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Abstract

This thesis is a report oun several aspects of the modulational instability of a
wave propagating in a nonlinear dispersive medium.

An impulse-response analyvsis is performed analytically to study the spatiotem-
poral instability of a nonlinear dispersive wave. The asymptotic Green function
is obtained for both modulationally stable and unstable cases. The conditions
for absolute and convective instability are found, as are the frequency region for
amplification. and the spatial and temporal growth rates.

The nonlinear Schrodinger equation does not describe fast modulations ade-
quately because it is based on a Taylor expansion in the frequency domain. Here,
harmonic analysis is used to study the effects of the entire modal dispersion curve
and the frequency dependence of the nonlinear coefficients on the properties of
modulational instabilities. New regions of instability for dispersion-flattened fibers
are found and characterized by this approach.

The interaction of two light waves. having different frequencies and propagat-
ing in a dispersive nonlinear medium, is studied using the method of Zakharov
[Sov. Phys. JETP 24. 740 (1967)]. It is shown that cross-phase modulation does
not necessarily lead to instability of the incident waves. Different configurations
leading to instabilities are discussed.

A comprehensive analytical study of temporal modulational instabilities in a

finite nonlinear dispersive medium is presented. The use of a perturbation method



vi

results in the physically transparent model of a doubly-resonant optical parametric
oscillator that allows simplification and characterization of the complicated svstem
i familiar language. The general results can be interpreted by using an analogy
to a detuned distributed-feedback structure. The effects of boundary reflections
and dispersion are shown to be important.

Stochastic aspects of nonlincar dispersive wave are also investigated. [or small-
amplitude noise. stochastic field propagation in nonlinear dispersive media is stud-
led analvricallv in the undepleted-pump approximation. Power spectrum and
relative-intensitv-noise spectrum is obtained. -\ statistical description of modula-
tional instability is given i the anomalous dispersion regime. [For large-amplitude
noise. the spectral transformation of stationary noise (Gaussian and diffusing-
phase processes at the iuput) going through a nonlinear dispersive medium is
studied numerically.  The results indicate different power-spectrum cvolutions
depending on the sign of the dispersion coefficients and the kind of stochastic

processes.
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Chapter 1

Introduction

1.1 Introduction

Modulational instability (MI) is one of the most fundamental phenomena in the
physics of nonlinear wave propagation. In the presence of MI, a nonlincar contin-
uous wave (CW) is not a stable state of the system (in contrast to the case of a
linear wave). Due to the combined action of group velocity dispersion (or diffrac-
tion) and the intensity dependence of the refractive index, any small perturbation
of the CW state will grow exponentially.

Because of their fundamental nature. MI's have played a prominent role in
diverse areas of scientific research since their discovery more than twenty vyears
ago.!™® In particular, the advent of lasers gave them practical importance because
most media cannot be viewed as linear in regard to the propagation of large-
amplitude electromagnetic (EM) waves. Naturally, MI's are of great concern in
most branches of nonlinear optics.!%-1?

For example, in laser fusion, the nonlinear medium is a plasma. MI tends to

destroy the uniformity of the laser light that is required for efficient compression



o

of the nuclear fuel.!® In optical phase conjugation,'® ™ uniform reference waves
are also required for a high-quality conjugate wave to be generated by four-wave
mixing (FWM). MI-induced nonuniformity is thus a limiting factor. [n fiber-

1 et l&\u lﬁ‘ 3 . { "”"h’l. ey
optical commuuication svstems. ” MI amplifies noise and increases the bit erron

rate.16-17

On the other hand. MI can be utilized to one’s advantage. [n fact, it has

been applicd to optical switching.'® 19 short pulse generation®®?! and parametric

anmplification'? and oscillation®? ™ in optical-fiber based svstems. Of particular
interest is the connection between MI and the formation of optical solitons®® in
a fiber. DBecause of their robust nature, these solitons can be used as the natural
bits 1 high-speed long-distance communication.

[n the following analyses. focus is made on cases in which a one-dimensional
(1D) model is adequate and various aspects of longitudinal or temporal MI's are

studied. Although optical fibers is often used for reference, the analyvses are also

relevant to the other areas of research mentioned above.

1.2 Physical mechanism

As an example of how this kind of instability can happen, consider the simple
1D problem of a single CW wave propagating in an instantaneous [Xerr medium.
In such a medium, the nonlinearity causes the dispersion relation to depend on
the wave intensity. In the nonlinear geometrical optics approximation,?”?® one
can write the field as A(t, z) exp[i6(t, =)], where the scale of change in 6 is much
faster than in A, and in the local wave number £ = 0,6 and frequency w = —3;8.
In this scheme. the first-order approximation gives —8,8 = w(8.6,|4|?), which

is identified as the local nonlinear dispersion relation in a Kerr medium. The



second-order approximation gives the conservation of action which is proportional

to

A% For weak nonlinearity, the first equation can be written (after taking
lerivatives with respect to z ou both sides and considering |.1[? a small quantity
derivatives with respect to z on both sides and considering |.1]° a small quantity)

as

Ok + U,,(/ﬁ)t) k= —/\(/»')('):HI2 (1.1)
and the secoud can be written as -

Q| AP + 9. (v, (k)]AP) = 0. (1.2)

ln these cquations. v, = dw/0k and A(K) = —0dw/d|A[*. Both derivatives are
evaluated at |.1]* = 0. The first cquation indicates that, in linear regime. cach
group of wavelets with a certain wave number convects at its group velocity, as
is well known. The nonlinear effect modifies the wave number as the group prop-
agates. The sccond equation is the conventional form of a couservation equation
indicating that energy convects with the local group velocity.

The initial conditions corresponding to a plane wave are k{0,z) = ko and

A(0.9)2 =

Aol|?. for which the constant solutions are k(t, z) = kg and |A(¢. 2)|* =
|4g]?. Now cousider a small amplitude perturbation to this equilibrium, i.e. small
humps in intensity / = |4|? iu the initial condition [Fig. 1-1 (a)).

It follows from Eq. (1.1) that instead of being constant, & is now a decreasing
function of time in the front half of each hump and is an increasing function of time
in the rear half of each hump, when A is positive. If v, is an increasing function
of k, then, from Eq. (1.2), the front half of each hump is retarded while the rear
half of each hump is advanced. Wave energy accumulates at the center of each

hump and the perturbation grows as it convects [Fig. 1-1 (b)]. Conversely, if v, is



A at t=0 A at >0

[Figure I-1: Schematic illustration of the temporal growth of an intensity pertur-
bation

a decreasing function of A. then the front half of each hump is advanced while the
rear half of cach hump is retarded. Wave cnergyv spreads outward from the center
of cach hump and the perturbation decrcases. Thus the plane-wave equilibria
are modulationally unstable if A 1s positive and v, is an increasing function of
k or, alternately, if A is negative and v, is a decreasing function of k. Figure
1-2 illustrates representative wavelet trajectories and the resulting changes in the
hump intensity for the case of linear medium, and the cases of modulationally
stable and unstable nonlinear syvstems.

The nonlinear geometrical-optics model described above does not counsider the
effects of dispersion in their entirety. Specifically, it neglects the part similar to
diffraction in physical optics that spreads the humps to prevent energy getting
too concentrated and, hence, tends to stabilize the process. In fact, MI's gener-
ally disappear for relatively fast modulations, as indicated by the more accurate
model described below. In the LD case, the compression process is eventually
counterbalanced by this dispersive spreading effect on the steepened humps.

From the preceding argument. one can see a fundamental aspect of nonlinear
dispersive wave propagation, that is the interplay between dispersion and the Kerr

nonlinearity. MI is closelv related to soliton physics. It is well known that a single



t 4 linear medium

modulationally stable modulationally unstable
t 4 nonlinear medium nonlinear medium

[Figure [-2: Wavelet trajectories and the development of an intensity perturbation
in three kinds of media
pulse will eventually spread out during propagation due to the existence of disper-
sion. However. under certain conditions the novel balancing mechanism discussed
above can lcad to the formation of nonspreading pulses called solitons which are
robust enough to survive collisions with other solitons of different speeds. Solitons
are used as the natural bits of infomation for high-speed optical communications.
A quantitative study of MI’s can be carried out within the framework of a non-
linear Schrodinger equation (NSE) for the slowly-varving wave amplitude. Such
an equation takes both dispersion and nonlinearity into consideration. [t is ap-
propriate for a wide variety of dispersive. weakly nonlinear waves. When the wave
motion can be described by a narrow range of wavenumbers and small intensity, it

can be intuitively obtained by Taylor expanding the dispersion relation w(k,

AP2)



as

W = wy + (D) OK)y(k = ko) + (0% JOK?)o(h — ko)?/2 + (/D] A[?)o] A

2(1.3)

where the derivatives of w are evaluated at the central, or carrier. wave number kg
and zero wave amplitude. Every factor of w —wy in the above equation must have
originated as a term :J, i the differential equation from which it was obtained
and. likewise. cvery factor of k — ky must have originated as a term —id,. By

ntaking these substitutions in the Tavlor expansion of w. one obtaius the NSE
[£(8, + 1,0.) + 0%, + A A4 = 0. (1.4)

where v, = (0w/0k)y, 11 = (0*w/Ok?)y/2. and A = = (0w /0| A[*)s.
A plane-wave solution of this equation is A, = Agexp(iA|Ag|*t). Small pertur-
bations of this equilibrium can be cast in the form d4 exp(iA|4g]*t). By linearizing

Eq. (1.4) around this equilibrium. one finds that
[0, + v,0:) + pd?, + A Ao|*}6Ad + AA2ZA™ = 0. (1.5)

The general eigeusolution to this equation in an infinite medium is of the form
0A(t, z) = dd (¢, k) exp(ihz) + A (¢, k) exp(—ikz), where k is real and the ampli-

tude perturbations 44 satisfy the coupled-mode equations

[idy — vok — uk? + M Ao|!ldA, = —AAZ6AT,

[ = ide + vgk — pk? + MAg[*)6AT = —AA;264,. (1.6)

By comparing Eq. (1.6) to the familiar equations governing FWM,'!-'? one has

the following picture: Egs. (1.6) describe the linearized stage of the induced decay



of the carrier wave at kg into its daughter waves. or sidebands, at kg & (Fig. 1-3).
The right sides of the equations represent the harmonic driving from the noniinear
beating of the carmier and one of the daughter waves, producing the mode coupling
with coefficient A4, and the left sides describe wave propagation in the presence
of the hnear and noulinear frequency mismatches (—ph? + Al4g]?). Alternatively,
Egs. (1.6) describe the scattering of the pump into one of the sidebands by the
nonlinear grating produced by the pump aud the other sideband. These FWAI
equations can be obtained without using a NSE by making a harmonic analvsis of
weaklv-nonlinear wave propagation in a Nerr medium and by making a parabolic
approximation of the linear dispersion relation. One of the differences hetween the
modulational and ordinary WA instabilities is that the frequency misinatch of
a MI depends on the square of the wave number mismatch (a slower dependence)
whereas it is proportional to the wave number mismatch (a faster dependence) in

ordinary WAL 12

kotky —>(k+k ) +(k-k )

at t=0 at >0

Fourier «—p t
Intensity| ump at k, I Sldebands at k,+k

wavenumber wavenumber

Figure 1-3: The picture of MI in wavenumber domain is I'WM. The large Fourier
peaks represent the pump wave, whereas the small peaks represent the sidebands

It is a straightforward matter to solve Egs. (1.6). By setting dd.(t) =



OB, exp(—iwt) and 64 _(t) = oB_ exp(iw*t), where dB. are constants. One ob-

tains the complex dispersion relation

wz(k) = vk £\ U2kt = 20 Ao |22, (1.7)

Thus. whenever the product Mg is positive. the plane-wave equalibrium is
unstable. 1w agreemcent with the preceding qualitative discussion of modulational
phvsics. The frequency nusinatch determines the range of unstable wave numbers
as ki = £/2A]A0l?/pe. This range is much wider than that of ordinary FWNMI
(which is proportional to the square of the small wave amplitude ). The peak

temporal growth rate is [/m{w)] e = A

4o|?, corresponding to the optimal wave
number A,y = £/AAol?/p. From the discussion after Eq. (L.6). it is easy
to see that the peak growth correspouds to exactly resonant nonlinear beating
or scattering where the sum of the huear and nonlinear frequency mismatches is
zero. As the wave number increases. the vanishing of the instability can be viewed
either as the stabilizing effects of dispersive-spreading, as discussed previously, or
frequency mismatch in the FWM picture. Figure 1-4 shows the MI growth rate

Im(w.) at varving wave number.

Imw, 7}

| -k
kopt l(mi

Figure 1-4: Temporal MI growth rate as a function of wave number



1.3 Overview

This thesis is an extension of the classical treatment of 1D MI discussed above.
[t reports new research results for the longitudinal. or temporal. MI ranging from
such fundamental aspects as au npulse response study, to the statistical aspects
of MI. and to the complications associated with a dispersion-flattened fiber. the
coexistence of two waves. and a finite medium. .\ short overview for cach of the

following chapters is provided below.

1.3.1 Impulse response of a nonlinear dispersive wave

The general solution for the perturbative field of a nonlinear CW pump wave is
a linear superposition of the cigeusolutions discussed in Chapter 1. This means
the result from the wave number domain analysis cannot be used directly to get
a physical picture in the spatial-temporal domain. For such a purpose, it is de-
sirable to find the Green function, that is, the solution corresponding to a point
initial disturbance at the origin. This is especially important if the initial per-
turbation contains manv spatial frequencies (i.e. a localized initial perturbation).
Normally, the asvmptotic beliavior of the Green function at large t will provide
enough information to classify the instability as convective or absolute. and to the
differentiate between evanescence and amplification. Due to its importance, this
kind of impulse response analysis has been performed for nearly every instability
found in plasmas and fluids. The routine procedure consists of studying the sys-
tem responses to point-source perturbations in the form of an impulse and in the
form of a sinosoidal oscillation in time.?*3? However, the analysis is only done
partially and numerically in the case of MI due to the complexity of the problem.?

Chapter 2 completes the impulse-reponse analysis analyically,®® and gives sin-
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ple expressions for the pulse shape due to an impulse perturbation, and. in the case
of convective instability, for the unstable frequency range and the spatial growth
rate. The analvsis is extended to a modulationally stable nonlinear dispersive sys-
tem. lt is found that the response to an impulse perturbation does not disperse
awayv as it does in a linear dispersive system. The time-asvmptotic behavior of
the perturbation is characterized. As will be shown in this chapter, the NI of an
optical wave is almost alwavs convective in an infinite medinm. Henceforth the
terms M. amplification. and spatial growth will be used interchangebly when no

confusion is likely to arise.

1.3.2 Broadband modulational instabilities

The spatial growth of a MI is usually studied using the local properties of the
modal dispersion relation. such as second-order dispersion (as in the NSE), third-
order dispersion and so on, resulting from the Tavlor expansion of the dispersion
relation A(w. | 4g]?).***37 However, for wide bandwidth or fast MI, the second-,
third- and higher-order dispersion effects are all comparable: the Taylor expansion
scheme breaks down and nonlocal properties of the dispersion curve have to be
considered. [Furthermore, the frequency dependence of the nonlinear coefficients
due to the Ramau or nonlinear-relaxation effects could become important. The
usual approach can give erroneous information about the instability for fast mod-
ulations (for example, in the case of relatively large input power or relatively small
dispersion).

MI at relatively fast modulational speeds is important because it is intrinsi-
cally related to the formation of ultrashort optical pulses. In Chapter 3, harmonic

analysis is used to study MI. This formalism applies to broad-bandwidth pertur-
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bations and automatically includes the Raman and nonlinear-relaxation effects.
To summarize the major results:*® A simple expression for the gain curve of NI
has been derived, which depends on the entire dispersion curve and includes the
frequency dependence of the & coefficients, so it is valid for high-frequency mod-
ulations. [t is used to study propagation in a dispersion-flattened fiber.** whose
secoud-order dispersion coefficient changes sign twice as the carrier frequency is
varied. Rich behaviors of the MI gain curve are found as the fiber parameters,
mpur power and pump frequency are changed. and simple expressions are given
to characterize these behaviors. [For example. a new kind of MI is found when the
punp is Li the normal dispersion reginie. whercas no Ml exists for ordinary fibers.
Its relation to the conventional MI and FWAM is discussed both mathematically
and physically. In the anomalous dispersion regime. M is also different from the
conventional instability. At low input power, it is a mix of the conventional MI
and WML At high power. these instabilities merge and the growth rate is greatly
reduced from the conventional prediction for both MI and FWM individually.
Optical communication systems employving dispersion flattened fibers are likely to

be affected by this new instabilitv in some parameter regions.

1.3.3 Effects of a copropagating wave

The analvsis of the MI of a single wave can be generalized to the MI of two
copropagating waves.>4! The dispersion relation for each wave is affected by the
intensities of both waves, a phenomenon called cross-phase modulation. This
situation is usually studied using a pair of coupled NSE’s. The FWM interaction
can involve as many as four sidebands, two for each wave. It is necessary to fully

understand the process due to its importance in multichannel communication



systems. '®

Previous analyvses of this interaction have identified some cases in which both
pumps can be modulationally unstable. even when one or both of them are stable
bv themselves.” 112 The overall picture of the two-pump case still needs further
imvestigatioll. in part because several experimental parameters may lie outside
the region of validity of the previous analvses based on coupled NSE’s. which
required small modulational bandwidth and neglected the FWNI interference of
the two waves. The coupled NSE model has generated controversial predictions
about the existence of Ml in the normal dispersion region of an optical fiber. 349

In Chapter . harmonic analvsis based on Zakharov equation®® is used to study
the MI of copropagating waves.'® This approach is valid for arbitrary bandwidth
and takes the [F'WN] effect into account. The coupled-mode equations for the four
sidebands are obtained and the dispersion relation is. of course. dependent on the
whole dispersion curve. In the normal dispersion region, stability is predicted for
two copropagating waves of different frequencies in a ordinary single-mode fiber,
in opposition to the prediction of coupled NSE’s. In other media (for example.
a dispersion-flattened fiber whose dispersion curve has two regions in which dis-
persion is normal. separated by a region in which dispersion is anomalous), in
which the group velocity difference can be made small (even zero) without caus-
ing the WM interference of the pumps, an instability will occur that changes
from a two-sideband FWM instability to a four-sideband MI as the pump power
increases or the group-velocity difference decreases. Cross-phase induced modula-
tional instability can thus occur in a dispersion-flattened fiber when the two light
waves propagate in different normal-dispersion regimes. An associated cuestion
concerns the coupling between sidebands of the two pumps. The conditions for

efficient coupling were studied. No such coupling was predicted for waves of two
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frequencies in an ordinary single-mode fiber. in either the normal or the anoma-
lous region. -\ sufficient condition for such coupling is that the group velocity
differcuce between the two pumps can be made very small without causing the

WA interference of the pumps.

1.3.4 Effects of a counterpropagating pump wave and a

finite medium

Phvsically. there are two competing effects that determine the stability of a finite
svstent. The first 1s the tendency of the amplified perturbation to convect out of
the svstem. The second is for it to feed back into the system by reflecting from the
boundary or by scattering from a counterpropagating wave. Two counterpropa-
gating lght waves in a dispersive Kerr medium. with various boundary reflection
conditions. arc often encountered in nonlinear opties. The self-pulsing behavior
of this kind of svstem is important for both active optical components. hecause
it provides a mechanism for mode-locking, and passive components, because it
Hmits the functioning of dispersive bistable devices as well as FWM.

Previous works have studied numerically the special case of two identical coun-
terpropagating waves in a nonlinear dispersive medium with antireflecting bound-
aries.’®50 In Chapter 5, the general svstem is studied analytically.31:32 The results
indicate that self-oscillation is sustained under conditions where the gain is pro-
vided by the individual MI’s of each wave and the feedback is provided by reflec-
tions from the boundary or by scattering from the counterpropagating pump wave.
In other words, the convective MI becomes absolute. Simple expressions are given
for characterics of modulational self-oscillations such as the threshold condition,

the maximal growth rate and the oscillation frequency in most parameter regimes.
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The dependence of the self-pulsing behavior on such parameters as the powers,
frequencices and phases of the counterpropagating light waves and the boundary re-
Hection coefficient are explored. Simple physical pictures are presented to explain
the formulas. [For example. the case of an anti-reflection boundary is somewhat
like what happens in an improperly designed distributed-feedback laser,® where
the Bragg frequency is detuned from the gain peak by a relatively large amount.
oulv in this case one has to consider coupled sidebands. and the feedback and
phase-matching are provided automatically. The addition of boundary reflections
enhances the feedback but the relative phase (which is adjustable) of the two light

waves has an effect on the oscillation behavior in some parameter regimes.

1.3.5 Effects of incoherence

In many situations. the small input is not an ordinary function of time. but falls
into the category of a stochastic process. Thus a statistical theory for the MI is
needed. Such a theory is developed in Chapter 6. The analysis is straightforward
because the governing equation is linear and stationary.®* Simple expressions are
given for the output power spectrum and relative-intensity-noise spectrum. As a
bonus, when these results are applied to the normal dispersion case (without MI),
thev show that fringes in the spectra form due to the nonlinear dispersive effects.

Chapter 6 also contains a discussion of the effect of the finite linewidth of
pump wave on the MI.® [n spectral space MI can be pictured as follows: the
overall spectrum at the input end can be decomposed into a ¢ function from the
pump plus a small component from the input or noise. The small component gets
amplified as if it passed through an amplifier of certain bandwidth (of the order

of MI bandwidth w,,;, which is proportional to the square root of input power).



Without the small component at the input, the spectrun keeps the delta function
shape as it propagates. -\ frequently asked question is how the incoherence of
the pump (ic. a non-o spectrum) affects the MI (or whether noise amplification
by MI can be suppressed by introducing finite bandwidth to the pump). One
can deduce that if the pump bandwidth is much smaller than the MI bandwidteh.
the spectral picture of MI described above still holds qualitatively However, it
is deduced that if the pump bandwideh is of the order of the MI bandwidth.
the spectrum will evolve qualitatively the same with or without the small noise
perturbation. This 1s uuderstandable because the incolierence within the pump
is actually wo different from the nolse. except that it is so big that the noise is
insignificant.  The evolution of the lucoherent pumyp by itself is nonlincar and
dispersive. In other words, it is like the propagation of pure stationary uotse in
a nonlinear dispersive medium. In this case. MI supression by pump incoherence
is out of the question. Thus the existing theory® based on the perturbation of
a steady-state stochastic process is not self-consistent. But in any case, it still
makes sense to study the spatial evolution of the total spectrum. which is just one
of the challenging tasks of understanding the nonlinear propagation of a stochastic
signal.5%57 Although theories have been developed.®® % neither is suitable for this
case. The preliminary results from our numerical simulation have been able to

give a quantitative description.



16

Chapter 2

Impulse-Response of a Nonlinear

Dispersive Wave

2.1 Introduction

The nonlinear Schrodinger equation (NSE) is widely used to describe nonlinear
dispersive wave propagation occurring in many branches of physics and engineer-
ing, such as plasma physics, nonlinear optics and fluids dynamics. One of the
prominent features associated with the NSE is the existence of modulational in-
stability (MI),? which causes small modulations of a plane wave propagating in a
dispersive Kerr medium to grow exponentially.

A fundamental characterization for any unstable (or stable) dispersive system
is the asymptotic spatiotemporal behavior of a small localized perturbation. Such
an asymptotic impulse-respouse studyv can provide lots of important information,
including the classification of the instability as convective or absolute, and the
differentiation between evanescent and amplified waves. [n fact, the asymptotic

impulse-response study has been performed on most common instabilities in both
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plasmas and fluids. and the results can be found in standard textbooks.29-32 How-
ever, for the important case of a nonlinear dispersive wave, this study was only
done partiatly.? To fill the gap in the literature, the impulse response of a nonlin-
ear plane wave in a dispersive Iverr medium is studied analytically. Some features
pertinent to the MI system as revealed by the following impulse response study

are discussed.

2.2 Impulse response

Let us write the NSE as

dra = —v dpa — ind? . a + iXa]*a. 2.1
g r.

where a is the complex wave amplitude. 2’ and ¢’ are the spatial and temporal
coordinates. 1'; is the group velocity, o is the dispersion coefficient and A is the
nonlinear coefficient.

Equation (2.1) has a plane-wave solution a,(x.t) = agexp(irait), where ao
is a complex constant representing the amplitude and phase of the plane wave.
Without loss of generality, we assume qg to be a real positive quantity since its
phase can always be canceled by a time translation. We will also assume A is
positive since the discussion for the negative case is quite similar. If we introduce

the normalizations 4 = a/ag, © = 2'agy/M /||, t = t'Aad, and vy = v}/ /a3 |ul,

Eq. (2.1) can be written in the normalized form,

QA = —vy0pd — i 002, A+ 1|4

1o
[\V]
pa—

24, (

and the plane-wave solution becomes A, = exp(it). We have used o = sign(u) to
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simplifv the notation.
The evolution of the perturbative field is governed by Eq. (2.2) linearized
around the plane-wave solution. Using A4 = (1 + d4) exp(it) in Eq. (2.2) and

linearizing for 4.4, we obtain
D04 + 0,084 + 1002 04 — 10 — QA" = 0. (2.3)

For the mnpulse-response analvsis of the linearized equation. we need to solve

the midal value problem of
D10 + 0,000 + 1702 04 — 104 — 134" = S(t)d(a). (2.4)

with o.4(a. ) = 0 fort < 0. where S(#)d(x) 1s the point source of the perturbation.
Equation (2.4) is readily solved by applying Fourier and Laplace transforms in z

and t. The result is

i(—w + kr, — ok? = 1)8A(w, k) — i[3A(—w", —k)]" = S(w). (2.5)

Since the above equation holds for arbitrary w and £. we take its complex conjugate

and replace w and & with —w™ and —4, respectively:
~i(w — kvy — ok? — 1)[BA(=w", =k)]" + i6A(w, k) = [S(~w")]*. (2.6)

Using Eq. (2.5) and (2.6), we obtain the solution

— . (w= vk —ok? = 1)S(w) = [S(—w))*
odlw, k) =i (w = vgk)? — ok?(2 + ok?) ' (2.7)
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[ts inverse transform s given by,

dk [ d -
od(x, t) = /;/L %“ie"W‘+"‘-E(5A(u,k) (2.8)

Eory

where the integration paths of & and w are the real axis and Landau contour (for

the inverse Laplace transform. see®), respectively.

2.3 Time-asymptotic pulse evolution

We first consider S(t) = ¢d(t). where ¢ is generally a complex constant. [n such
a case. the Green function obtained from Eq. (2.8) correspounds to the evolution
of a delta-pulsed perturbation. The evolution of a general pulse can be studied in
terms of the convolution of the Green function. [or simplicity, we assume ¢ =1
so that S(w) = 1. We concern ourselves with the asymptotic spatiotemporal
behavior of the Green function. Thus, we assume ¢ is very large and work with a
spatial coordinate normalized to t. i.e. v = z/t. In such a limit, the integrations in
Eq. (2.8) can be carried out approximately. There are two equivalent approaches.
Basically, the first one is to conceptually integrate & first and approximate the
final integration of w by the contributions from its branch points in the integrand.
The second one is to integrate w first and approximate the final integration of &
by the contributions from its saddle points in the exponentials (i.e. by steepest

descent integration). We adopt the second approach here. After carrving out the

integration in Eq. (2.8) with respect to w by summation of its simple poles at

w = vgh £ kVE? 4+ 20, (2.9)



. we have,

in Eq. (2.

o
=l
~—

ak : .
s(ett) = [ 5= explehe't]{{exp(ithVh? + 20) + exp(—ithVk? + 2a)]/2

-

VA 42
+aTa[ex1)(ztk\/k2 +20) — exp(—itkVEZ + 20)]}. (2.10)

where ¢' = v — v,. Equation (2.9) is the dispersion relation. [t indicates that the
svstem is stable or unstable for sign(u) < 0 or sign(y) > 0.

Equation (2.10) can be decomposed as the summation of four expouential
integrals so that cacli integral can be carried out by the saddle point method for
large t. To realize the decomposition. we need an infinitessimal deformation of
the integration path around A = 0. 1.e.. along au infinitessimal semicircle above
(below) & = 0. This does not change the value of the integration in Eq. (2.10)
since A = 0 is an analytic point (removable singularity) of the total integrand,
but it does make all four exponential integrals individually well defined. It is
evident from Eq. (2.10) that & = 0 now becomes a simple pole for two of the
four integrands. To evaluate each of the four integrals individually, we need to
further deform their integration paths to reach their respective steepest descent
paths. In some cases. the path will come across the simple pole in the deformation
process. In such cases, the asvmptotic value of the integral is the contribution from
the saddle point and the pole. In the following, however, we will not explicitly
decompose Eq. (2.10) and perform the above procedure. Instead, we only give
the final results and concentrate on the physical picture.

We first consider the stable case in which sign(g) > 0. Then, the time de-
pendence of the contributions from the saddle points of kv’ £ kvVE2 + 2 in Eq.
(2.10) normally has a decay factor 1/t*2 [or 1/t!/3 if the group velocity disper-

sion, i.e. the second order derivative of kv’ + kv k? + 2, is also zero at the saddle



point] multiplied by awn oscillatory or an exponentially decaying factor.?® This is
expected of an ordinary stable dispersive systemi. where an iuitial perturbation
tends to disperse and vanish in the space-time domain. However, the simple pole
contribution at A = 0 in the second term in Eq. (2.10) should also be considered.
[t actually gives the dominant contribution for large t. This effect is different
from the ordinary stable dispersive system. As loug as »' # V2. the saddle points
aund the pole & = 0 are separated. [t turus out that the pole contribution can be

obtained by the lowest order Tavlor expansion of +kvA? + 2 in the exponential

and VA2 + 2 in the numerator at & = 0, and we have

12

oA (vt t) /——e\p h't T—[e\p (iV2kt) — exp(—iv/2kt)] (2.11)

= /\/— rect[e \/—] for t =00 (2.12)

where the rectangular function rect(y) is unity if —1/2 < y < 1/2 and zero
elsewhere. The decaying saddle-point contributions have been neglected in Egs.
(2.11) and (2.12). Physically, we notice that the group velocity from the dispersion
relation Eq. (2.9) is always in the ranges v — v, < —V2 and v - vg > V2 for

gu(p) > 0. Thus the finite level of perturbation within —v?2 < v — v, < V2 at
large t is due to the nonlinearity.

The above approximation breaks down around v’ = /2 within a “boundary
laver” of v' which shrinks as t — oo. This is because the saddle point can then
be so close to the pole & = 0 that the magnitude of the saddle point contribution
is very large in this parameter region (although still decreasing for large t). Inci-
dentally, the case of zero group-velocity-dispersion also corresponds to v’ = V2.
In order to find the solution for this “boundary laver”. we need an approximation

that is valid even when ¢’ is close to v/2. This can be accomplished by keeping



the second-order terms in the Taylor expansion of *kvA% — 2 in the exponen-
tial since the saddle point contribution for ¢ around 2 is then automatically

Imcluded. This results in

dA(vt.t) =~ / %exp(iku’t) \/lsk{exp [iV2kt + ik*t/ (2V2))]
—exp [—iV2kt — ik%t/(2V2)]} (2.13)

= %{F[B‘”S\/ﬁ(ﬁnL O]+ F[37Y3V2(V2 = o)) (2.14)
for t = ~. where the function () = [(dy/27)sin(ey + ¢*/3)|/y = 1/2 -
(2 Ay)y = [ \Ni(y)dy = 1/2. aud Ai(er) is the Airy function defined by
Ai(a) = [Fcos(ay + y*/3)dy/7.*® Since (o) ~ £1/2 for |a| > 1. it can be
shown that for a fixed v’ not very close to £v/2. this result is identical with previ-
ous derivation. But this result also gives the boundary layer structure. By using
|| ~ 1. it is easy to see that the thickness of boundary lavers about v/ = £/2
decreases as 1/t?? in the normalized spatial coordinate of v. This corresponds to
a boundary layer of the order of t'/3 in the spatial coordinate x. The structure of
the boundary layer is isomorphic with the front of a water wave (surface-gravity
wave).?

Figure 2-1 shows the result for |d4(vt, t)|? from numerical integration of Eq.
(2.10) and our simplified calculations based on Eq. (2.14) and (2.12), which agree
well even for a moderately long time of t = 15. Compared with the case of a
linear medium.?® this result shows that the development of a localized perturba-
tion will be saturated at a certain level determined by the energy of the initial
perturbation, instead of dispersing away. The perturbation will radiate outward,
as it propagates with speed v,, with both shock-like fronts moving out from the

center with constant speed /2. so the total perturbation energy increase linearly



with time. If v, < V2, the perturbation will not vanish after a long time in the

laboratory frame as do perturbations of ordinary dispersive waves.
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Figure 2-1: The shape of the Green function for the modulationally stable system
plotted as |64(vt, t)|? versus v = v — v, at t = 15. The square curve is the
approximation from Eq. (2.12). The other two curves are the exact result from
Eq. (2.10) (upper curve) and the approximation from Eq. (2.14) (lower curve),
respectively.

We now turn our attention to the important case of the modulationally unsta-
ble system with sign(iz) < 0. In such a case, we can prove that the pole £ =0 in
Eq. (2.10) cannot be a saddle point for any value of v. thus the saddle points and
the pole are always separated, and the contribution to the integration at large ¢ is
just the summations of the pole contribution and the saddle point contributions.
For the unstable portion of v, since the saddle point contribution represents an

exponential growth with time, the pole contribution can be neglected. Actually,

there are two saddle points from Av' & kv/'k? — 2 in Eq. (2.10) that give contri-



butions growing exponentially with time. Compared to most unstable svstems
in which onlyv oue saddle-point contribution has the largest growth rate. here the
growth rates of thie two contributions are the same whereas their phases are dif-
ferent. Thus. as will be detailed in the following calculation, the amplitude of
the asvmptotic pulse is oscillatory with an exponentially growing envelope. This
hehavior is characteristic of a modulationally unstable syvstem.

For the exponential v’ + kv/A2 =2 in Eq. (2.10), the saddle points in the

complex A plane satisfv

(.lk[/i(','f'"/{vk'z—;)] = . ( t

o
—
[ 1}
~

The saddle point with exponentially growing contribution is determined to be

k(v) = —\/[8 + 0" + v’V — 16]/8. (2.16)

Here we concern ourselves with |v'| < 4 for the uustable portion of the pulse. The
value of the exponential kv’ + Avk?% — 2 and its second order derivative at the

saddle point can be calculated to be

s(v) = k(v)(3V + Vv'? - 16)/4 (2.17)

= (V2/8)[u" + 400 — 16 — v'(v? — 16)%/2)}/2 (2.18)
and
p(v) = 8k(v)[v'/(v* -8 —v'Vu'? - 16) — (v + Vv'2 - 16)/8], (2.19)

respectively. The value of the factor V&2 — 2/k in Eq. (2.10) at the saddle point



is
d(v) = —(L/) — Vv = 16)/k(v). (2.20)

In Eqs. (2.18)-(2.20), &(v) is given by Eq. (2.16). Similar results can be obtained
for the other expouential kv’ — kv/AZ = 2 in Eq. (2.10).

According to the method of steepest descent, we add up the two saddle-point
contribution from Av' + kv/k? — 2. Detailed analysis shows that their contribution

are complex conjugate to each other so that the final result can be written as

SAt ) = (LVIRORe[™ M =ip(e)] +
{1/ VAT e () /[~ ip(e)]
= (U/Virt)e "™ Rele" /[ ip] +
i Im[e™ed/, [Zip]} (2.22)

—_
[AW]
&
—

N

for t — co. where by using Eq. (2.18),

—Im(s) = [4(2u"* +4)¥? + 32 — 400" — v"™]V?/8, (2.23)

Re(s)

i

—sign(v')[4(20" + 4)*? — 32 + 400" + v"]V/2/8, (2.24)

as are displayed in Fig. 2-2.

Equation (2.22) means that the envelope of asymptotic pulse is determined
by exp(—Im[s(v)]t),® while the frequency and phase of the amplitude oscillation
are determined by Re[s(v)]t, p(v) and d(v). The most important information for
the instability is the magnitude of envelope, which gives the asymptotic temporal
growth rate —Im[s(v)] displaved in Fig. 2-2. Thus the unstable portion of the

pulse corresponds to |v'| < 4. By checking the asymptotic temporal growth rate



Figure 2-2: The real and imaginary part of the expouential factor s(v) in the
saddle point integration. (a) ~hn[s(e)] is the asvmptotic growth rate. The slope
of the dashed curve corresponds to maximum spatial growth rate for ¢, = 5. ()
Re[s(v}] is the plase for the oscillations in Fig. 2-3.
at v = 0,72 we find that the instability is convective or absolute for v, > 4 or
v, < 4. This is in agreement with previous results.?

In order to find a simpler expression for the pulse shape, we notice that the
predominant portion of the pulse is around ¢’ = 0 at large t. This allows us to
take Taylor expansions for both exponentials and coefficients in Eq. (2.22) and

keep only the lowest order terms. Then, Eq. (2.22) becomes,

L+

(v, 1) = 5=

exp[(1 — v™/8)t] cos(v't). (2.25)

The same result can be obtained by a second-order Taylor expansion of the ex-
ponentials +itkvA? — 2 in Eq. (2.10) around & = F1, which correspond to
their respective maxima. Figure 2-3 shows the asymptotic pulse shape plotted

as texp(—2t)|d4d(vt,t)

%, determined by numerical integration of Eq. (2.10) and

by our simplified Eq. (2.25). They agree each other well even for a moderately



long time of ¢t = 10.
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Figure 2-3: The shape of the Green function for the modulationally unstable
system plotted as texp(—2t)|dA(vt, t)|? versus v’ = v — v, at ¢t = 10. The two
curves are the exact result from Eq. (2.10) (upper curve) and the approximation
from Eq. (2.25) (lower curve).

2.4 Spatial amplification

Following the systematic approach of the impulse-response analysis,??=3? we now
study the spatial growth rate for the convectively unstable case in which sign(u) <
0 and v, > 4. This is accomplished by introcucing a point source oscillating at a
frequency wg (i.e., zero spectral line width), and finding the steady-state spatial
solution reached at large t (after a t;fa11$ie1it time), whose existence is guaranteed
by the convective nature of the insta,bility. The amplification of a signal with

~ arbitrary line width can be studied in terms of spectrum decomposition. Thus,
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we assume S(t) = exp(—iwg)t in Eq. (2.4) or S(w) = [ilw — wq)]~" in Eq.(2.7).
In cthis analvsis. we use the spatial coordinate 1 iustead of the normalized spatial
coordinate ¢ sitce we are concerned with the steady state.

Following the standard approach.?™* we move the integration path of w below
its recal axis. Due to the absence of absolute instability, The & integration path
can alwavs be deformed so that the solution at large t is only due to the pole of
w at wy and can be expressed as
—(wo — 1ok + k% — 1) exp(—twot) + exp(iwot)

K2(A? — 2) — (wo — vgk)?

/ -—e\p (ihi) (2.26)

for t — oc. where L is the Landau contour. (For a detailed discussion. sce.30)
This steadv-state solution can he reached for any fixed spatial coordinate » after a
trausient time. Physically, the new frequency component of exp(twyt) is generated
by the four-wave mixing process.

The integration in E¢. (2.26) can be worked out for z > 0 and 2 < 0 separately.
For simplicity we only consider 2 > 0 siuce the case « < 0 is similar. Then the
integration with A in Eq. (2.26) is just the residue summation from all the poles
of the integrand above the Landau contour. [or large w. the lowest pole at kg

gives the dominant contribution. that is

""(uJ() - L’gko =+ l’ug — l) exp(—iwot) =+ exp(iwot)

8A(z, t) ~ exp [ikoz — 2.27
() = exp [iko] Ako(KE = 1) + 20, (wo — vgho) (2:27)

for t = o0, where ky(wg) is a function of wy and satisfies
kZ(kE —2) — (wo — vgke)® = 0. (2.28)

For amplification, kg(wg) should be below the real axis while still above the

Landau contour. This criterion is equivalent to requiring the corresponding solu-
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tious of Eq. (2.28) to cross the real axis from above to below when we attach an
imaginary part to wy that goes from some positive value to zero. (For a detailed
discussio. see.™)

The solutions of Eq. (2.28) are of course functions of wy. A detailed study
shows that for v, > d, there are two separate regions for positive wy, namely
(0.w,) and (w,, 00), that result in complex solutions of Eq. (2.28). However, only
the first region corresponds to amplification. Bv applving the above criterion, it
can be shown that the second one corresponds to evanescent waves., The same is
true for negative wy due to svimetry. As an example, [Fig. 2-4 shows all four
solution branclies of Eq. (2.28) for ¢, = 5 and for a varying w,. \We have used the
normalized frequency 2y = wy/v,. and chosen the attached imaginary part to Q
to be from 0.1, 0.1 to 0. while its real part can be at some discrete values which
are 0.1 apart in the range (-9, 5). Thus. only the portion of the bow-shaped curve
below the real axis in Fig. 2-4(d) has come across the real axis and corresponds
to amplification. This portion of &y corresponds to the €2 range of (—1.35, 1.35),
Le. Qp =w,/v, = 1.35.

Figures 2-5 shows the wave number Relko(wo)] as Relko(wo)] — Q2 and the
spatial growth rate —Im[ko(wo)] as —v,Im[ko(wo)] in the amplification range of
2. The results were obtained by solving Eq. (2.28) for vy, > 4.

Figure 2-6 shows the amplification range {2,, the maximum growth rate as
vgn1ax[—1111(k0)] and corresponding frequency €, = wypn/ v, for different values
of vy. As v, increases, the wave number Re(Aq) approaches {2, the quantities
vymax[—Im(Akq)], related to the maximum spatial growth rate, and ,,, related
to the corresponding frequency, decrease to approach 1, and the normalized am-
plification frequency range €, increases to approach v/2. It should be pointed

out that for a given v,, max[—Im(kq)| is equal to the slope of the tangential line
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Figure 2-4: The four branches of the dispersion relation satisfying Eq. (2.28) for
v, = 5 and a varying parameter wo. (a) The values of the parameter Qg = wo/v,
are doted on the three horizontal lines at Im(€) = 0.4 (first), 0.1 (second) and
0 (third) with separation of 0.1 between the dots. (b) The four branches of the
solution of Eq. (2.28) for the values of (% on the first line in (a). (c) Same as
(b) except for the second line in (a). Note the part that crosses the real axis. (d)

Sanie as (b) except for the third line in (a). Thus, &g is on the bow-shaped curve
below the real axis.
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[igure 2-5: The spatial growth rate and corresponding wavenumber for the varying
frequency in the amplification range and for v, = 4 (solid), 6 (dashed) and 8 (long
dashed). The wavenumber is plotted as Re(ky) — {2y versus 0 = wg/v, in {a) and
(b), and the spatial growth rate is plotted as —v,Im(kg) versus g in (c) and (d),
where (a) and (c) are the exact results from Eq. (2.28), and (b) and (d) are the
approximations from Eq. (2.31).



shown in Fig. 2-2(a) (where we have used v, = 5 as a example) as can be generally

proved.?9-32
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Figure 2-6: The amplification frequency range plotted as 2, = w,/v, (a). the max-
imum spatial growth rate plotted as v,max[—Im(ko)] (b), and the corresponding
frequency plotted as Q,, = wm/v, (¢) for varying v,. The solid lines are from
numerical calculations based on Eq. (2.28) and the dashed line are from the
approximations based on Egs. (2.32), (2.35) and (2.34).

The branch of the solution of Eq. (2.28) related to amplification can be ob-
tained directly by treating v, 2 as a small parameter since we have assumed v, > 4.

By writing Eq. (2.28) in the form

(ko — R0)? = v (k4 — 243), (2.29)



33

it is easy to see that the zeroth-order solution is &y = €2g. The next order solution
will be accurate to O(v, ') and can be obtained by the first-ovder Taylor expansion
of the right-hand-side of Eq. (2.29) at kg = Q. After taking the square root on

both sides of the resulting equation, we have

o(wo) = Qy — 17 '/ 03 = 2. (2.30)

Thus Q, = V2. Q,, = 1 and vmax[—lm(ky)] =1 in agreement with the results in
Figs. 2-5 and 2-6 for v, > 1. This result can also be obtained from another version
of the NSE used to study the boundary input problem, ie. dpa = —u’g"lf)t/a -
1((32/2) 0 a+ ivlalfa where 3y = 2u/(v)* and v = A/v. The two versions of the
NSE are equivalent ouly when ¢, = '(.vf’l/\/aﬁf\lm > 1.

The accuracy of Eq. (2.30) can be improved by considering the second-order
Taylor expansion of the right-hand-side of Eq. (2.29) at kg = Q. In fact. one can
prove that the solution thus obtained is accurate to O(v, %) at least with higher
accuracy around Qg = 0 and Qg = 2. The resulting second-order algebraic

equation for kg can be easily solved to give,

\ 5 Nzﬁmmpu—ng%—wmypm+m@9M
o(wo) = {ho = [1 - 20,-2(303 - 1)] (2:31)

Equation (2.31) is quite accurate, as shown in Fig. 2-5.
The frequency range for amnplification can be easily obtained from Eq. (2.31)

by setting the term under the square root to zero. The solution is
~ 1—2
Qo = V2(1-v;?), (2.32)

where we have Taylor-expanded the result up to the O(v, %) term.
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According to Eq. (2.31). the maximum growth rate max{—Im(Ay)] and the

corresponding frequency €2, can be obtained by studving the extremunt of

—0y Q0O — 2+ 20,200+ 303)
(1= 2,2(305 ~ 1]] -~

—u, ! W — L+ 202(5y" +dy? = 3y = 2), (2.33)

where y = Q2 — | and a Taylor expansion has been made up to O(ng‘z). The
extremum of the argument under the square root of the right-hand-side of Eq.
(2.33) can be ecasily found by using ordinary perturbation with respect to 1',]‘2

After sonce straightforward algebra. we obtain

Q> 1+ (3/2)e,". (2.34)

vymax[—Im(ke)] = L+2u;

where we have kept terms up to O('L’,J_")) in the expansions.
Equations (2.32). (2.34) and (2.35) are good approximatiouns as long as v',f > 1.

The comparison with the numerical solution is displayed in Fig. 2-6.

2.5 Conclusions

We report the result of impulse-response analysis for a nonlinear wave in a dis-
persion medium. The Green function (response to a pulse-like perturbation) and
the solution for oscillatory perturbations were studied. For a modulationally un-
stable system, the asymptotic pulse not only grows but is also modulated, i.e.
the perturbation pulse consists of a modulated structure whose envelope grows
exponentially. The pulse shape aud the condition for convective and absolute

instability are obtained analvtically. Even for a modulationally stable nonlinear



35

dispersive svsten. the perturbation does not disperse away as it does in a linear
system. lnstead, a certain level of perturbation. determined by the energy of the
initial pulse. occurs i a widening region of space whose center moves with the
group velocity. [ a sense. 1t s like a spreading square pulse. For an oscillatory
perturbation source. we determined the frequency regions for amplification and
evanescence. [he spatial growth rates for amplifving waves were obtained. The
results also showed that the spatial NSE and temporal NSE are equivalent only

for v, > 1.
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Chapter 3

Modulational Instabilities in

Dispersion-Flattened Fibers

3.1 Introduction

MI is usually studied within the framework of a NSE, the validity of which requires
a weak instantaneous nonlinearity and a slowly-varying wave amplitude. In the
frequency domain, the spectral width of the field must be narrow enough that
the modal dispersion relation J(w) can be approximated by a second-order Taylor
expansion around the carrier frequency wy. For slightly wider bandwidths, some
corrections to NSE have been made by adding higher-order dispersion terms in
the Taylor expansion.3*-37

In some cases discussed below, however, MI can actually occur with a wide
bandwidth (corresponding to a fast temporal modulation). In other words, the
effects of second- and third-order dispersion, etc., could be all comparable in

these cases; the Taylor expansion breaks down, and the nonlocal properties of the

modal dispersion relation must be considered. For fast modulations, nonlinear
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relaxation and the Raman effect mav also become important.'*3373% Because
of the non-instantancous noulinearity, the dependence of the nonlinear coefficient
on the modulational frequency should be included.

Broader-bandwideh MI is important due to its intrinsic relation to shorter
pulses. [u this paper. we use harmonic analvsis instead of the NSE to study MI.
This approach still requires wealk nonlinearity but does not require narrow band-
width. -\ simple expression for the gain curve of Ml is given that depends ou the
entire modal dispersion curve aud the frequency-dependent nounlinear coefficients.
[t is then applied to a dispersion-flattened fiber,'® for which the second-order
dispersion coefficient changes sign twice as the frequency is varied. to study the

effects of the modal dispersion relation and to illustrate the basic phyvsics.

3.2 Harmonic analysis

To bLe precise. the harmonic analysis described below is actuallv a multiscale
approximation®! used to solve the linearized equation around a nonlinear steady-
state pump wave i a single-mode fiber. The small parameter in the linearized
equation is the amplitude of the noulinear pump wave normalized to /3 (wg)/7 [see
Eq. (3.4)]. In the following summary, Lhowever, the physical picture is emphasized
at the expense of mathematical detail.

Consider wave propagation in a single-mode fiber. The electric field is written

E(t,z,y,z) = A, 2)F(z,y), (3.1)

where 1 is referred to as the wave amplitude and the function F describes the

transverse variation of the field. The Fourier amplitude of the wave is defined
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according to the convention

Alw.2) = L~ At 2) exp(iwt)dt. (3.2)

2r J - &

[t is well known that the nonlinear steady-state or CW pump wave for the single
transverse mode of the fiber is approximately a sinusoidal wave with dispersion

relation!! 12

kg (w'o) = ff(vu‘u) + ~(wys =< wn)

Aol (3.3)

where the subscript s is for steady state. and the weak nonlinearity condition

vlAo? <3 (w) (3.4)

is required. Equations (3.3) and (3.4) indicate that the x(® nonlinearity changes
the wave number (and the phase. which is the product of wave number and dis-
tance) by a small amount. For an optical fiber. v{(wq, —wq, wo) = 6mwyx* (wo, —wo,
wa)/[cn(wo)Aerr) in electrostatic units, to within a factor of the order of unity that
depends on the transverse mode structure, where y®(wg, —wp,ws) is the third-
order nonlinear susceptibility of the fiber, ¢ is the speed of light, n(wy) is the
modal refractive index, and 4.g is its effective mode area.l?

An equation linearized around the CW solution can then be formed for a
perturbation field. The evolution of the perturbation field in the presence of the cw
pump described by Eq. (3.3) can be studied in Fourier domain by considering the
propagation of its frequency components d4(w’, z) for the single transverse mode,
where z and ' represent space and frequency coordinates, respectively. Since the
amplitude of the cw field is the small parameter, the trivial case of the zeroth-order

approximation, which corresponds to a vanished pump, gives a linear propagation
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of the perturbation field. i.e. d7.64(w'. 2) + F%(w')d4(w’. 2) = 0. The zeroth-
order solution is thus o.4(w’. z) = d4(«’. 0) exp[if(w')z]. correspouding to forward
propagation. Note that the reality condition requires dA(—w'. 2) = d4%(W', 2).

[n the presence of the CW pump-wave, the following linearized equation for
04(w', z) can be obtained from the Maxwell equation for the single transverse

modle:
dﬁ:d»l(u'. 2+ /j!(u/)(g.’k(w'l‘ 2= (~l7r/c)w'2<5P,,1(w'), (3.5)

where the term 0f,,. still linear in the perturbative field. is the nonlincar part of
the clectric polarization ficld projected onto the transverse mode by an overlap
: by 12
integration.

Recall that oP,; >~ 0 in the zeroth-order approximation. [For a better approxi-

mation bevoud zeroth order. we have

Py (W) = (3/Aerr)// /_::o v (wy, wa, wy)

Eo(w[. Z)Eo(u)g, Z)(SA(U):;, z)5(w' — W) — Wy — ujg)dwldw-zdu)g, (36)

where we have assumed the overlap integral of the transverse mode is the same for
the frequencies of interest.'? Eg(w. z) = A expliks(wp)z]d(w—wq)+Af exp[—ik,(wo)
z]8(w + wo) is the Fourier transform of the cw field Ey(t, z) = Ag exp|iks{wo)z —
iwpt] +c.c.. Equation (3.6) describes the nonlinear electric polarization (but linear
in the perturbation field) induced by the pump and the perturbation field in the
x® medium. The degeneracy factor 3 appears because we treat the perturbation

as a different field from the pump wave.!! We have neglected higher-order (greater

than |.4o)?) contributious of the pump field to 5P,.

To solve Eq. (3.5) bevond the zeroth-order approximation, we follow the multi-
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scale procedure by inserting the zeroth-order solution in the right-hand-side of Eq.
(3.5) [using Eq. (3.6)] and collecting all the possible phase-matched terms. This
analysis can be facilitated by switching to the temporal-domain picture. For a for-
ward propagation component at ', the field is d4(w’, 0) exp[i3(w')z — iw't] + c.c..
Through the nonlinear electric polarization, this field generates the terms propor-
tional to d:4(w'. z)]do|? exp[iB(w')z — iw't] + c.c. and 647 (W', 2) A exp{i[2k,(wq) —
3(w')]z — i(2wy — W)t} + c.c.. The first term is obviously phase-matched. The
second term could also be phase-matched to a forward propagating component at
(2o —w') if |2k (wo) = (W) = 3(2wo —w') | is very small. Thus we should study the
componeut 6:4(2wy —w'. 2) = 04(2wg — ', 0) exp[if(2wy —w')z — i(2wy — ')t +c.c..
Similar analvsis for this component indicates two phase-matched terms generated
at (2wy — w') and &’

According to the multiscale procedure, the above consideration allows us to
solve Eq. (3.5) approximately in terms of the coupled mode equation of the fre-
quency components at ' and 2wy —w', called the anti-Stokes and Stokes sideband
for the upshifted and downshifted frequency, respectively. By retaining all the

possible phase-matched driving terms, Eqgs. (3.5) and (3.6) become

[d2, + 3% (W)]dA (W', 2)/[28(w")] =

2y(wo. —wo,«' )| Ao|*84(w, 2)

y[wos wios — (2o — )] AZ expli2ky (wo) 54" (2w — o', 2) (3.7)
[d2, + 5% (2wo — w")]6A(2w0 — W', 2)/[28Quo — )] =

2v(wo, —wo, 2wy — w')

Ao)264(2wy — W', 2)

+7(wo, wo, —' ) Af exp[i2k,(wo)]dA™ (W', =), (3.8)
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where we have defined

'Y(Cu'| Cw, w‘;;) = 677((4,'\ + wy + \U;;)X(“ (\Ul,w"_), W3)/[C?l(wl + wy + w:;].‘lcf‘f]. (39)

Equations (3.7) and (3.8) will give a correction to the linear dispersion relation
3(w') [or B(2wo—w") for frequency 20y —<'] by an amount O (y]-g|?). Simplification
can be made for forward propagation by using (2. + 32)/(28) = (—ud. + 3) (id. +
3)/(273) = id. + 3 [where 3 indicates 3(w') or 3(2wy — w')] since a careful analysis
shows this doesu't alter current level of approximation at all. If we define the
modulational frequency w = &' = &y, and set dd(w'. z) = Bo(w. ) exp(ik,z) and

(2w — &' 2) = B (w.z)explik,z). then Eqs. (3.7) and (3.8) become.

Di(—id.cw)B- = 77,487, (3.10)

D_(—id.,«)B" = —y;_A§B.. (3.11)
where

D.o(—id.,w) = —id. + 3(wo) — Blwo +w) — Y|4 (3.12)

D_(~id., ) = —id. = 3(wg) + 3wy — w) + 71 _| A% (3.13)
and

Y+ = 27[(‘]03 —wy, ((“}0 + UJ)] - 7((‘}07 _wOawO)u (314)

Yo = ZW[W‘Oa —wo, ("‘)0 - Ld)] - ’Y(L‘JOa —(U(],Ldo), (315)

Ve = Ywo,wo. —(wo — w)], (3.16)

V- =

¥|wo, wo, = (wo + w)]. (3.17)

The subscripts = and f refer to cross-phase modulation (XPM) and four-wave
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mixing (FWM) to indicate their relation to these processes, respectively. Note

the Raman cffect and the effect of nonlinear relaxation is included through the

dependence of the nonlinear coefficients on the modulational frequency.
Equations (3.10) and (3.11) can be easily solved. The general solution consists

of two independent cigenmodes,

B. 1 _ r_(w .
= ¢ etk ¢, ) elk-(wiz (3.18)
B T (w) 1
where ¢; and ¢, are constants. aud
ro=D_(keow)/vpodg = —df}_.»&()z/[)_(/u,u), (3.19)
ro=v A0/ Do(koiw) = —D_(k_.u;)/v}_;&(‘,z (3.20)

indicate the relative amplitudes of Stokes and anti-Stokes sidebands for each cigen-

mode. respectively. A.(w) are the dispersion relations for the two eigenmodes,

ke(w) = [ Blwo +w) ~ Blwg — w) + (Yer — 75_)]do]?
i\/_\z — Ayl o]t | /2 (3.21)
where
Alw) = Ay = You| Aol = vo_|Aol% (3.22)

is the total wave-number mismatch and
Ay(w) = 2B(wo) = Blwe + w) — Blwo — w) (3.23)

is the linear wave-number mismatch (the subscript { is for linear). Naturally,



a negative imaginary part of &.(w) indicates the growth of the corresponding
cigemmnode.

Physically, the coupled Eqs. (3.10) and (3.11) describe the linearized stage of
the induced decay of the carrier wave at the frequency wy into its daughter waves
at the sidebaud frequencies wy + w. The right side of each equation represents
the harmouic driving from the nonlinecar beating or VWAL of the carrier and
the other danghter wave. and the left side describes propagation with total wave
nuniber mismatch (including linear and nonlinear mismatch). The noulinear wave-
number mismatch comes from NPM, and is generallv complex due to the Raman
cffect or nonlinear relaxation. Alternativelyv, Eqs. (3.10) and (3.11) describe the
scattering of the pump into one of the sidebands by the nonlinear grating produced
by the pump and the other sideband. These equations decouple automatically
when |+ 42/ <« 1. In this limit. without loss of accuracy. the two independent

eigenmodes of Eqs. (3.10) and (3.11) become

ke = —3(wy) + Flwe +w) + ”7'£+|AO|27
(3.24)
r.~0 or, B_=90
and
k- = Bwo) = Blwo —w) = vi_|dol,
(3.25)

r_~0 or, B, =0.

Physically, these solutions correspond to the independent evolution of each side-

band subject to Raman loss (for the anti-Stokes sideband) or gain (for the Stokes

sideband) and with the refractive index changed by the pump due to XPM.
Generally, each frequency component cannot propagate independently, but

couples to the other sideband. In fact, expressing ¢, and ¢, in terms of the input
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condition leads to the general solution in form of a transfer matrix,

kaz v o4 k2 . th_z thiz
1 e —r.r_e r_(e — e"+F) B {w,0
( 0 (3.26)

7.‘_(Clk¢.: _ e:k_:) G:k-: . 1',_7'_6”"‘: B:(w’o)

This cquation linearly relates the Fourier spectruim at any distance = to the input
spectrum.

In the case of instability and at large distances. the contribution from the
damped cigenmode can be neglected. Then inf. (w)] gives the information about
the spectrum amplification with distance. while |r. (w)] indicates the relative am-
plitude of Stokes and anti-Stokes sidebands, if the + sign is used to represent the
growing mode.

To isolate the effect of the shape of the modal dispersion curve f(w’), we first
neglect the frequency dependence of the nonlinear coefficients by using their value
at zero modulational frequency w = 0. It is easy to show that v,y = v+ =
¥ (wo. —wo, wo). Which is a parameter denoted by . This means that the Raman
effect and other dependence of nonlinear coefficients on frequency are neglected.

Then Eq. (3.21) becomes

ke = | Blwo +w) = Blwo — w) £ /(A — 2v] A2 = (27[4o2)? | /2, (3:27)

where the term A, — 2y

Ap|? under the square root is just the total wave-number
mismatch A. which is real in this case. Instability happens whenever its amplitude

is smaller than that of the FWM coupling strength 2y

Ao|?. (This condition means

that the linear mismatch compensates nonlinear mismatch.) It can be proved that
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| (w)]| = L for w in the unstable range. so the amplitudes of the Stokes and anti-
Stokes waves arc cqual for the growing mode. In the following, we only consider
the v > 0 case. Since the ~ < 0 case is similar. our discussion can be easily
extended.

The instability happens when
0 < N(w) < Iyl 4] (3.28)

In a diagram of Aj(«) (see. for example. Fig. 3-1), the instability range is between

the horizontal axis and the horizontal line at -Iv|.4g[*

If. 1n this range, Aj(w)
reaches the value 25147 then the maxinnun groweh rate [l(A )] u = ~[Aol? is
obtained. corresponding to a complete linear compensation of the nonlinear wave-
number mismatch; if it does not (as can happen in the dispersion-flattened fiber),

the maximum growth rate happens at 3\, (the subscript e is for extremum), which

is the extremun of Aj(w) closest to the horizontal line at 2+

Agl?. with a value

(106 e = /(27140 = 20 = 2414012 [ 2 < 414l (3.29)

This corresponds to maximal, but incomplete, compensation.

In many situations, the second-order dispersion function, defined as f§;(w') =
3"(w') is given instead of the modal dispersion S(w'). Thus we wish to express
Aj(w) in terms of the second-order dispersion function. Since (d/dw)?A(w) =
=y (wp + w) = Fy(wp —w) and AJ(0) = 7(0) = 0 from Eq. (3.23), we can show

that
A(w) = /(;w[/32(w0 + ) + falwy — V)|(v — w)dy, (3.30)

For very small modulational frequency, a parabolic approximation for the
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Figure 3-1: The instability analysis using A (w) = =32 (wp)w?. The upper dashed
horizontal line is 1v|.4g]? and the lower is 2y|-4g|2. The frequency range of insta-
bility corresponds to the section of 2\(w) curve between the horizontal axis and
upper dashed horizontal line. The intersections of the curve with the lower dashed
horizontal line indicate the frequency of maximum growth rate v|A4¢|?. As power
increases, both horizontal lines go up.



modal dispersion curve 3(w') can be used around the pump frequency. This is
equivalent to considering 3,(w') a constant within the frequency range of inves-
tigation: Jy(wy £ w) = Hlwy). Lt follows from Eq. 3.30. X(w) = —s(wo)w?.

which is displayved in [Fig. 3-1 for the case of 3,(wq) < 0. This figure also indicates

that the instability range is 2\/7|.»10|'-’/{,}_;(w0)\ and the maximum growth is ~v|.4q[%.
These results agree with those obtained from the standard NSE model.!?
However. as the power increases [but Eq. (3.4) must be satisfied| or the second-
order dispersion coefficient at the pump frequency decreases. the instability range
becomes wider. and finallyv the approxiniation that J(w') is parabolic. or 3, (w') is
coustant. breaks down. In addition. this treatment will miss any M1 gain occurring
at relatively large w. So. to explore the broad-bandwidth behavior of the M gain.
the exact linear dispersion relation should be used.*® A good example is the

dispersion-flattened fiber discussed in the following section.

3.3 Dispersion-flattened fiber

3.3.1 (3. <0 case

A dispersion-flattened fiber*® has the characteristic second-order dispersion func-
tion shown in Fig. 3-2. Notice that fJ,(w) cannot be considered constant in the
frequency range of interest because it changes sign twice. As a simple model, we

fit the curve with a parabola. With this assumption,
Bolw') = Baell — (o = w2/, (3.31)

where (5. is the minimal value of §,(w’) occurring at the frequency “J;,, and 2w, is

the frequency spacing between the two points of zero dispersion (the subscript e
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and = are for extremum and zero respectively). I an ordinary dispersion Hattened-

fiber 3¢ 1s negative.

B, (@)

Figure 3-2: [lustration of 3,(w’) for a dispersion-flattened fiber. 3,, and w, are the
extreme /3, value and the corresponding frequency relative to the pump frequency,
respectively. 2w, is the difference between the two zero-dispersion frequencies.

Using Eqs. (3.30) and (3.31). we get

w?

TPl

Ay(w) = =l — /w1 (3.32)

where w, = w, — wp is the minimum dispersion frequency relative to the pump
frequency. Instability analysis based on A;(w) is displayed in Fig. 3-3. Its two

zero points are at w = 0 and wy (the subscript f is for FWM), where
w? = 6w?(l — wg/uf). (3.33)

Usually the zeros of linear mismatch at nonzero w’s imply the presence of

FWDM instabilities for some parameter values. The maximum of A, happens at
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Figure 3-3: The instability analysis using 2\;(w) in the case of dispersion-flattened
fiber. The upper and lower dashed horizontal lines are dy|.4g|? and 2v|.4o/?, re-
spectively. The two frequency ranges of instability correspond to the two sections
of A;(w) curve between the horizontal axis and upper dashed horizontal line, i.e.,
(0,wyn) and (w},wy). The two intersections of the curve with the lower dashed
horizontal line at wyn. and wy, indicate the frequencies of maximum growth rate
v|Ao|?. As power increases, both horizontal lines go up and the two instability
regions merge. With a further power increase, the intersections of the curve with
the lower dashed horizontal line also disappear.




50
wie (the subscript { is for linear and e is for extremum), where
Wie = 3wl = wp /) = Wi/2, (3.34)
with the maximal value of
Aje = =3 (L = &) [w?)? o /2. (3.35)

For the relatively low pump power dv|-g|* < A. there are two intersection
points with the horizontal line of 4v].44[? at w,, (the subscript m is for MI) and

uu'}. where

why = win(l = \/1 — Ay Aol / Ase). (3.36)
Wi = wip(l+ \/1 — Ay dol?/ ). (3.37)

This indicates two regions of instability with boundary (0, w,,) and (J;, wy). The

maximal growth rates in both ranges are v|Ag|* at wy, and wy., respectively,

where
Wine = wiy(l ~ \ﬂ — 29|4p|?/ Ase), (3.38)
o= wh(L+ 1= 29[40]2/ ). (3.39)

If the pump power continues to decrease, a comparison of Fig. 3-3 with 3-1
indicates that the first region reduces to the conventional MI discussed in Sec. 3.2.

In fact, one can prove that the instability range approaches the conventional form

of wy ~ ?.\/ v]4o|?/|B2(wo)|, where B2(wp) is actually the second-order dispersion
coefficient at the pump frequency from Eq. (3.31) (see Fig. 3-2). The growth rate

is also approximated by the conventional expression. This is expected since the



linear phase-mismatch A, is approximated by the conventional form of —/3,(wy)w?
within this nstability range. [This can be deduced from the Tavlor expansion
A(w) = A (0)w?/2. where A/ (0) = =23,(wp) from the definition of A\, aud 3]

The sccond region can be shiown to reduce to the conventional [F\WWM in-
stability. [or a wealk pump power. wy — u/f ~ w,eq‘|A0|2/\/§A,e and \j(w) ~
(—dvV2A 10/ wie) (w —wy) in the range (). wy). Recall that for a conventional ['WM
of a pump wave at wy and the two danghter wave at about wywy. the linear wave-
number mismatch and instability bandwidth is Ayg“(q} —wy) and 11§,‘|‘fl()|'3/\&';‘|.
respectively. where Mot =3 (wo —wy) = 3w +wy) s the difference of the inverse
group-velocities between the two danghter waves (the prime means derivative).
\We have obtained exactly these forms considering _\L'_q“‘ = A(wy) = -1 \/E_l,e/w“,.
The growth rate also takes the conventional form. We know that in the presence
of conventional MI. a long optical pulse will break up to form solitons. but in
our case, a competing process of the conventional FWM will channel the energy
into the sidebands at approximately wy. These sidebands will beat to form high-
repetition-rate short pulses; however, this is a reversible process at the nonlinear
stage® because after pump depletion, the sidebands’ cnergy will be transferred
back to the pump.

If we increase the pump power, the two regions begin to merge as wy,, and wj
come closer until they coincide at wy, for the power corresponding to 4y|4¢]? = A
(wy does not change with power). After that. the instability range is locked at
(0,wy) independent of power increase. The two peaks of the gain curve with a
value of v|.4g|? are still separated since w,,, and wy, are different, but if the power
continues to increase, they also coincide at wie when 2v|A4g|? = A,. After that,

the A;(w) curve has no intersection with the horizontal line at 2v|Ag|?; thus, the

maximum growth rate is smaller than v|Aq|? and is given by Eq. (3.29). At



even higher powers it is approximately \/y|4o|*A. The peak is locked at wie,

independent of power increase.

Power P

0 0.5 1 1.5 2 25 3

Modulational frequency

Figure 3-4: The instability region in §-P space for a dispersion-flattened fiber.
The thick lines and the vertical axis enclose the instability region. Within this
region. the dashed lines are the position of the peak-growth frequency for varying
power. The background curves are the contour plots of the growth rate from Eq.
(3.41).

Using the analytical expressions for wme, Wm, W}, wye, and wy, the above anal-
ysis is graphically displayed in Fig. 3-4, indicating the instability region and the
ridge of peak growth in a contour plot of the growth rate versus frequency and
power. To reduce the number of free parameters, normalized units were intro-
duced. We normalized w as = w/(w:\/ftw_—g/w?), Boe a8 Boen = Boew?(l —
w?fw?)?, v|Ag|? as P = v|Ag|*/|P2en|, and the growth rate as G = Im(k)/|Bzenl-
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Thus, in the normalized units. all the formulas can be rewritten with the formal
substitution of w, = 0. 3y, = sign(Js) = =1. w. = 1. y|4o[* = P and w = Q. For

example. Eq¢. (3.32) becomes
() = —sign(/3) (1 — Q2/6)Q°. (3.40)

[rom Eq. (3.27).

G = lm\/(A () - 2P)? - (2P)'—’/ . (3.41)

Equations (3.33)-(3.39) become Q% = 6. QF, = 3, e = —sign(Ja)3/2. %, = 3(1-

V1 sign(32)8P/3). % = 3(1+\/1 + sign(3:)8P/3), 02, = 3(1—\/L + sign(se)4£/3),

and 0%, = 3(1 + Jl + sign(/,.)4P/3), respectively. Notice that 2 and P are now

the only free parameters to change. The peak growth rate versus power is dis-

played in [Fig. 3-5 by using Gaux = P and G = \/—(3/2 —-2P)? + (2P)?/2
[from Eq. (3.29)] for the ranges of 2 < 3/4 and P > 3/4, respectively. Notice
that the peak growth rate increases more slowly for higher power because of the
incomplete compensation of the linear and nonlinear phase-mismatches. Figure

3-6 displays the gain curves at different powers from Egs. (3.40) and (3.41).

3.3.2 (33 > 0 case

While it is true that most dispersion-flattened fibers have f3,, < 0, it is interesting
to consider the case in which ;. is a positive number since our analysis can be
used to analyze dispersion curves with any shape. This situation corresponds
to a pump propagating in the normal dispersion region bounded by anomalous
dispersion regions in frequency space. Following the procedure developed above,

we display the instability analysis based on 4;(w) in Fig. 3-7.
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Figure 3-5: Peak growth rate Gmax versus power P. The point where the de-
viation from the straight line occurs corresponds to the bifurcation point on the
dashed line in Fig. 3-4. Gmax increases with P more slowly after this point
because there is not enough linear wave-number mismatch to compensate the

nonlinear part.



< 08

Q

© LTI ~

- 06 e N

= \

g 0.4 // \‘

L / LT -~ -\\

E’ / , . \\ \\|

o ///' = “

w 0.2 s - 1
0

0 05 1 1.5 2 2.5 3

Modulational frequency

Figure 3-6: Growth rate ¢ versus frequency €2 for different powers. The long
dashed line. short dashed line. and solid line correspond to £ = 0.7. 0.4. and 0.1.
respectively. [For low power. the iustability is a superposition of a conventional
MI instability (left portion of the solid line) and a conventional FWNM instability
(right portion of the solid line).

Its two zero points are at w = 0 and w; given by Eq. (3.33). Again, the
zero of linear mismatch at nonzero w indicates the possible presence of FWM
instability. This is true as shown in Fig. 3-7 since w}, the intersection point with
the horizontal line of 4v|-4y|2, always exists and is also given by Eqs. (3.33) and
(3.37) for By > 0.

Unlike in the previous case, the instability corresponding to the ordinary MI
does not exist due to the normal dispersion at the pump frequency. The existing
instability reduces to the conventional FWM instability at small input power. As
the power increases, the peak growth rate is always v|.4¢|? because of complete
linear and noulinear wave-number compensation. The instability region. between
wy and w) given by Eqgs. (3.33) and (3.37), keeps increasing with increasing power.

The instability region based on these equations and growth rate versus frequency
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Figure 3-7: The instability analvsis using A(w) for 8y, > 0. The upper and lower
dashed horizontal lines are 4v|40|% and 27| 4o|?, respectively. The frequency range
of instability corresponds to the section of the A;(w) curve between the horizontal
axis and the upper dashed horizontal line, i.e., (wy,w}). The intersection of the
curve with the lower dashed horizontal line at wy. indicates the frequency of
maximal growth rate v|.4o|2. As power increases, both horizontal lines go up.
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by Eq. (3.27) are shown in Figs. 3-8 and 3-9.

I

Power

0.5

22 24 26 28 3 32 34

Modulational frequency ¢,

Figure 3-8: Same as [Fig. 3-4 except for the sign of 3,.. The thick lines ¢nclose
the instability region. \Vithin the region, the dashed line is the position of the
peak-growth frequency for varving power. The peak growth rate is always P. The
background curves are the contour plots of the growth rate from Eq. (3.41).

Although we have found instability with the pump in the normal dispersion
region, it can be proved that at least one of the unstable sidebands is located in
the anomalous dispersion region on the f3y(w') curve.

In summary, the instability behavior in the weak power limit is determined by
the analytical properties of A;(w) near the frequencies for which it equals zero. If
its first derivative is a nonzero value at such a frequency, which leads to a finite
group velocity difference between the linearly phase-matched sidebands, then we
have a conventional FWM instability close to that frequency. If the first deriva-

tive is also zero. which means equal group velocity for the linear phase-matched
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Figure 3-9: Same as Fig. 6 except for the sign of 3, For low power. it is a
conventional FWNM instability.
sidebands, then we have stability or conventional MI (close to that frequency)
depending on whether its second derivative is negative or positive. respectively.
We now briefly consider a fiber with many alternating dispersion regions (in
frequency space). Based upon the above analysis, it is easy to predict instabilities
for such a fiber: usually, more instability regions corresponding to FWM will be
added to the above pictures because of the oscillating behavior of Aj(w). These

regions can merge at high pump power. Thus the scheme can produce continuum

generation with a wide bandwidth.

3.3.3 Frequency-dependent nonlinearity

In the above analysis we neglected the dependence of v on the modulational
frequency and took it to be a real quantity. At large w, the Raman effects come
into play, and this assumption is invalid. In order to describe the dependence of

the nonlinear coeflicients on the modulational frequency, a standard model is to
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assuine the nonlinearity comes from an instauntauneous electrouic respouse which
does not depend on the modulational frequency. plus a retarded nounlinearity that

can be described by the simple Lorentzian model for the Raman effect. Thus we

can write,

(3)(

I
—
o~

X JJ[.\.UQ,\_U';;) + X &r (\—U[,uu"_g,u);;). (342)
According to the Lorentzian model.'! the Raman part takes the familiar forms

Vel = (o £ )] = (/2N (L = 22/t F 20pw/<3) +\nl3.43)

X(kl)[»%e wo. —(wo T w)| = \(/:zg()) (L= w?/wp £ 12vpw/wh), (3.44)
3) 3 -
R fwor =] = V. (3.45)

where wy and v are the Raman peak frequency and dissipation rate. respectively.
3 3 : :
\(, ) and ,x(m; are parameters for the magnitude of the instantaneous and retarded
i iene trscrmmseetivnle N nt (3) oy (3 (3)
nonlinearity, respectively. Note that "' (wy, —wo, wo) = \} + Xjw-

[rom Eq. (3.9), we have

Y[wo. —wo, (wo £ w)] =~ wao,\'(z’)[wo, —wp, (wo £ w)]/[en(wo) Aeql, (3.46)

Y[wo, wo, —(wo £ w)] = 67wex® [wy, we, —(wo £ w)]/[cn{wo) Aeg], - (3.47)

where we have kept the w dependence only in x® since (wo + w)/n(we £ w) =~
wo/n{wp) in the range of the modulational frequency under consideration.
When combined with Eqgs. (3.46) and (3.47), equations (3.42)-(3.45) allow us

to find ,+ and 7+ from their definitions in Eqgs. (3.14)-(3.17):

Yzt = VSt :'y[—}-’)RO/(l—\A)Q/UJ?Z:FZ'ZURUJ/UJ%), (348)
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3 3 .
where ~py = wag,x(,{(),/ [en(wy)Aer] and v = 67rw0x(, )/ [en(wp)Aeg]. Note the
nonlinear coefficient for zero modulational frequency is v(wq, —wo, wo) = ~; + ¥re,
which is a real number and will be denoted by 7. By using Eq. (3.21), the

dispersion relation including Raman effect is,

ke = (1/2)[3(wo + w) = Bwo —w) £

VA = 290 [ 40[2)2 = (27, Aol?)2). (3.49)

where ~ ., 1s given by Eq. (3.48). [t is easy to show that for very sinall mod-
ulationa! frequeney. ~ . =~ ~. thus the result for instantancous nonlinearity is
recovered.

As a numerical example. let us suppose that the two points of zero dispersion of
the dispersion-flattened fiber are 150 nm apart and the pump frequency is 50 nm
from the extreme-dispersion frequency. This corresponds to w,/(27) ~ 22.5 THz
and wp/(27) ~ 15 THz. The FWM frequency will be w;/(27) ~ 41 THz, according
to Eq. (3.33). Assuming that the extremum of the second-order dispersion (¢ ~
—1 ps?/km. and v ~ 10 W~ 'km™", then the power for the merging of conventional
MI and FWM is |4g|2 = Ak/(dy) ~ 231 W. This power is greatly reduced if
the dispersion-flattened range is narrower or the magnitude of the second-order
dispersion is smaller. The Raman frequency is about wg ~ 27 x 13 THz. As
representative values, vp ~ 27 x 5 THz, v ~ 0.6, and ypy ~ 0.4y . Figure
3-10 shows the Raman effect on the gain curve obtained from Eq. (3.49) for the
above parameters. By the normalization scheme used before, the frequency €2,
the growth rate &, and the power P have been normalized to 27 x 16.7 THz (the
normalized Raman frequency is thus 0.78), 6.16 m~! and 616 W, respectively.

Another aspect of the Raman effect can be revealed by a computation of
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[Figure 3-10: Growth rate ¢ versus frequency 2 for a fixed power £ = 0.4. The
Raman parameters are v = 0.4y, v = 0.6y and vz = 0.38w,. The normalized
Raman frequency is wr/[w (1 — u;f,/;u';’)'/'z] = 0.78. The dashed line corresponds
to the instantancous nonlinearity.

|7y (w)|7! from Eq. (3.19), resulting in a value smaller than unity (Fig. 3-11).
This means that in the presence of Raman effect, the amplitude of the Stokes wave
is larger than that of the anti-Stokes for the unstable mode, which is expected
since the Raman gain tends to amplifv the Stokes sideband while decreasing the

anti-Stokes sideband.

3.4 Conclusions

In conclusion, we studied MI by linearization around a nonlinear steady-state solu-
tion of the (nonlinear) Maxwell equation system. This steady-state solution corre-
sponds to a ¢cw pump. Specifically, the resulting linear partial differential equation
is solved by harmonic analysis. [n essence, the solution to this linear partial dif-

ferential equation is a multiscale approximation in which the small parameter is
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Figure 3-11: The amplitude ratio [r_|~" of the anti-Stokes and the Stokes wave

for the growing mode. The parameters are the same as those of Fig. 7. The
dashed line indicates that in the absence of the Raman effect, the ratio is unity
in the instability region.

the pump amplitude. Thus. unlike the traditional NSE-type of methods, which
involve Taylor expansions in frequency space, our result can be uniformly applied
in any frequency range. Nonlinear dispersion and non-parametric effects such as
Raman gain are formally included. We applied our results to various dispersion-
flattened fibers to study the effects of the shape of the modal dispersion curve
on MI. We found that when the fiber is flattened in the anomalous dispersion
region, the instability is the superposition of a conventional MI and FWM at low
pump power. These instability regions in frequency space merge at large power.
Instability also occurs even when the pump is in the normal dispersion region if
this region of the dispersion curve is flattened. At low pump powers the insta-
bility reduces to the conventional FWM instability. The frequency positions, the

bandwidth, the maximum growth rate of the instability for various pump powers,
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ete., were characterized analvtically, The Raman effect o these parametric insta-
bilitics was also studied. It changes the growth rate of the instability auwd makes

the Stokes sideband stronger than the auti-Stokes sideband.
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Chapter 4

Instability from Cross-Phase
Modulation in the Normal

Dispersion Region

4.1 Introduction

The propagation of two intense light waves that have different frequencies. in a
single-mode optical fiber. in usually studied within the framework of coupled non-
linear Schrodinger equations (NSE's). These equations have been used to predict

several interesting phenomena.'?

including the cross-phase-induced modulational
instability in the normal-dispersion regime.>4!*2 Although such an instability has
been observed when cross-phase modulation occurs between the two polarization
components of a single wave, no such instability has ever been observed by using
two pump waves that have the same polarization, but different frequencies. Two

assumptions made in the derivation of the coupled NSE’s are that the waves have

narrow spectra centered on their respective carrier frequencies and that the co-
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herent FWNM interaction between two incident waves can be neglected. ™ The
seif-consistency of the predicted phenomena and these assumptions must always
be checked.

An alternative approach to nonlinear wave interactions has been developed by
Zakharov.*47 This approch does not require the wave spectra to be narrow or
the nonlinear coupling to be independent of frequency. It has been to the study
of several instabilitics in the fluids and plasmas.i%4798:63 and is well suited to the
study of the aforementioned optical interaction. Such an analysis shows that cross-
phase modulation is not a sufficicnt condition for the existence of instability in the
normal-dispersion regime. Specifically. the importance of the effects of cross-phase
modulation depends on the form of the dispersion curve and the incident-wave
frequencies.

Let us consider a single mode fiber with linear dispersion relationship /I(w).

The mode-coupling. or Zakharov. cquation®®*7 takes the form

9. Alw. z) _i’j(w)A(w‘:):i///’)'(w,w',w”,u)”’)

AW D) AW ) AW 2w+ W - W = W) dw' dw" dw™, (4.1)

where f(w) is the linear wavenumber corresponding to the frequency w. To within
a factor of order unity that depends on the transverse mode structure, the non-

linear coupling coefficient is given, in electrostatic units, by

7(w‘w' " wm) _ QWW,X(B)(w;wl,w”,wl”)
’ ’ 3 -

en(w) Ae (42)

where n(w) is the refractive index of the fiber and A.g is its core area.'” In the
limit of narrow bandwidth, the Zakharov equation 4.1 reduces to the NSE. Both

equations require nonlinearity to be weak and to produce spatial variation of the
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Fourier amplitudes on a scale long compared to au optical wavelength.

4.2 Harmonic analysis

Suppose that the input field is given by

Alw. Q) = Pld(w —wy) + 0w + wy)]
+ PO (w = ) + 0w + w)], (4.3)

correspouding to two pump waves of pealk “power™ 2P, and 2P,. Without loss
of generality. wy < w,. The evolution of .1 with distance is determined by the
Zakharov ecuation (1.1). Because the input Fourier spectrum is discrete, the
integrations in the Zakharov equation reduce to summations. A simple analysis
of this equation shows that the nonlinear terms on the right-hand side are of two
types: 1ncoherent self- and cross-phase modulation terms, which produce nonlinear
wavenumber shifts at the input frequencies. and coherent coupling terms, which
transfer energyv to other frequencies. such as 3ws, 2wy + wy and 2w, — w,.

Since the generated waves all require a considerable distance to grow to finite
amplitude. the initial evolution of the input field can be determined by retaining
in the Zakharov equation only those Fourier components associated with the two

pump frequencies. At the frequency w,, the Zakharov equation reduces to
[d: — iB(w)]A(w), 2) = 17(Py + 2Py) A(wy, 2), (4.4)

where a degeneracy factor of 3 has been included in definition (4.2) and y(w;; wy, we, —W2)
has been assumed comparable to y(w;wy,wi, —wi). Throughout this chapter, v

will be assumed to depend only weakly on frequency and its arguments will be
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omitted for simplicity of notation. Should the need arise. it is not difficult to
extend the analyvsis of this paper to include the frequency dependence of v as was

done for one pump wave in Chapter 3. The solution of Eq. (4.4) is

Alwrz) = VPlexplig(2)],

(4.5)
o(z) = Hw)z+~(P +2P):z
A similar analvsis shows that
Awy, z) = \/P—cxp 1oy (2)],
(w2, 2) ) exXplign(2)] (16)

(D‘),(Z) = J’(u)z)l + '}'(21)| + PZ)Z

Solutions (:1.5) and (1.6) represent two punip waves with nonlinear wavenum-
ber shifts and are valid near the entrance to the fiber. When the amount of energy
transferred to the generated waves is small, they are also globally-valid equilib-
rium solutions of the Zakharov equation. Due to the frequencyv dependence of the
refractive index, this condition is usually satisfied for third-harmonic and sum-
frequency generation. However, the generation of light at the difference frequency
2wy — wy, which is close to w, if the incident frequencies are not too dissimilar,

warrants further investigation. [rom the Zakharov equation,

[d: — 82wz — w)]AQRwy —wy,2) = i'yPg\/Flexp [12¢2(2) — i¢1(2)]

+ Z2’Y(P1 + PQ)A(2(.L)‘2 — wh, Z) (47)

In the undepleted pump-wave approximation, the solution of Eq. (4.7) is facili-

tated by writing

A2wy — wy, z) = B(z) exp [iB (2w — wy)z + 12v( Py + P)z] (4.8)
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[t follows immediately that

B(z) = (P11 /83) exptioBz) — 1], (.1.9)
where
33 = 23(ws) — Hwn) = 32wz — wr) — (2P — P) (4.10)

is the total (lincar plus nonlinear) wavenumber mismatch of this particular genera-
tion process. Lhus. the energy transfer due to pump-pump FWAL wilt be minhmal
provided that

2",'1)-_)_
]2%3(“/'2) — Hw) = 32wy —wy) = (2P, - P,

)\ < 1. (4.11)

[nequality (.11) requires the wavenumber-mismatch (4.10) to be much larger
than the nonlincar coupling term in Eq. (4.7) to suppress difference-frequency
generation. When this conditiou is satisfied, the nonlinear term can be omitted
from the denominator of inequality (4.11). A similar inequality follows from the
consideration of light generation at the difference frequency 2w, — w,.

Suppose that inequality (4.11) is satisfied and, hence, that Egs. (4.5) and (4.6)
describe an equilibrium solution of the Zakharov equation. To study the stability
of this equilibrium, one should linearize the Maxwell and polarization equations
underlying the Zakharov equation around the equilibrium solution. To the order
of accuracy of the Zakharov equation, this procedure is equivalent to linearizing
the Zakharov equation itself. However, one can avoid a formal linearization of
the Zakharov equation by using harmonic analysis: Due to the intrinsic linearity
of the stability analvsis, any perturbation of the equilibrium can be decomposed

into small-amplitude waves at various frequencies. Consequently, one only needs
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to study the cvolution of cach group of small-amplitude waves. These waves
are referred to as “sidebands”™ of the pump waves because the frequencies of any
unstable group are close to the pump frequencies. as will be demoustrated.

Consider the evolution of a probe wave of frequency w, + w. Suppose first
that w > w, — w;. In this case. the interaction of the probe and pump waves
produces harmonics whose amplitudes are much smaller than the probe amplitude.
Although the probe wave is subject to a nonlinear wavenumber shift. its energy
is essentially nndepleted. This harmonic generation is similar to that described
above. except that the probe wave contributes one of the driving components on
the right-hand side of the Zakharov equation.

Conversely, suppose that w ~ wy —w;. In this case. some of the generated
waves can be nearly phase matched. One example is the wave generated at the
frequency wy +wy — (W) +w) = wyp — w = wy. For these waves, the wavenumber-
mismatch terms are comparable to. or smaller than, the nonlinear coupling terms.
Hence, thev can be driven to amplitudes as large as the probe amplitude. In turn,
these generated waves modifv the probe wave. Consequently, the evolution of
the entire group of waves must be determined self-consistently. Notice that this
scenario automatically includes the previous scenario as a special case.

The second scenario is now considered in detail. Suppose that the probe wave
has frequency w, + w. where |w| < (wy — wy)/2. Only those sidebands at the
frequencies w; —w, wy» +w and ws —w can be driven near-resonantly, unless special
arrangements are made to allow other FWM processes to occur. This situation is
illustrated in Fig. 4-1.

When (ws; — w}/2 < |w| < 3(wz — wy)/2, the interaction is identical to the
preceding interaction. To see this, suppose that w > (w; — w;)/2 and define

W' = (wg —w,) —w. Then w +w = wy — ', with || < (w3 —w))/2, and the
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Figure -{-1: Fourier spectrum of the electrie field. The large peaks represent the
two punp waves, whereas the four small peaks represent the four sidebands whose
evolution is coupled by the noulinearities in the Zakharov equation (-1.1).

probe wave should be regarded as a sideband of the higher-frequency pump wave
(unless, of course. the pumyp waves are orthogonally polarized). However. the
physics of the iuteraction is unaltered, as stated. When |w| > 3(wq — w)/2, the
other sidebands are usually driven nonresonantly and, hence, the interaction is
usually stable. Consequently, in the following analysis, the frequency difference
between the probe and the lower-frequency pump wave is assumed to satisfy the

inequality

w| < (wo = w1)/2. (4.12)

The derivation of the sideband evolution equations from the Zakharov equation
is straightforward. Just as the pump waves are subject to nonlinear wavenumber

shifts, so also are the sidebauds. In anticipation of these wavenumber shifts, it is



convenient to define

Alwy +w.z) = Byyexplikz +i0,(2))].
Alwy —w.z) = Bioexp[—tk*z +1¢(2)].
(4.13)
Awy +w.z) = Byrexpliks 4+ 109(2)].
Alwy —w.z) = By_exp[—ik*z +1d,(2)].
The sideband equations then take the form
D[;_(;d.k)B[+ = "fP[(B[;.+Br_)+2"/’\/Plf)g(Bg++B;_).
Dg,(w‘./\))Bri = —'}'PI(B[,_ +Br~)-‘2’Y\/P]1)g(BQ++B£_). (111)
Dy(w. k)Bye = ~P(Ba + Bi_) + 29V P P(Bre + By ).
Dy (w. k)B;. = —vP(By. +B5_) =2vWP Py(By, + B}_)
where the dispersion functions
Dy(w, k) =k = Blwr +w) + B(wy),
Di_(w.k)=k+ 3w —w) — B(wy),
1-(w. k) (Wi —w) — Blwi) (4.15)
Dy, (w k) =k — B(ws + w) + B(wy),
Dg_(u.) /\) =k + /j(u)z - w) - j(w‘_))

The physical significance of these equations can be seen as follows: Suppose
that the nonlinear terms in Egs. (4.5) and (4.14) are absent. Then, from the

second of Eqgs. (4.5) and the first of Eqs. (4.13) - (4.15),

Awy + w, 2) = By expliB(w) = + ikz] (4.16)

where

k= F(w +w)— Bw) (4.17)
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and the probe wave propagates with its natural wavenumber. Thus, the term
J(wy + w) — F(w) is the linear mismatch between the natural wavenumber of
the probe wave and the wavenumber at which it is driven by the terms on the
right-hand side of the mode-coupling equation. when they are present. The four-
sideband interaction described by Eqs. (4.14) and (-1.15) can be unstable. The
spatial growth rate of this instability depends on the nonlinear coupling between
the sidebands. whicli tends to be destabilizing, and the intrinsic linear and non-
linear wavenumber shifts of each sideband. which tend to be stabilizing.

By combining Eqs. (1.1'1). one can show that

[Dy-Dy - + 9P (Dy- = D1 )[Dye Dy + yPo(Dyy — Dy )] =

Ay P\ Py(Dy . — D\_)(Dgy — Dy_). (4.18)

The solutionus of this instability dispersion equation depend on the shape of the
fiber dispersion curve and, in general. must be determined numerically. The rela-
tive amplitudes of the sidebands then follow from Eqs. (4.14) and (4.15). For the
limit in which w €« w, — w;, Eq. (4.18) reduces to the usual dispersion equation

that is derived from coupled NSE's.% 41,42

4.3 Results and discussion

Three different cases are illustrated in Fig. 4-2. Consider first Figs. 4-2(a)
and 4-2(b), for which both pump frequencies are in the normal or anomalous
dispersion regime of a conventional single-mode fiber and are not too close to the

zero dispersion point. Suppose that the dispersion curve can be approximated by

a parabola over the frequency range [w, — (wg — wy)/2,wy + (wy — w;)/2]. Such
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Wavenumber 3

Frequency Frequency Frequency

[Figure J{-2: Dispersion curve of a conventional fiber. (a) Both pump frequencies
are in the normal dispersion regime. (b) Both pump frequencies are in the anoma-
lous dispersion regime. (¢} One pump frequency is in the normal dispersion regime
and the other pump frequency is in the anomalous dispersion regime. Notice that
the pump frequencies can be chosen in such a way that the pump-wave group
velocitics are equal.

a parabola can be characterized by its first derivative d3/dw = 3, and second
derivative d?3/dw? = /3, evaluated at w;. Although this parabolic approximation

cannot be made for all dispersion curves, it serves to illustrate the physics of the

interaction. Lor equal pump powers. the dispersion equation (4.18) becomes

{[k = Biw]* = (B2?/2)[27P + (82w /2)]}
{[k = Brw = (wq — wy) /32w] (Bow?/2)[27P + (Bow?/2)]}

= (47P)*(Bow?/2)*, (4.19)

while condition (4.11) for the absence of pump-pump FWM becomes

2vP

|——(w2 m—y %‘ < 1. (4.20)
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Analysis of Eq. (1.19) is facilitated by the change of variables

l/‘2

o zf' . —_ 9 /})
L= Il—ﬂ)—lw C' =sign(/4), S= ’# e ‘ W

2vP

0.(4.21)

The parameter C' is equal to 1 or —1. according to whether the pump frequencies
are in the normal or anomalous dispersion regime. respectively. The other three
variables have the form of wavenumber shifts divided by the nonlinear wavenumber
shift imposed on each sideband by the appropriate pump wave. In terms of these

dimensionless variables. Eq. (1.19) becomes

(N2 - CR2 + C)(K ~2080)* - CQU2 + CQH)] = (404)° (4.22)
Condition (4.20) requires that S>> 1 and condition (4.12) requires that 2 < S/2.
First, suppose that ' ~ {2 ~ 1. Then the second group of terms in Eq. (4.22) is
of order S? and the modulational interactions of the two pump waves decouple.

For the lower-frequency pump wave, the reduced dispersion relation is

I = £[COQ*(2 + Q)2 (4.23)
When ¢ = 1. corresponding to normal dispersion, the lower-frequency pump
wave is stable. When ' = —1. corresponding to anomalous dispersion. the lower-

frequency pump wave is modulationally unstable by itself; the effects of cross-
phase modulation are insignificant. Similar results apply to the higher-frequency
pump wave. The approximation used in deriving Eq. (4.23) is self-consistent
whenever

4102
S22+ S(2C + Q2)1/2

| < 10220 + ). (4.24)



Since condition (1.24) is satisfied for all Q < S/2, no cross-phase-induced insta-
bility can exist. Although this result was proved for a parabolic dispersion curve.
the key ingredient is that the curvature of the dispersion curve unot change sign
in the aforementioned frequency range. Thus. we expect the stated result to be
true for conventional fibers in general. When S ~ 1, the preceding analysis is not
valid because pump-pump WM occurs and Egs. (1.5) and (1.6) do not describe
an cquilibrium solution of the Zakharov equation. However. the wave evolution
for this case has been studied numerically by Rothenberg.*® No evidence of mod-
ulational iustability was found.

Figure 4-2(c¢) illustrates the case in which w, is in the anomalous dispersion
regime aund w» 1s in the normal dispersion regime. As shown in the figure. it is
always possible to find pump frequencies for which the pump-wave group velocities
are cqual. This situation is similar to the one analyzed by Inoue.™ [ the spirit
of the cases analvzed previously. suppose that the dispersion curve is parabolic
in the vicinities of both pump frequencies. Then the dispersion equation (4.18)

becomes

[N — CLQ2(2 + C QD2 = Co2(2 + Co?)] = (4C, Q%) (4Co0Q%), (4.25)
where I\ and §2 are as defined in Eqgs. (4.21) and

C\ = sign[B;(w1)] = =1, Ca = Ba(w2)/|Ba(w1)] > 0. (4.26)

Since the pump frequencies are well separated, there is no reason to assume that

the magnitudes of C'| and C, are equal, as they were in the previous two cases.
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The solutions of Eq. (4.25) can be written in the form

2N = [CL03(2 + C102) + G2 + (0% +

([CIO2(2 + C10%) = 22 + CHOH)) + 4(4C Q2 %)M (4.27)

Spatial growth rate

Modulational frequency

Figure 4-3: Spatial growth rate plotted as a function of the modulational frequency
for the case in which one pump frequency is in the normal dispersion regime
and the other pump frequency is in the anomalous dispersion regime. and the
pump-wave group velocities are equal. The normalizations of the spatial growth
rate and the modulational frequency are given in Egs. (4.21). The broken line
corresponds to C = 2, the dot-dashed line corresponds to C, = 1 and the solid
line corresponds to C, = 0.5.

The most unstable branch of Eq. (4.27) is displayed in Fig. 4-3, for three
values of C,. The curve corresponding to C, = 1 is particularly interesting,
because it seems to imply that instability exists for arbitrary values of the mod-
ulational frequency 2. For future reference, notice that Eq. (4.27) reduces to

K =~ +(Q? £4v3) when C; = 1 and 92 > 1. To understand this result, recall
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that the coupled modulational instability of two pump waves, which involves four
sidebands. is comprised of three distincet two-sideband interactions. The modula-
tional instability of the lower-frequency pump wave involves 3, and B, _, and is

characterized by the wavenumber nismatch

A(l=1+) = 23(w) - Fwy +w) = F(w; —w)

~ =y (w)w? (4.28)

A similar expression exists for the mismatch of the modulational instability of
the higher-frequuey pump wave. lorward FWNMN involves B and B, . and is

characterized by the mismatch

AR—,1+) = Blw) + Fwy) — FHlw, +w) = Fwy —w)

~ [Bulw) = Fi(w)]w = [Balwa) + fa(w))|w?/2. (4.29)

This interaction can be unstable. Bragg reflection involves B, and B, is char-

acterized by the mismatch

A+, 14+) = [lwr) + Blw +w) — flwy) = Blws +w)

= —[Bi(ws) — Ai(w)w = [B(wz) — Ba(w)]w?/2 (4.30)

and is intrinsically stable. For the case under discussion, only forward FWM is
(linearly) phase matched when Q2 > 1 and must be responsible for the predicted
instability. The associated matching condition (4.29) is illustrated by Fig. 4-4.

This argument can be quantified: If one retains only B, and Bs_ in Egs.
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Wavenumber f

Frequency

[[ignre d-4: Wavenumber matehing condition illustrated for the case in which one
pump frequency is in the normal dispersion regime and the other pump frequency
is in the anomalous dispersion regime. The pump-wave group velocities are equal
and 'y = 1.

(4.14). one obtains the dispersion equation

[ — (1 + QI + (L +Co0%)] = —4, (4.31)
which has the solution

K = (Cy — G224 4{d — [1 4+ (Cy + CL)Q2 /22 V2. (4.32)

When C; = 1. K = —Q? +iv/3 in agreement with the corresponding limit of
Eq. (4.27). Having analyzed this two-sideband interaction quantitatively, one
can now understand the stated result physically: When C, = 1, the dispersion
curvatures associated with the frequencies w), +w and w,—w are equal and opposite,
and the (linear) wavenumber mismatch is identically zero for all values of w.
This degeneracy can be removed by retaining w?® terms in the matching condition

(4.29). The other two curves in Fig. 4-3 correspond to coupled modulational
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instabilities. To see this, simply observe that neither curve has the precise shape
required by Eq. (1.32). or by Eq. (1.23). [For the case in which ', = 0.5,
the spatial growth rate predicted by Eq. (1.32) 1s a reasonable approximation to
the exact growth rate in the range 2 > 3.] Even though Eq. (4.32) does not
predict these two curves accurately, one can still use it to gain some insight into
the difference between them: When Cy = 2.0, the linear and nonlinear mismatch
terms 1in Eq. (4.32) reinforce one another. whereas, when C, = 0.5, thev oppose
one another over a limited range of modulational frequencies. This observation is
consistent with the fact that the range of modulational frequencies corresponding
to instability is larger for the latter case than for the former. [For cases in which
0 < |C] = Cy <« L. the linear mismatch term cancels the nonlinear mismatch
term when the modulational frequency is large: Eq. (4.32) is relevant and the
peak spatial growth rate of the instability is 2. rather than V3.

Now suppose that the pump-wave group velocities are unequal. Then the

four-sideband interaction is governed by

(12 = P2 + CQY[(K - 28Q)° - A2 + &Y

= (4C1Q%) (CQ2%), (1.33)

where

ﬁl(w ) - ﬁl(wl)
5= \2’)’;ﬁ2(w1)|1/2 (4.34)

characterizes the difference between the pump-wave group velocities. Forward

FWM is described by Eq. (4.31), with C,Q? replaced by —25Q 4 C,Q?. Corre-
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spoundingly, Eq. (1.32) becomnes
K=SQ+(C, = C)Q2&i{d—[1 - SQ+(C, + 02)822/2]2}‘/2 (4.35)

[t is evident from Eq. (11.33) that the modulational interactions of the two pump
waves decouple when [S| > 1 and Q% ~ 1: the lower-frequency pump wave is
modulationally unstable by itself. whereas the higher-frequency pump wave is
modulationally stable. Since Eq. (:1.33) is not biquadratic in A, it has no simple
solutions to facilitate study of the regime in which Q > 1. However. it is clear from
Egs. (1.28) - (-1.30) that the modulational instabilities of each pumyp wave are not
(lincarly) phase matched. and that forward WML and Bragg reflection cannot be
(linearly) phase matched simultancously. Thus. only a forward FWNM instability
can exist., subject to the requirement that the dispersion coefficients have different
magnitudes. Notice that the wavenumber matching condition (:1.29) requires the
modulational frequency to have a definite sign; symmetric Stokes and anti-Stokes
emission cannot occur. This conclusion also follows from Eq. (4.35). When {2
is positive, Eq. (4.35) corresponds to the interaction of By, and B,_, as stated
previously. When Q is negative, Eq. (4.35) corresponds to the interaction of B, _
and B,.. It has already been demonstrated that cross-phase-induced instability
exists when S = (. By continuity, we expect that cross-phase-induced instability
can exist when S ~ 1, over a limited range of 2. However, Eq. (4.33) must be
solved numerically to obtain quantitative results.

In related work, Schadt and Jaskorzynska® considered the interaction of a
strong punip pulse, propagating in the normal dispersion regime, and a weak con-
tinuous signal wave. propagating in the anomalous dispersion regime with a group

velocity comparable to that of the pump pulse. By numerically solving a pair of
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Figure 4-5: Spatial growth rate plotted as a function of the modulational frequency
for the case in which one pump frequency is in the normal dispersion reginie and
the other pump frequency is in the anomalous dispersion regime. The normaliza-
tions of the spatial growth rate and the modulational frequency are given in Egs.
(4.39). The pump-wave group velocities are equal and C3/C, = —1.4. (a) The
power ratio of the lower-frequency to the higher-frequency pump wave R = 1. (b)
The solid line corresponds to R = 0.25, the upper dot—-dashed line corresponds to
R = 0.16, the broken line corresponds to R = 0.11 and the lower dot—dashed line
corresponds to £ = 0.09.



coupled NS equations, they showed that the cross-phase modulation imposed by
the pump pulse on the signal wave induced the formation of a short signal pulse,
even though the pump pulse had an intrinsic tendancy to broaden and the signal
wave was too weak to be modulationally unstable by itself. This effect has been
denmonstrated experimentally by Greer et al.?® The most unstable branch of Eq.
(4.27) is displayved in Iig. 1-5(a), for C,/C, = —1.4, the ratio used bv Schadt
and Jaskorzvnska in their numerical simulations. Since the peak spatial growth
rate of the instability and the range of modulational frequencies corresponding
to instability are both larger than those of the modulational instability of the
lower-frequency pump wave by itself [see Eq. (4.23)], the results of this paper
are similar to those of Schadt and Jaskorzyvnska. However. a fairer comparison of
the results requires a study of the cross-phase-induced instabilities for the case in
which the lower-frequency pump wave is much weaker than the higher-frequency
pump wave. The details of such an analysis are given in the Appendix. The main
results are twofold: When instability exists, the peak growth rate of the cross-
phase-induced instability is larger than that of the modulational instability of the
lower-frequency pump wave by itself, for most values of the pump-wave intensity
ratio. However, no instability exists when the pump-wave intensity ratio is less
than a certain critical value. These results are illustrated by Fig. 4-5(b). The
latter result differentiates the physics of the instabilities of two continuous waves
and the interaction of a continuous wave and a short pulse.

The frequency dependence of the natural wavenumber in a dispersion-flattened
fiber'? is shown in Fig. 4-6. There are two frequency domains in which the
fiber exibits normal dispersion, separated by a domain in which the fiber exhibits
anomalous dispersion. The analysis of the cases in which one pump frequency is

in the domain of anomalous dispersion and the other pump frequency is in either
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[Figure 1-G: Dispersion cnrve of a dispersion-flattened fiber. The two pump fre-
quencies e in separate normal dispersion reginies. Notice that the pump fre-
quencies cant be chosen in such a wav that the pump-wave group velocities are
equal.

of the two domains of normal dispersion is identical to the corresponding analysis
for light-wave propagation in a conventional fiber. Hence, it need not be discussed
further. Figure 4-6 illustrates the case in which the pump frequencies are in sep-
arate domains of normal dispersion. It is clear from the figure that the pump
frequencies can be chosen in such a way that the pump-wave group velocities are
equal. The dispersion equation for this situation is Eq. (4.25), with ¢, = 1 and
C, > 0. FFor the special case in which Cy = 1, a cross-phase-induced modulational
instability is known to occur.i*? However, since the pump frequencies are well
separated, there is no reason to assume that the dispersion coefficients are equal.
The spatial growth rate of the coupled modulational instability is displayed in Fig.
4-7, for three values of Cy. Varying C; alters the peak growth rate of the instability
and the range of frequencies corresponding to instability. The latter effect can be
understood qualitatively by regarding (C) + C3)/2 as the effective dispersion coef-

ficient; increasing the effective dispersion coefficient reduces the range of unstable
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wavenumbers, whereas reducing the effective dispersion coefficient increases the
range of unstable wavenumbers, as is the case for a single modulationally unstable
wave. However, the coupled modulational instability is less sensitive to the value
of C, than are the instabilities associated with Fig. 4-2(c). In particular, there is
no distinct forward WM instability when ', = 1. This result also follows from

Eq. (4.29).

1
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Spatial growth rate
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Figure 4-7: Spatial growth rate plotted as a function of the modulational frequency
for the case in which the two pump frecuencies are in separate normal dispersion
regimes and the pump-wave group velocities are equal. The normalizations of the
spatial growth rate and the modulational frequency are given in Eqs. (4.3). The

solid line corresponds to C,; = 0.5, the dot-dashed line corresponds to C; = 1.0
and the broken line corresponds to Cy = 2.0.

Now suppose that the pump-wave group velocities are unequal. Then the
four-sideband interaction is governed by Eq. (4.33), with S as defined in Eq.
(4.34), C; = 1 and C; > 0. The interaction of Bi+ and B,_ is governed by
Eq. (4.35). Suppose, temporarily, that C, = 1. The dispersion equation for

this case is mathematically equivalent to Eq. (4.22). It follows immediately that,
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when |S| > 1 and €2 ~ 1, the modulational interactions of the two pump waves
decouple and both pump waves are modulationally stable. When €2 > 1. further

analvsis 1s required. Fortunately, the dispersion equation has the exact solution

(K — SQ)% = Q2(2C + Q2) + (SQ)?

H{(4022)2 + L(SQQRC + QO (4.36)
from which it follows that the condition
S 20 - < Q<SP =20 +4d (4.37)

must be satisfied for lustability to exist. From the discussion following Eq. (4.35).
it follows that this instability is forward ['WNM. The agreement between the pre-
dictions of Eqs. (:1.35) and (4.36) is evident in Fig. 4-8 and confirms the preceding
assertion. [n the present case. solutions (4.35) and (4.36) are meaningful because
By, and B,_ are physically distinct from the two pump waves. One need only
check that the modulational frequency is not so large that the Taylor expansion
of the natural wavenumber. used in the derivation of Egs. (4.22) and (4.33), is
invalid. Previously, {) was assumed to be positive. No generality was lost in this
assumption due to the symmetry of the frequencies of the four interacting side-
bands. When S is positive, the mismatch terms in Eq. (4.35) cancel for 2 = S.
This cancellation results in a peak spatial growth rate of 2, as shown in Fig. 4-
8(a). (In contrast, when C; = —1 such a cancellation does not occur and the
pealk spatial growth rate is \/5.) When S is negative, the mismatch terms do not
cancel, and the interaction of B, and B,_ is-not phase matched. However, by
changing the sign of the modulational frequency in Eq. (4.29), one can show that

the interaction of By_ and Ba; 1s phase matched. This change is equivalent to
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changing the sign of € in Eq. (4.35) and also results in a peak spatial growth rate
of 2. as shown in Fig. «4-8(b). When C, # 1, solution (4.36) is no longer relevant.
However, the decoupling of the two modulational interactions when {2 ~ 1 is not
sensitive to the value of ', and still occurs. The forward WM instability is still
governed by Eq. (1.35).

In other types of dispersive media. it is possible for the pump frequencies
to be in separate anomalous dispersion regimes. In this case, both pump waves
are modulationallv unstable by themselves. Cross-phase modulation couples the
single-pump instabilities to produce a two-pump instabilitv that has a larger spa-
tial growth rate than cither of the single-pump instabilities.?'*? The analysis of

this case is similar to that described in the preceding two paragraphs, as are the

conclusions.
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Figure 4-8: Spatial growth rate plotted as a function of the modulational frequency
for the case in which the two pump frequencies are in separate normal dispersion
regimes and the pump-wave group velocities are unequal. The normalizations of
the spatial growth rate and the modulational frequency are given in Eqs. (4.3).
The solid line corresponds to the exact result (4.36), whereas the broken line
corresponds to the approximate result (4.35). (a) S = 10. (b) S = —10.
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4.4 Conclusions

The method of Zakharov was used to studyv iustabilities induced by cross-phase
modulation in a single-mode fiber. This method is valid for differences between
the punmip and sideband frequencies that are larger than those allowed in the usual
NS analyvsis. Coutrary to the predictions of coupled NS equations. the existence
of cross-phase modulation does not guarantee the existence of instability.

[f both pump frequencies are in the normal dispersion regime of a conventional
fiber. there 1s no instability.  If both pump frequencies are in the anomalous
dispersion regime. the pump waves are modulationally nnstable by thiemselves.
but do not cooperate to produce a coupled ML For dispersive media in general. a
sufficient condition for the existence of a (four-sideband) coupled MI is that the
difference between the pump-wave group velocities can be made small without
proclucing pump-pump FWNM. This situation can arise in a conventional fiber
when the two pump frequencies are in different dispersion regimes (normal and
anomalous).

The dispersion curve assoclated with a dispersion-flattened fiber has two re-
gions in which dispersion is normal, separated by a region in which dispersion is
anomalous. Coupled MI can also occur in a dispersion-flattened fiber when the two
pump frequencies are in different normal dispersion regimes and the pump-wave
group velocities are comparable.

In each type of fiber, the coupled MI is suppressed by the presence of a large
difference in the pump-wave group velocities. However, cross-phase modulation
can still induce a (two-sideband) FWM instability.

The central theme of this chapter is how dispersion controls which of the

three constituent two-sideband interactions are phase matched for a particular
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value of the modulational frequency. With dispersive effects replaced by geomet-
ric (diffractive) cffects. this thewme 1s also relevant to transverse iustabilities of
two copropagating light waves. These instabilities are analyzed in detail int! 42

an d 06-6GY

4.5 Appendix: Unequal pump-wave powers

[t follows from Eq. (4.18) and the assumption that the dispersion curve is
parabolic in the neighborhoods of the pump frequencies, that the dispersion equa-

tion for the four-sideband instability is
[K2 = O\ 2R + C\Q%)| |2 — Cr2%(2 + ()] = REC Q) (4,04 (1.38)

where

N = k=g @ 0= |w'2112P§t:2)|1/2 >0,R= TI;J_

1P !

(4.39)

All quantities in Eq. (4.38) were normalized relative to those associated with the
higher-frequency pump wave, because the comparison of this instability analysis
with the work of Schadt and Jaskorzynska®® is facilitated by holding P, fixed while
P, is varied. The solution of Eq. (4.38) is

2K = [CLQ2(2R + CI02) + CoQ2(2 + C,02)]

H{[CI2(2R + C1Q?) — CoQ*(2 + C20%))? + 4R(4C Q%) (4C202) }/?(4.40)

As mentioned in the Summary, there are many similarities between modu-

lational instabilities in which the linear wavenunmber mismatches (4.28) — (4.30)
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are due to dispersion and those in which the linear wavenumber mismatches are
due to diffraction. In particular. the dependence of the spatial growth rate of
the coupled mocdulational iustability ou the pump-wave power ratio was studied
in Refs.. 119658 for the analogs of the cases in which both pump frequencies are
in the normal or anomalous dispersion regime. The dependence of the spatial
growth rate of the [FWAI instability on the pump-wave power ratio was studied
in Refs.”0.58 Consequently. these cases need not be discussed herein.

[or the case in which ¢, = 1 and ('} < 0. it was determined empirically that
instability occurs when the term in braces in Eq. ((1.40) is negative. .\ necessary

and sufficient condition for this to happen is that

T+dV3 > |C\R| > T - 1V3. (4.41)
[For [Fig. 1-5. ¢, = —0.714. Correspondingly, the second of inequalities (4.41)

predicts that instability will occur when the pump-wave power ratio exceeds 0.100,
in agreement with the figure. [urther analysis of Eq. (4.40) shows that the second
of inequalities (4.41) 1s a sufficient condition for instability, for all negative values

of Cl'
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Chapter 5

Modulational Instabilities of

Counterpropagating Waves in a

Finite Dispersive Kerr Medium

5.1 Introduction

The nonlinear interaction between counterpropagating waves in a finite Kerr
medium has been been studied extensively!!:#%:%9-7! hecause of its relevance to
many practical optical devices such as optical gyroscopes, lasers, fiber interferom-
eters, and various bistable switches. Such an interaction exhibits rich nonlinear
dynamics ranging from Dbistability to optical chaos since the [Kerr nonlinearity
tends to destabilize the steady-state propagation of the counterpropagating pump
waves.

Instabilities are classified into two categories known as convective and absolute.
Even for a [Kerr medium without group-velocity dispersion (GVD), an absolute

temporal instability of the counterpropagating pump waves can occur in the pres-
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ence of boundary reflections, which effectively form a Fabry-Perot (FP) cavity.%
This instability has been shown to be au [FP-cavity version of Ikeda instability
that was first found in a ring cavity for a unidirectional pump wave™ and can
be explained in terms of the amplification of the sidebands of the pump wave
due to four-wave mixing (FWAL). Of course. dispersive effects will come into play
at higher temporal frequencies of the perturbation. In recent vears. considerable
attention has been paid to studving the effects of GVD on optical instabilities
occurring in [Kerr media. It is well known that the spectral sidebands of a unidi-
rectional pump wave can be amplified by the convective temporal modulational
instability (M1) due to the combined effect of FWNM and anomalous dispersion. '?
This MI can become absolute iuside aring cavity because of the feedback provided
by the cavity.™ % In fact, MI lasers have been proposed and demonstrated??2°
for the ring-cavity configuration. Like the temporal GVD effects. the spatial
diffractive effects have also been considered for the ring cavity.”-™

Compared with the case of a ring cavity with a unidirectional pump wave,
the inclusion of GVD effects in a finite medium with counterpropagating pump
waves is more clifficult, mainly because the nonlinear interaction involves two pairs
of sidebands (one pair for each pump wave). Such an interaction is induced by
GVD, self-phase modulation (SPM) and cross-phase modulation (XPM). Previ-
ous work has found that even when the boundary reflections are neglected, the
counterpropagating pump waves in a finite medium can become absolutely unsta-
ble.#9:70.71 However, the treatment was quite involved mathematically and did not
provide physical insight since an eigenvalue problem in a four-dimensional vector
space had to be solved numericallv. Consequently, the studies were limited to the

special case of identical pump waves with only small differences in power. It is

thus desirable to establish a simpler model that gives a clear physical picture and,
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at the same time, provide analytical result for the more general case of unequal
pump powers. Moreover. it is not clear how the instability would be affected by
the weak boundary reflections that always exist in practice. The nonlinear dy-
namics can become more intriguing in such a case since the boundary reflections
provide adcditional coupling between the two pair of sidebands.

This chapter is a compreliensive analytical study of the combined effects of
four-sideband coupling, GVD. aud boundary reflections in a counterpropagating
svstem. Although a silica fiber is used as an example. the results are applicable to
any dispersive Xerr medium. A new perturbation method applied to this problem
results in a plivsically transparent model in terms of a doubly-resonant paramet-
ric oscillator for a photon-pair that allows simplification and clharacterization of
the complex system in a familiar language. The general result can be interpreted
in analogy to a detuned distributed-feedback waveguide subject to boundary re-
flections. Analytical expression for the instability threshold and growth rate are
obtained naturally. In the special case of antireflecting boundaries and equal
counterpropagating pump powers, our results agree with the previous numerical
results. However. the cftects of boundary reflections are shown to be important.
In the low-frequency limit in which dispersion effects are negligible, our results
reduce to those for the lkeda instability. At high frequencies, dispersive effects
lead to new instabilities both in the normal and anomalous regions. In particular,
it is shown that the absolute modulational instability dominates in the anomalous
dispersion regime.

The chapter is organized as follows. In Sec. 5.2, we carry out a linear stability
analyvsis of the coupled nonlinear Schrédinger equations (NSE’s) that describe the
propagation of the counterpropagating pump waves in a dispersive Kerr medium.

The theoretical model is completed in Sec. 5.3 when the boundary conditions
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are incorporated and the parameter regions are classified. The results are used in
Sec. 5.4 to discuss the instability for the case of weak or anti-reflection boundaries.
Sections 5.5 and 5.6 are devoted to the strong reflection case. above the instability

threshold and below it. vespectively. Tlie main results are swimarized in Sec. 5.7.

The Kerr Medium
' |Forward pump wave> <rBackward pump wave b

Figure 3-1: Schematic illustration of a finite dispersive Nerr medium of length
[ and the two counterpropagating pump waves. The front and back surface are
labeled as f and b, respectively.

5.2 General solution

The system under investigation is illustrated Fig. 5-1, where two counterpropa-
gating pump waves exist in a dispersive Kerr medium of length { with front (left)
boundary “f” and back (right) boundary “b”. In the scalar wave approximation,
the nonlinear interaction of two counterpropagating optical waves in a cispersive

Kerr medium is described by the coupled NSE's!?

1
i0:A1 = =104+ ;/9255‘41 — v(JA1]* + 2]42)%) Ay, (5.1)

. ) 1
—10. 42 = —i$,0:4; + :5/325121142 — v(|42)* + 24,1 4o, (5.2)

&
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where = and t are the spatial and temporal coordinates, and 87!, 3, and v are the
group velocity, GVD coefficient. and nonlinear coefficient, respectively. A,(¢, 2)
and .1,(f. z) are the complex envelopes of the forward and backward propagating

waves and are related to the corresponding phasors of the fields by

E(t.z) = 44(¢, z)e'kos, (5.3)

Ey(t. 2) = Ay(t. z)e'*olt=2), (5.4)

where the subscripts | and 2 refer to forward and backward propagating waves,
respectively. hg is the lineay wavenumber of the counterpropagating waves. and (
is the length of the Kerr medium. The constant phase phase factor exp(ikyl) has
been factored out for later convenience, and the fields have been normalized so

that

A1)? and |43)? represent the powers of the two beams.
The counterpropagating cw pump fields in the medium correspond to the

steady-state solution of Egs. (5.1) and (5.2) given by

Apg(t,2) = el Hidne (5.5)

Ag(t,2) = Azoei‘r(lflzo|2*2|Am|2)(l—5), (5.6)

where the constants A =

Aro] exp(igio) and Ay = |Aqg| exp(igz0) contain both
the amplitude and phase information for the two counterpropagating waves in the
medium. However, only their phase difference ¢ — ¢,0 is of significance because
we can always assume without loss of generality that one of the phases is zero.
We study the stability of the steady-state solution by performing a standard

linear stability analysis. For this purpose, we perturb the steady state slightly
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and write the respective perturbations for the two pump waves as

SA(F, 2) = 0, (£, )l ho s 2o ) (5.7)
(j“{g(t, :) — ;ﬁg(f :)cl'r(‘-"zor)f‘zl.\lol'))(l‘5). (58)
By inserting .\, = Ay + o4y and 4, = Ly + 94y into Egs. (5.1) and (5.2). the

linearized equations for o4, (f. z) and d-4,(¢. 2). written in the frequency domain.

are

(10: + hw + HFow /2 + 7] A )04 (w. 2)

A A2 0T (—w. 2) + 24045040 (w, 2) + 2410400045 (—w. 2)] = 0. (5.9)
(—i0; — Hw + /2 + v o] H)0AT (—w. 2)

F[ATEOA (W, 2) + 245 Au0d Ay (—w. 2) + 245050040 (w. )] =D, (5.10)
(—=10; + Hw + Bow?/2 + | Ay [H) 04y (w, 2)

[ A2 6 (—w. 2) + 2420 4704 (w, 2) + 242041084 (~w, 2)] = 0, (5.11)

(i0: — Biw + Fw? /2 + v Ag|?) 045 (—w. 2)

where d4)(w, ) and d44(w, z) are the Fourier transforms ofﬂl(t, z) and A, (t, =),
respectively.
The standard technique used to solve linear equations leads to the following

general form of solution for 84, (w, z), 84} (—w, z), d42(w, 2) and 045 (—w, z) in Eqs.
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54, (w. 2) L T

04T (—=w. 2) . Tis ; l
— elk[+: Cl +e'kl—; C2

0da(w. 2) €1++ €1+

(5‘-{5(——'\,&.3) €y €1—~

€9 Cy_ .

. . ("_)“.-— .. - CQ__ =
+€lk2+(l z) C:‘_+_€Ik2_(l <) C-l‘ (013]

1 To—

T L

where the arbitrary constants c¢j. ¢y, ¢ and ¢y represent the magnitudes of the
four independent eigenmodes of the solution while the rest of the coefficients are
functions of the modulational frequency w. The £’s are the propagation constants
determined by the dispersion relations for the eigenmodes. and the coupling co-
efficients r's and ¢'s are the relative amplitudes of the four sidebands [d4,(w, 2),
64} (—w. z), dds(w. ), and d45(—w, z)] for the corresponding eigenmodes.

It is generally difficult to get the exact analytical expression for the dispersion
relations and other coefficients in Eq. (5.13). For this reason, numerical stud-
ies have been performed in the past.?®"®71 However, we show in the following
that approximate analytical expressions can be obtained with sufficiently high
precision.

Before writing down the approximate analytical expressions, we introduce sev-
eral characteristic lengths and frequencies. The walkoff length and the GVD length
at a given modulation frequency w are defined as [y = (fiw) ! and Ip = (Bw?) ™.
Note that the walkoff length for two counterpropagating waves is simply the spa-

tial scale of envelope variation of the fields. Without loss of generality, we assume
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the power ratio S = |Ay|?/|410]? < 1 (i.e. the power of the backward pump wave
1s equal to or less than the forward one). The nonlinear length at a given power
of the forward pump wave. PP = |.1,¢]*. is defined as {y = (v|410]?)™". We further
define wy = ~P/f3, aud wp = /7P/3, to represent the required modulational
frequencies at which the walkoff length and the dispersion length are equal to the
nonlincar length. respectively. [or modulational frequencies below wy and wp,
the effects of walkoff and GVD are not important, respectively.

The ratio ¢ = wy /wp = \/|B2|yP/ 3} is a small quantity if the power and the
GVD coefficient are not too large. Even for materials with relatively large GVD
coefficients and at relativelv high powers, this ratio is still quite small since. in
practice. the GVD effect is simply negligible when the walkoff length is comparable
to the nonlincar length. In this paper. the dispersive nonlinear effects are of
primary concern. thus the normalized modulational frequency Q@ = w/wp and
normalized length L = /{5y are often used. This means that the GVD effects
are negligible when ©Q <« 1. in which case the Kerr medium can be treated as
dispersionless (3 = 0). Another ratio, en = lw /{p = Q. represents the relative
importance of GVD and the walkoff at a given modulational frequency. This is
also a small quantity since 2 < 1/e is usually satisfied.

Using silica fiber as an illustrative example,'? we assume a forward-pump power
of P = 1 kW, a nonlinear coefficient of v = 10 W='km™!, a group velocity of
1/8; = 0.2 mm/ps, and a GVD coefficient of |32| = 20 ps?/km. Then. {5 ~ 10
cm. Although we have chosen a case of high power with large nonlinear coefficient
as the example, € is only 107*. wy and wp are ~ 2 ns™! (320 MHz) and ~ 20
ps~! (3.2 THz), respectively. Even for a large modulational frequency of ~ 40
ps~! (6.4 THz). eq is only ~ 1072

By treating ¢ and e as small parameters, we obtain the following analytical
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expressions for the coefficients in Eq. (5.13). The dispersion relations can be

written as

kyp(w) = iw £ ¥ (w). (5.14)

fpe(w) = Fiw £ Ya(w), (5.15)
with

Vi(w) = (B /2 + 7] 10]2)2 = (114022, (5.16)

),_)(WJ = (.‘110 — :l-_)()). (317)

The other coefficients are given by

rie(w) & (V] = Baw?/2 = Y| Awo?) /(7 A), (5.18)
rio(w) & (V1 = hw?/2 = 7410/ (A7), (5.19)
2+ (w) = (410, = 420, Y2), (5.20)
erer(w) & —(¥) — Fow?/2) A/ (Biwro), (5.21)
ere-(w) = (V] = Bow?/2) Ao/ (Brwdig), (5.22)
er—w(w) = —(¥] = Bow?/2) Ano/ (Brw}y), (5.23)
er——(w) & (Y1 ~ Saw?/2) A30/ (BiwA}o), (5.24)
eass (W) = (A1, Y1 = Aao, 12). (5.25)

The procedure leading to the above expressions consists of solving Eqs. (5.9)
and (5.10) for 64,(w,z) and 4}(-w,z) by first assuming d4»(w,z) = 0 and
643(—w,z) = 0. Thus, the dispersion relation k;;(w) and coupling coefficients

ri+(w) are obtained. Next, we insert the obtained solutions for d4;(w,z) and
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041(~w, z) into Eqs. (5.11) and (5.12) to find dds(w, z) and 045(—w. z), which
are related to the expressions for ¢y, -(w). The small parameters ¢ and ¢q have
allowed us to use Y| <« Sjw and Hw? < Fw to simplifv expressions. Thus the
dispersion relations and all the coupling coefficients for the ¢, and ¢, modes in
Eq. (5.13) are obtained. The crror introduced by this approximation is checked
by putting the obtained dds(w. z) and 045(—w, z) (which. although very small, are
nonzero) back into Egs. (5.9) and (5.10) and verifving that the percentage error
1s O(e. cg) and is quite small. A\ similar procedurc is used for the ¢; and ¢, modes
in Eq. (5.13) by starting with Egs. (5.11) and (5.12).

[t can be shown from Eqgs. (5.16)-(5.23) that the r's can be O(1) while the s
are at most O(c). The significance of this observation can be seen by referring to
Eq. (5.13). For the ¢ and ¢, modes, the coupling between the two forward side-
bands is represented by 7 -(w) while the coupling to the two backward sidebands
is represented by the €.~ (w)’s. Comparing with the case of a single forward pump
wave, it is worth noticing that 7, (w) are not affected by the presence of the back-
ward pump. -\lso, the dispersion relations &+ (w) for the ¢, and ¢, modes are the
same as if the other pump wave did not exist. In the case of a single forward pump
wave, it is well known that the coupling between the the two forward sidebands
is caused by FWM Dbetween the sidebands and the forward pump.!? Thus the
presence of a counterpropagating pump wave introduces backward coupling into
the eigenmodes through the coefficients €;+1. The FWM picture of this coupling
was described in.'? Similar comments apply for the c; and ¢4 modes with respect
to the backward pump wave.

The above discussion indicates that the evolution of sidebands associated with
the forward pump wave, d4,(w, z) and d4}(—w, 2), is affected only by the rela-

tively weak additive contributions from the distributed feedback (DFB) occurring



100

because of the presence of a backward pump wave, and vice versa. However, note
that when }7 (or 13) is very small, the ¢; and c; modes (or ¢; and ¢, modes) be-
come degenerate. This means that Eq. (5.13) is not in a proper form to represent
the general solution of Eqs. (5.9)-(5.12) in such a situation. Thus. it is not clear
what would be the the magnitude of the backscattering contribution in geueral.
In order to find a proper general solution that can cover such cases. we trans-
form the four constants ¢, and c,, and ¢; and ¢, to ¢y, and Y, and ¢, and ¢ _,

respectively, by

(.:'j',_ =T —+ ’.l—("'.f' e = (':; -+ 1'2,_(,". (v .

N
(]
(2]
~—

(.'}_ = 7. =+ . L":__ =7Ty.C3 + Cy. (-.

n
()
-1

v’

Basically, we demand that c;, and c}_ represent the contributions to d4.(w,0)
and &4, _(w.0) from the ¢, and ¢, modes in Eq. (5.13), and ¢4 and ¢;_ represent
the contributions to d4s4 (w,!) and d42_(w,!) from c3 and ¢; modes. The general
solution (5.13) can be put in the following form in terms of the new constants c;..,

cy_. o and cj_:

-

S (w. 2) = P My (w, 2)6 + P WD My o (w, | — 2)6, (5.28)
Sdg(w. 2) = P U= My (w, 1 = 2)G + e M gy(w, 2)E7, (5.29)
where
My(w,z) = —
F\W=) = l—-ror_
J R ez 9 1 —r_
, (5.30)



101

1
M ) =
folw. 2) l—7.r.
Cleow Cp_- eths 0 1 -7
N (5.31)
Cl——- (- 0 CA")l: —T1+ 1
and we have adopted the notation, dfl(w,:) = [6A(w,:),5A‘(—w.:)], and ¢ =
[c4.c”]. The matrix elements are
Mpn(w.z) = (% - 7'l+7"1—C’A')":)/(1 = rieTio), (5.32)
Mpg(w.2) = ri_(=e" e ™M /(1 —rr ). (5.33)
-\[f.“(uj_ 2 = ,-l*(el\'lz — r—:\]:)/[l _ "l’-’Al—)- (33\1)
Mppm(w.z) = (=riree™ +e /(1 =) (5.35)
and
Mpn(w,z) = (el++e”": — el_+7'1+e'”":)/(l —71+T1=), (5.306)
Mpa(w.z) = (—=epqmi-€"V +e e /(1 ~ 1y ), (5.37)
Mpoi(w.2) = (er4-€M" —ei__rie”™M5) /(L =7 7)), (5.38)
Mpgp(w.z) = (=epori_e™ +e__e ™) /(L =1 o1_). (5.39)

The expressions for My and My are similar to M and My, respectively, be-
cause of symmetry. Note that My(w,0) =1 and Mp(w,!) = 1.

The two parts of the general solutions (5.28) and (5.29) have a clear physical
meaning. The forward and backward transfer matrices My and My give the
transformation of the sidebands of the forward and the backward pump waves
along their respective propagation distance as if the other pump wave did not exist,

while the cross matrices Myy and My, give the contribution to their evolution
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from the other pump wave due to backscattering (or DFB). Equations (5.28) and
(5.29) are the wnain results of this section since they provide a simple model to
describe evolution of the sidebands due to different physical mechanisms.

[rom Eg¢s. (5.30) and (5.31), it is easy to see that the relative magnitude of
Mg, and My is normally O(e) unless the denominator 1 — r,.r,_ is very small.
A careful analysis shows that this only occurs when |¥,|/(7]410]?) < 1. which is
equivalent to either 2 < 1 for both normal and anomalous dispersion or 2 -2 < 1
for anomalous dispersion. Under these circumstances, the ¢; and ¢, modes are
degenerate. However. because of our choice of the new set of constants. Egs.
(5.28) and (5.29) are still a valid form of the general solution since the matrix
elements ave finite. In fact. it can be shown that when Q < 1. Egs. (5.32)-(5.39)

reduce to

My = 1 +iy|dief’s (5.40)
Mpy = iydiz, (5.41)
My = —iydilz, (5.42)
Mpy = 1—iy|dl*z (5.43)
and
Mpn = —vAl A/ (Aiw), (5.44)
M, = —vAwda/(fiw), (5.45)
Mpn = vAjp-dz0/ (Biw), (5.46)
Mpge = vdds/(Aw). (5.47)

Similar expressions hold for Mp and Mys. It turns out that these solutions exactly
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satisfvy Eqs. (5.9)-(5.12) for J, = 0. which is not surprising because the condition
2 <« I implies that GVD is not important. Thus. our general solution (5.28) and
(5.29) includes the dispersionless case. This case has been studied in previous
work® and is not the main concern here. Eqs. (5.40)-(5.47) show that even in the
cdlegenerate case. the magnitude of the cross matrix A{;, over that of the transfer
matrix .V, is no more than O(e/Q). and the same is true for My, and /. Thus.
this conclusion about the relative magnitudes of Afy, and My, and A,; and Ay, is
quite general since it is also rrue when 2 <« 1 is not satisfied (including the case

0 -2 « | in the anomalous-dispersion regime).

The solution given by Eqgs. (5.28) and (5.29) can also be written as

()‘h(w‘ :)
(512(% z)
. Mo,z , Mps(w,l -z
gt f( ) C_"f + eifrw(i=2) bf( ) Cp. (5.48)
be(w'.l) Mb(wfl —:)

The form of Eq. (5.48) shows that the general solution is the superposition of two
“modes” represented by ¢y and ¢,. In the case €/Q2 <« 1 or w > ww, the ¢; “mode”
is primarily forward propagating with weak backscattering and the & “mode” is
primarily backward propagating with weak forward scattering. In such a case,
Eq. (5.48) is the analog of a similar equation found in DFB waveguides (see, for
example®) in the limit of large detuning, except that, here the M’s are matrices
and the ¢'s are vectors, whereas the corresponding entities “A{” and “c” are scalar
quantities for a DFB waveguide. [t is well known that in a largely detuned DFB
structure, the “c,” term describes the forward propagation mode with “A,” and
“My" indicating the relative amplitudes of the propagating and backreflecting

components for a single frequency photon (and similarly for the “c,” term). Thus
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Eq. (5.48) is a generalized DFB formalism to the case of a pair of coupled photons
at two different frequencies. A\ large detuning is known to decrease DI 3. Similarly,
the large walkoff effect for w < wy- reduces the backscattering.

Note from Eqs. (5.32)-(5.39) that M7 (—w.z) = Mpp(w. 2). My (~w. 2) = My (w, 2),
M (=wez) = Mpg(w. 2). and My, (—w. z) = My, (w. 2), as required by the
symuetry between w and —w. Furthermore. it can be shown that My(—w.z) =
Mg(w.z) and Mgp(—w.2) = —Myp(w. z). Similar properties hold for M, and
be.

Examining the asvmptotic behavior of Mg (w. 2) over a distance [. we notice
that besides oscillations. the magnitude of its entries can also increase linearly
or exponentially by the order of [/ly and expl{/ly], vespectively. The later case
ocecurs only for the anomalous-dispersion regime when €2 ~ V2, whereas the former
happens whenever |Y|(w)|{ < 1, translating into the requirement of <« 1 (i.e.
nondispersive propagation) for both normal and anomalous regimes or 2 -2 < 1
for the anomalous regime. It is easyv to see that the expouential growth is due
to MI in the anomalous-dispersion regime. Similar properties hold for My in
the backward direction. The amplifving nature of these transfer matrices are
important because they lead to absolute instabilities when the system is subject
to feedback. The asyvmptotic behavior of the cross matrices shows oscillations or

exponential dependence on the distance.

5.3 Boundary reflections

Before discussing the instabilities of counterpropagating pump waves, we general-
ize the analysis of Sec. 5.2 to include the feedback occurring at the two facets of

the finite Kerr medium (see Fig. 5-1). The boundary conditious at the front and
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rear surface of the Kerr medium can be written as

04y (w. 0) = Ryda(w, ), (5.49)
Sdo(w. 1) = Rpd (w. 1), (5.50)
where
rpets 0
Ry = LRy = (f > ). (5.51)
0 Tfef"w”/

Here. vy = o, p + 2 and wry = o+, where Ay = kol +~v(| Ady0* +2]4[?) and
Ay = kgl + ([ Aw P+ 240/ ave the linear and nonlinear phases associated with
the propagation of the forward and backward pump waves, respectively. Further,
rrexplid g and r, explidr,] are the reflection coefficients for the front and rear
boundaries. respectively (0 <7y <l and 0 <7, <1).

By using Eq¢s. (5.28) and (5.29), Egs. (5.49) and (5.50) are transformed into

(1 — Ry My (w.0)]cy = eP“ Ry My(w,!) — Myg(w, )]G, (5.52)

1 — RyMys(w.0)]6, = P RyMg(w.l) ~ Myp(w. )¢} (5.53)

As a standard treatment, the solution of Eqs. (5.52) and (5.53) in the complex
domain of w represents an eigenvalue problem. In fact, such equations can be also
found in the treatment of DFB lasers in the limit of large detuning, except that
the vectors and matrices in the above are replace by scalar quantities. Thus, the
problem can be considered as a doubly-resonant parametric oscillator’™ with the

generalized DFB effect. The following algebraic equation for w has to be satisfied
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for nontrivial solutions of (¢}, ¢;):
D(uJ) = ‘1 - !'izUlWI[Rbe(w‘,l) - be(\-"l)“l - Rbef(w‘.O)]—l

[RoMg(w,l) — Myp(w.D][1 — Ry Mgp(w,0)]'| = 0. (5.54)

The multiple solutions w, (n is a dummy index) of Eq. (5.54) stand for different
longitudinal supermodes. The real part of each solution gives the mode position
and the imaginary part gives the growth or damping rate. Absolute instability
occurs whenever there is a positive imaginary part to w,. By substituting the ¢,
and ¢, obtained by solving Eq. (5.52) and (5.53) into Eq. (5.48). we can calculate
the cigenfields corresponding to each supermode. It is evident that there are
gencerally two counterpropagating pairs of sidebands for cach longitudinal mode.
Therefore. the eigen fields correspond to pulsing in the spatio-temporal domain.

Equation (5.54) can be simplified by dividing the parameter space into several
regions. [rom the discussion in See. 5.2, we know that if Q <« 1, this equation
will reduce to the dispersionless case whicl has been studied before.”? Therefore,
we assume {2 >> € so that the magnitude of Mygp(w,0) and Mpg(w. 0) is much less
than unity. Then the two inverse matrices in Eq. (5.54) can be approximated by

unity. and we obtain,

D(w) = 1 — e[ Ry My (w,1) — Mig(w. )]

[RoM 4(w. 1) — Mpy(w.1)]] = 0. (5.55)

For very small €, there can be a region, 1 > {1 > ¢, overlapped by the cases
considered in this paper and in reference.’® In this region, the frequency is low
enough that dispersion is not important, and vet high enough that cross coupling

or DFB is weak.
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Two cases are associated with Eq. (5.53). [f the magnitudes of boundary
reflection coefficients are much larger than O(e/?), the cross-matrix terms in Eq.
(5.55) are much smaller than the transfer-matrix term multiplied by the reflec-
tion coefficients. and therefore can be neglected. Physically, this means that the
localized feedback at the facets is much stronger than the weak DB so that the
latter effect can be ignored. Since € is quite small. even relatively weak reflections
from the uncoated air-glass boundary, which has an amplitude reflection coeffi-
cients of abont 0.2, will fit into this category. The details of this case is discussed
separately in See. 5.5.°2 [n the following section. we discuss the case occurring

when the boundary reflection coefficients are comparable to or less than O(e/Q).

5.4 Weakly reflecting and anti-reflecting bound-

aries

In this case, Eq. (3.535) can be further simplified by using |1 — exp(i,w)U| =
1 — exp(25,wl)TeU + exp(idBiw!)|U|, where
U= [Rbe(w‘, l) - be(u),l)][Rbe(w,l) - be(uj,l)]. ThUS, we have,

D(w) =1 —e?¥lg(w) = 0, (5.56)
where

gw)=TU =
(Rpu My — M) (Ron Mypyy — Mpyyy) +
(Rp1i Moz = Mypia) (Ryy Mfyg + Mpy,) +

(R}ll‘\II;IQ + IV[;le)(Rblll\-fﬂQ - 1\4!(,12) +
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(Ryy Moy + Myp ) (Rpy My + M) (5.67)

and where we have neglected (U] sinee. by using Eqs. (5.30) and (5.31), we
conclude that its amplitude is independent of [ and is at the most O(e/Q)* (for
741, 7] ~ €), which is much smaller than unity. Actually, one can prove that |U|
can be neglected as long as [ry], |r,| < 1. Eq. (5.56) is in a standard form for the
laser threshold condition with g{w) representing the net gain. Thus |g(w)| > 1 is
required for absolute instability.

Irom Eq. (5.57). it is evident that for the weak boundary reflection (

I‘/|. l7'11| ~
o) under -onsideration. |g| is at the most O(¢/Q)* when the order of the normal-
ized length L = /Iy 1s equal or much less than unity, and the svstem is below
instability threshold. As L increases. |g| can either increase as L? for both the
normal and anomalous dispersion regime or as exp(2L) for the anomalous disper-
sion regime when Q ~ /2. For the case of quadratic amplification that occurs
when GVD is negligible. previous results® indicate that the threshold condition
requires L to be O[1/\/|r;ry|]. This represents a very high threshold in the case
of weak boundary reflections. On the other hand, the exponential amplification
in the anomalous region requires L to be O[In(Q/e€)] to reach threshold. which
is much easier to satisfv. Thus we concentrate on the anomalous dispersion case

where 2 i1s O(1). By using Egs. (5.32)-(5.39), Eq. (5.57) becomes

g(w) = [e_i)'bl(rleg + es + rlrgrfeiaf — 7'/e‘i6f)(rgel + ey + ror Tpet® — 7',,6'“’”)

—e' 2 (rieq + ey + 117 — Tor e ) (roe) + ey + TiTpel® — Torye )]

e M1 = (L = ), (5:58)
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with
riw) = (V7 = hw?/2)/(v14w0l?) = L. (5.59)
ra(w) = (15 = F/2)/ (7] Aao) = L. (5.60)
er{w) = (11 + 1)v|Aodal/(Biw), (5.61)
ca(w) = (2 + 1)7y|digdaol/(Fiw). (5.62)
0p = o5 + kol + V(| Aso* + 21410 ) + 920 — D10, (5.63)
Oy = @rp + kol + (141017 + 2 4a ") + d10 — P20, (5.64)

where. realizing that —iYj(w) = [Y1(w)]. which is the gain curve of Ml of the

forward pump wave. we have ignored exp(—|Y7]{) compared with exp(|Y||l) since
exp(|¥1]1) ~ /e in order to reach threshold. However, £1}3(w) can be imaginary
within the MI frequency range of the forward pump since we have assumed the
power ratio of the backward and forward pump waves satisfies S < 1.

Equation (5.58) can be further simplified when the boundary reflections can
be ignored for |7/|,|rs] < €. This is the condition when the boundary can be
considered as anti-reflecting. The instability gain is then given by

_.72|_~110|2l_420|2/3§w2 —ivy!

sin(Y?2!), (5.65)
or written in terms of normalized frequency €2 and normalized length L,
g(w) = €7(Q, L), (5.66)

where

S22 g1, (2/2 — Y2 - 57
2,/1 - (Q2/2 - 1)2,/(@2/2 - S)* - 57 '

9(Q,L) = - (5.67)
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Equation (3.36) can then be written as
L= exp(2QL/)F(Q. L) = 0. (5.68)

Equation (5.68). which is still in the standard form used to describe the thresh-
old of laser oscillation. can be easily analvzed since € is a small parameter. Differ-
ent values of €2 for which Eq. (5.68) is satisfied correspond to various longitudinal
supermodes mentioned carlier. First, we note that the mode spacing is ouly ~ ¢/L
while the gain §(€2. L) varies on the frequency scale of 1/L. Thus. the various mode
can be cousidered continuously distributed under the gain curve. [For anv mode

frequency €. the growth (damping) rate is a small quantity and is given by
Q = cln[A[F(2. L)]])/(2L). (5.69)

or written in physical units,
w; = lng(w,)|/(2L6). (5.70)

Compared to the previous numerical work.'® " Egs. (5.65)-(5.70) not only give
analvtic results for arbitrary power ratios, but also provides a simple physical char-
acterization of the instability in terms of the familiar language of laser oscillation.
By using Eq. (3.69), Fig. 5-2(a) and 5-2(b) show the growth (damping) rate
versus frequency for different forward pump powers (or normalized length) for the
power ratios S = 1 and S = 0.5, respectively. The oscillatory behavior in Fig.
5-2(b) occurs when }3 is real in the frequency region where the less intense back-
ward pump wave is modulationally stable. In such a region the nonlinear phase

shift Y5(w){, which depends on frequency, can cause constructive or destructive

interference.
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Qi /€ Q; /€

Figure 5-2: Growth (damping) rate written as §2;/€ versus frequency §2,. for € =
107% (a) S =1 (equal pump powers). and the forward pump powers correspond
to L = 9 fdashed) and L = 12 (solid). (b) S = 0.5 (unequal pump powers). and
the forward pump powers correspond to L = 12 (dashed) and L = 20 (solid).

The instability threshold condition for any frequency is obtained by setting
the right side of E¢. (5.69) or (5.70) to zero. Thus, the threshold curve is just
the contour |c?3(Q,. L)| = L. Figure 5-3(a) and 5-3(b) shows the threshold curves
for different power ratios obtained from Eq. (5.67). The area above the curve
indicates the instability region for the corresponding power ratio. As in Fig. 3-
2(b), the oscillation in [ig. 5-3(b) is caused due to a similar reason.

[or an order of magnitude estimate, let us assume equal pump powers (this
is the case that has been numerically investigated previously*®:™). Then, the

threshold contour can be written as

L1l e VR 300 (5.71)
2,/1 - (022/2 —1)2

where we used sin[L\/(?)2/2 -5)—-95? = iexp[L\/S2 - (£22/2 - 5)?)/2 in Eq.
(5.67) and assumed S = 1. From Eq. (5.71), the minimum L, or the threshold

of the system, is achieved at Q = /2 (which is the frequency for the maximum
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Figure 5-3: Threshold curves in €2,-L plane. for ¢ = 107, The area above the
curve correspouds to instability. (a) S =1 and (b) § = 0.5.

MI gain for a given pump power), so that in general. L is approximately — In(e).
This is in agreement with the previous work.?? 7% oy the numerical paraneter
€ ~ 107 in our example. L ~ 9 or [ ~ 1 m. In the normalized frequency, the
mode spacing is ~ eQp/L, which is 0.2 ns™! (30 MHz) in our example. The
growth (damping) rate is of the same order as the mode spacing according to Eq.
(5.69).

Although the above conclusions [including Eq. (5.70)] were drawn for the spe-
cial case of negligible boundary reflections (or anti-reflection boundary condition),
they are valid in general since a similar analysis can be applied. The only dif-
ference is that we have to use Eq. (5.58) instead of Eq. (5.65) to include the
effects of weak boundary reflections. Figure 5-4(a) shows the effect of boundary
reflections on the growth (damping) rate under conditions identical to those of
Fig. 5-2(a) except that both facets of the dispersive Kerr medium are assumed to

have an amplitude reflection coefficient of 5 x 107, Figure 5-4(b) shows changes
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in the threshold curve and should be compared with [Fig. 5-3(a).

In general. even weak boundary reflections can substantially affect both the
instability region and the growth rate as long as the amplitude reflection coeffi-
cients are comparable to € (which is ~ 107 in the example used here). This is
because the DFB and the facet feedback can be in phase or out of phase with

respect to each other, depending on the modulational frequency.

11 \
Qi/ € 10.5 ©)
L unstable
. ‘a) 14
.1 v.5
;Qr 9
6.5 stable
8

0.6 0.8 1 1.2 1.4 1.6 1.

Figure 5-4: Effects of weak boundary reflections, for e = 1074, ry =7, =5 x 10™*
and S = 1. (a) /e versus frequency §2, for L =9, 8y = 6, = 7/2 (dashed) and
8; =0, = 0 (solid). (b) Threshold curves in 2,-L plane, for ¢,y = ¢, = kol =0
and ¢20 = d1o0.

Unlike the Ikeda instability, which vanishes when the boundary feedback is
removed, the above instability exists for weak or even anti-reflection boundanries.
While the lkeda instability draws on the linear or quadratic spatial growth of
dispersionless FWM, the instability discussed in this section draws on the expo-
nential spatial growth of MI. (The normal dispersion case with relatively strong

boundary reflections will be discussed in Part II.)

The treatment in this section is valid as long as the boundary reflection coef-
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ficients are much smaller than one. [Furthermore, for relatively strong boundary
reflections whose amplitude reflection coefficients are much larger than €, the
treatment in Sec. 5.5 can also be applied. In the case of au optical fiber, the illus-
trative example shows that the strong boundary reflection condition is likely to be
satisfied in practice unless high quality anti-reflection coatings (or index matching
materials) and very large pump powers are used. In other words. when applied to
optical fibers the results of this section show that the previous work*® 7 for fibers
with anti-reflection coatings on both ends is not realistic. We counsider the more
realistic case in Sec. 5.5. However. the results in this section are quite general for
nonlinecar dispersive media and can be important when applied to materials with

relatively large ¢ (but still much smaller than unity).

5.5 Strongly reflecting boundaries

As discussed in Sec. 5.3, by strong reflection we refer to cases in which 2 > e
(or w > wy ) and the amplitude reflection coefficients of the FP cavity are much
larger than O(e/§2). When the first condition is satisfied, the forward and back-
ward propagating pairs of sidebands evolve independently as if the counterprop-
agating pump wave were absent. The role of the counterpropagating pump wave
is to induce a weak scattering of the propagating sidebands through XPM in the
opposite direction. This scattering can be considered as a weak DFB with a mag-
nitude O(e/$?). Thus it can be neglected when the second condition is satisfied.
As a result, the cross matrices My, and Mpy can be ignored in Eq. (5.55) as well

as in Eq. (5.48). In such a case, Eq. (5.55) becomes

Dw) =1 — e*¥“' R MyRyM;y| = 0, (5.72)



115

where Mg(w.l) and My(w.l) were shortened to My and M,. Note that this
ecuation is the analog of the [P laser equation. in which the matrices are replaced
by scalars. This makes sense since. after we neglect the weak DFB, we have a
photbn-pair [P laser.

The calculation of D(w) from Eq. (5.72) is straightforward. The result is

D(uJ) =1 - ,.ﬂ.bcrzu.wtc(u}) + (TITbGIZUQwIJZ — U, (373)
where
Glw) = My My 78 4 A gy Myyoe 70 4ce, (5.74)

Equation (5.73) can be put in the familiar form of the threshold condition for a

laser:

r/rbGeffx(uJ)eig‘j““‘ =1, (5.75)
where the effective gain is

Gopje(w) = (G £VGT = 1)/2. (5.76)

Since GeppsGeps- = 1, either Gespy > 1 or Gepp- > 1. For an unstable super-

mode, the gain should overcome the loss, i.e.
|Geppe()l > 1/ (rsre). (5.77)

For ryry &« 1. |Gesse| > 1 is needed for instability, which, in turn requires
|G| > 1. In this case, Eq. (5.76) simplifies to yield Gesry = G, while Goss_ can

be neglected. In the following, we use the convention that the + sign denotes the
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branch with higher gain. Under such a convention, In|Gepr| = = In|Gerp_| > 0
and the net gain g(w) used in the previous section is simply 7,7,G. . (w).

[n order to gain some physical insight. let us start with the special case of
|A10] = || so that Y} = Y,, r, = r,. By expressing the transfer matrices in

terms of Y}, Y5 and r| r9 as in previous section, Eq. (5.74) becomes

G = [ei('ﬂ’llfwr/fwrb)(l _ ,,.'l-)c—"l(u'r}'v"l'rb))
+e“i(2)”ll*u'y-[—U’r'b)(l - 7-‘fci2(wrf "'wrb))]/(l — Tf)

+2[cos(0f = 0,) — cos(ry + )] (v Ao 20 ?sine? (Y41, (5.78)

where 0p = vy + 0y — O10, %y = Uy + d19 — d29 and sine(a) = sina/x. When
Up sty and O — 0, are multiples of 27, G in Eq. (5.78) is considerably simplified

and Eq. (5.76) becomes

— 6131.2)'[1 .

This equation has a very simple physical meaning since -2} is just the gain from
MI in the case of anomalous dispersion, where Y| is imaginary with a maximum

magnitude of v|.4,9].12

If 5, > 0, Y} is real. Thus, Eq. (5.75) [when combined with Eq. (5.79] does
not have solutions with Imw > 0, and the system is stable. However, for 3; < 0,
Eq. (5.79) and (5.75) simply mean the MI gain can overcome the reflection loss,
and the system can be unstable. This instability does not correspond to the
conventional Ikeda instability since it does not exist for a dispersionless medium.
Using the normalized frequency 2 and length L, Fig. 5-5(a) shows the gain curves
In|Gesps| for 3, <O0.

The frequencies and growth (damping) rates for different modes are determined
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Figure 5-5: Gain curves In |Gesf(2,)] for the case of anomalous dispersion. (a)
The pump power |Ag|? = |Ajo|?, and the phases ¥, + vy, Pag — P10 and ¥rp — Yre
are multiples of 2. The solid curve is for L = [/Iy = lv|A}p|*> = 1 and the dashed
curve is for L = 1.7. (b) Same as (a), except that |Az|? = |410/|?/3, and the solid
and dashed curves are for L = 1.7 and 2.6, respectively. (c) Same as (a), except
that L = 1, and the solid and dashed curves are for ¢y — ¢10 = 7/4 and 7/2,
respectively. (d) Same as (a), except that L = 1, and the solid and dashed curves
are for ¥, + ¥ry = m/2 and 7, respectively. In all cases, the three horizontal loss
lines represent the loss — In(rry) for ryr, = 4% (upper), 30% and 50% (lower),
respectively. The difference between the gain curve and the loss line indicates the

growth or damping rate in units of 1/(2(8,) = ww/(2L), depending on whether
the gain is larger or smaller than the loss.
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by substituting Eq. (5.79) in Eq. (5.75) and solving for Q, i.e.,

exp{iL[2Q/c F \/(sign(3)Q?/2 +1)2 = 1]} = 1/(rms), (5.80)

where € = \/WV'HIOP /3% is the small quantity introduced before. This equation
can be solved by treating ¢ as a small parameter. [or the tvpical case in which
1—77y is not a small quantity we come to the conclusion that Re[Q(n)] = Q,(n) is
almost continuous under the gain curve (where n is the mode index). The growth

(damping) rate €©; is a small quantity and is given by

Imé) = Q, = ¢€lu |<f:’L\/51g11("’)(§2%/2’ VU 4 In(ryry))/(2L)
as a function of €., or written in terms of phyvsical units,
wi = [In|Gepso(wr)| + n(r )]/ (2031). (5.81)

Apparently, the mode spacing is O(¢) < 1 while the scale of variation of the gain
curves is O(1) in the normalized frequency.

Although the above conclusions were drawn for the special case of equal pump
powers with v, + vy, and 0y — 6, Deing multiples of 27, they are valid in general
since a similar analysis can be applied. Thus, the gain curves In|G;s. (w,)| give
almost all thie needed information. According to Eq. (5.81), the gain curve has to
be higher than the loss line — In(r;r,) > 0 for an unstable system, and their dif-
ference determines the growth or damping rate of each supermode. The threshold
condition around frequency w, is In|Gefsi(w,)| = —In(rsry). The other branch
of the gain curve In |Gess-| is always below threshold (it is actually below zero).
The growth rate or damping rate is on a scale of 1/(2(3,), which is about 10 us™!

if we use | = 1/(yP) as a typical value, and use the previous values for vy, P and
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3. For these parameters, the gain curves vary on a scale of 2 ps™! and the mode
spacing is on a scale of 10 us ', Generally, the mode spacing is on a scale of wy
while the growth (or damping) rate varies on a scale of wp.

Figure 5-5(b)-(d) show the gain curves from Eqs. (5.76) and (5.74) for unequal
pump iutensities and different values of the phases. Multiple gain regions exist
because of the constructive or destructive interference induced by the nonlinear
phase shifts.

Figure 5-6 shows the case of normally dispersive (33 > 0) Kerr media. Thus
the instabilities can exist even for normal dispersion. [rom the discussion of
Sec.  5.2. it should be noted that these gain curves do not apply around the
zero modulational frequency within a bandwidth covering several wy. In this
region. the results from the dispersionless treatment® indicate that the growth or
damping rate in the presence of the Ikeda instability can vary on the scale of the
mode spacing. However. the high-frequency limit of the dispersionless treatment
can still be described by the present method. corresponding to the low frequency
end of our gain curve. In fact. the low-frequency limits of the gain curves in Fig.
5-6(b) correspond to the lkeda instability. The same is true for the highest gain
curves in Fig. 5-6(a) and 5-6(c). There is no correspondence to the conventional
Ikeda instability for the rest of gain curves shown in Figs. 5-5 and 5-6, where
instability is due to dispersion.

Since Gespt+ = G can be used for large gain, Eq. (5.78) indicates that a large
pump powers or a long medium (or both) are needed. In such a limit. the MI
gain contributes most to the gain curve in the case of the anomalous-dispersion

regime. due its exponential dependence on both parameters. In fact, it can be
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Figure 5-6: Gain curves In |G, ;(€.)] for the case of normal dispersion. (a) The
pump powers |.A40|? = |Ao|?, and the phases v, + %y and ¥, s ~ 1y are multiples
of 2w, @2 — ¢ = w/2. The dashed and solid curves are for L = 1 and 2.6
respectively. (b) Same as (a), except that |A|> = |A10]?/3, and the dashed and
solid curves are for L = 2.6 and 5 respectively. (c¢) Same as (a), except that L = 1,
Wrs + Yrp = /2, and the dashed and solid curves are for ¢, — ¢9 = 0 and 7/2
respectively. In all cases, the three horizontal loss lines are the same as in Fig.
5-5.
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shown that near the peak of the gain curve

Gepjo =G = [V 2 (gt — ¢ (e — e 710
_81):21(7_161()f _ 'I'szi()f)('f'lel‘ob _ ,,_26—105, :‘]

e™ ML =)L =), (5.82)

where we have neglected exp(iYl) = exp(—|Y7|{) compared with exp(—iY¥\l). We
have kept exp(F:iY5!) since. with the assumption of |Ayg|? < |Ai]?, 15 can either
be lmaginary or real within the frequency range 0 < €2, < 2 where Y is iinaginary.
[For the large gain limit in the normal-dispersion case, however. the low-frequency
galn icreases at most quadratically (due to the double pass) with both of the

parameters. while the higher-frequency gain is bounded.

5.6 Probe transmissivity and reflectivity

The simplification made by neglecting the cross matrices in the presence of strong
reflection allows us to include the general case of probe injection in our analytical
study.

If the probe fields d4;(w) are injected at the left mirror located at z = 0, the

boundary condition can be written as

0A1(w,0) = T}sdi(w) + Ry (w, 0) (5.83)

(5.84)



in place of Eq. (5.49), where

' exp(ide ) 0

0 t exp(~idy )

Here. t; expligy | is the transmission coefficient into the medium at the left mirror.

We also have, by applyving Eq. (5.48) with the cross matrices set cqual to zero,

—

S (w. 1) = P Mg (w, 1A, (w,0), (5.85)

oo (w. 0) = ¢ My(w. 1)8Aq(w, [). (5.86)

Below the absolute instability threshold, the field transmitted from the system
is 04, (w) = TyoA (w. ). whereas the backreflected field is S (w) = Tf(s.—:l'_)(u).()),
where

xpl2 0
T, = | 1O Ty = (f + b),

0 tyexp(—idey)
and t; exp(id,s) and t, exp(idy) are the transmission coefficients out of the medium
at the front boundary and rear boundary, respectively. By using Eqs. (5.85),
(5.86), (5.83) and (5.50), we find that the transmitted and reflected fields are

related to the input field by

oA, ()

i

T6A;(w)
— eiﬁlwlTbe(l _ ei?ﬂlwlRbeRbe)—IT}(SAi(w), (587)
#,(w) = REAW)

— ei2ﬁlwleMbRbe(l — eizm‘”lRbeRbFMf)~1T}6;1i(w)a (5'88)

where T and R are defined as the transmission and reflection matrices for the
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nonlinear I'P svstem. They are symmetric between —w aud w so that T, =
Try, Ty = 17, oy = Ry, aud Ry = R}, Physically 7, and T\, indicate
the transmission coefficicnts at the input frequency and at the FWAM frequency,
respectively. Note that Eqs. (3.87) and (5.88) are the coupled-photon version of
similar equations for the transmission and reflection of a linear FP cavity.

[u pump-probe experiments, an external probe is injected into the cavity to-
gether with the counterpropagating pump beams and information about the cavity
is gathered by measuring probe transmissivity and reflectivity below the absolute
instability threshold of the svstem. The transmission and reflection matrices can
be calculated 1n a straightforward manner from Eqs (5.87) and (5.88). The results

are

Th(w) = ei(ﬂlwl+¢’b+¢"/)tbt'f(M/“—7'/7'bei(25‘“’l_u"/—w"’)z\/[bgg)/D(w) (5.89)
Tip(w) = Wtrouw=0uidp bl (Myyy 4 ryrye GArebrber el )oY/ D(w) (5.90)
Ru(w) = Peteourduilt tlr (67 Mg Myia + V7 My My,
—e@wl=ve sy 2y D(w), (5.91)
Rip(w) = @ty il (e™ % M gy Myry + €™V My My
/D(w), (5.92)

where Ty = 17, To2 = T}, Rar = R}y, and Ry = R}, satisfving the aforemen-
tioned symmetry between —w and w.

There are two frequency scales over which the transmission and reflection co-
efficients vary. In the normalized variables 2 and L, the fast scale of Q is in
the term exp(i28,wl) = exp(i2QL/¢), resulting in O(e)-scale oscillations corre-
sponding to mode spacing. The frequency dependence of the other terms in Eqgs.

(5.89)-(5.92) and (5.73) is on the O(1) scale. The behavior on each scale can be
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studied independently.
Considerable simplification can be made for the case in which 7,7, < 1. In

this limit, Eqs. (5.89)-(5.92) become

Ti(w) = eBlmonmoeit i M /(1 = rpre Q) (5.93)
Tip(w) = JUwoe2udy A /(L = rprpe G, (5.94)
Ri(w) = /BOelrdueonidt gy (¢ My Myra + €Y7 My Myyy)

/(L= me®ta)y, (5.95)
Rip(w) = Blr@u=0u0t dlpy (67 M pyy Myrz + €Y7 M 13 My )

/(L = 1@y, (5.96)

Now it is easv to sce that the frequency response of these coefficients consists
of fast oscillations at about the mode spacing determined by the term ¢2#* in
the denominator while the upper and lower bounds are determined by setting
the denominator equal to 1 F r,7|G{w)|, respectively. Figure 5-7 shows the up-
per and lower bounds of the frequency response of these coefficients by plotting
[T (w)[/(Eety ). [Tha @)1/ (8ut}). [Ru (W) |/ (Et)ms) and [Ria(w)|/(tst)r,) for the case
in which 7y, = 4%. As the instability threshold approaches. the upper-bound
goes to infinity, resulting in large amplification of the probe field.

[t should be noticed that 4o and .4y refer to the steady-state fields inside the
cavity, which are related to the input pump fields outside the boundaries A,; and

As; by the boundary relations

Arg = At exp(igys) + Ao exp(ildg) 7y exp(iory), (5.97)

Ago = Aoity exp(idys) + Ao exp(lA))ry exp(iys). (5.98)
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Figure 5-7: The frequency response of the nonlinear dispersive FP cavity. (a) The
transmission coefficient at the frequency of the probe. Only the upper and lower
envelopes are shown here; the fast oscillations on the scale of the mode spacing
are not shown. ryr, = 4%. The solid curves are the upper and lower envelopes
for L = 1, and the dashed curves are for L = 1.5. Other parameters are the
same as in Fig. 5-5(a). (b) Same as (a), except that the transmission coefficient
at the FWM frequency is displayed. (c) Same as (a), except that the reflection

coefficient is displayed. (d) Same as (a), except that the reflection coefficient at
the FWM frequency is displayed.
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These relations can be used to calculated A4;; and Ay from A)g and A, or vice

versa. The multistable behavior associated with this type of equation Las been

studied extensively!™* and is not the uniain focus here. \When the boundary

reflection is relatively weak, we simply have A,g = Aputhexp(iges) and Ay =

Azity exp(igyy). where we have assumed |dytyry < |Ault;, [Aulthr, < [yl

and 77, < 1.

5.7 Conclusions

In conclusion. we analvtically studied the svstem of ew counterpropagating pump
waves in a finite dispersive Xerr medium. We showed that for small modulational
frequencics. such that the walkoff length is less or comparable to the nonlinear
length. the system can be considered dispersionless since the dispersion length is
normally much longer than the nonlinear length in such cases.

In order to study the effect of GVD, we conceutrated on the case in which this
condition is not satisfied and found that the coupling between the two counter-
propagating pairs of sidebands is verv weak. This is because when dispersion is
important (i.e. when the dispersion length is comparable to the nonlinear length),
the walkoff length is so short that the counterpropagating pairs do not stay to-
gether long enough to interact strongly. Consequently, the evolution of each pair
of sidebands is basically determined by the corresponding pump wave alone, which
provides a coupling between its sidebands through the combined action of SPM
and GVD. The effect of the counterpropagating pump wave is to provide a weak
backscattered (or DFB) component to the pair’s propagation, induced by XPM.
The model we developed based on the analysis turned out to be a generalization of

the treatment of DF'B lasers with a large detuning, to the case of a doubly-resonant
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parametric oscillator for a pair of coupled photons.

We first concentrated on the case in which the weak boundary reflection is
less or comparable to the DI'B. We found that for absolute instabilities to occur,
anomalous dispersion is needed to provide sufficient gain from MI. Each longitudi-
nal supermode of the absolute instability consists of two counterpropagating pairs
of sidebands. corresponding to pulsing in the output field. Analvtical results were
obtained easily from the siniple physical model we constructed. Both the growth
rate versus mode frequency and the threshold conditions were given. The mode
spacing can be considered continuous under the growth rate curve. In the special
case of identical pump waves with no bonndary reflections. our results agree with
previous numerical work.

We then considered a stronger boundary reflection for which the DB due to
the scattering of the counterpropagating pumps waves were neglected compared
to the localized mirror feedback. The system behavior is governed by the cou-
pling of copropagating sidebands and the boundary reflections. This result can
be interpreted in terms of a ['P doubly-resonant parametric oscillator for a pair
of coupled photons. This physically transparent model allows the complicated
svstem to characterized in a simple and familiar language.

For strong boundary reflections. absolute instabilities were found to occur in
both the normal and the anomalous dispersion regimes. and were described by
gain curves in the modulational frequency domain. As for the weak and anti-
reflection cases, the discrete supermode frequencies likely to become unstable are
almost continuously distributed under the gain curve. An analytical expression
was derived for the growth (damping) rate of the supermodes at different fre-
quencies. For each unstable supermode, there are generally two sidebands due

to the photon pair. which beat to cause pulsing in the field intensity. While the



instability at low modulational frequencies correspouds to the conventional Ikeda
instability. new instability regious were found that owe their existence to finite
dispersion. [For high punmip powers or large medium lengths. the instability driven
by the MI gain dominates i the anomalous dispersion regime because of the ex-
ponential dependence of the gain on these parameters. [or the normal dispersion
regime, the coutribution of the Kerr or I'WA] effects to the gain depends at most
cquadratically on these paramcters.

Below threshold. we studicd the transmission and reflection characteristics of
the svstem for a weak probe. In addition to their components at the probe fre-
quency. the transmitted and reflected beams have components at the FAVM fre-
quency due to the sideband coupling. The transuiission and reflection coefficients
were obtained analvticallv. Their frequency response consists of fast oscillations
at about the mode spacing of the svstem with an envelope that varies slowly on
the same scale as the gain curve. As the threshold approaches, the upper bound

of the envelope increases dramatically, resulting in large amplification.
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Chapter 6

Incoherence Aspects of Nonlinear

Dispersive Waves

6.1 Introduction

When a partially cohereut clectromagnetic field propagates through a medium,
its coherence properties usually change 16:17:56.57.59.81.82  \jgre gpecifically, the
output power spectrum and relative intensity noise (RIN) may differ substantially
from the input power spectrum and RIN associated with the stationary stochastic
field. The transformation between the input and the output power spectra is
a basic statistical property for many systems. For a linear system, the spectral
transformation is related to the impulse-response function and can be calculated
easily by using the Wiener-Khinchin theorem.8#% In this chapter, we consider
an optical fleld propagating through a single-mode optical fiber as an example
of a nonlinear dispersive medium. The deterministic transformation of the input
signal, in this case an optical field, is governed by a nonlinear Schrodinger equation

(NSE), which takes into account group velocity dispersion (GVD) and the Kerr-
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tvpe noulinearity respousible for self-plase modulation {see Eq. (6.1)].1%:% Thus,
the statistical properties of the output signal. such as the power spectrum and
RIN. are determined not only by the statistics of the iuput signal but also by the
dispersive and noulinear properties of the fiber.?”

In such svstems, there exists an intrinsic frequency for a given average power
of propagation that allows a direct comparison between the dispersive and noulin-
car terms in the NSE. This frequency corresponds to the peak-gain frequency of
the modulational iustability (M) iu the anowmalous dispersion regime.' % and is
also a useful parameter in the normal dispersion regime. Here the power used for
calculating this frequency vefers to the average power of the stationary stochas-
tic field. If the spectral width is much larger that this intrinsic frequency. the
nonlincar term can be neglected and the system can be considered linear to tle
first order of approximation. It is easy to see that the Wiener-Xhinchin theorem
predicts no chauge in the power spectium in this case. On the other hand. the
dispersive term can be neglected if the spectral width is much smaller than this
intrinsic frequency. For systems with negligible dispersion, the problem of spectral
evolution has been studied for an input field with Gaussian statistics.>®

Generally. the coexistence of dispersion and self-phase modulation makes the
problem of stochastic propagation impossible to studyv analytically.®? [f. however.
the input consists of a continuous-wave (CW) field plus a small noise field whose
amplitude is much smaller than that of the CW field, then the problem can be
linearized. with the small field treated as perturbation. This case is considered
in detail in Sec. 6.2, where analytical expressions for the evolution of the power
spectrum and RIN are given and are confirmed by numerical simulation.’* It
should be pointed out that the linearization method was first developed to study
85-87

squeezing in quantum optics. Here. we are concerned with the classical case.
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In the spectral domain, the linearizable case corresponds to an input power
spectrum that consists of a o-function portion plus a small part whose area is
much smaller than the area of the d-function portion. In practice. our analvsis
applies to a laser light with a small component of broad-band background noise.
It can also be applied to the case of four-wave mixing (FWM)' of a partially
coherent (broad-band) signal in the preseuce of a CW pump. Since, without
the small perturbation. the CW pump spectrum is unchanged. the linearization
method used here gives only the pump effects on the propagation of a partially
coherent field in a nonlinear dispersive mediun. It is well known that NI occurs
in the anomalous dispersion regime. Thus. our results will provide a statistical
description of MI.

Note that not all kinds of incoherence can be decomposed as a combination of
a small amplitude noise and a coherent component. Specifically, this is true for
the important case in which the pump beam has a finite spectral width. Even for
a narrow bandwith, it only means the noise is slow instead of being small. In Sec.
6.3 the evolution of the spectrum of an input pump beam with finite bandwith is
studied bv numerical simulation of two kinds of noise.®® The main results of this

chapter are summarized in Sec. 6.4.
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6.2 Pump-wave effects on the propagation of noisy

signals in nonlinear dispersive media

6.2.1 Noise propagation

The governing NSE can be written as'

B:d = = 0% A + 1] AL (6.1)

where .1 is the complex field amplitude. = is the propagation distance. t is the
retarded rime measured in a frame moving at the group velocity. /3, is the GV'D
coefficient and ~ is the nonlinear coefficient. To simplifv the notation. we will
often use 3 = /,/2 in the following. The input field is assumed to be A(t.0) =
Ao + d4(¢, 0), where [04(2.0)| < |Aq|. To zeroth-order (without noise). we have
the solution A,(¢,z) = gexp(iv]4o]|°z). Thus, we assume a solution of the form
At z) = A, + 04, = [Ag + d4(¢, 2)] exp(i7|40|*z) and linearize Eq. (6.1) in the

small perturbation 4 to obtain the linear partial differential equation
0:64 = —iB0%0A + iv(|dol?dd + AZ447). (6.2)

The solution to this equation is easily expressed in Fourier domain. By taking the

Fourier transforms of the above equation and its complex conjugate, we have

[d, — iBw® — i) 4o |}J0d(w. 2) = iy 4o |2A4204 " (—w, 2)

[d: + 38w + 17| 4o} 04 * (~w. 2) = —i7y|A¢|* AJ0A (w, 2) (6.3)

where 04 refers to the Fourier transform of &4 [i.e. JA(w) = [ 04 exp(iwt)dt].

These equations show that the basic physics is related to FWM, which causes cou-
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pling between the two sidebands o:1(w. 2} and 614 *(—w, z) located symmetrically
around the CW pump frequency.

[t is easy to obtain the general solution of the above coupled, linear. first-order,
ordinary differential cquations. Ior cach w, there are two independent solutions.
Thus. in terms of the two eigenmodes, the general solution is given by

=r et oy L (6.4)

where ¢ and ¢, are constants, and b . and r_ are defined by

ha(w) = = (71 A0]? + 32) — (7]-40]2)2. (6.5)
oy k(W) = AW = A do* vA?
relw) = v A3  ka(w) + Aw? + [ de|? (6-6)
and
o v A3 k(W) + Bw? + 7] A,
T = T R Al AT (67)

Here 7. (w) are the relative amplitudes of the sidebands d4(w, z) and 64 *(~w, 2)

for each eigenmode. and k. (w) represents the corresponding dispersion relation.
If the field at the input 2 = 0 is known, Eq. (6.4) can be used to determine the

two constants ¢ and c¢,, and the field within the fiber can be expressed in terms

of the input. After some straightforward algebra, we obtain

dA(w, 2) My(w.z) Ma(w,z) 5A(w, 0)
SA*(~w. 2) My (w,2) Mp(w, 2) A *(=w,0)



134
where

My = (e =™/ =),
Mp = r_(e* " =™ /(L =ror.).
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.\122 = (Clk-: - 7'~7'7ka‘:)/(]- - ]."7'—)' (69)

6.2.2 Power spectrum of the field

[rom the \Wiener-IXhinchin theorem.®? the power spectrum S{w. ). defined as the

[Fouricr transform of the antocorrelation of the field. can be calculated as

S{w.2) = ([T, + 3L,[/T

= (L) /T + (A4, + 4,°04) /T + (|64,*)/T

= [4o[*6(w) + (|dd(w. 2)[})/T. (6.10)

where the time window T extends to inifinity as the limit. The cross term vanishes
after averaging since .1; can be moved out of the average and (d1,) = 0.

Define AS(w. 2) = S{w.z) — |46]?d(w) , i.e. remove the unchanged portion of
the spectrum corresponding to the CW signal . Since d4(w, z) can be calculated

from Eq. (6.8), we have

AS(w,z) = (IMOA(w,0) + MdA " (—w,0)|?) /T

= 'J"III‘QAS‘(UJ)O) + |‘/"‘[12|2/—\S(—w70)7 (611)

where we have assumed (04 (w. 0)0A(—w, 0))/T = 0 or, equivalently, (64 (¢, 0)dA(t+

7,0)) = 0, which is true in most cases. The above equation is a linear transfor-
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mation between the spectrum AS at the output and the input. Both sidebands
participating in the WM process contribute to the output.

After furcher simplification. the output spectrum is given by

where & is given by Eq. (6.3) regardless of the sign convention. Notice that

when £ 1s imaginary. correspouding to ML sin®[k(w)z]/A*(w) = (1/-1)[exp(

expl(—=1k|2)]? /K%

k

Equation (G.12) predicts no spectral change in the limit of weak pump power,
consistent with the result for a linear dispersive svstem. In the limit of zero

dispersion, Eq. (6.12) becomes
AS(w. z) = AS(w. 0) + (29)40]%)*[AS(w, 0) + AS(~w, 0)] (6.13)

which is valid as long as z is small enough that the noise power remains much
smaller than the pump power.

Figures 6-1 and G-2 display the output spectrum at different distances for a
symmetric input spectrum, for the cases of normal and anomalous dispersion,
respectively. Notice that even in the normal dispersion region where MI does not
occur, the nonlinear dispersive effects greatly affect the spectral evolution. From
Eq. (6.12), the spectral intensity at any frequency oscillates with distance (except
at zero frequency where it grows as z2) due to the factor sin?[k(w)z]/[k{w)]?. The
period is 1/k(w), which is longer for smaller frequencies and goes to infinity at
zero frequency. Thus, the frequency components around zero keep growing while

fringes are formed on the spectrum. At a fixed distance, the power spectrum
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[Figure 6-1: The spectral evolution at different distances in the normal-dispersion
region for a symmetric input spectrum. ['WM causes the quadratic growth and
fringe formations. The distance is normalized to € = zv|Aq|? and the frequency is
normalized as w [|3;]/(v|40|?)]*/? /(7). The FWHM of the input noise spectrum
is 0.4, its average intensity is 3.2 x 107° times of the pump intensity. The vertical
axis has a relative unit.
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Figure 6-2: Same as Fig. 6-1 except for the sign of the GVD parameter. MI
effects dominate at large distance.
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is a oscillating function of frequency. The oscillations become faster at larger
distances [see Eq. (6.12). and also [ig. 6-9 below]. The formation of the fine
fringes indicate a very loug correlation time (since the autocorrelation of the field
is just the [Fourier transform of this spectrum) even if it is short at the input. This
is an interesting statistical phenomenon since it seems to indicate that tlie input
fleld becomes morve coherent after propagation because of pump-induced FWNIL
The quadratic growth of the field spectrum near the zero frequency where the
dispersion 1s negligible can also be explained in terms of self-phase modulation
since the total field can then be written as [4o + 0A(2.0)] exp[iy| 4o + A (2. 0)]?2] =~
Ay 4+ 54t 0) expliv] o2z + ivdoz[AedA(f. 0)T + c.c] where the term linear in z
causes the gquadratic power-spectrum growth.

[n the anomalous dispersion region and at large distances. the exponential

growth due to MI dominates. [or this case, Eq. (6.12) can be written as

AS(w. z) = (v

Ao?)2[AS(w.0) + AS(~w, 0)] exp(2[k]2)/(2[k])? (6.14)

for large . The output spectrum is symmetric, independent of the symmetry of
the input. If the input spectrum is broad enough (as is in IFig. 6-2), the two peaks

are at the frequency of the peak gain of MI. which is the maximum of |k(w)| at

w = E/¥|40]?/B. The linear approximation will eventually break down when the

noise amplitude becomes comparable to the pump amplitude.

In order to confirm of the validity of the linear approximation, we have also
performed numerical simulations by assuming Gaussian statistics®® for the input
field. Our numerical model is constructed as follows: For the noise field, two
independent Gaussian random number generators are used as the real and the

imaginary parts of the input field after going through a filter which determines the
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shape of spectrum. This is added to the CW field to form the input field. Eq. (6.1)
is solved for cach preparation of the input. using the split-step Fourier method.'?
In order to avoid complications at the temporal boundaries. a broad Gaussian-
pulse carrier is used whose width is much larger than the time scale of fluctuations,
and the non-stationary effects introduced bv the carrier are eliminated by applving
a smaller window (than the pulse width) for calculating the power spectrum and
the RIN. The results are averaged over 100 realizations by integrating the NSE
100 times.

[Figures 6-3 and 6-4 show the numerically-determined spectral evolutions cor-
responding to [igs. 6-1 and 6-2. The analvtical results agree with the numerical
simulations. although deviations begin to occur for large distances in the anoma-
lous case when the amplitude of the noise field becomes comparable to the pump
amplitude due to Ml The appearance of additional peaks in the spectrum, which
we attribute to higher-order WM effect, also indicates that our analytical treat-

ment becowmnes invalid.

6.2.3 Relative intensity noise

Besides the autocorrelation or the power spectrum of the field, another ¢uantity
of statistical importance is the RIN. It is defined as the Fourier transform of
the autocorrelation of the relative intensity fluctuation ¢/ /(I) of the field, where
6 =1 —(I) and I = |A|? is the intensity. Thus it is related to the fourth-order
moment of the stochastic field. In our case, I = |Aq + 8A(¢, z)|2. Consistent with

the linear approximation, this leads to

8I(t, 2)/(I) = [450A(2, z) + HadA™ (8, 2)]/

Aol?. (6.15)
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Figure 6-3: Numerical simulations corresponding to Fig. 6-1. The center portion
is the CW spectrum, which is subject to finite resolution due to the finite temporal
window used to calculate the spectrum. The sign of the GVD parameter is positive
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Figure 6-4: Same as Fig. 6-3 except that the sign of the GVD parameter is
negative.
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By using the Wiener-Khinchin theorem, we find the RIN to be
RIN(w. z) = (|A§0T(w. 2) + Aodd*(—w. 2)[%) /(T AlY) (6.16)
By using Eq. (6.8). we obtain.

RIN(w.z) = |40 + Ao Mo 2|64 (w. 0)|2) /(T | Ao|)
HlATM + Ao Mo 26 (=w. 0)]3 /(T Aol?)
= |‘18A[|1 + .'lol‘[gllzig(w.O)/‘:l(]w

F A Mo + Ao Mg P AS(—w. 0) /] Aot (6.17)
[Further simplification gives

27| 4o/? sin® [k(w) 2]
2’}’|.40‘2 + /id'z

RIN(w, z) = | 4] ?[AS(w. 0) + AS(—w. 0)]{1 - }. (6.18)

where £ is given by Eq. (6.5) regardless of the sign convention. From this equation
we have RIN(w,0) = | 4o *[AS(w.0) + AS(—w,0)], indicating that the RIN is
always svmmetric at the input. The final result is thus,

_ 29]40f sin? [k(w)z]

RIN(w, z) = RIN(w, 0){1

}. (6.19)

This is a linear transformation between the RIN of the input and the output.
Eq. (6.19) also predicts that without nonlinearity or dispersion (i.e., |42 = 0 or
B2 = 0), the RIN will not change (in the linear approximation).

[igures 6-5 and 6-6 show the evolution of the RIN corresponding to the cases of
Figs. 6-1 and 6-2, respectively. Figs. 6-7 and 6-8 are the corresponding numerical-
simulation results. Like the power spectrum, even in the normal dispersion region

where there is no MI, nonlinear dispersive effects change the RIN. Because of
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Figure 6-6: Same as Fig. 6-5 except that the dispersion is anomalous. MI effects
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Figure 6-7: Numerical simulation result corresponding to Fig. 06-5. The GVD
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the factor sin® [k(w)z|/(27|4¢|* + Bw?) in Eq. (6.19), the RIN at any frequency
is oscillating with distance. except at zero frequency where the RIN is always
unchanged . The period 1/k(w) is longer for smaller frequencies and it goes to
infinity at the zero frequency. Thus. the RIN at zero frequency is unchanged
while fringes will be formed at other frequencies. For a fixed distance, the power
spectrum is a oscillating function of frequency and the oscillation becomes faster
at larger distances. The numerical simulation confirms our analysis.

[n the anomalous dispersion region and at large distances. the MI will domi-
nate. since for large =. Eq. (6.19) can be written as

1ol exp(21k]2)
dy[Aol? + dow?

RIN(w. 2) = RIN(w. 1) (6.20)

indicating an exponential increase due to the MI gain. If the input spectrum is
broad enough (as it is in our example), the two peaks are at the frequency of
the peak MI gain, w = £/2v|4¢|?/3,. The linear approximation will eventually
break down at extremely large = when the noise amplitude becomes comparable
to the pump amplitude. This is evident from the numerical simulations in which

the appearance of additional peaks on the RIN occurrs because of higher-order

FWNI effects.

6.2.4 Noise-induced four-wave mixing

Four-wave mixing occurs when a CW pump wave and a weak signal or probe wave
(usually with a different carrier frequency) coexist in a nonlinear medium.!? It
has found many applications, including the use of its phase-conjugation effect to
cancel the dispersive spreading of optical pulses in a fiber link for a broad-band

communication system.®8% In many cases, it is important to understand the
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statistical properties of the fields after undergoing FWM, such as the shape of the
field spectrum and the correlation time. Although it was developed in a different
context, our formalism for the propagation of a stochastic field is well suited to
describe FWM. In fact. Eq. (6.12) can be applied directly to the case of FWM
in which a CW pump and a weak noisv or broad-band probe are present at the
input. In our linear approximation. the CW pump is undepleted. Since Eq. (6.12)
is a linear transformation between spectrum of the nonpump part at the input
and output. we first consider a probe with a narrow spectrum centered on w' at
the input. i.c.. AS(w.0) = [.(0)d(w - w'). where [.(0) is a constant. [rom Eq.

(6.12). we have

Li(z) = L)1 + (v]dol*)?sin® [k(w")z]/[k(W)]’],

I-(z) = L.(0)(7]4o|*)?sin® [k(w")2]/[k(w)]?. (6.22)

This equation describes the FWM generation of the sideband at —w’ or idler due
to the coupling to the sideband at w'.

Notice that in the weak-pump limit, i.e. 7|Aq|> < |k(w')|, the sideband at —w'
is not generated since there is no coupling in this limit. In the case of zero GVD,

the coupling behavior also changes, and Eq. (6.12) leads to

[(2) = L(0)[1+ (274o[*)?]

I(z) = L.(0)(zy

AoH% (6.23)
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These equations cease to be valid when /. becomes comparable to |.44]?.

In the normal-dispersion case, [, and /_ exhibit in-phase oscillations with the
propagation distance, with a period 1/k(w') that is longer at lower frequencies. In
the anomalous dispersion case, [, (=) ~ [_(z) ~ 1,(0)(L/4)(v]|4o|?) 2 exp(2|k|2)/|k|?

at large distances. with the exponential growth caused by the MI gain.
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Figure 6-9: Spectral evolution at different distances in the normal dispersion
region for an asvmmetric input spectrum corresponding to FWM with a noisy
probe. The noise spectrum is centered at 0.05 with FWHM=0.02 and the other
parameters are identical to those of Fig. 6-1. The GVD is normal

Figures 6-9 and 6-10 show the spectral evolution associated with FWM in-
duced by a probe of finite bandwidth for the cases of normal and anomalous
dispersion, respectively. A Gaussian probe spectrum is assumed: AS(w,0)
exp —[(w — w')/Aw]*. With above analysis for a narrow-bandwidth probe, the
qualitative behavior can be understood easily since the spectrum can be linearly
decomposed into many independent narrow-bandwidth probes. In the normal dis-

persion region. a spectral wing is generated at the frequency that is symmetric to
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Figure 6-10: Same as [Fig. 6-9 except that the noise spectrum is centered at 0.15
with F'WHM=0.04 aund the GVD is anomalous.

the probe frequency. Initially, the intensity oscillates with propagation distance.
Since each frequency component has a different oscillation period and different
initial intensity, the wings will be shifted and split to develop fringes. The aver-
age oscillation with distance will be saturated as more and more fringes appear,
since they are all out of phase with each other. In fact, for large distance the
envelope of the two wings settles down at frequencies around +w’, with average
intensities that is proportional to [1 + (v]Ao|?)?/k?(w)] exp —|{(w — w')/Aw]? and
(v

fringes under the envelope that gives the approximate correlation time. Thus,

Ao|H)?/k*(w)] exp —[(w + w')/ Aw]?, respectively. It is the inverse width of the

the coherent time of the noisy signal and idler keep increasing as they propa-
gate. In the anomalous dispersion case, MI will produce symmetric wings at large

distances. Because the gain peak is at +,/2v|Ao|?/B,, the wings will be pulled

toward this frequency position as they grow with distance.
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Note in both the normal and anomalous dispersion cases, the spectrum of the
generated idler is not simply the mirror image of the input spectrum of the signal.
This is due to the effect of GVD on the process of FWM. From a practical point
of view, this plienomenon implies that midsystem spectral inversion by FWM in a
dispersion-shifted fiber. a technique proposed recently for dispersion compensation
in fiber-optic communication systems,® can be affected by the residual dispersion
in the dispersion-shifted fiber. A detailed study from a systems point of view can

be found elsewhere.

6.3 Spectral evolution of large-amplitude noise

As was pointed out in Sec. 0.1, the noise that causes the finite bandwidth of the
pump beamn can not generally be treated as a small amplitude noise. The study of
the propagatiou of a stochastic field in a nonlinear dispersive medium has not only
theoretical importance but also practical implications.36:37:8291-93 Eor example,
the correlation time of the optical field (which is the inverse of the FWHM of the
spectrum) is very critical for short-time-resolution experiments.’*

Although the governing equation is the well known NSE Eq. (6.1), there is
no satisfactory analytical way to predict the evolution of the power spectrum of
partially coherent CW light when both dispersion and nonlinearity are important.
Thus numerical simulations are generally required. Previous work’? concerned an
optical field with Gaussian statistics propagating in the normal dispersion region.
However. the result can not be extrapolated to fields described by other stochastic
processes.

To see this, let us simply neglect dispersion and compare two kinds of stochastic

field at the input, one with Gaussian statistics and the other with only phase noise.
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For the Gaussian field. the previous work® led to analytical results showing that
the spectruin is broadened on the scale of the nonlinear length Ly.'? Using a
similar approach, we can further show that the field becomes nonGaussian on the
same scale.

However, a simple analvsis using the NSE without the dispersion term predicts
no change of spectrum for the field with only phase noise. I[u fact. since the
intensity is a constant, the [Xerr effect. which only respond to intensity. does not
change the statistical properties at all during the propagation.

[t is worth mentioning that the spectral evolution of a small additive noise to
a coheren: CW wave in a nonlinear dispersive medium 1s also on the scale of the
nontinear length.™

In this section. we cousider input fields with two conunon statistics, a Gaussian
process that corresponds to a thermal field and a diffusing-phase process that
corresponds to laser light. and study their propagation in both the normal and
anomalous dispersion regions of a fiber, as an example of a nonlinear dispersive
medium. The parameter regions of the problem are classified and weak turbulence
theory®® is reviewed. The results from numerical simulations for strong-turbulence

parameters are then presented and discussed.

6.3.1 Classification of the parameter regions

The governing NSE which relates the input and output field is shown in Eq. (6.1)
Thus, the statistical properties of the output field, such as the power spectrum, are
determined not only by the statistics of the input field but also by the dispersive
and nonlinear properties of the fiber.

Since the coefficients of the NSE are time independent, it is easy to prove that
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if the input field is a stationary (CW) process, it will always remain a stationary
process with the same average intensity, (|4]|2) = P. We define the nonlinear
length and dispersion length as Ly = 1/vP and Lp = 2/[|3:](rAv)?], respec-
tively, wherc Av is the F'WHM of the power spectrum. Furthermore, we cefine a
frequency vy = /|2v7/ 32| /27, which corresponds to the peak growth frequency
of modulational instability (M) if a coherent field with same power in the anoma-
lous region were considered. By working in the normalized variables 1 = 7 Avt.

T=z/Lp and .1 = A/VP. we have the following equation:

. . 2 Ly

Oed = —isign(h) 054 + | A2 (6.21)
where the magunitude of 1 is the order of unity since (|A[?) = 1. The temporal
scale of its variation i1s also the order of unity since we work in the normalized
time. The only free parameter now is Lp/Ly.

We define weak turbulence by the condition
Ly > Lp or Av/2> vy. (6.25)

When this condition is satisfied, the nonlinear term can be neglected in the first it-
eration of a perturbation method. Since the power spectrum is given by S(w,z) =
(I_;TP) according Wiener-Khinchin theorem, where A=1 /(27) [ Aexp(—iwt)dt is
the Fi ourier transform of A, we prefer to work in Fourier space and the solution is

simply 4 (w) ¢p(isignw?z). Continuing the iteration, we have

1) // _(0)~~(0)—(0)E\p[ ik — ky — kS);]
3 E+k — ko — k3

X()(w + Wy — Wy — wg)dwlduJdeg,
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where & = sign(3,)w? and &, = sign(3,)w? (i = 1.2,3).

The next iteration. which is of order (L /Ly )?. contains a secular driving term
which produces large changes in j(m over a normalized length of order (Ly/Lp)?
(or physical length of order L3 /Lp). By similar consideration, Haselman and
[95.96

Benney et a erived the equation for the power spectrum of a nonlinear

dispersive water wave. [n the context of our discussion. the result can be written

as

0.5 = Ax(Lp/Ly)’ ///[5,52(3;; + ) = $45(S1 + Su)]

X0(w + wy —wy —wy)olh + k| — ky — hs]dw dwsdws, (6.26)

where S = S(w.z) and S, = S(w,, 2) (i = 1,2,3).

The physical meaning of this equation has been discussed extensively.%-% Here
it is enough to see that it describes a stimulated process of four-photon interaction.
The first term is due to the induced generation of photons and the second term is
due to the induced decay of photons. Indeed, it is easy to see that this equation
predicts spectral change on a spatial scale of order L3,/Lp, which is much stower
than the Ly spatial scale obtained when Av = 0 (in which case condition (6.25)
is not satisfied) in.>® In fact, the situation is much more complicated when the
weak-turbulence condition is not satisfied and the scale dependends on the specific
stochastic process and on whether the dispersion is normal or anomalous, as was
mentioned in the introduction to this chapter. In the following section, we perform
numerical simulations on two kind of input fields, one with Gaussian statistics and

the other with a diffusing-phase statistics.
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6.3.2 Numerical simulation and discussion
To simulate strong turbulence, it is helpful to use the normalized length T = z /Ly,

and time t = 1/(27vy). in which case the governing equation (6.1) becomes

O A = —isign(fy)0%A + |4

74, (6.27)

where (|.1|?) = L. The free parameter to change in the numerical simulation is
now tlie spectral width.

For an input field with Gaussian statistics,®* our numerical results are obtained
by a method similar to that used in Sec. 6.2. To summarize, two temporal series.
corresponding to the recal and imaginary part of a complex field in time, are
generated by two independent Gaussian random number generators. The complex
temporal field is then put through a digital filter which uses a filter function to
perform a convolution on the input field. We change the F'WHM of the spectrum
of the filtered field (which is also a Gaussian process) by using a filter function
of Gaussian shape and varying width. The filtered field is then normalized so
that the average intensity is unity and the normalized field is taken to be one
realization of the input field. The next realization is obtained by continued use of
the Gaussian number generators and aforementioned procedure is repeated. Eq.
(6.27) is solved for each realization of the input field, using the split-step Fourier
method.!? The density of grids in time has to be much larger than the maximum
spectral width of the field, both at the input and during the evolution within the
propagation distance considered.

In order to avoid complications at the temporal boundaries, a broad Gaussian-
pulse carrier is used whose width is much larger than the time scale of fluctuations

both in the input field and during propagation within the distance considered. The



non-stationary effects introduced by the pulsed carrier wave will not show up if
we apply a smaller temporal window (than the carrier pulse width) around the
peak of the total ficld when calculating its Fourier transform to get the spectrum.
In our case, we used a Gaussian shaped window. This temporal window limits
the resolution to approximatelly its inverse width. but we make sure that we get
enough resolution by using a large window. This is similar to an experiment in
which the laser pulse is long and the resolution of the spectrometer is sufficiently
limited that the laser can be considered CW.

According to the Wiener-Khinchin theorewn. the power spectrum is obtained
by averag.ig the intensity of the Fowrler spectrum calculated for each realization.
We averaged over 100 realizatious by integrating thie NSE 100 times. The rel-
ativelv wide temporal window, high temporal grid density and large number of
realizations all lead to long computation times.

In order to generate the diffusing phase process, we use the fact that the diffus-
ing process is the integration of white notse.®* White noise can be approximated
by broadband Gaussian noise, the generation of which was described above. Then
the diffusing-phase process is generated by using the diffusing process multiplied
by a constant as the phase of a field of unit amplitude. As this constant effectively
changes the magnitude of the white noise, the FWHM of the Lorentzian spectrum
of the genearated field can be adjusted by changing the constant. The broad-
band Gaussian noise can be considered as white noise as long as its bandwidth is
much larger than the bandwidth of the Lorentzian spectrum of the diffusing-phase
process that is generated. Thus we have approximately obtained a realization of
the diffusing-phase process. The remaining considerations such as grid density,
carrier pulse, temporal window, and averaging are similar to the case of Gaussian

statistics.
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Figure 6-11: Spectral evolutions over 6 nonlinear lengths for two Gaussian pro-
cesses with different input bandwidths. The dispersion is normal.
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The numerical results for input Gaussian random processes are shown in Figs.
6-11 and 6-12 for the normal and anomalous dispersion regions, respectively. Two
different vales of the FWHAI of the initial Gaussian spectrum are considered. In
all cases, the area of the spectrum is conserved as the wave propagates. as expected
for a constant field intensity.

In both the normal (Fig. 6-11) and anomalous dispersion (I'ig. 6-12) cases, the
spectra broaden over several nonlincar lengths. and then tend to settle down. This
1s consistent with our parameter analvsis. As the spectra broaden. the dispersion
lengths get shorter while the nonlinear length is unchanged. This brings the
weak turbulence region closer. where the evolution scale is much longer than the
nonlinear tength. The figures also show that broader initial spectra (b) reach the
saturation stage faster. as expected. The spectral widths at satuation are less
different in (a) and (D) than are the input spectral widths. This indicates that
the asymptotic behavior of the spectral evolution for Gaussian input fields are
determined primarily bv the nonlinear dispersive nature of the medium, which
is characterized by 7P and f,. The anomalous cases ([ig. 6-12) show more
broadening due to the effect of MI. In fact, the feature of spectral wings of MI
slightly shows up in the case of the narrow input spectral width [Fig. 6-12 (a)].

However, it is much less dramatic than in the case of a coherent pump with small

additive noise.?*

The corresponding results for input diffusing-phase processes are shown in Figs.
6-13 and 6-14, for the normal and anomalous dispersion regions, and for smaller
(a) and larger (b) FWHM at the input, respectively. In contrast to the Gaussian
process, the spectra in the normal dispersion cases do not broaden. but narrow
slightly as the waves propagate. This is partly due to the fact that phase noise 1s

less effective than the amplitude noise in terms of nonlinear spectrum broadening
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since the Kerr nonlinearity is only intensity dependent. The slight narrowing may
be attributed to the fact that "W\ interactions of the spectral components are
nearly phase-matched around ouly the zero frequency and produce destructive
interference for other frequencies during propagation over a long distance.®*

In the anomalous dispersion cases (IFig. 6-14), the spectra still broaden due to
the effect of MI, and the wider spectrum [[Fig. 6-14 (b)] leads faster to a satuation
of the broadening. As in the case of an input Gaussian process. the spectral
wing feature of MI is more evident for a narrower input spectrum [Fig. 6-14 (a)],
and i1s much weaker than in the case of a coherent pump. The broadenings are
saturated later with spectral width less different in Fig. 6-14 (a) and (b) than
they are initiallv. The implication of this behavior is similar to that given above

for Gaussian input fields.

6.4 Conclusions

In this chapter, stochastic aspects of nonlinear dispersive wave propagation were
investigated by studying the cases of small-amplitude noise and large-amplitude
noise.

For small-amplitude noise, the pump effects on the propagation of a stochastic
field in a nonlinear dispersive medium were studied both analytically and numer-
ically. Simple expressions were obtained for the evolution of the power spectrum
and the RIN as the propagation distance changes. [t was found that in the case of
anomalous GVD, MI plays a dominant role at large distances, as expected, where
both the power spectrum and the RIN grow exponentially according to the MI
gain to achieve symmetric patterns about the pump frequency. Even for normal

GVD, the FWM effects are not negligible. Each sideband generates another side-
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band at the FWM frequency, thus establishing correlations between frequencies
symmetrically located about the pump frequency. This causes oscillations of the
power spectrum (and the quadratic growth near the pump frequency) and the
RIN with propagation distance. Siunce the oscillations are frequency dependent,
fringe formatious are found on the power spectrum and the RIN. The results were
applied to the case of a symmetric input-spectrum, which corresponds to laser in-
tensity noise, and to the case of an asvmmetric input-spectrum, which corresponds
to the FWNM of a broad-band probe in the presence of a CW pump.

[or large-amplitude noise. we studied the spectral transformation of stationary
noise propagaing through a nonlinear dispersiove medium. The parameter regions
were characterized by comparing the dispersion lenth Lp, which usually changes
during propagation. and the nonlinear length Ly, which is constant during prop-
agation. [or Lp <« Ly, weak-turbulence theory can be applied and predicts a
spectral broadening scale of L% /Lp, which is much longer than the nonlinear
length. In strong turbulence case, numerical simulations were carried out in both
the normal and anomalous dispersion regions for input Gaussian processes, which
correspond to thermal fields, and for diffusing-phase processes, which correspond
to laser fields. Due to the effect of MI in the anomalous dispersion region. spectral
broadening happens quickly (over two or three nonlinear lengths for the chosen
parameters) and then slows down as the weak turbulence region approaches. The
initial spectral width determines how fast the satuation happens but has less ef-
fect on the value of the satuated spectral width. The spectral-wing feature of MI
is more evident for narrow initial spectral widths and is much weaker than in the
case of a coherent pump. In the normal dispersion region, the spectrum broadens
and evolves towards the weak turbulence region (as in the anomalous region) if

the input process is Gaussian. However, for an input difusing-phase process, the
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spectrum narrows slightly during the propagation. This indicates that different
roles are plaved by phase noise and amplitude noise in the spectral evolution of a

wave propagating in a Kerr medium.
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