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1. ABSTRACT 

When the surface of a distributed phase plate (DPP) is designed via the phase 

retrieval method, the resulting phase profile is discontinuous because of the use of the 

inverse tangent function. The precise manufacturing of a discontinuous phase plate is 

impossible, however, and any imperfections scatter the laser beam out of the desired far- 

field intensity pattern. Phase unwrapping is therefore employed to create a continuous 

phase plate by removing discontinuities between adjacent data points. 

An unwrapping algorithm that attempts to smooth over the data while retaining 

the desired far-field mapping was successfully implemented and will be integrated into 

the phase retrieval method for future calculations of DPPs. The weighted form of the 

algorithm is expected to increase its effectiveness at unwrapping uncertain data. 



2. INTRODUCTION 

A diffraction-limited focal spot is governed by the focal length ( f  ), wavelength 

(A), and diameter of the laser beam ( D ) .  On the University of Rochester Laboratory for 

Laser Energetics OMEGA laser system, this yields a focal spot approximately 2 km in 

diameter. 

as opposed to the I-mm target size. This desired focal spot size could be achieved by 

simply defocusing the laser (i.e. placing the target in front of the focal plane of the lens), 

but the intensity profile would not be flat enough and is uncontrollable. 

To avoid these problems, a distributed phase plate (DPP) is used. A DPP is a 

plate of glass with an uneven surface profile that adds phase to the rays in the near field, 

thereby manipulating the far-field image (Fig. 1). These phase changes effectively spread 

the energy out across the entire target in the far field and define a well-controlled average 

intensity pattern. 
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Fig. 1. A DPP spreads the beam across the 1-mm target by adding phase to the incident rays. 



The far-field intensity pattern generated by a DPP is actually composed of a 

finely-grained structure called a speckle, with an average diameter given by Eq. (1). This 

speckle pattern is smoothed out in a time-integrated sense using smoothing by spectral 

dispersion (SSD), which randomly changes the speckle pattern on a small time-scale. 

A distributed phase plate can be designed to produce almost any desired far-field 

average intensity pattern. The calculation of a DPP is based on the concept that the 

complex-valued near and far fields are related through Fourier transforms1 (Fig. 2). The 

Fourier transform of the near field, which is a function of the phase and amplitude 

(defined as the square root of the intensity) of the laser beam as it enters the lens, is 

proportional to the phase and amplitude of the far field. The inverse Fourier transform of 

the far field is the near field. Fourier transforms are a one-to-one process, so if the near 

field is known, the far field can be uniquely determined, and vice versa. 
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Fig. 2. The far field is the Fourier transform of the near field, which is the inverse Fourier transform of 
the far field. 



3. THE PHASE RETRIEVAL METHOD 

The phase retrieval method (Fig. 3) designs the surface of a DPP that will 

generate a desired far-field intensity pattern2. Initially, the intensity pattern of the near 

field, INF, is given (as a property of the laser beam itself), and the desired far-field 

intensity pattern IFF is chosen. For the first step of the phase retrieval method, the phase 

profile of the near field is initialized to a guess, Po. The Fourier transform of this initial 

near field (INF and Po) is the far field, where the calculated far-field intensity pattern is 

replaced by IFF. The inverse Fourier transform of the new far field (the calculated phase 

profile PI and known intensity pattern IFF) is the calculated near field for the next 

iteration of the sequence. 
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Fig. 3. The phase retrieval method is an iterative sequence used to design a DPP that will calculate a 
desired far-field intensity pattern. 

In the near field, the calculated phase P2 is retained while the resultant intensity is 

discarded and replaced with the known INF. This new near field (P2 and INF) is Fourier- 

transformed to calculate the new far field, and the process repeats. 

Each time, the calculated phase profile Pi is retained while the calculated intensity 



pattern is replaced by INF or IFF. After multiple iterations, the intensity and phase profiles 

in the near and far field eventually converge upon a solution ( e  = ?+, ). At this point, a 

near-field phase profile has been calculated that, with the specific laser beam intensity, 

will generate the desired far-field intensity pattern. Since a DPP serves to add phase to a 

uniform beam, the appropriate DPP is simply this calculated near-field phase profile. 

A problem arises, however, in the actual implementation of the calculated DPP 

phase profile. Note that the inverse tangent function is needed to calculate the phase 

from the complex value obtained from the Fourier transform. Sharp 2x discontinuities in 

the calculated phase arise, since a single branch of the inverse tangent function is 

restricted to the interval of [-x, x). Because of manufacturing limitations, attempting to 

create this discontinuous DPP will result in inaccuracies in the plate. These 

imperfections lead to the scatter of light in the far field, which decreases the efficiency of 

the distributed phase plate. 

Thus after the phases converge to signal the conclusion of the phase retrieval 

method, the calculated phase profile is unwrapped (Fig. 4) via the cosine transform 
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Fig. 4. Multiple iterations of the phase retrieval method and unwrapping process are performed as 
needed to generate the desired far-field intensity pattern. 



technique to remove discontinuities. Phase data has ambiguities of 2n, so phase 

unwrapping is employed to construct a smooth function that attempts to retain the phase 

data of a wrapped function with discontinuities of 2n. That is, the values of the 

unwrapped function are ideally equal to the values of the wrapped function plus integral 

multiples of 2n, so the far-field image remains unaffected. 

Because the unwrapping algorithm must smooth over noise in the data, however, 

it can cause loss of data that changes the far field image. The unwrapped phase profile is 

therefore checked for accuracy (i.e. whether it produces the desired far field). If 

necessary, the method is repeated until a smooth, unwrapped distributed phase plate has 

been calculated. 



4. UNWRAPPING 

Unwrapping is the reconstruction of a smooth function given its values on the 

interval of [-IT, IT). The wrapped version of a continuous one-dimensional function is 

easily unwrapped by detecting discontinuities and adding or subtracting   IT over selected 

intervals as necessary. In Fig. 5a, for example, the discontinuity at x = 0.25 can be 

eliminated by shifting up by   IT the section of the function to the right of it. By 

examining all the discontinuities in the function in this fashion, a smooth curve is 

reconstructed. Note that this unwrapped result is not unique; the entire function can be 

shifted by any constant phase factor. 
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Fig. 5. A smooth, one-dimensional function of the sum of sines and cosines is reconstructed by 
shifting discontinuous regions in the wrapped function by multiples of 2n. 

Unwrapping a two-dimensional function is not as straightforward, however, as 

shifting values by + 2 ~  in one dimension might result in discontinuities in the other 

direction. A single pixel of noise would become a spike in the unwrapped function, and 

since this happens independently in each direction, it may be impossible to generate a 

smooth function. 



5. THE COSINE TRANSFORM TECHNIQUE FOR PHASE UNWRAPPING 

The cosine transform technique is a method of finding a least-squares solution for 

the unwrapped function3. Let @ and be the unwrapped and wrapped functions, 

respectively, both on an M by N grid. Note that the wrapped and unwrapped functions 

have similar derivatives, where derivatives are estimated as the difference between 

neighboring points. These values will henceforth be referred to as thefinite difference at 

a point. In addition to providing a straightforward method of approximating a derivative, 

this allows us to quantify the derivative at every point, including discontinuities. 

In continuous regions in the wrapped function, the finite differences of the 

wrapped and unwrapped functions are equal. At discontinuities of 2lt in the wrapped 

function, the finite differences are unequal but differ only by k2lt. Note that while all 

finite differences in the (continuous) unwrapped function will be relatively small, those at 

discontinuities of the wrapped function will be much larger values. 

For example, suppose we have the adjacent data values 3.140 and 3.240 on the 

unwrapped function, with an estimated difference of 3.240 - 3.140 = 0.100. On the 

wrapped function, the first data point is unchanged while the second becomes 

3.240 - 2 n  = -3.043 . The estimated difference for the wrapped function is therefore 

-3.043 - 3.140 = -6.183. Thus the two estimated differences are off, but only by an 

integral number of 2lt. Specifically, if we define the function Wrap to return a value on 

the interval [-lt, n) by adding integral multiples of 2lt, then 0.100 = Wrap (-6.183). 

Moreover, the Wrap relationship holds true throughout continuous regions as well, since 

finite differences are equal (as established above). 

Generalizing this concept, we see that for an ideal solution for @ ,  



@i+l, j  -@is, =Wrap(K+l,j - K.j 

@i,j+l -@i,j =Wrap(K, ,+I - K, j  1, 
(2) 

where 0 l i l M - 1 and 0 S j l N - 1 . That is, the finite differences of the wrapped 

function equal the wrapped version of the finite differences of the unwrapped function. 

By extension, the best solution for @ is that which satisfies Eq. (2) by minimizing 

the sum 

This least-squares solution allows for smoothing over of noise pixels to create the best 

overall fit. 

According to Hunt's matrix formulation4, Eq. (3) can be simplified to 

@i+l,, @i-l,j @ i , j + ~  @.,,-I - 4@i, j = Pi, j 7 (4) 

where 

Through simple algebraic manipulation, Eq. (4) becomes 

which is the discrete version of Poisson's equation, 

a a 
P(x, Y) = ,@(x, y) +,@(x, y). ax 3~ 

We now use the form of the forward and inverse discrete cosine transform5 (DCT) 

below to solve Eq. (5) for @i,i : 



M-I N-l 

Forward : Ci, , = 
;=o ,=o 

(7) 
Inverse : xi,, = 

where w, (m) = Y2, m = 0, 

w,(m) = 1, 1 l m l M - 1  

w2(m)=Y2, n = 0 ,  

w2(m)= 1, 1 5 n S N - 1 .  

The discrete cosine transforms of 4i, , and pi,, ( Ji, , and b,,,,;, , respectively) 

according to the form in Eq. (7) are substituted into Eq. (5). Solving for J;,, in terms of 

the known values b,,, ., we obtain 

A 

4. . = 
1.1 

2 cos - +cos - -2  
A [ ( ~ r ' ~  (3 1. 

The inverse DCT of 4 , yields the unwrapped phase 4;. , . 
Thus the cosine transform technique for phase unwrapping involves three steps: 

finding the values of a,,,, by performing the forward DCT on the known array pi,,, 

substituting into Eq. (5) to find A,,, and taking the inverse DCT of J,,, to calculate the 

values of &, , . 



6. RESULTS 

To test the algorithm's effectiveness, the wrapped version of a smooth DPP was 

unwrapped using the cosine transform technique (Fig. 6). In the reconstructed phase 

profile, discontinuities of 27t were successfully removed and noise spikes eliminated, 

resulting in a smooth function that retains the phase data of the original DPP. 

(a )  tb) 
Fig. 6. The phase profile of a wrapped DPP (a) is unwrapped to recover the phase of a smooth DPP (b) 
using the cosine transform technique. 

This algorithm fails to account for uncertainty in data, however, such as at the 

border of the DPP. It tries to eliminate the discontinuity between the edge of the DPP 

and the area of no data. Though this does not present a problem in this particular phase 

plate, as the errors occur only beyond the data boundary of the DPP, it may affect the 

plate in other instances. Implementing the weighted Picard algorithm6 that factors in 

assigned confidence levels is expected to minimize this problem. Assigning a confidence 

of zero to areas of no data, for example, would prevent the rest of the data from being 

corrupted as the algorithm tries to reconcile the discontinuities. 



7. CONCLUSION 

The cosine transform technique was successful in returning a distributed phase 

plate with a continuous surface profile that generates the desired far-field intensity pattern 

on target. The algorithm will be integrated into the phase retrieval method for future 

calculations of DPPs. The smooth DPP surface profiles generated will be more efficient, 

with minimal scatter of light. 

Any problems encountered with uncertainty in data or noise pixels are expected to 

be corrected by assigning a weight to each data point via the Picard method. This will 

result in an even more effective DPP, thereby improving the accuracy of the far field 

intensity mapping as compared to the desired pattern. 
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