March 2005 Progress Report on the Laboratory for Laser Energetics

Inertial Confinement Fusion Program Activities

Nonlinear Rayleigh-Taylor Growth of 3-D Laser-Imprinted Modulations: Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. In the experiments, 20- and 50-µm-thick planar CH targets were driven with 12-ns square pulses at a laser intensity of $\sim 5 \times 10^{13}$ W/cm² on the OMEGA laser system. The modulation growth was measured with through-foil, x-ray radiography using x rays from three different backlighters [1.3 keV (U), 2.0 keV (Dy), and ~2.5 keV (Ta)]. The initial target modulations were imprinted by laserintensity nonuniformities of the imprinting beam, a separate beam that arrived \sim 200 ps before the drive beams that were used to accelerate the target. Two different initial target modulations were created by the imprinting laser beam using either a standard distributed phase plate (SG8 DPP) or no DPP with the beam defocused to an ~1-mm spot. Figure 1 shows measured, central, 333-µmsq parts of the laser equivalent-target-plane images with SG 8 DPP (a) and no DPP (b). The laser-modulation Fourier spectra of these laser images are shown in Fig. 1(c). The beam with DPP (blue) has broadband modulations with spatial frequencies up to $\sim 320 \text{ mm}^{-1}$, corresponding to the smallest spatial size of $\sim 3 \mu \text{m}$. The beam with no DPP (red) has modulations with spatial frequencies up to $\sim 50 \text{ mm}^{-1}$. The processed time-gated images of the x-ray radiographs are compared in Fig. 2 for these two cases.

Figure 3 summarizes the growth results. The dashed line in Fig. 3(a) shows the growth rate $\gamma(k)^1$ as a function of spatial frequency. The diamonds correspond to the measured growth rates of 120- and 60- μ m-wavelength modulations from all shots (with initial conditions including both SG8 DPP and no DPP). The dashed line in Fig. 3(b) shows the saturation velocity $V_s(k) = S_k \gamma(k)$ as a function of spatial frequency, where $S_k = 2/Lk^2$ is the saturation level, as defined by the Haan model.¹ The measured saturation velocities are in excellent agreement with Haan model¹ predictions. Once the modulations enter the nonlinear regime, the velocities do not depend on initial conditions. The measured growth rates of long-wavelength modulations are higher (by about a factor of 2) than the Haanmodel predictions (given by the Betti–Goncharov formula²). A recent study³ by Sanz *et al.* predicted enhanced mode-coupling to longer-wavelength modes in the ablative RT instability, compared to the classical RT case. The present experiments are consistent with this new study.

OMEGA Operations Summary: During March 2005, OMEGA conducted a total of 131 target shots for LLE, LLNL, and SNL experiments as follows: 92 shots were taken for the LLE ISE, Astro, and RTI campaigns; 34 shots were dedicated to LLNL-led campaigns, and 5 target shots were conducted for SNL experiments. In addition, planned quarterly maintenance activity was carried out in the last week of the month.

- 2. R. Betti et al., Phys. Plasmas 5, 1446 (1998).
- 3. J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002).

Contact: Wolf Seka (585) 275-3815; fax: (585) 275-5960; e-mail: seka@lle.rochester.edu John M. Soures (585) 275-3866; fax: (585) 256-2586; e-mail: jsou@lle.rochester.edu

Figure 1. Equivalent-target-plane images of center of laser beams with regular SG8 DPP (a) and no DPP (b), used to produce initial 3-D broadband modulations for the RT growth. (c) The Fourier amplitudes of relative laser intensity as a function of a spatial frequency of these laser-beam images.

Figure 2. X-ray radiographs of the modulations produced by the imprinting of the laser beam with SG8 DPP and at 4, 6, and 10 ns [images (a), (b), and (c), respectively] and with the laser beam without DPP at 4, 5, and 8 ns [images (d), (e), and (f), respectively].

Figure 3. (a) Modulation RT growth rates as a function of spatial frequency measured (diamonds) and predicted by the Betti–Goncharov dispersion relation (dashed curve). (b) Modulation nonlinear saturation velocities as a function of spatial frequency measured (diamonds) and predicted by the Haan model (dashed curve).

^{1.} S. W. Haan, Phys. Rev. A 39, 5812 (1989).