermal conductivity as the variable, it was observed that both E,,, and R,, varied 

proportionally to the square root of the thermal conductivity. With (p C) as the variable, it was 

observed that E,,, also varied proportionally to the square root of (p C), see Fig. 6, but R,, 

varied proportionally to the negative square root of (p C), see Fig. 7. 

3.3 Scaling of E,,, and R,, 
After observing the results from the perfect interface calculations, the relationships 

between the different variables (thermal conductivity, time pulse, melting point, (p C), and both 

E,,, and R,, were revealed. By examining how each individual variable affected the damage 

threshold and minimum radius, two scaling equations were developed. These equations 

demonstrated the effects of the variables, and they helped to explain their relationship. 
For the E,,, scaling equation, each variable relationship was taken into account and 

examined. The calculations demonstrated that E,,, varied as the square root of the time pulse, (p 

C), and the thermal conductivity of the matrix, while varying proportionally to the melting point. 

Taking this data into account, and by matching the correct units, the E,,, scaling equation was 

developed. 

with f a dimensionless function, see Fig. 8. 



For the R,, scaling equation each variable relationship was taken into account and 

examined. The calculations demonstrated that R,,,,, varied as the square root of the time pulse 

and the thermal conductivity of the matrix, but it varied as the negative square root of (p C). 

They also showed that the melting point of the equation had no effect on the value of R,,. 

Taking this data into account, and by matching the correct units, the R,, scaling equation was 

developed. 

Here, again, g is a dimensionless function, see Fig. 9. 

3.4 Totally Imperfect Interface Results 
For the totally imperfect interface calculations, the major objective was to determine the 

relationship between size of the inclusion and the inclusion's damage threshold. In order to find 
this relationship, it was necessary to use the imperfect interface equation that had been 

programmed into Mathematica. Since there was no heat flux or conduction across the totally 
imperfect interface, the calculation was much simpler. With thermal conductivity and diffusivity 

removed from the equation, E,,, was now proportional to the inclusion size R,,. These 

calculations also showed that the damage threshold was not affected by the time pulse tp of the 
laser. These results are shown schematically in Fig. 10. In this scenario, the data shows that there 

is not an inclusion size that is most prone to damage, and only the melting point of the inclusion 

will determine how predisposed the inclusion site is to melting. 

4. CONCLUSIONS 
After reviewing the results of both the damage threshold and inclusion size calculations, 

the relationships of the different variables was established. These relationships were displayed in 

both the E,,, and R,, scaling equations, and they helped to guide both the perfect and totally 

imperfect interface models. From these damage threshold calculations, it was determined that 

with the imperfect interface, the damage threshold was proportional to the radius of the inclusion 
multiplied by the time pulse of the laser. Although this information is very useful, the most 

important conclusion that can be drawn from these calculations is the idea that with a perfect 

interface, a worst defect size exists. At this worst size radius size, the damage threshold of the 

inclusion is at its lowest value, creating a situation where the inclusion is most prone to melting 

and damage. In these specific calculations, the worst defect size ranged from 40 to 300 nm, but 

this range is dependent on the material properties of the inclusion. 

This idea of a worst defect size is very important to controlling the problem of laser lens 

damage. Knowing that a worst defect size will cause the most damage, it is important to look at 



how to prevent the creation of this size defect. Since there is no way to control many of the 

natural inclusions that form in lenses, it is important to prevent inadvertent defects. When the 

lens is polished or coated, the size of the polishing abrasive slurry must be examined. Since 

polishing leaves some inadvertent defects in the lens, it is necessary to be sure these defects are 

not of the worst size. By first examining the size range of the worst defect, it would then be 

possible to use a polishing method that is less likely to cause this size defect. The polishing 

would still leave some inadvertent defects, but they would not be the size which is most prone to 

damage. 

5. SUGGESTIONS FOR FURTHER WORK 
To further investigate how these calculations simulate the physical process of laser 

damage, it would be important to examine the effect of the laser's pulse shape and rise time. In 

our calculations, it was assumed that the laser had a square pulse shape and no rise time. In 
actuality, the laser does have a curved pulse shape and a rise time. In future work, to make these 

calculations more realistic, it might be important to investigate how the laser's properties 
influence the damage threshold and minimum size of the inclusion. 

Another area to look at for further work would be in the details of absorption and heat 

transfer. It might be worth looking into how different wavelengths of light are absorbed by the 

inclusion, and if any specific wavelength has a greater effect on the damage threshold 
calculation. When looking at the details of heat transfer, it would be important to examine heat 
flux. More investigation is needed to determine if heat flux is instantaneous, and how a delayed 

heat flux might change the damage threshold calculations. 
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Appendix Mathernatica code (1 is inclusion; 2 is matrix) 1 

I n 1 1 5 6 J : -  f [R-, Dl-, kl-, k2-, tp-, y-] := 
( 

(Exp[-((yA2*tp) / (RA2/Dl))l / Y) 

I n l l 5 7 J : =  a[R-, Dl-, kl-, kZ-, tp_, paxymax] :=Nlntegrate[f [R, Dl, kl, kZ, tp, y], 

( y ,  0, ymar) , MinRecursion -+ 0, MaxRecursion -+ 100000] 

I n [ l S 8 J : =  try(ymaxymax] :=NIntegrate[f[.Olrl0"-6, 3.5+10A-6, 8, 1.38, 30+10A-9, y], 

( y ,  0, ymax) , MinRecursion + 0, HaxRecursion -+ 100000J 

Out [1 601- 0.3061 25 
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Laser Damage Thresholds 
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FIG. 1 The dependence of the laser damage threshold on inclusion radius R for various pulse 
durations tp. The graph demonstrates the concept of minimum damage threshold. The graph also 

shows the result for the insulated inclusion (case of totally imperfect interface.) 
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FIG. 2 Dependence of minimum laser damage threshold (J/m2) on the inclusion melting point 

(K). 

FIG. 3 Dependence of minimum inclusion size &., (pm) on inclusion melting point for two 
different pulse durations, tp = 10 ns (top) and tp = 1 ns. 



FIG. 4 Dependence of laser damage threshold ( ~ l r n ~ )  on pulse duration (s). 

FIG. 5 Dependence of minimum inclusion size &, (worst defect radius, m) on pulse duration 

6 ) .  



FIG. 6 Dependence of laser damage threshold (J/m2) on the product of mass density and heat 
capacity (product has units J/m3.K). 

FIG. 7 Dependence of minimum inclusion size R,, (worst defect radius, m) on the product of 
mass density and heat capacity (product has units J/m3.K). 



SCALING: Minimum Areal Energy Density 

Ec,, =Tm, [tp k2 pc] "112 f (kl/k2) 

FIG. 8 Scaling of laser damage threshold E-, =.T, [tp k, (p c ) ] ' ~  f (k, I k,) on pulse 

duration tp and thennophysical properties of the matrix and inclusion. The function f is 
dimensionless. 

SCALING: Worst Defect Size 

FIG. 9 Scaling of the minimum inclusion size R,, (worst defect radius) R,, = [tp k, * (p C)]IR 

g (k, I k,). The function g is dimensionless. 



Scaling: Effect of Interface 
Perfect Interface Totally Imperfect Interface 

1 - w 
0 Insulated Defect 

FIG. 10 Scaling of damage threshold (J/m2) on inclusion size and pulse duration for the case of 
the totally imperfect (insulating) inclusion. 


