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Abstract 

This thesis is a 1.cport 011 sel-era1 aspects uf tlie ~iioc[ulatioiial iiistilbility of a 

wave propagati~ig ill il riorilinear clisl,ersive niediunl. 

.-hi iiilpulsc-rcsponse a~i;slysis is perfor~ned analytically to stutly the spatiotern- 

11orul iristi~l)ility of a iiorili~iear ctispersivc wave. Tlie asymptotic Green function 

is ol)tili~iecl for both riiocl~~latiorially stable i.\nd 11nstable cases. 'I'lie c.oriclitio~is 

for ai,solutc i ~ ~ i c t  convective i~istability are found, as are the frecluency region for 

amplification, ancl tlie s1)at:ial and te~iiporal growth rates. 

The  ionl linear Schrijdingcr ecluatio~i does 11ot describe fast riloclulatioiis ade- 

cluatelj. because it is l~asecl 011 a Taylor espansion in the frecluency domain. Here, 

harnlonic analysis is used to study the effects of the entire modal dispersion curve 

ilnd the frecluency clel~endeiice of tlie nonlinear coefficients on the properties of 

nlodulational instabilities. ;Yen1 regions of instability for ctisl~ersion-flattened fibers 

are found and characterized 1jy this approach. 

The interaction of two light waves. having different frecluencies and propagat- 

ing in a dispersive nonlinear medium. is studied using the method of Zaltharov 

[Sov. Phys. J E T P  24. 740 (1967)l. It  is shown that  cross-phase nlodulation does 

not necessarily lead to inst.ability of the incident waves. Different configurations 

leading to instabilities are ciiscussecl. 

-1 comprehensive analytical stud!. of temporal rilodulatiorial instabilities in a 

finite nonlinear dispersive meciiunl is presented. The use of a perturbation rnethod 



results ill tlie 1)1i!-sicall!. traiisl);~rcrit ii~o<tel of a doubly-resorialit optical parametric 

osc.illiitoi. tliat itllows siiiil)lifici~tiori illlcl cliiu.ac:tcrizatiori of the coinplicitte<l s!-stem 

in fiirlliliar litrlguagc. Tlie gen12ritl rc:sults ('it11 I)c iilterpretctd 1):. usiiig kt11 ;t~ialogl? 

to it  deturie<t tlistril~uted-fee(lI);icI; structure. The effects of boundary reflections 

iuicl disl)ersioil itre slion~ii t o  I)e irliportnrit. 

Stoc1i;wtic. itsl)ects of norilir~car tiispersivc Wii1.e ;.ire itlso irivestigatect. For small- 

ii~i~l)litu<te ~ioisc. stocliastic ficlcl pi'ol)agation ill rio~ilinear ctisl~ersive media is stud- 

ied iirl;tl~.ric:ttll!- iri tlie ~~ridel)letcd-l)~~inl,  itl)l)rosimatioii. Power spectrum and 

relative-illtellsit!--1ioise sl)ectrurn is ol,tai~ied. -1 statistical description of rilotl~lla- 

rioilal irlsti~l)ilit!, is gi1-en iri tlil: itrlorllalo~~s ttisl)ersio~i regime. For large-itinl)lit~~<Ic 

uoisc?. rlie sl)ec.tral trit~isfi)r~il.atio~i of statio~iar!. ~loise (Caussiail i ~ n d  diffusing- 

pliasc I)rocc!sses a t  tlie illput) goirig through a nonlinear dispersive mcdium is 

studietl iiuincrically. The rc:iult~ indicate tlifferent power-spectrum c1-olutioris 

depe~idirig 011 the sigri of' the dispersio~l coefficierits and the kind of stochastic 

processes. 
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Chapter 1 

Introduction 

1.1 Introduction 

~4otlulatioiial instabilit!. (MI) is one of the inost fundamental plienomerra in the 

physics of norilinear n7ave propagation. In the presence of MI, a nonlinear contin- 

uous wave (C\Y) is not a stable state of the system (in contrast to the case of a 

linear \\rave). Due to the conlbi~ied action of group velocity dispersion (or diffrac- 

tion) arid tlie i~itensity dependence of tlie refractive indes, any srilall perturbation 

of tlie CIY state will grow esponentially. 

Because of their fundamental nature. MI'S have played a prominent role in 

diverse areas of scientific research since tlieir discovery more than twenty years 

ago.'-' In particular, the advent of lasers gave them practical inlportance because 

rilost riledia cannot be viewed as linear in regard to the propagation of large- 

amplitude electror~lagnetic (EM) waves. Naturally, hill's are of great concern in 

most branches of nonlinear o l ~ t i c s . ' ~ - ~ ~  

For esanlplel in laser fusiont the nonlinear medium is a plasma. hlII tends to  

destroy the uniformity of the laser light that is required for efficient compression 



of the iiuclear fuel." In optical phase co i i j~ga t ion , ' ~~ ' "  uniform reference \Iraves 

are also rccluirecl for a Iligli-clualit:. c:o~i,jugate wave to be generated 1))- four-\\lave 

inixing (F\V.\l). 111-iiicluccd iionuiiif'orinity is tllus i.1 linlitiiig factor. In fiber- 

optical cornnluilicatio~i s!.stenls.'"lI a~ilplifics rioise and increases the l)it error 

rate. l6.17 

0 1 1  tlie otticr Iiaric\. 1II (.iLn Oe utilized to orie's advantage. In fact, it has 

I,eeii ;~l)l,lictl to ol )ti(.i~l s\vitc:hiiig. 1 8 ,  '%tiort 1)ulsc. g c : ~ i e r a t i o i i ' ~ ~ ~ ~  a~icl ~)araiiletric 

"" -2.5 ;tnll)lificatiorll' iiiicl oscillatioii-- iri optical-fiber based systems. Of particular 

iritcrcst, is tllc! c.o~iiicc.tioil I)c~t\vc~rri 111 iiiid tlie formation of optic:iil ~ o l i t o i l s ' ~  in 

it f i l~r r .  L;ec.itusc~ of' their rol>ust natnre, these solitoris citli I)e llsecl its the natllral 

bits ill  high-speed long-tlistarice communicatiori. 

In tlie f'ollo\vi~ig anal\.sos. focus is made or1 cases in ~vhid i  a one-dimensional 

( I D )  model is aclcqllate and \.itrious aspects of lorigitudinal or temporal 111's are 

studictl. .-llthough optical fibers is ofteri llsect for reference, the analyscs are also 

relevant to  the other areas of research rile~itioned above. 

1.2 Physical mechanism 

-4s an  example of' how this kind of instability can happen, consider the simple 

1D problem of a single C\V nrave propagating in an  instantaneous [<err medium. 

In such a medium, the nonlinearity causes the dispersion relation to depend on 

the nrave intensity. In the nonlinear geometrical optics a p p r o ~ i m a t i o n , ~ ~ ~ ~ ~  one 

can write the field as A(t ,  z )  esp[iO(t, z ) ] ,  where the scale of change in 8 is much 

faster than in '4: arid in the local nrave number k G dz8 and frequency w z -ate. 

In  this scheme. the first-order approximation gives -dt8 = ~ ( 8 ~ 8 ,  1.412): which 

is identified as the local nonlinear dispersion relation in a ICerr medium. The  



second-order itl)prosinlatioil gives tlic conservatio~l of action nrhich is prol~ortional 

to 1 .  Fur \\oak ~loiililicarity. the first c:clrlatio~i can be written (tlfter taking 

clerivativcs with rcspcct to c oil botli sides aricl consiclcring /..112 a snlall cluantity) 

as 

I11 these cvluatiorls. r . ,  = &/ilk tuitl X(k) = -i)w/8l.-ll'. 130th cierivativcs are 

evaluiitccl a t  1.11' = 0. 'rile first equation iridicates that. ill linear regime. cacli 

group of wavelets with a certai~i \\.ilve number convects a t  its group velocity, as 

is \\.ell lciio1\~11. Tlle ~ionliriear effect riloclifies the wave ~iunlber as the group prop- 

agates. Tlie scconcl ccluatiori is the converitional form of a conservation ecluation 

iridicatiiig that  energy convects with the local group velocity. 

The initial conditions corresponding to a plane wave are k(0, c)  = ko and 

I.A(O. z )  1' = (.AO 12. for which the constant solutions are k ( t ,  z )  = ko and l--l(t. 2 )  l 2  = 

1.A0I2. Yon' co~isider a small amplitude perturbation to this ecluilibrium. i.e. small 

humps in intensity I = /.A)' ill the iiiitial condition [Fig. 1-1 (a)].  

It  follo\vs from Ecl. (1.1) tliat instead of being constarit. I; is nonr a clecreasing 

function of time in the front half of ex11 hump and is an increasing function of time 

in the rear half of each hump, when X is positive. If v, is an increasing function 

of I;. then, from Ecl. (1.2), the front half of each hump is retarded while the rear 

half of each hunlp is advanced. PYave energy accumulates a t  the center of each 

hump and the perturbation grows as it convects [Fig. 1-1 (b)]. Conversely, if v, is 



Figure 1-1: Scheiiiatic illustratioi~ of the teinporal growth of an intensity 1)ertur- 
I~atiori 

a dccrcasirilr; furiction of k .  then tlie front half of each hump is advanced while the 

rear half o f  cacll 11~lilil) is rrltitrti~tl. \I7it\-(1 c,~lcrgy spreacis outn'i~rd fro111 the ceriter 

of (!i\ch 11~111\ )  itntl t11e l)el.tul.ljittic)~~ clc:c~.c:tses. 'l'hus the l)la~~e-wi~l-c ocluilibria 

are ~ l io t i l~ la t ior~a l l -  1111stal)l(: if X is positil-c i \ i ~ t i  r : ,  is an increasirig fur~ction of 

k or. alterriatcl~., if X is negative iind c, is a clecreasirig function of k .  Figure 

1-2 illustrates representative wavelet trajectories and the resulting changes in the 

liump irite~isity for tlie case of liriear medium. and the cases of motlulationally 

stable and unstable rionliriear syste~ils. 

The iio~iliiiear geo~i~etrical-ol~tics nloclel tiescribed above does not coilsider the 

effects of clisl~ersioii in their entirety. Specifically, it neglects tlie part similar to 

diffractio~i in physical optics tliat spreads the humps to prevent energy getting 

too concentrated and, hence, tends to stabilize the process. In fact, hII's gener- 

ally disappear for relatively fast ~noclulations, as indicated by the more accurate 

model described below. In the 1D case, the compression process is eventually 

counterbalarlced by this dispersive spreading effect on the steepened huml~s.  

From the preceding argurnerit. one can see a f~~ndamenta l  aspect of nonlinear 

dispersive wave propagation. that is the interplay between dispersion and the Iierr 

nonlinearity. hlII is closely related to soliton physics. It  is well lcnown that  a single 



t ?  linear medium 

modulationally stable modulationally unstable 

t nonlinear medium nonlinear medium 
t ?  

Figure 1-2: \l'iivelct trajectories iincl tlie cleveloprilerit of an intensity 1)ertu~bation 
in three kiricls o f  11ieclia 

pulse will e~c~ntuall!. spreacl o ~ t  cluri~ig propagation clue to the esisterice of disper- 

sion. Ho\vever. uricler certaiil curiclitioris the rlovel bala~icirig roechai~is~n tliscussecl 

above can lead to the formatio~i of nonspreacling l~ulses callecl solitoris which are 

r o b ~ s t  ellough to sunrive collisioris with other solitons of different speecls. Solitoris 

are used as tiic riatural bits of infomat ion for high-speecl olstical communications. 

-4 cluantitative stucly of h1I's can be carried out within the frame\~rorl< of a non- 

linear Schroclinger ecluation (NSE) for the slowly-varying \Ifave amplitucle. Such 

an ecluatio~i takes both clispersion and ~loriliriearitj~ irito cunsicleraciorl. It is ap- 

propriate for a wicle variety of dispersive, weakly nonlinear waves. When tile wave 

motion can be described by a rlarrow range of wavenumbers and small intensity, it 

can be i~ituitively obtained bv Taylor espanding the dispersion relation w ( k ,  1.412) 



where the tleri1-ativcs of w. are cvaluatecl at  the central. or carrier. wave number ko 

and zero i~.ilvc iu~~plitucle. Evcry factor of w. - LJO in the above equation rnust 11avc 

originatecl as a term iijl in the clifferential eciuation from which i t  \iri1s ol~tainecl 

and. lilteivisc. every factor of k - ko rilust have originatetl as a tern1 - i l l z .  By 

~i l i~ l<i~lg  tllese s1111stitl1tio1ls i11 the Taylor c~sl)ilnsion of J. o11c ol~tairls tlie SSE 

ivhere . t : ,  = ( i ) ~ / i ) k ) ~ !  / L  = (a';/i)k2)o/2. and X = - ( i ) ~ ~ / i ) / . 4 ( ' ) ~ .  

-4 plalle-n.ave solutiori of this ecluatiol~ is .--I, = A. e~p( iXI .4~  ('t). S~ilall  pertur- 

bations of this ecluilibl.il~m can 1)e cast in the form d.4e~p(iXI.4~l't). L3y linearizing 

Eq. (1.4) arouricl this ec~uilibrium. orie finds that 

The general eigeiisolution to this equation in an infinite medium is of the form 

bA(t, X) = 64+ ( t ,  li) esp(ili.r) + 6.A- (t ,  I;) esp(-ikz), where li is real and tlie ampli- 

t ude perturbations d4* satisfy the coupled-mode equatioris 

[id, - u, t  - pk2 + ~ 1 ~ 4 ~ l ~ ] d 4 +  = -~~3.41, 

[ - idl + ~1,li - + X ( A ~ ~ ] M :  = - X ~ ; ~ 6 4 + .  

By comparing Eq. (1.6) to the familiar equations governing FPVM,"' l2  one has 

the following picture: Eqs. (1.6) describe the linearized stage of the induced decay 



of the carrier wave at Lo i~ i to  its (laughter waves. or sidel~ancls, a t  Lo f k (Fig. 1-3). 

The riglit sicles of the ccluatioiis represriit the harmonic tlriviiig frorn the nonlinear 

1)eatiiig of thc ciirricr itlid oiie of the (laughter waves? proclucirig the rilode cou1)ling 

nrith coefficiciit ,\.-A;: ancl tlie left sicles ciescribe wave pl.opagation iri the presence 

of' tlie liilear iuicl iioi~linear f'rcclueilcy iiiisiiiatc:hc:s (-/LA? + XI.-10(2). :Ilteriiativel~ 

Eels. (1.G) clescribe the scattering of the pump into one of the siclebands 1)y the 

nonlinear jirati~ig procluccd I)!. the l)\lrnl> xlicl the other sidel,ancl. These F\Y 31 

ccluations citri I)e ol,taiiiccl witliout lising a NSE 1)y ~ilaltirig a harmonic analysis of 

~ ~ ~ e i ~ I < I > . - ~ i o n l i ~ l ~  \wve \>rol)itgatioii in ii Lierr nlediunl and I)y rnal<iiig a paral>olic 

itpprosi~iiittio~i of tlic li~icitr tlispc:rsiori rcliltio~l. One of tlie cliffero~iccs Oetn.c\eii the 

~ i ~ ~ t i ~ ~ l a t i ~ ~ i i t l  i ~ i ~ c l  orcliriar!- 1'\\-11 ii~st;tl)ilitic.s is that tlie frcclr~cric!. iiiisillatrh of 

a A41 clepeiicts oil the scluare of' tlic wave i i u m l ~ c ~  ~nisrnatch (it slonlcr clepe~ldence) 

whereas it is proportional to the nril\-e iluniber misrl.iatch (it faster c1el)ericlerice) i11 

ordinary F\VSl. l l .  " 

+ Pump at k,, 
Sidebands at k, + k 

wavenumber wavenum ber 

Figure 1-3: The picture of MI in n7avenun1ber donlain is FIYh4. The large Fourier 
peaks represent the p ~ i ~ i l p  wave: whereas the s~llall peaks represent the sidebands 

It  is a straightfor\vard rnatter to solve Eqs. (1.6). By setting 64+(t) = 



6B+ e s p ( - i d )  a~icl d4- ( t )  = tiB- esp(iw*t)! \\.here 6B+ are constants. One 011- 

t a i~ i s  the cornl~les tlispersion rclatio~i 

Tlius. \vhciic\-c.r the 1)rocluc.t X I L  IS posi ti\-e. the ~)la~ic-\v;i\-c: eclualil)riu~n is 

unst;il)lc. ill agrceillciit with tlie 1)rececling cl~lalitative tliscussioii of ri~oclulational 

, - l o /  Tliis range is much wider than that  of orcli~iary FWh,l 

(jvhich is ~ )~opor t i ona l  to the square of the snlall jvave amplitude ) .  The peal{ 

ten1por;ll gro\\rrh rate is [ ~ I T L ( - - ) ] , , , , ,  = ,41.-!o12. c~orresponding to the optimal wave 

to see that  the peal{ gro\\lth corresl1ontls to esactl!. resonant no~i l i~icar  \,eating 

or scatteririg where the sl11n of the liiicar aiid rionlineiir frequelic!. ~liisrnatches is 

zero. .As the wave number increases. the vanishing of the iristabilitv can be viewed 

either as tlie stabilizing effects of disl~ersive-sl~reading, as discussed previously, or 

frecluency ~ilisnlatch in the F\\:bl picture. Figure 1-4 shows the hi1 growth rate 

Figure 1-4: Temporal A11 growth rate as a function of wave number 



1.3 Overview 

'This thesis is an cstension of the classical treatment of ID  111 discussetl al~ove. 

It. reports ilew rcsearc11 ros~~ l t s  for t11c lo~~gituclinal. or te~liporal. 111 ranging from 

sucli func\amerital aspects as ari iripulse response study: to the statistical aspects 

of AlI. aiid to the c~oinplicatioiis ;tssociatecl with a (lispession-flattened filxr. the 

c o e x i s t e ~ ~ c ~  of two n7aves. itrid a firiite ~necli~~rii. ;l short overview for each of the 

follo\\~i~ig cllapters is pro\-idctl I)elow. 

1.3.1 Impulse response of a nonlinear dispersive wave 

'rhe goncr;tl .solutior~ for t11c pcrtlubativc ficltl of a r~onli~iear C\V pump wave is 

il 1i11c;~r supcrpusitioi~ of t11c c!igeiisol~ltior~s tliscussed iri Cliaptcr 1. This illcalls 

the result from the wwe number donlain analysis cannot be used clirectly to get 

a physical picture iri tllc spatial-temporal domain. For such a purpose. it is cle- 

sirable to find tlie Green functior~, that is, the solution correspondi~ig to a point 

initial clist~lrl,aricc a t  tllc origin. Tliis is eslxcially i~nportarit if the iriitial per- 

turbatiori contains 11lil11~ spatial frccluencies (i.e. a localizecl iriitial perturbation). 

,\iormally. the asymptotic 1,eliavior of the Green f ~ ~ ~ i c t i o n  at large t will provide 

enough information to classify the instability as convective or absolute: and to the 

differentiate I,ct\veen evanescence and amplification. Due to its importance. this 

kind of impulse response analysis has been performed for nearly every instability 

found in plasnlas and fluids. The routine procedure consists of studying the sys- 

tem responses to point-source perturbations in the form of an impulse and in the 

form of a sinosoiclal oscillation in t i n ~ e . ' ~ - ~ ~  However, the analysis is only done 

partially and numerically in the case of MI due to the complexity of the p r o b l e n ~ . ~  

Chapter 2 completes the impulse-reponse analysis a n a l y i ~ a l l y , ~ ~  and gives sinl- 



pie espress io~~s  for t11c 1)ulse s11ape clue to an irnpulse pcrturbi~tior~, and. i r ~  the case 

of c o ~ ~ ~ - e c t i v c  ii~stal)ilit!., for tile tir~stal)le frccluency range ant\ the spatial growth 

rate. The arlal!.sis is estc~ldecl to ;t ~notlulationally s ta l~le  ~lonlinear dispersi~.e sys- 

tem. It is f'o~tr~cl that the respollse to an iml)ulse perturbation cloes not tlisperse 

tiway a-5 it clocs ill  a linear clispersi\-c systeln. The time-asymptotic behavior of 

the perturbation is cl~aracterized. ;\s will l)e sholvn in this chapter, the A11 of an 

optic;tl w;tvt3 is alrnost aln'ays co~ivccti\-e i r ~  >.ti1 ir~finitc n~ecliurn. Henccfortl~ the 

terms All. ;\~nl)lificittion. ;tnd spatial gron~t,h will I)e used i~~terchangel~ ly  when 110 

c.onfusio11 is lil<el!- to arise. 

1.3.2 Broad band modulational instabilities 

The  spatial growtli of a hIl is usuallj- studied using the local properties of the 

r~loclal clispersior~ rclatiol~. such as seconcl-orcler clispersion (as in the SSE),  tl~ircl- 

order clispersion and so 011, resulting from the Taylor expailsion of the clispersion 

relation k( ; .  1 . - 1 0 ( ' ) . ' ' 4 ~ " 7 3 3  However, for wide band~vidth or fast hiII, the second-, 

third- arid higher-orcler dispersion effects are all comparable: the Taylor expansion 

sclieiile I)real<s clonrri arid nonlocal properties of the dispersion curve have to be 

considered. Furthermore, the frecluency clepeiidence of the nonlinear coefficients 

due to  the Rarnail or nonlinear-relaxation effects could become important. The  

usual approach call give erroneous information about the instability for fast mod- 

ulations (for esample. iii the case of relatively large input power or relativelv small 

dispersion). 

h/lI a t  relatively fast modulational speeds is important l~ecause it is intrinsi- 

cally related to the formation of ultrashort optical pulses. I11 Chapter 3, harmonic 

analysis is used to study hllI. This formalism applies to broad-bandwidth pertur- 



I)ations allel nuto~iiaticall!. i~icludcs the  Ranla11 a~icl ~ionli~iear-relaxation effects. 

To s ~ ~ ~ n n i a r i z e  tlie ~iiajor results:" A si~nple expression for the gairi curve of hII 

has Ixen derived. which tlepe~ids oil the entire dispersion curve arid i~icludes the 

freque~ic!- clepeiicieiice of' tlic x('') coeficicnts. so it is valid for high-frcclueric!. ~ilod- 

ulatioris. It is useel to study propagation ill a clispersion-fiattenecl fiber." whose 

secoiicl-order tlispersion coefficient chaliges sign twice as tlie carrier f'recluc~ic!. is 

1-ariecl. li.ich l)eha\-iors of the 311 gai~i  curve iue found as the fiber parameters. 

input 1)owcr i~11d p11111l) frcclucric!- are clianged. and simple expressions are given 

to charactcrizc these behaviors. For example. a, nenr kind of hlII is fo1111cI when the 

puinp is 1,; the ~iorrnal tlispersioil rcgiiiie. whereas 110 1\11 exists for orcii~iary fil)crs. 

Its relatioil to the c.o~iventio~ial 111 i~11tl FIYA.1 is discussecl 110th ~nathc~naticallj-  

and ph!rsicall!-. 111 the aiio~iialous tlispcrsion regirlie. 311 is also cli!Xcrcr~t f ron~ the 

conve~itional instability ;it low input power. it is a mix of the conventional h.11 

iuld F\+"I. --it high power, these instabilities merge and the growth rate is greatly 

reduced fro111 tlie conve~itio~ial precliction for both MI and FCVM individually. 

Optical co~nrnunicatio~i systc~iis ernployi~ig clispersioli flattened fibers are lilcely to 

be affected by this ne\v illstability in some parameter regions. 

1.3.3 Effects of a copropagating wave 

The analysis of the hII of a single wave can be generalized to the A311 of two 

copropagati~lg \ ~ r a v e s . ~ ~ ~ ~  The dispersion relation for each wave is affected by the 

intensities of both waves, a pheno~nenon called cross-phase ~nodulation. This 

situation is us~tally studied using a pair of coupled NSE's. The F\Yh/I interaction 

can involve as Illany as four sidebands. two for each wave. It  is necessary to fully 

understand the process due to its inlportance in ~~lultichannel comnlunication 



s y s t e n ~ s . ' ~  

Previo~ls arialyses of this i~iteritctiori have icleritifiecl some cases iri nltiicti both 

l)urnps car1 be ri~otlulationally 111istable. even when one or both of then1 are stable 

I)y t l i e r i ~ s e l ~ ~ e s . ~ " - " ~ T t i e  ol,erall picture of the two-pump case still rieeds further 

irivestigatioii. ill \)art I~ecause several c:sperinlental l~ararneters rnay lie outside 

the regiori of ~aliclity of tlie previons i~rial!.ses Imetl or1 couplecl NSE's. which 

required srilall r~lotll~latiorial 1)itndwiclth and rieglected tlie F\YX,I iriterfcrence of 

the two waves. Tlle c o ~ ~ l ~ l e t l  KSE i~iodel lias generittecl controversial p~.eclictions 

a l ~ o u t  ttic existorice of hll iri  the riornial tlispersion region of an o l ) t i ~ i ~ I  fillor. 13-45 

111 Clliaptor -1. Iiilrrnoriic i\ri;tl!-sis I)ilsctl 011 Zalcharov e~~ua t io~ i - ' "  is usetl to study 

tlie 1\11 of copro1)ilgitting nraves. l8 Tliis itl)l)roitcll is valid for arbitrary 1);tncln~idth 

and takes tlic F\Vhl effect into account. The coupled-mode equations for the four 

sidebands itre obtained and t,he tlispersion relatiori is. of course, tlepenclent on the 

rvhole tlispersiori curve. In the normal tlispersiori region, stability is pretlicted for 

two copropagating nraves of different frequencies in a ordinary single-ruode fiber! 

in opposition to the prediction of coupled NSE's. In other nleclia (for esan~ple.  

a dispersion-flattened fiber whose dispersion curve has two regions in which dis- 

l~ersion is normal. separated 11y a regiori in which tlispersion is anori~alous), in 

which tlie group vclocitv difference can be made small (even zero) without caus- 

ing the FiVIvI interference of the l)un~ps, an instability will occur that changes 

from a two-sideband F\YM iristability to a four-sideband MI as the pump power 

iricreases or the group-velocity difference decreases. Cross-phase induced modula- 

tional irlstability can thus occur in a dispersion-flattened fiber when the two light 

waves propagate in different normal-dispersion regimes. .An associated question 

concerns the coupling between sidebands of the two pumps. The conditions for 

efficient coupling were studied. No such coupling nras predicted for nraves of two 



freclueiicics ill ail orcliiiar!. siiiglc-liiotle fiber. i11 either the iiornlal or the anoma- 

lous rcgioli. .\ sufhciciit c:o~iclition for such coupli~ig is that thc group velocity 

clifferciice I)cx\voeri t,lie two l,uriil)s (:ail be  riiaclc \-cry small without causing the 

l:\VXl interfcrericc: of the puliips. 

1.3.4 Effects of a counterpropagating pump wave and a 

finite medium 

Pli\.sicall!-, thew iuc r.nro c~olnpc~tiiig effkcts tliat clcterrnine tlie stal)ilit!- of ;I finice 

systcril. Tile nrst. is tlic rc>ncl(:iic:!. of' tlic i~lnplificct pc$rturi)atioii to co111-oc:t out of 

the s!-stoiil. Tlic sc>c:oricl is fix it to foetl back illto the s!-stem I)? reflecting f'rom tlie 

I)ouncl;u!- or 1))-  sc.;lttcring f'rolli co~uiterprol);~gati~ig win-e. Two co1uitorl)ropa- 

gatirlg liglit nrnvcs in a clispersi~-e lierr niediuln. with I-iwious bounclar!. reflection 

conclitiolis. arc ofteri encountered ill nonlinear optics. The self-pulsing lxhavior 

of this kincl of ~\~sr,crn is i~npor t i~nt  for Ijoth active optical conlponerits. I~ecause 

it provicles a rnechanisrn for mode-locking, and passi~re components! because it 

limits the functioning of dispersive bistal~le devices as well as F l i h l .  

Previous worlcs have stucliccl numerically the special case of two identical coun- 

terpropagating waves in a nonlinear dispersive nlediunl with antireflecting bound- 

a r i e ~ . " " ~ ~  In Chapter 5 ,  the general systeril is studied ana lv t i ca l lv .51*5~he  results 

indicate that self-oscillation is sustainecl under conditions where the gain is pro- 

vided by the individual MI'S of each nrave and the feedback is provided by reflec- 

tions from the boundary or by scattering from the counterpropagating pump wave. 

In other words! t'he convective A.11 becomes alxsoiute. Simple expressions are given 

for charact,erics of modulational self-oscillations such as the threshold condition, 

the nlaximal growth rate arld the oscillatiorl frequency in most pararileter regimes. 



The tlependence of the self-pulsing I~ehavior on such parameters as the powers, 

frequcncics imcl ~)liascs of ttic co~~~ltcrl~~ol)ilgati~ig light \\.it17es and the I~ou~iclary re- 

flection coefficient are explorccl. Sirill~le physical pictures are presentecl to explain 

the forniulas. For example. tile case of an anti-reflectio~i l~oundar!. is sonlenrliat 

like what llappens i11 an irilproperly tlesigned distributecl-feedback lasertihnrhere 

the Bragg frequent!. is cletunecl from tlie gaiii peal{ by a relati\-cly large anlouIlt. 

oiil!. i l l  t,tiis cxse otlc 1lri.s to  consiclor coupletl sidebancls. and the fceclback and 

~~hase-~iiatcliirig are 1)rovidetl a~~toiilatically. The aclclitiorl of bol~nclary reflections 

ct~lliances tlie fceclbitck but tlic relatir-e pliase (which is adjustable) of tlie tnro light 

\\.a\.es ha.5 all effect on the oscillation 1)eliavior in some parameter regi~nes. 

1.3.5 Effects of incoherence 

111 iila11!. situatio~is. the sillall iiiput is riot ail ordinary f~uictiori of ti~ile. hut falls 

illto the category of a stochastic process. Thus a statistical theory for the h,lI is 

needed. Sucli a theory is developecl in Chapter 6. The analysis is straightforivard 

because the governing ec(uatioi1 is linear and stati~nary.~"imple espressions are 

given for the output power spectrum and relative-i~itensity-noise spectrum. As a 

boilus, when these results are a1)plied to tlie normal dispersion case (without bII), 

they sho~v that  fringes in the spectra form due to the nonlinear dispersive effects. 

Chapter G also contains a discussion of the effect of the finite linewidth of 

pump nraIre on the h,11.55 In spectral space h/II can be pictured as  follows: the 

overall sl>ectrum a t  the input end can be decomposed into a b function from the 

pump plus a small component from the input or noise. The small component gets 

amplified as if it passed through an  arilplifier of certain bandwidth (of the order 

of MI bandwidth i~,,i, ivhicli is proportional to  the square root of input power). 



Without tile sillall co~upolient a t  the illput: the s l~ec t ru~i l  Iteeps the delta f~~nc t ion  

shape iw it 1)sopagates. -1 frecluc~itly ;\sltecl cluestion is ho\v t,he incohere~ice of 

the l)uriil> (ic. i~ 11011-6 s\>ectru~ii)  affccts the 111 (or whether ~ioise arnl>lificatio~i 

I)?  111 call I)c. sl~pl)ressc.tl I)y i~itroclucing finite l)ancl\viclth to the pu1n1)). Orie 

ci\n cleclucc. that if tlie pump I)il~icl\viclt.h is 111uch s~naller t l ia~i tlie A11 l)ilricl\\~idth. 

tlie spectral picturcx of hII describeel ;~l>ove still holds clualitatively Ho\vever. it 

is dcducecl tliat if' tlie l)llnip I)iindiviclth is of the order of tlie A11 1)ilndwidth. 

the spectrurii will cvolvc clualitativcly the same with or without tlie s~iiall noise 

- - 
r t l t i o i i  1 liis is ~ i ~ t l ~ r ~ t a ~ i c l i . ~ l ) l ( :  1)ccilusc tlie i~icolicrc~ice withi11 r l ~ c  I ) U I I ~ \ >  

is iu.tllnll\ clificrc~~t fro111 rhc ~ioisc:. c:sccl)t that it is so big that rlie ~ioise is 

iiisigliifi(-illit. -1.11e (\\-0l~lti011 of' the i~~cdicrc!~it  \ ) ~ 1 1 i \ )  1)). it.self is ~ I U I I ~ ~ I I L ! ~ L ~  i~iid 

clispersivc:. 111 other ~vords, it is lilte the propagatio~i of pure stationary rioise in 

a noillinear c1isl)ersive mecliunl. I11 this case. 111 sllpression by punip incoherence 

is out of thc cluestiori. Thus the esist,ilig theory" I~ased on the perturbation of 

a steady-state stochastic process is not self-consistent. But i11 any c ~ ~ s e .  it still 

n~aices sense to study the spatial e\rolut,ion of the total spectrum. which is just one 

of the challer~ging taslts of unclerstaiicli~ig the ~ionliriear propagatio~i of a stochastic 

~ i ~ r i a l . ~ " ~ '  .Although theories have been ~levelopecl.~~~~%neither is suital~le for this 

case. The preliminary results from our nunlerical sinlulation have been able to  

give a cluantitative description. 



Chapter 2 

Impulse-Response of a Nonlinear 

Dispersive Wave 

2.1 Introduction 

The rionlinear Schrodiriger ecluatiori (IVSE) is widely used to clescribe nonlinear 

dispersive wave ~>rol)agatiori occurrilig in nlaliy branches of physics and engineer- 

ing. such LLS plasma physics. nonlinear optics and fluids dynamics. One of the 

pronlinerit features associated with the NSE is the existence of nlodulational in- 

stability (r\/lI).' which causes snlall nlodulations of a plane wave propagating in a 

dispersive [<err n~ecliunl to grow exponentially. 

A f ~ ~ ~ i c l a n ~ e n t a l  cliaracterizatiori for any unstable (or stable) dispersive system 

is the asynlptotic spatiotemporal behavior of a small localized perturbation. Such 

an asymptotic impulse-response study can provide lots of important information, 

including the classification of the instability as convective or absolute. and the 

differentiation be tween evanescent arid arilplified waves. In fact, the asymptotic 

impulse-response study has been performed on most conlnlon instabilities in both 



plasillas slid fluids. antl tlie results call be founcl in stantlard test book^.^"^^ How- 

cI7er. for the ii~il)ortai~t (:;we of a ~ioiiliiicar tlispcrsi\-c n.;ivc: this st~lcl!- was oiily 

clo~ic I)arti;l/lJ-.9 'ro fill tlie gill, ill die literature, the irlipulse rcspolise of a nonlin- 

ear ~ ~ l a i i c  w;i~-c i11 a clispcrsi\-c licrr m.etlium is studied analytic all^.. Soille features 

l)erti~ierlt to  the .\I1 s!.stern as rcl-eal.ecl I)y tlie follo~\~ing impulse response study 

are tliscussccl. 

2.2 Impulse response 

Let 11s v.rite the KSE ; ~ s  

\\.here n is tlie coml)lex \\'ii\?(: amplitude. :r' and t' ilre the spatial and temporal 

coorclinates. 1 3 : ~  is tlie group \-clocit!-: / i  is tlic clisl)ersio~i coefficient i i ~ i ~ l  X is the 

nonlinear coefficient. 

Ecluatiori ('2.1) has a plane-wave solutio~i a,(x, t )  = (lo esp(iXciit), where ( l o  

is a complex colistarit representing the amplitude arid phase of tlie plane wave. 

\Vithout loss of generality, \ye assurile no to be a real positive cluantit!. sirice its 

phase can alwa1.s I)e canceled by a ,time translation. \Ve will also assume X is 

positive since the discussion for the negative case is quite similar. If we iritroduce 

the normalizations -4 = nlao, x = xl'aO dmr t = t'AaH, and v, = V ~ I J ~ ,  

Eq. (2.1) can be written in the normalized form, 

and the plane-wave solution becomes -4, = esp(i t ) .  \Ye have usecl a = sign(p) to 



sinlplif!. t he ~~o ta t i o r i .  

Tlie c\.olutior~ of the \)crt~~rI)ilti\.(! fieltl is go\;ernetl 1):. Eq. (2.2) linearized 

arou~itl  the plant-wave solutioi~. Vsi11.g .-I = ( 1  + 6.4) cslj(it) in Eq. (2.2) aiid 

linearizi~ig for 6 . 4 .  \ve o l~ ta in  

For the i111l,1ilse-1esl)o11sc. ~ I I I ~ ~ ! - S I S  of' the lii~earizccl ecl~~atioll. \v(. lleetl to solvc 

the i i i i t i i ~ l  \-;~luc> ~)rol)lc~il  of 

wit11 d \ ( : r .  t )  = 0 fol. t < 0. where S(t)C;(x:) is the point source of the ~~e r tu rba t ion .  

Ec lua t io~~ (2.4) is reaclily solvetl by applying Fourier ancl Laplace trarisforrns i11 z 

and t. Tlie result is 

Since the abol-e equation holds for arbitrary w and k .  we take its comples conjugate 

ancl rcplace i,ar~cl X: with -d* arlcl -A .  1.espectively: 

Usi~ig Ecl. (2.5) arlcl (2.6): \ve obtain the solutior~ 



Its i~lversc t ri~~lsform is $1-r.11 I)!.. 

where the iiltegration paths of k and LJ are the real axis and Landau contour (for 

the ill\-erse Laplace tra~lsfornl. see."). rcspectivel!.. 

2.3 Time-asymptotic pulse evolution 

\l'e first c:onsiticr S l t )  = c . c i ( t ) .  where (. is generally n complex constant. In such 

i i  case. tllc C:~,ceil f~l~lctiorl ol)t,:li~lc.tl fi:o~n Ecl. (2.8) c:orresponcls to t,lle evolutiorl 

of a t l c l t i l - j ) ~ ~ l ~ ( ~ l  ~ ) ( : l . t l~~ l ) i i t i~~ l .  Tile e~rolutio~l of a gerleral pulse Ci i I i  I)c studied irl 

terrns of tllc corlvolutiorl of tllc Cree11 furlction. For simplicity: we assulile c = 1 

so that ~ ( L J )  = I .  \Ye coricerri ourselves with the asymptotic spatioterllporal 

behavior of the Greeri function. Thus, \ire assume t is very large and n~ork with a 

spatial coordinate normalized to t .  i.e. v = x / t .  I11 such a limit, the integrations in 

Ecl. (2.8) car1 be carried out approximately. There are two equivalent approaches. 

Basically. the first one is to conceptu.ally integrate k first and approximate the 

final integratio~i of r ~ !  1)y the contributions fro111 its branch poirits in the integrand. 

Tlie second one is to integrate i; fisst and approximate the final integration of k 

by the contributions from its saddle l~oints in the esponentials (i.e. by steeljest 

descent integration). \+'e adopt the second approach here. .After carrying out the 

integration i11 Ecl. (2.8) with respect to w by summation of it's simple poles a t  



i11 Etl. (2.7). n7e have. 

Jk2 + 2 0  
+a [ ( t  - e x - t }  (2.10) 

'Lk 

ivhere 1:' L' - P!, .  Etl~latioi~ (2.9) is the rlispcrsion relation. I t  indicates that the 

systeln is stable or u~is ta l~ le  for sign(p:l < 0 or sign(p) > 0.' 

Equatiori (2.10) c:iin I)e tlecornl)osc~l as tlic summation of four (~xpoiiential 

integrals so that caul1 iritegral (:ail I)c carried out by the saddle poi~it  ~netliotl for 

large t .  To rcalizc the tlecoiiiposition. we 11eed iui irifinitessirilal tiefor~iiatioll of 

the i~i tegrat io~i  path iirou~id k = 0. i.e.. ;dong a11 i~ifinitcssi~lial seinicirclc above 

jl)elowj k = 0. This tloes riot cliarige the \-slue of the integratioli i11 Eq. (2.10) 

since k = 0 is 2111 analytic point (removable singularity) of the total integrand, 

but it ttoes liial<c all four esl)ollential i~itegrals i~idivitluall!. well defined. It  is 

evident fro111 Etl. ('2.10) that X: = O nonr becornes a simple pole for two of the 

four iiitegra~icts. To evaluate each of t;he four i~itegrals indivictually, we need to 

f~urther cleforin their i~itegratio~l patlis to read1 their respective steepest descent 

paths. 111 some cases. tlie path nil1 collie across the simple pole in the deformation 

process. In such cases, the asymptotic value of the integral is the contribution from 

the saddle point a ~ i d  the pole. In the following, liowever, we will not explicitly 

decompose Ecl. (2.10) and perform the above procedure. Instead, we only give 

the final results and concentrate on the physical picture. 

We first consider the stable case in which sign(p) > 0. Then. the time de- 

pendence of the contributioiis from the saddle points of kv' f- k d m  in Ecl. 

(2.10) normally has a decay factor 1/i:'I2 [or l/t 'I3 if the group velocity disper- 

sion, i.e. the second order derivative of' kv' AZ k d G ,  is also zero a t  the saddle 



point] rnultiplietl I)!- ~111  oscillator^^ or an exponentially ctecaying factor.2Y This is 

expected of i ~ i i  orclirlar!. staljle dispersive sj.steiil. \\-here ari iliitial perturbation 

teritls to ctispcrse iuld vi~nisli ill the space-time clonlairi. However, the simple pole 

c.olitri[)utioii a t  k = 0 in the sc:conct tcrrn iri Eq. (2.10) shoulct also I)(? corisidcred. 

It actuall!- gives tlie dominant contrj.bution for large t .  This effect is different 

fro111 tlie ortliiiar!. s ta l~le  dispc.rsi~-e sy:jtelii. -1s long as 7;' # &. tlic saddlc ~)oints  

itlid the pole X .  = 0 ;Ire s(?l)ilrilted. It t~uriis o~ut that the pole contril~~utioli ciui l)e 

ol,ti~iiictl I,!. the Io\vcst ortter -Saylor os~~ansioi i  of * k J m  i r i  the csponential 

iuicl ill the iiurnerator a t  k = 0 ,  ancl we have 

= ( i / h ) r e c t [ i . ' / ( 2 J T ) ]  for t -+ oo (2.12) 

where the rectangular furictioii rcct(y) is unity if - I /?  < y < 1 /2  arid zero 

elsewhere. Tlie decaying sadctle-1)oirit. coritributions have been iieglectetl in Eqs. 

(2.11) and (2.12). I'hysically, we rioticle that the group velocity from the tiisl~ersion 

rrlatiorl Ecl. (2.9) is al~vays ill the ranges r1 - u, < -a and c - u, > f i  for 

s igi l ( /~)  > 0. Tlius tlie finite level of perturbation within -A  < r - t:, < fi a t  

large t is ctue to the ~loriliriearity. 

The abo1.e al~prosinlatiori breaks tlonrn around v' = d z f i  within a "l~oundary 

layer" of LI' which shrinlts as t -+ a. This is because the saddle point can then 

be so close to the pole k = 0 that the rilagnitude of the saddle point contribution 

is very large in this parameter region (although still decreasing for large t ) .  Inci- 

ctentally, the case of zero group-velocity-dispersion also corresponds to t i '  = A. 
In order to  find the solution for this '.l)oundary laver". we need an approximation 

that  is valid even when rq' is close to a. This can I,e accornl)lished by keeping 



the second-order terms i11 the Taylor expansion of * k d m  in the esponen- 

tial s i~icc t l ~ c  si~clcllc 1,oi11t c:oiitributioll for i~roulicl fi is the11 ;~~~toiiiaticall!, 

iiiclucleci. Tliis rcsults i11 

for t -+ x. \vhel.c tlic functioil I ' (u)  = [(tiy/2~i)[si1i(ay + yJ/3)1/g = 11'2 - 

:\i(l])('l/ = - \ 1 ( 1 / ) ( 1 7 /  - 112. iL1id :\i(c~) is the :iir!- f l ln~t~011 (lefilieci by 

t\i(c\) = A;" cos(nr/ + 1/3/3)d?l/7;.28 Since F(cr) *1/2 for Icvl >> 1. it can be 

shown that for a fisecl L!' not 1.e1.y close to *&, this result is identical with previ- 

ous clerivation. But this result also gives the boundary layer structure. By using 

Ictl - I .  it is easy to see that the tl~icltness of boundary layers allout L I I  = 

decreases as l / t2l3 ill the normalized sl)atial coordinate of u. This corresl>onds to 

a bounclar!. layer of the orcler of t1l3 ill the spatial coordinate :1:. The structure of 

the l~ounciar!- layer is isoiiiorphic with the front of a water wave (surface-gravity 

wave) .28 

Figure 2-1 sho~vs the result for /64(ut, t)12 from nunlerical integration of Eq. 

(2.10) and our sinlplifiecl calculatioiis based on Ecl. (2.14) and (2.12), which agree 

well even for a moderatelv long time of t = 15. Compared with the case of a 

linear this result shows that the development of a localized perturba- 

tion will be saturated a t  a certain level determined by the energy of the initial 

perturbation, instead of dispersing away. The perturbation will radiate outward, 

as it propagates with speed v,, with both shock-like fronts moving out from the 

center with constant speed fi. so the total perturbation energy increase linearly 



with tirile. If c, < A, tlie perturbatiori will riot vanish after a lorig time iri the 

laboratory frarlie as clo l~erturbatioiis of ordiiiar!. dispersive waves. 

Figure 2-1: The shape of the Green function for the modulationally stable system 
plotted as (d4(vt, t )  l%ersus u' - zl - v, a t  t = 15. The square curve is the 
approsimation from Eq. (2.12). The other two curves are the esact result from 
Eq. (2.10) (upper curve) aiid the approsimation fro111 Eq. (2.14) (lower curve), 
resl>ectivel!-. 

\Ve now turri our atteritiori to the irilportant case of the n~odulatiorially unsta- 

ble system with sign(p) < 0. In such a case, nre can prove that the pole k = 0 in 

Eq. (2.10) cannot be a saddle point for ariy value of v. thus the saddle points and 

the pole are alnrays separated, and the contribution to the integration a t  large t is 

just the summations of the pole contribution and the saddle point contributions. 

For the unstable portion of ,v, sirice the saddle point contribution represents an 

esponerltial groivth ~vi th  time. the pole contribution can be neglected. .-\ctually, 

there are two saddle points from kv' :* k d m  in Eq. (2.10) that give contri- 



I~utions growing es l~o~ie~i t ia l l !~  with time. Co~nparcd to   no st 11nstaLle s!-ste~ns 

in ~vhicll oiily oiie si~tltlle-l~oi~it contril,~it,io~i lias thc Iiugest growth rate. here the 

growth rates of tlie t\\,o c:o~itri[,litio~is ;we tlic bi~~iic  \\.hereas their pliases are dif- 

ferent. 'Thus. ;LS will 1)c tletailetl in tlie follo\\,ing calculatio~i. the i~inl~l i tude of 

the as!-~nptotic ~ ) ~ ~ l s e  is oscillator!. with ail csl~o~ie~itiall!. growing envelol~e. This 

For the c~s l~o~ ic~ i t i a l  X.ll l  + k J K ?  in Etl. (2.10). the sadtllc points in the 

The s;tdtlle 1)oint with csl~o~ic~itiall!. g~:owing contribution is tleterrnirictl to 11c 

Here we collccrrl oursell-es with Icl l  < 4 for the unstable portion of the pulse. The 

1-alue of tlie espoiie~itial ku' + and its second order tleril-ati1.e a t  the 

sadcllc poirit call Ile calculated to I)e 

and 

p(v )  = 8 k ( v ) [ ~ ' / ( v ' ~  - 8 - u ' d m )  - (v' + & T Z ) / 8 ] ,  (2.19) 

respectively. The value of the factor ~@?/k in Eq. (2.10) a t  the saddle point 



In Eqs. ('2.18)-(2.20). k(~1) is given Ijy Eq. (2.1G). Sinlilar results car1 be oljtainecl 

for the other cspoiiential kv' - k 03 in Ecl. (2.10). 

.Accorciirig to t,he rilethocl of steepc3st dcscerit. we add up the two sacldlc-point 

coritri b~ltiori from L.c' 5 k J m .  De tailed analysis shows that their contribution 

;\re c.oiill)los c:oi;j~~g;\te t o  eticli other so that the final result car1 l,c wr i t t r~ i  as 

for t -+ a. where I)!. using Ecl. (2.18), 

as are tiisplayed in Fig. 2-2. 

Equation (2.22) rileans tliat the envelope of asynlptotic pulse is determined 

by e s p ( - I ~ ~ ~ [ . s [ u ) ] t ) , ~  ~n~liile the freclue11c.y and phase of the amplitude oscillation 

are tletermined by Re[.s(v)]t, p(v) and d(u). The most important infornlation for 

the instability is the magnitude of envelope, which gives the asymptotic temporal 

growth rate -Im[s(v)] displayed in Fig. 2-2. Thus the unstable portiori of the 

pulse corresponds to Iv'l < 4. By checking the asymptotic temporal growth rate 



L:igurc 2-2: ?r'hc 1.c.ill i l l ~ c l  illlagirli~l.y 1);lrt of' the cspol~el~t ial  filctor . s ( r j )  i l l  the 
sacltllc 1)oirlt iritcgrar.ior~. ( i l )  -[in[s(/l)] is t l ~ c  as~r~nptot ic  gronrth ratc. The slope 
of' the clilsl~ccl ( .ur~-o coi.resl)o~~cls to r l~; is i~l~ui l~ spatial g ro~v t l~  rate f'or I . ! ,  = 5. ( I ) )  
Re[.s(,uj] is the pliase for the oscillations in Fig. 2-3. 

a t  v = o . ~ " ' ~  we find that the illstability is convective or absolute for n, > 4 or 

v, < 4. This is in agreement with previous r e s ~ l t s . ~  

In order to find i l  sirnplcr expression for the pulse shape, nre notice that the 

predomi~iant portiori of the pulse is aiourld LI' = 0 a t  large t .  This allo~vs us to 

take Taylor cspansions for both esponontials and coefficients ill Ecl. (2.22) arid 

keep only the lo~vest order terms. Then, Eq. (2.22) beconles. 

The  same result can be obtained by a. second-order Taylor espansion of the es- 

l~onentiais kith. in Ecl. (2.10) around X: = ~ l ,  which correspond to 

their respective ~n i l s i~na .  Figure 2-3 shows the asymptotic pulse shape plotted 

as t esp(-2t) (d.4(vtl ti1 1 2 ,  determined by numerical integration of Eq. (2.10) and 

by our simplified Eq. (2.25). They agree each other well even for a nloderately 



long tirile of t = 10. 

Figure 2-3: 'The shape of the Green f~lnction for the moduiationally unstable 
systeril plotted as t esp(-2t)ld.4(vt1 t)I2 versus ,u' =- v - v, a t  t = 10. The two 
curves are the esact result from Eq. ('2.10) (upper curve) and the approximation 
from Eq. (2.25) (lower curve). 

2.4 Spatial amplification 

Following the systematic approach of the impulse-response a n a l y ~ i s , ~ ' - ~ ~  we now 

study the spatial growth rate for the convectiveljr unstable case in which sign(p) < 

0 anti zg > 4. Tliis is acconlplished by i~itroclucing a point source oscillati~ig at a 

frecluency ijo (i.e., zero spectral line width), and finding the steacly-state spatial 
. . 

solution reacliect a t  large t (after a transient time). \\.hose esisterice is guaranteed 

by the convective nature of the instability. The amplification of a signal with 

arbitrary line width can be studied in terms of spectrum decomposition. Thus, 



we assulne S ( f )  = c~sp(-  , . ~ , ) t  ill Eq. (2.4) ol- ?(s l )  = [i(w - ~ ~ j ] - '  ill Et1.('2.7). 

111 this iuial!.sis. \vc? use the sl)atii~l c:ool-cli~latc x i~isteil([ of the ~iol~l~lalizecl spatial 

coortlinatc 1.. siiicc \vc: arc c:oiicernecl \vit;h tlic steatl!. state. 

I;'ollo\\?iiig tlic st;~iitlartl i~1)~1roacli.~"'~~ 2ve i~io~-( :  tlie i~itegratio~i 1)iltli of w I)elo\v 

its real inis. 011e to the i ibse~~cc of iil)solutc ilistability. The k integration path 

can al\viiys I)(! cl(!iorrnccl so that tlic so l~~ t ion  at large t is only tlue to tlie 1)ole of 

; a t  ;,I i ~ ~ i c l  ciui l)c csl)ressc.tl ils 

for t -+ w. ~ v l ~ c r c ~  L is the Laiitliln contour. (For ;L clctailetl clisc~lssio~~. see.30) 

Tliis stcatl!--st;~tc~ solt~tioii CiLIl I)(. rc~i~clic:tl for ilIiy fisecl sl~atial  coortlii~atc> : I .  after a 

trarisierit tirne. I'll!-sic~all!,. tllc new frc<luc~icy corl1l)oiienc of esl~(z-. '~t) is gerierated 

IIV tlie ~OUL-\V~L\ 'C  111isi1ig process. 

The integratioii in Ecl. (2.2G) call be \\rorlccd out for z > 0 and x < 0 separately. 

For simplicity we o1113- consider n. > 0 since the case x < 0 is similar. Then the 

integration with k in Ecl. (2.26) is just the residue sun~rilatiori horn all the poles 

of tlie iiitegrand above tlie Landau c.u8rito~u. For large :c. the lo\vest pole a t  ko 

gives the clorninalit coritributio~i. that ,is 

-(* - L I , ~ ~  + k i  - 1) esp(-iuiot) + esp(iw0t) 
bA(z, t )  - esp  [ikoz] (2.27) 4ko(k; - 1) + 2v,(wo - z1,ko) 

for t + oo, where k0(wo) is a function of wo and satisfies 

For amplification! ko (wo) should be below the real asis while still above the 

Landau contour. Tliis criterion is equivalent to requiring the corresponding solu- 



tioris of Eq. ('2.28) to cross the real axis fro11 above to below nflieri we attach an 

irnagiiiar!- 1)ilrt to do that goes f'roni some positive viilue to zero. (For a detailed 

cliscussioii. see.'" ) 

The solutions of Ecl. ('2.28) are of course f~uictioris of s;~. :I cletailect study 

slion7s that for 1111 > '1, tliere are two separate regions for positive do. namely 

(0. w.,) aricl (;,.! a). that result iri coriiplex solutioiis of Ecl. (2.28). Ho\vever! only 

tlie first rcgiori c~orrespor~ds to ilniplification. Bv 2ipplyi1ig the above criterion, it 

call l)e sl1on.11 tliat tlie secoilcl otie c:orresl)onds to evaliescerit waves. The same is 

true fils r~egati\-c> tlue to syiiir~~ctry. .Is ill1 esar~iplc. Fig. '1-4 sliows all four 

solutiori l)r;tr~cl~c:s of' Ecl. (2.28) for c., = 5 ailcl for a iaryi~ig do. \Ve have llsetl tlie 

r~ormalizcc\ frcclueric!. !lo = LL;() /c! / .  itrid cllose~l the attackleti imaginary part to Ro 

to be fro111 O:l, 0.1 to 0. nrliile its real part can be a t  some discrete values which 

are 0.1 apart iri the range (-5.5). T ln~s ,  only the portion of the bow-sliapett curve 

below the real axis iri Fig. '1-4(ct) liw corne across the real axis aricl corresl)onds 

to amplification. This portiori of ko corrcsponds to the range of ( -  1.35,1.35), 

i.e. 9, = u,/c, = 1.35. 

Figures 2-5 sliows tlie wave riumber Re[ko(uo)] as Re[ko(wo)] - Ro and the 

spatial gro~vth rate -Im[ko(wo)] as --v,In~[k~(wo:~] in the amplification range of 

Ro. The results were obtairrect by solving Eq. (5.28) for v, > 4. 

Figure 9-6 shows the amplification range R,, the maximum grorvth rate as 

u,mas[-Im(ko)] and corresponcli~ig frequency R,,, = w,,/u, for differerit values 

of v,. .4s v, increases, the wave number Re(ko) approaches Roy the cluantities 

v,mas[-Im(ko)], related to the masinlum spatial growth rate, and R,,, related 

to  the corresponding frequency, decrease to approach 1, and the ~iormalized am- 

plification frequency range 0, increases to approach &. It  should be pointed 

out that  for a given t i , ,  ma[-Im(ko):(  is equal to the slope of the tangential line 



Figure 2-3: The four branches of the dispersion relation satisfying Eq. (2.28) for 
21, = 5 and a varying parameter wo. (a) The values of the parameter Ro = wo/vg 
are doted on the three horizontal lines at Im(Qo) = 0.4 (first), 0.1 (second) and 
0 (third) with separation of 0.1 between the dots. (b) The four branches of the 
solution of Ecl. (2.28) for the values of Ro on the first line in (a). (c) Same as 
(b) escept for the second line in (a).  Note the part that crosses the real asis. (d) 
Same as (b)  escept for the third line in (a). Thus, ko is on the bow-shaped curve 
below the real asis. 



Figure 2-5: The spatial growth rate arid corresponding wavenumbel. for the varying 
frequency in the arnplificatiou range and for vg = 4 (solid), G (dashed) a ~ i d  8 (long 
dashed). The wavenumber is plotted as Re(ko) - Ro versus Ro = wo/vg in (a) and 
(b), and the spatial growth rate is plotted as -v,Irn(ko) versus Ro in (c) and (d), 
where (a) and (c) are the esact results from Eq. (2.28), and (b) and (d) are the 
approsinlations from Eq. (2.31). 



shown i11 Fig. 2-2(a) (where we have used v, = 5 as a example) as can be generally 

1 ) r ~ ~ ~ d . 2 9 - 3 2  

Figure 2-6: Tlie arilplificatiorl fi.ecluenq. range plotted as 0, = ;r,/u, (a ) .  the ma\;- 
imunl spatial growth rate l~lotted as v,nlax[-Irn(ko)] (b), arid the corresponding 
frecluency plotted as ill, = wl,/u, ( c )  for varying v,. The solid liues are from 
numerical calculations based on Eq. (2.28) and the dashed line are from the 
approximations based on Eqs. (2.32), (12.35) and (2.34). 

The branch of the solution of Eq. (2.28) related to amplificatiori can be ob- 

tained directly by treating v i 2  as a srllall parameter since we have assumecl v, > 4. 

B y  writing Eq. (2.28) in the form 



it is easy to see that the zeroth-order solution is ko = Ro. The Iiext order solution 

will be accurate to O(v;') and car1 be obtairied by the first-order Taylor expansion 

of the right-liand-side of Ecl. (2.29) at ko = n o .  Lifter taking the square root on 

both sides of tlie resulting ecluation. we have 

Thus R,, = &. Q,,, = 1 arid u,mas[-lill(ku)] = 1 in agreenient with tlie results in 

Figs. 2-5 anct 2-0 for zl, >> I. This result car1 also be obtained fro111 ariother version 

I - 1 of tlie XSE used to study tlie \)ouxidary input problenl, i.e. 3=/cz = - L I  atla - 
9 

i(ij2/2)3f,t,c~ + b(c~l 'n where i j 2  = .)/~/(71;)~ and -y = X/vh. The two \-crsiolis of the 

NSE etl~iritleiit 01~1:- rrlieu r, = Ja > 1. 

The accurac?. of Ecl. (2.30) can l)e improved by considering the second-order 

Taylor espansiori of the riglit-hand-side of Ecl. (2.29) at  ko = 0, .  111 fact. one can 

prove that  tlie solution thus obtained is accurate to O(v;" a t  least with higher 

accuracy around Ro = 0 and Ro = fi. The resulting second-order algebraic 

equatio~i for ko car1 be easily solved to give, 

Equation (2.31) is quite accurate, as shown in Fig. 2-5. 

The frequency range for amplification can be easily obtairied from Eq. (2.31) 

by setting the tern1 under the square root to zero. The solution is 

where we have Taylor-expanded the result up to the O(V;~) term. 



zAccordiiig to Eq. (2.31). tlie ~liasiiuunl growth rate mas[-Inr(X:,)] ancl the 

c.orresl)oridiii;: f'recll~cric!- o,,, car1 I)e ol)taiiiccl I)!. stucl!.ing the estrc~nuni  of 

nrlierc i /  = 0: - 1 arid il %\!,lor espausiori lias been inade up to O(u;-'). The 

cstrernu~n of the ; u g u ~ n e ~ i t  11ncler the square root of the right-hand-side of Ecl. 

(2.33) I,(! casil! fouiicl I)!. l~silig ordinar!. ~)erturbatiori with respec:t to 21;~ .  

;lftcr sol: ~c straightforw:1rcl ;tlgc>l)r;~. wc ol~tain 

where we liave Itept ternls up to O(t!g2) iri the esparisioiis. 

Ecluations (2.32). (2.34) aricl (2.35) are goocl al)l~rosinlatioris as long as v i  >> 1. 

T h e  cornparison with tlie rrumerical solutiori is displayed in Fig. 2-6. 

2.. 5 Conclusions 

\Ve report the result of impulse-response analysis for a. nonlinear wave in a dis- 

persion mediurn. The Green furictiori (response to a pulse-like perturbation) and 

the solution for oscillatory perturbations \Irere studied. For a modulationally un- 

stable system, the asymptotic pulse not only grows but is also modulated, i.e. 

the perturbation pulse consists of a modulated structure whose envelope grows 

exponentially. The pulse shape arid the condition for convective and  absolute 

instability are obtained analytically. Even for a rilodulatiorially stable nonlinear 



dispersive system. the perturl~ation cloes iiot clisperse away as it cloes ill a linear 

systein. Iiistcacl. ;L certain lcvel o f  pcrturbiltioii. tleteriiiiiiecl l)y the eiiergy of the 

initial pulse. oc:clus ill il wiclcniiig ~cgioii of sl,acc whose center iilovcs with the 

group vc'locit!-. 111 ;i seiise. i t  is lilce w sl)re;~cliiig scluare pulse. For an oscillatory 

perturbation source. nre cletermixiecl the frecluency regions for arilplification and 

c~variescence. Tlie spatial growth rates for amplifying waves were ol~tainecl. The 

sesl~lts ;~lso sllowc~tl that t,lic spatial XSE arid temporal hrSE are c:c(ui~-aleiit oiily 

for I . . ,  >> 1. 



Chapter 3 

Modulational Instabilities in 

Dispersion-Flattened Fibers 

3.1 Introduction 

MI is usually studied within tlie frame~vork of a NSE, the validity of which recluires 

a weak instaritaiieous rionliiiearity arid a slowly-varying wave amplitude. In the 

frec[uency domain, the spectral width of the field must be narrow enough that 

the rilodal dispersion relation j ( w )  can be approsinlated by a secoiid-order Taylor 

esparisiori around the carrier frecluency wo. For slightly wider bandwidths, some 

corrections to NSE liave been made by adding higher-order dispersion terms in 

the Taylor e ~ p a n s i o n . ~ ~ - ~ '  

In some cases cliscussed belo11~. liowever, An11 can actually occur with a wide 

bandwidth (corresponding to a fast ternporal modulation). In other ivords, the 

effects of secoricl- arid third-order dispersion, etc., could be all corilparable in 

these cases; the Taylor expansion breaks down, and the nonlocal properties of the 

modal dispersion relation must be considered. For fast modulations. nonlinear 



r e l a s a t i o ~ ~  a ~ ~ d  the li.a~iian cffcct rria!. illso I)ccor~~e iriiportar~t. ".:'".:"." Because 

of tlic ~ i o ~ ~ - i ~ ~ s t a ~ i t ; u i e o l ~ s  ~~oriliric~il~it~-.  the tlel)e~iclc~ice of the ~ i o ~ ~ l i ~ i e a r  coefficie~~t 

on tlic r~iotlulatiollal frcclucuc\. sl~oulcl I)c i~iclucletl. 

Broiltler-I)i~ncl\vitltl~ 111 is inll)ortarit clue to its intrinsic relation to sllorter 

~)ulses. 111 this I);ll)el \\.e 11s~. l~al.r~~onic a~~al!-sis i~isteacl of the KSE to sttld!. hlI. 

'Tliis i \ l ) \ ) ~ o ; l ~ l ~  still rccluires \vc:ak ~io~~li~iearit!. I)llt cloes not rccluire Ilarro\v I)ancl- 

\\licltl~. .\ sir~ll,lc cbspressio~~ for the g a i ~ ~  c:~~s\.c. of 111 is g i \ u  tliat clel,c~~c[s o ~ i  the 

cwtirc ~ ~ l o t l a l  tlispcrsio~i curve ;tnd the frecluenc!.-dependent nonlinear coefficients. 

It is tlieri iil)l)lictl t o  il ctisl)crsio~i-flattc~~ccl fiber:" for ivhicli the second-order 

elisl)c~rsior~ t.ocfficicnt c1iangc:s sign t\\ricc as tlie frecluenc!f is \-ariecl. to study the 

c:ffects o f  the' 111otl;ll tlispersio~~ rcl;ltio~~ ancl to illustrate the I)asic. ~)h!.sic:s. 

3.2 Harmonic analysis 

To be precise. the liarnionic analysis described below is actually a nlultiscale 

approsi~l~ation" 'used to solve the linearized ecluation around a nonlinear steady- 

state ~)uml)  \\';\\-e ill a single-nlotle fiber. The small parameter i11 the li~~earizecl 

equatio11 is the it~nplitude of the no~llinear ponlp wave normalized to J,3(d0)ly [see 

Ecl. (3.4)]. In the following summar!r, I~owever. the physical picture is er~lpllasizecl 

a t  the espense of mathematical detail. 

Consider \va\re 1)rol)agation in a single-mode fiber. The electric field is written 

where is referred to as the wave amplitude and the function describes the 

transverse \-ariation of the field. The Fourier amplitude of the wave is defined 



according to the convention 

It is well 1;non.n that the nonliriear steacl!,-state or C\V pump wave for the sirigle 

transverse rliotl(: of' the fiber is approsiriiatel!- ii siriusoidal wave with clispersion 

relation", " 

k 5  (&so) = ,)(do) + - ( d o .  --'o. l - - ~ o l ' ~  (3.3) 

~vherc the sul)sc.ril)t s is for steiitl!. stiltc. aricl the weal; nonliriearity conclitiorl 

is recluirecl. Ecluations (3.3) aricl (3.4) indicate that the X(3) nonlinearity changes 

the wave riurilbcr (ancl the phase. which is the protluct of wave nunlber i ~ n d  clis- 

tance) by srnall arnount. f i r  an optical fiber. -, (do, -do ,  do) = G7rw0 \(3)(uiOl -do, 

w ~ ) / [ c I L ( ~ ~ ~ ) . - ~ , ~ ~ ]  iri electrostatic uriits. to within a factor of the orcler of unity that 

depends on the transverse tilode structure. where \ (J)(do,  -do, uO) is the third- 

order nonlinear susceptibility of' the fiber, c is the speed of light. i,(wo) is the 

modal refractive indes, and .-IeR is its effective mode area.12 

An ccluatiori liiiearizecl around the C\V solutiori call then be forrnecl for a 

perturbation field. The evolutiori of the perturbatiorl field in the preserice of the cnr 

pump described by Ecl. (3.3) can be studied in Fourier domain by considering the 

propagation of i ts frecluency components 64(w1, 2) for the single transverse mode, 

where ,- and w' represent space and frequency coordinates, respectively. Since the 

amplitude of the cnr field is the small parameter. the trivial case of the zeroth-order 

approsimatiori. which correspo~ids to a vanished pump, gives a linear propagation 



of the l)erturbiltioi~ field. i .o.  rl';;d-l(wl. z )  + j j2(w1)d4(~ ' .  z )  = 0. The  zeroth- 

order solutioi~ is tllus ti. !(&'. :) = tj.A(&'. 0) cxp[i$(wl) z ] .  correspoilcling to fornard 

~)rol) i lgut io~~.  Sote  that t l ~ c  rc:illit!- coilclitior~ rec~uires 6). 1(--l1. z )  = & - 4 * ( _ ~ ' ,  z ) .  

In the 1)reseiice uf the C\\' ~)unip-n~ave. the followirig liliearized equation for 

L).A(_JI: z )  can l)e ol)tairiecl fro111 the blasnrell equation for the single transverse 

rnocle: 

\\.licsc the rcrri~ (if',,[. still liileit~. ill  thc ~~~~~~~~~~~~~~~c ficltl. is t l ~ e  r~o i~ l i i~ca r  1)al.t of' 

the  clect.ric \)olarizatioii ficltl 1)uojcc:tc'cl onto the trails\-(!use llloclc I,!- ;LII o\-erlap 

intcgra tioll. '' 
Itecall tha t  6Prd E 0 in thc zeroth-order approsirnatiori. For a llettctr approxi- 

rllatioii l)e!.oild zeroth orcicr. \\so have 

where we have assunled the overlap integral of the transverse illode is the same for 

the frecluericies of ixiterest.12 Eo(w. z )  = A. e s p [ i k , ( w o ) ~ ] ~ ( w - ~ o ) + . 4 ~  esp[-ik,(wo) 

,-]6(w + wo) is the Fourier tra~lsforril of the cw fieId Po ( t ,  z )  = exp[ik,(wo)z - 

iirlot] +c.c . .  Equation (3.6) describes the nonlinear electric polarizatioll (but  linear 

in the perturbatioli field) induced by the pump and the perturbation field in the 

X(3) medium. The  degeneracy factor 3 appears because we treat the perturbation 

as a differerlt field from the pump n~ave." \We have neglected higher-order (greater 

than I-40J') contributio~ls of the pump field to hP,,l. 

To solve Ecl. ( 3 3 )  beyond the zeroth-order approsirnation, we follo\v the multi- 



scale l~roceclurc by i~iserting the zeroth-order solutiou in the right-liand-sicle of Ecl. 

(3 .5 )  [ ~ l s i ~ i ~  Ecl. (:J.Ci)] aricl collecti~ig all the possil~le pliase-~natcliecl ter~ns.  This 

anal!.sis car1 be Ltcilitatecl by s~\.itcliing to tlie te~~iporal-clonlain picture. l 3 r  a for- 

ward propagatio~i corilporierit a t  d ' .  the field is d-l(wl, 0) esp[i/3(u1) z - iw't] + c.c.. 
Through tlie nonlinear electric polarization. this fielcl generates the terms propor- 

tional to 6-1(w1. z) (.-lo l 2  esp[ii3(;')z - i J t ]  + c.c. arid 64' (J'. ,-).A: exp{i[2k,(do) - 

;j(w.l)]; - i(2vi0 - J ) t )  + c..c.. The first tern1 is ol>viousl~~ phase-~natchecl. The 

seco~icl tcrrn c.oulcl also I)(. plirtse-111atchctI to il  for\\ral.cl propagating c o ~ n p o ~ i e ~ i t  a t  

(?do -dl) if (2k,(~;,))  - :jl(ujl) - :jl(2uj0 - J ' )  I is ~ ( 3 1 ' ~  small. 'Phus we slioulcl st.utly the 

c.oIiil)oncl!.t ~ i . - 1 ( 2 ~ ~ ~ ~  - ;it. z)  = 0.-l(i)ujo - Lv". 0) esp[i/j(2do - L J ' ) ~  - i(2ii0 - J ) t ]  + c.c.. 

Similar a~ialysis for this c:oniponent incliciltes tnro phase-matchecl tcrnis generated 

a t  (24, - d') ancl ;I. 

.-\ccorcling to the ~~iultiscale l~roceclure, the above consideration allo\vs us to 

solve Ecl. (3.5) approsimately in ternis of the couplecl ~iiode ecluatiori of the fre- 

cluency coniporients a t  ;3' and 2.4, - u l ,  callecl tlie anti-Stolws ancl Stokes sicleband 

for the upsliiftecl aiid clo\~nsliiftecl frecluency! respectively. By retaining all the 

possible phase-~iiatclied driving terms. Eqs. (3.5) and (3.G) beconie 

[df ;  + / 3 2 ( ~ ' ) ] d A ( ~ ' .  z)/[2P(w1)] = 

2y(wo. --do, d l )  (~o (~S- - l (w ' .  z )  

+y[w0, wo, - (2wo - u1)] .4~ esp[i2k,(wo)]64* (2w0 - w', z) 

[d!, + /3'(2wo - u1)]d4(2wo - w', Z )  / [ ~ P ( ~ w o  - w')] = - G 

2y(wO, -(do, 2w0 - ~ ' ) 1 ~ 4 o 1 ~ 6 . ~ ( 2 ~ o  - w', ') 

+7(wo, do, -u1),4; esp[i2ks (u10)lh4* (w', z ) ,  



where we have clefineel 

Equatioiis (3 .7)  arid (3.8) nvill give it correctiori to the linear dispersiorl relation 

!j(wl) [or ij('l;o -i') for frcc(~~ei~c!- .-),',)--L'] I)!. ilI1 alnount 0 (3. 1 2 ) .  Sinlplificatiori 

can I)c ~nactc for for~ilrcl propagation I)!. using jrl:; + /j"/(2p) = (-  l t t ;  + !j) (id; + 
!j)/('Z;j) 2 itl; + . j  [wtlcre 1j inclicates , j ( ~ ' )  or d(2d0 - J')] since a careful ailalysis 

sllonrs t]lis clocsli't alter c:urrcrlt Icvei of approsi~nation at all. If nre clcfine tlie 

luocl~~lat.ir)llitl fl.c<l~lc~lc!. u ~ ,  -- - LO. arlcl sc!t d - \ ( ~ i ' .  2 )  DL(&. r) e ~ l ) ( i k ~ ; )  i ~ d  

6.-\(.-);,, - A*'. L) = U (&..  2 )  ~ ~ l ) ( l k , ; ) .  tll011 Eels. (:3.i ') i111d (3.8) I ) ~ L . o I I ~ o .  

where 

and 

The subscripts :L. and f refer to cross-phase modulation (XPM) and four-wave 



rilisirlg (I;'\.liIvl) to iriclicate their relatiori to these llrocesses, respectivel!.. Note 

the Rarlian effect and the tlff'cct of riorilincar relasatiori is included through the 

deperlclerlce of the rionliriear coefficierits or1 tile rnodulational frecluency. 

Ec~uations (3.10) arid (3.1 1) can be easily solved. The general solutiorl consists 

of t\vo i~idepenclerit cigenrnocles. 

where c ,  i ~ r i c l  c2 are corista~its. iincl 

inclicate the relati\-e aml~litucles of Stoles arid anti-Stoles sidebarids for each eigen- 

mode. respectively. k,(ul) are the clispersioil relatioris for the tnro eigenrnotles, 

where 

A(w) r Al - y,,+l,~o1~ - Tz-1.4012. 

is the total wave-riumber rllismatch and 

A&) E %/3(w0) - /3(w0 + w) - / J ( ~ J ~  - W )  (3.23) 

is the linear wave-number misnlatch (the subscript 1 is for linear). Saturally, 



a negative inlaginar!, part of k = ( ~ )  indicates the growth of the corresponding 

cigeliinottc. 

Physicall!.. tlie couplecl Eels. (3.10) a i d  (3.11) clescribe tlic linearizeel stage of 

the inclucetl clecay of tlie carrier walTe i ~ t  the freclueiic!, so into its claughter \var;es 

a t  tlic sictcl)tiiid frccluencics do + ;.. T l ~ e  right side of each ecluation represents 

the Iiarrnoiiic ([ri[-ilig fro111 tlie iioiiliiiear beating or F\\';\I of tlie c.arricr arld 

tlic othcr clallglitcr \\.;/I-c. ;~ucl tlic I(5ft side clcscribes prol~itgation wit11 total wave 

1i~uill)cr i~iisrllat,cli (iiicl~lctirig liliear ant1 rionliliear ~nis~ilatcli) .  'The ~ioiiliricar wive- 

1iuri1l)c:r r~iis~iiatc:li co~ilcs from SPLI. slid is gerierallv conlples clue to tlie Raman 

clffcct or ~ioriliriei~r relasatio~i. ;\lternati\-cly. Eqs. (3.10) ;~ r i c l  (3.11) tlcscril)~ the 

scattcrirlg of tlic ~)urnp  irito one of the sitlcbaricts 11)- the rio~ilinear gri~tirig prod~lcect 

l ~ v  the 1)urnp i ~ i d  the other sideb;uicl. These c:c(uations tlccouple ;~utornatically 

when )7..4i/-1,1 << 1. 111 this limit. nrithout loss of accurac!.. tlie two iricleperident 

c.igerirnoctes of Ecls. (.3.10) anct (3.11) l~ecome 

k- = -/j(wo) + /j(wo + u i )  + ?,+l.&~(', 

7.- N O  or, B- = 0  

and 

Physically, these solutions corresponcl to the independent evolution of each side- 

band subject to Raman loss (for the anti-Stolces sideband) or gain (for the Stolces 

sideband) and with the refractive indes changed by the pump due to SPhtI. 

Generally, each frecluency component cannot propagate independently, but 

couples to the other sideband. In fact, espressing cl and c2 in terms of the input 



conditiori leacls to tlie general solution in for111 of a trarisfkr riiatris, 

This clc[uatio~i li~lcarly relates tlie Fo~~r ier  spectruril a t  all!. ciistarice z to tlle input 

s~~ec t r~ l r l l .  

111 tlle c.ast2 of' i~istal,ilit!- ; ~ r i r l  at, li~rge clistiuices. tlie c:oritril,utiori fro111 tile 

clarnl~cd c~igerirriotlc~ citri I)e neglectccl. Then Irn[k,(c~)] gives the iriformation about 

the sl,ectrllrli i t~ i i l> l i f i~ i t t i~~i  wit11 ilistaiice. while IT., (&;I 1 incticates the relative am- 

plitude of Stokes i ~ ~ i t l  anti-Stokes sidcba~icls. if the + sign is used to rel~resent the 

growing r~iode. 

To isolate the effect of the sliape of the modal dispersion curve /3(uf). nre first 

neglect the frecluency clepenclence of the  ionl linear coefficierits by usirig their value 

a t  zero modulational frequelicy w = 0. It is easy to show that y,, = y,, = 

3 . ( ~ 0 1  -do: do) .  ~vtiich is it parameter denoted by y. This means that  the Ranlan 

effect ancl other clel~endence of nonli~iear coefficients on frecluency are neglected. 

Then Eq. (3.21) I~ecornes 

where the tern1 - 2ylAo)' under the square root is just the total wave-nurnber 

mismatch 3. nyhicli is real in this case. Instability happens whenever its amplitude 

is snlaller than that of the F\VM coupling strength 2yl.40(2. (This conditiorl means 

that  the linear nlisn~atch compensates nonlinear mismatch.) It can be proved tha t  



17.- (J:I ( = 1 for iu' i11 the unstal~lc range. so the amplitucles of the Stoltes and anti- 

Stoltcs \ \ ~ v c s  a1.c c~ lu:~l for t11c: gro\\,illg 111ot lc'. 111 tlic follo\vi~ig. \\.(. oiilj. c:orisicler 

tlie 7 > 0 c:ase. Si~iec tlie - < 0 case is similar. o ~ r  tliscussion ci~ii  1)e easilj. 

ctxtentlctl. 

The i~istal~ilit!- 11appe11s \\,he11 

111 it tliagraili of A,(,.) (sec. f;)r c~sarl~plc:. I'ig. .'1-I): the instabilitj. range is I)et\vcen 

rlio horizontill i~xis  i~ncl the Iiorizontal liiie i ~ t  .1;.1.-l0I2. If. i l l  this l.;irige. A[(&) 

rc.ac11cs rlic \ . i ~ l l ~ ( l  2-, 1 .  lo 1 ' ) .  t l ici~ tlie ~ ~ ~ a s i i ~ i u i ~ i  gro\\rr,h race [liiijk)],,,,, = -; ).A0 l 2  is 

obtai~ictl. co~~rcsponcliiig to i~ co~iiplctct li~iear co~iipcrisatio~i of the rionli~icar wave- 

riumber ~nis~i la tc l i ;  if it cloes riot (as car1 happen in the dispersion-flattened fiber), 

the ~ ~ i ; . ~ x i ~ i i u ~ n  growth rate liappe~is at Ale (the subscript e is for es t re rnu~n) ,  which 

is the estreIliuiii of A[(&) closesc to the horizontal line ilt 2y).4012. 114th a value 

This corresponcls to maximal. but incomplete, compensation. 

In many situations. the second-order dispersion function, defined as  /3?(w1) - 
/3"(&') is given instead of tlie rilodal disl~ersion /3(w1). Thus we wish to  express 

i l l (w)  in terms of tlie second-order clispersion function. Since ( d / d ~ ) ~ A ~ ( w )  = 

-[j2 (u0 + LJ)  - /??(do - .J) and Ai(0) = 1, (0) = 0 fro111 Eq. (3.23). \Ire can show 

that  

W 

A1 (w) = 1 [&(GO + V )  + h ( d o  - v)](v - u ) d ~ ,  

For very small ~ilodulatiorlal frecluency, a parabolic approsinlatior1 for the 



Figure 3-1: The i~istal~ility analysis using & ( w )  = -/12(cllo)w2. The upper dashed 
horizolital lirie is -1-,1.4012 i111d the lo\ver is 2''i(.40(? The frecluencv range of insta- 
I~ility corresponds to the section of &(u) curve between the horizontal asis and 
upper dashed horizontal line. The intersections of the curve with the lower dashed 
horizontal line indicate the frecluency of nla.rinlun1 growth rate y J ~ ~ 1 ~ .  *-is power 
increases, both horizontal lines go up. 



nloclal clispersioii curve ;?(dl) call be used around tlie pump frecluclicy. This is 

c.cluir.i~le~it to co~isicleri~ig ,jL(dl) it const;uit withi11 the freclue~icy range of inves- 

~vliicli is clisl,la!-ccl ill Fig. 3-1 for tlie ('ilse of /J2(4,) < 0. T i i s  figure ills0 iiiclicates 

These results xgrce n'itli tliose ol~tainecl fro111 tlie s t a ~ d a r d  NSE ~noctel." 

Ho\vc~,c'r. ;w the l)ourer increases [ I~ut  Eq. (3 .4 )  must I)e satisfied! or the seconcl- 

ordcr clisl)crsioii coefficic~it i ~ t  tlie punll) freclue~icy clecrci~ses. the iiisti~l~iliry range 

I)ecoincs ulitlci.. iuicl fillall!. tlic al)l)rosiniatio~i that ij(dr) is ~~arabol ic .  or , j2(w.') is 

c.o~ist;~~it .  I)rci~lis tlon.11. In ilticlitiorl. this trcatlnent will 11iiss imj- 311 gi~iii oc:curring 

a t  rclati1-(>l!. Ii~rgct ;. So. to c~l) lorc  rllc I)roacl-I)i~ndnridth 1)clliavior of tile .\ I1 gai~i .  

the vsact linear clisl)ersioi~ rolation sliould I)(: ~ s e c l . ~ '  :\ gooct csa~nl)le is the 

clisl)crsio~i-flattc:~iecl fiber disc~~ssed in the follonring section. 

3.3 Dispersion-flattened fiber 

3.3.1 P2e < 0 case 

A clispersioii-flattened fiberJ0 has the characteristic second-order dispersion func- 

tion shorrrn in Fig. .3-2. Notice that / ~ * ( L J )  cannot be considered constant in the 

frecluenc!r range of interest because it changes sign twice. L\s a simple   nod el, we 

fit the curve with a parabola. \.Irith this assumption. 

where PZe is the nlininlal value of P2(u1) occurring a t  the frequency J;, and 2w, is 

the frec!uency spacing between the trvo poirits of zero clispersion (the subscript e 



and ,- ;Ire for estreinuin ailti zero resl)ectivel!-). 111 ail ordinary tiispersioil Hilttenect- 

fiber .Ae is iicgati1-c. 

Figure 3-2: Illustratiori of i Y 2 ( d 1 )  for il ~tis~)ersio~i-flatte~iect fiber. J,, iiiici ;,, are the 
estrcme /j2 \-illue arid the c~orresl>onciiii[: frecluency relative to the pump Ereciuency, 
respectivel!.. 2 ~ :  is the ctiffererice betn~een the tvro zero-dispersior~ fre<lue~icies. 

Using Eqs. (3.30) arid (3.31). nre get 

w2 
ll ( d )  = -/)&(I - +?)d2[1 - 

Gw2(1 - LJ;/w~) 11 

where w, = db - L J ~  is the nlininlunl ciispersion frequelicy relative to the pump 

frequency. Instability analysis based on &(w) is displayed in Fig. 3-3. Its two 

zero points are at w = O and (the subscript f is for F\Yh,I), where 

Usually tlie zeros of linear rllismatch a t  Iionzero w's imply the 1)resence of 

F\Vh,I instabilities for sonle parameter values. The rilasilllum of ill happens a t  



Figure .3-3: Tlie iristability analysis using & ( w )  in the case of dispersiori-flattened 
fiber. Tlie upper arid lower clashed horizontal lines are .1y(.4~1~ and 23),4012, re- 
spectivel!.. The two frecluency ranges of instability correspond to the trvo sections 
of &(&) curve between the horizontal asis and upper dashed horizontal line. i.e., 
(0. w,,) and (d;, ). Tlle two intersections of tlie curve with the lower dashed 
horizontal line a t  w,,, and a/ ,  indicate the frequencies of n ~ a ~ i r n u m  growth rate 
yJAo12. AS porver increases, both horizontal lines go up and the two instability 
regions merge. \Vith a further power increase. the intersections of the curve with 
the lower dashed horizontal line also disappear. 



wl, (the subscript 1 is for linear arid e is for estre~num)! where 

with the tliasitllal \-;due of 

For the rclatii-c:iy low 1)1ltllp ~)oivcr -I-, 1.-lo/' < 11,. there are tivo iritersection 

poitits \\-it11 tllc liorizorltal l i~ic of -lyl.AOlZ at ;,,, (the subscript I r l  is for 111) and 

;;. wile1 r: 

This indicates two rcgiotis of i~istabilit!. \vitli boundary (0, dl,,) and (d;, L,). The 

masimal growth rates in both ranges are 71.-1012 a t  wlnc and uifc, respectively, 

where 

If the pump power continues to decrease, a comparison of Fig. 3-3 with 3-1 

indicates that  the first region reduces to the conventional At11 discussed in Sec. 3.2. 

In fact, one can prove that the instability range approaches the conventional form 

of w,, - 2 4-, where / 3 2 ( ~ 0 )  is actually the second-order dispersion 

coefficieut a t  the pump frequency from Ecl. (3.31) (see Fig. 3-2). The growth rate 

is also approsimated by the conventional espression. This is espected since the 



linear ~)liase-iiiis~natcli -11 is al)l~rosin~ated by the conventional for111 of -1'32(wo)u2 

nritliili this iiistaljilit!. raligc. [Tliis (.all I ) ( !  cleclucecl fro111 the Taylor expalision 

A,(&) E i ; ' (O)d2 / ' 2 .  wliere Ai ' (0)  = -2[;lz(w.,]) from the tlefinitio~l of A, aiitl /I2.] 

The scco~ici regio~i ciin he slio\\rri to recluce to the conventional F\VI\l in- 

stability. Tor a ovak po~i lp  pourer. Y!  - d; - W I ~ ~ / A ~ ~ ~ / ~ ~ A ~ ~  and Al((il) - 
( - l A l c / l c )  ( - ) I t i  I ( ) Recall that for a co~iventio~ial F\Vhl 

of ;I l)u1n1) wnvc itt A!,) a1ic1 the t\vo ( l i~ugl i t~r  \\.iive a t  : I ~ ) O I I ~  w.0 &;;/. the linear \\.;we- 

iiu~nl)c>r luisiiiatch ant1 i1ist;il)ility l)it~iclwi(ltli is 2u.l;' (J - d ! )  ;uicl ~ l - ~ l . - l ~  )'?/14/; ' ( .  

1.c.sl,cc:ri\-c:l\-. nllerc. h!; ' z ~j'(;~ - 2  !) - J ' ( A l ( )  +&I!) is the cliffere~lcc! of t,lie iiiverse 

grol~l)-\v~loc:itic~s I)(!t\\.ce~i the r\vo (Iiu~ghtor \\.i~\-cs (the l)ri~lic llieans (tcari\.i~tivc). 

\Vc> liaw: ol)tilillecl exact lr. t licse fonos (:oosiclering 41; = A' (& = - 1  f i ~ ~ . / ~ ' ~ . .  

Tlie gro\vth rate also taltes the coriverltio~ial form. \Ve I<no\\r that i ~ i  the 1)resence 

of convcritio~ial 111. a long optical pulse \\.ill break I I ~  to form solitolis. 1)ut in 

our case, a cornl~eting process of tlie conventional FIVIvI \\rill channel the energy 

into tlic sidel)a~ids a t  al~l~rosinlately u i j .  Tliese sidebarids \\rill beat to form Iiigh- 

rel~etitiori-rate sliort pulses; Iio~vever? tliis is a reversible process a t  the rionli~iear 

stageG2 I~ecause after pump clepletion! tlie sidebands' energy will be transferred 

back to the punlp. 

If we increase the pump power, the two regions begin to  merge as w, and w )  

come closer until they coi~icide at  d l ,  for the po\iler corresponding to 4yJ.40J2 = Ale 

(df cloes 11ot change with po~ver).  After that.  tlie i~istability range is loclted a t  

(0, w f )  illdependent of power increase. The tnro pealts of the gain cur~re with a 

value of 3.J.40(2 are still separated since w,,, and ~ v ' f ~  are different, but if the power 

continues to increase, they also coincide a t  wle when 2ylAo(2 = Ale. After that,  

the A 1 ( w )  curve has no intersection with the horizontal line a t  2ylAoI2; thus, the 

maximum growth rate is smaller than 711A012 and is given by Ecl. (3.29). .it 



even higher powers it is approsin~atel!. J y ~ . 4 ~ 1 2 ~ ~ .  The peal< is locl<ed at ale, 

independent of power increase. 

Modulational frequency n 

Figure 3-4: The irlstability region iri S2-P space for a dispersion-flattened fiber. 
The thicl< lines arld the vertical asis enclose the instability region. Within this 
region. the dashed lines are the position of the peal<-g~owth frequency for varying 
power. The bacl<ground curves are the contour plots of the growth rate from Eq. 
(3.41). 

Using the analytical espressions for w,,, w,, u;, wf,, and wf, the above anal- 

ysis is graphically displayed in Fig. 3-4, indicating the instability region and the 

ridge of peal< growth in a contour plot of the growth rate versus frequency and 

power. To reduce the number of free parameters, normalized units were intro- 

duced. \Ve ~lorn~alized a as R = u/(w:J-), he as hen = 132ewf (1 - 

W;/W:)~, yJA0J2 as P = Yl.4012/l/jZen/l and the growth rate as G = Im(k)//&,,/. 



Thus, in the ~ioriilalizecl units. all the formulas can be rewritten with the formal 

s~~bst i tu t ion  of d ,  = 0. ilr,, = \ign(,lr,,) = - 1. &= = 1. yl.40(2 = P anci ; = Q. For 

esarnple. Ecl. (11, 32) I)c.co~llcs 

A[ (Q) = - s i g ~ i ( , l ~ ~ )  (1 - <12/6)f1' 

anci [I;, = 3(1 + JI + sign(ii2,)4P/3). respectively. Notice that R and P are ~iow 

the orily free ~,araineters to change. The peak growth rate versus pourer is clis- 

played ill Fig. 3-5 using C,,,.,, = P and GI,,,, = J-(312 - 21')' + ( 2 ~ ) ' / 2  

[fro111 Ecl. (3.29)] for the ranges of P 31.1 and P > 314, respectively. Notice 

that t,he peak growth rate i~lcreases Illore sloivly for higher power because of the 

incoillplete cori~perisation of the linear and rionlinear phase-ri~ismatches. Figure 

3-6 displays tlie gain curves at different powers from Ecls. (3.40) arid (3.41). 

3.3.2 ,B2e > 0 case 

While it is true that most dispersion-flattened fibers have p2, < 0, it is interesting 

to consider the case iri which Pze is a positive number since our analysis can be 

used to aiialyze dispersion curves with any shape. This situation corresponds 

to a pump propagating in the normal dispersion region bourlded by anonlalous 

dispersion regions in frecluency space. Follonring the procedure developed above, 

\ire display the instability analysis based on & ( w )  in Fig. 3-7. 



Power P 

Figure 3-5: Pealc growth rate CnIa versus power P. The point where the de- 
viation from the straight line occurs corresponds to the bifurcation point on the 
dashed line in Fig. 3-4. Cma increases with P more slowly after this point 
because there is not enough linear wave-number mismatch to compensate the 
nonliliear part. 
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Figure 3-6: Gron~t11 rate G' versus frecluel~c!. 12 for ctifferent ~,on.crs. 'The long 
ctashcct lilie, short ctashcd lilie. a i d  solid line corresl)o~ld to P = 0.7. 0.4. alid 0.1. 
resl~ectively. For low power. the illstability is a superpositioli of a colivelitional 
All1 instability (left ~~or t io r i  of the solid line:) and a conventio~ial FPVRI instability 
(right portion of the solid line). 

Its tnro zero points are a t  wl = 0 and W J  given by Ecl. (3.33). .\gain, the 

zero of linear mismatcli a t  nonzero w indicates the possible presence of F\VM 

instal~ility. This is true as slionrn in Fig. 3-7 since L;;, the ilitersection poirlt with 

the horizoiltal line of .1y1.-l0)', always exists allct is also given b?; Ecp. ( 3 . 3 5 )  and 

(3.37) for PSe > 0. 

Unlilte in the previous case, the instability corresponding to the ordinary MI 

does not exist due to the normal dispersion a t  the pump frequency. The  existing 

instability reduces to the conventional F\YM instability a t  small input power. As 

the power increases. the peak growth rate is always ~ 1 . 4 ~ ) ~  because of complete 

linear and nonlinear wave-number con~pensation. The instability region. between 

W J  and w; given by Eqs. (3.33) and (3.37), keeps increasing with increasing power. 

The  instability region based 011 these ecluations and growth rate versus frecluency 



Figure 3-7: The instability analysis using &(w) for ole > 0. The upper and lower 
dashed horizontal lines are .iy1,40(~ and 2ylAo12, respectively. The frecluency range 
of instability correspo~ids to the section of the &(w) curve between the horizontal 
axis and the upper dashed horizontal line, i.e., (wf, w;). The intersection of the 
curve with the lower dashed horizontal line a t  wf, indicates the frecluency of 
nlaxinlal gro~vth rate 3.(.4~)? -4s power increases, both horizontal lines go up. 



by Eq. (3.27) are shown in Figs. 3-8 and 3-9. 

Modulat~onal frequency iL 

Figure 3-8: S a n ~ e  as Fig. 3-4 except for the sign of /32e. The thiclc lines enclose 
the instability region. \Vithin the region, the clashed line is the position of the 
pealc-growth frequeiicy for varying power. The pealc growth rate is a l w q s  P. The 
baclcground curves are the corltour plots of the growth rate from Eq. (3.41).  

Although \ve have fourid instability with the purnp in the normal dispersion 

region, i t  can be proved that a t  least one of the unstable sidebands is located in 

the anomalous dispersion region on the h ( w ' )  curve. 

In summary: the instability behavior in the weak power limit is determined by 

the analytical properties of 4 l ( w )  near the frequencies for which it equals zero. If 

i ts first derivative is a nonzero value a t  sucli a frequency, which leads to a finite 

group velocity difference between the linearly phase-rnatched sidebands, then nre 

have a conventional F\YM instability close to that frequency. If the first deriva- 

tive is also zero. which nleans equal group velocity for the linear phase-matched 



Figurc 3-9: Same iis Fig. G escept for the sign of &. For low ~O\VCS.  it is a 
tori\-entional l;'\lLTA,l i11stal)ility. 

B I //-\ 

sidebands. then we have stability or conventional h'lI (close to that frecIuency) 

depending on whether its secorid derivative is negative or positive. respectively. 

We 11ow briefly consider a fiber with many alternating dispersion regions (in 

frequency space). Based upon the above analysis. it is easy to predict instabilities 

for such a fiber: usually, rnore instability regions corresponding to F\Yh,l will be 

added to the above pictures because of the oscillating behavior of Al(w). These 

regions can merge at high pump power. Thus the scherne can produce continuum 

genesation with a wide bandwidth. 
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In the above analysis we rleglected the dependence of y on the modulational 

frecluency and took it to be a real cluantity. At large w: the Ranla11 effects come 

into play, arid this assumpti011 is invalid. I11 order to describe the dependence of 

the nonlinear coefficients on the n~odulational frequency, a standard model is to 

2 2.2 2.4 2.6 2.8 3 

Modulational frequency sl 



assulnc the ~ior~li~~earit!. c:olnes froll~ i111 instal~tal~eous electrol~ic rcspollse which 

does 11ot clepellcl 011 the 111oclu1atioli;ll frccl~1el~cy. plus a retardeel n o ~ ~ l i ~ ~ c i u i t y  that  

can I>c clcscril,cd I)!. tllc si~nl)l(> Lorentzian ~noclcl for tlie lialliai~ c4fcc.t.. Thus we 

call write. 

;\ccordillg to tdlc Lorentzial~ ~lioclel." the IZa~iiali part taltes tlie filluiliar forms 

where cili arld I / R  are the Rarllar~ pcalc frequency arld dissil>atio~~ rate. respectively. 

(3 ) y y )  alld y R o  are para~neters for the ~ilagriitucte of the irlstalltalleous a l ~ d  retarded 

( 3 )  ( 3 )  
nonli~~earit!-, respectivel17. Note that 1 ( " ( ~ ~ ,  - d o , & " )  = ll + .ylLU. 

From Ecl. (:3.9), nre have 

where 117e have kept the w dependelice only in x(3) since (wo 5 w)/lz(wo 5 w )  = 
wO/~z(wO) in the range of the ~ilodulational frequency under consideration. 

When combined with Eqs. (3.46) and (3.47), equations (3.42)-(3.45) allow us 

to find ?,* and yj* from their definitions in Eqs. (3.14)-(3.17): 



( 3 )  where -ixo = G n ~ ~ , ~ ~ , / [ c r ~ . ( w ~ ) ; I , ~ r ]  and = G T W ~ ~ ~ ' / [ U L ( W ~ ) . ~ , , ~ ] .  Yote the 

 ionl linear coefficient for zero ~lioclulational frecluericy is ~ ( w o ,  - d o :  wo) = 1.1 +?RO, 

which is a real nurnber and will bc tlcnoted by 7. By using Ecl. (3.21): the 

disl~ersion relation includi~ig ltalnan effect is, 

nriicre -, ,.+ is gi1~c.11 I)!- Eq. (3.48). It is easy to sho\v that for very sillall 11iod- 

~llationa! frccllicnc.y. -;,,_ 2 -, . thus the r~.tsult for i~istalitanco~is ~ioriliiiearity is 

recoverccl. 

As a n~inlerical esarnple. lct us suppose that the two points of zero clispcrsion of 

the dispersio~i-flattened fiber are 150 nnl apart and the pump frequency is 50 nnl 

from the estreme-dispersion frequency. This corresponds to w,/(27r) -- 22.5 THz 

and wP/(27r) -- 15 THz. The F\Yhl frequency will be wj/(27r) -- 41 THz, according 

to  Eq. (3.33). .-\ssunling that the estrenlunl of the second-order dispersion PZe -- 

-1 11s~/lcm. arid 7 - 10 \V-'l<nl-', the11 the power for the ruerging of corlventional 

X;II and F\Yh,I is (.4012 = I l e / ( 4 7 )  - 231 \V. This power is greatly reduced if 

the clispersion-flattened range is narrower or the ~ilagnitude of the second-order 

dispersioii is snlaller. The Ranlan frequency is about LJR - 2;r x 13 THz. .As 

represerltative values, UR -- 27r x 5 THz, -1.1 -- 0.67, and 7x0 -- 0.47 . Figure 

3-10 shows the Ranlan effect on the gain curve obtained from Eq. (3.49) for the 

above l>arameters. By the iiornlalization scherne used before, the frequency R, 

the growth rate G, and the power P have been normalized to 27~  x 16.7 THz (the 

normalized Ranlan frequency is thus 0.78), 6.16 m-' and 616 W, respectively. 

Another aspect of the Ramari effect can be revealed by a con~putation of 
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Figure 3-10: Croivth rate C: \-ersus f'rcclne~icy I2 for a fisecl power P = 0.4. The 
Rarllan I)ar;iinetors arc -,lo = 0.47. :,! = 0 . 6 ~  ancl v n  = 0 . 3 8 ~ ~ 1 ~ .  The ~iorrnalizect 
Ramall f rcc~~~cricy is ~ ~ / [ ~ : ( l  - ~;/;1;;)''~] = 0.78. 'rlie clashed liric c.orrcsponds 
to tlie i~istai~tarieous ilonli~iearity. 

Ir+(w)l-' from Ecl. (3.19), 1.esulting in a value srilaller than unity (Fig. 3-11). 

This rilearis that  in the presence of Rarilari effect, tlie amplitude of the Stolces wave 

is larger than that of the anti-Stolces for the unstable  node. nrhich is espected 

since the Ra~na i i  gain tencls to amplify tlie Stolccs siclebarid nlliile decreasing the 

anti-Stol<es siclel~ancl. 

3.4 Conclusions 

In conclusion, we studied MI by linearization around a nonlinear steady-state solu- 

tion of the (nonlinear) h~Iaswell ecluation system. This steady-state solution corre- 

sponds to a cur pump. Specifically. the resulting linear partial differential equation 

is solved by harnlonic analysis. I11 essence, tlie solution to this li~iear partial dif- 

ferential ecluatio~i is a multiscale approsimation in which the small parameter is 



Modulational frequency n 

Figure 3-11: The aruplitude ratio jr . - ( - '  of the anti-Stokes and the Stokes wave 
for the growirig niode. The paranieters are the same as those o f  Fig. 7. The 
dashed line indicates that in the absence of tbe Raman effect, the ratio is unity 
in the instability region. 

the pump anlplitude. Tlius, unlike the traditional NSE-type of methods, which 

involve Taylor esl~ansions in fi.ecluency space. our result can be uriiformly applied 

in any frequency range. Nonlinear dispersion and no11-parametric effects such as 

Ranlan gain are formally included. \Ve applied our results to various dispersion- 

flattened fibers to study the effects of the shape of the modal dispersion curve 

on hl1. We found that when the fiber is flattened in the anomalous dispersion 

region. the instability is the superposition of a conventional MI and FIYM at  low 

pump power. These instability regions in fsecluency space merge at large power. 

Instability also occurs ever1 when the pump is in the normal dispersion region if 

this region of the dispersion curve is flattened. .At low pump po\trers the insta- 

bility reduces to  the conventional FWM instability. The frequency positions, the 

bandwidth, the maximum growth rate of the instability for various pump powers, 



etc.. \\ere c:liaractcrizctl aiialyticall>-. Tlic Ratliar1 effect oil tllese 1)arairletric iiista- 

l~ilitics \vas also stntlictl. It c:iiangcs tllc gro~vth rate of tlie instabilit!. i1iitl riialtes 

the S tokes sitlcl)ilritl st roligtlr t l i a~ i  t !I(! ariti-S tolies sitlcl)itncl. 



Chapter 4 

Instability from Cross-Phase 

Modulation in the Normal 

Dispersion Region 

4.1 Introduction 

The propagation of t ~ i ~ o  intense light waves that have different frecluencies. in a 

single-mode optical fiber. in usually studied within the framework of coupled non- 

linear Sclirodinger equations (NSE's). These equations have been used to predict 

several interesting phenome~ia. '~ including the cross-phase-induced modulational 

instability in the normal-dispersion regin~e.g>4'>"2 Although such an  instability has 

bee11 observed when cross-phase ~llodulatiori occurs between the two polarization 

componerlts of a single wave, no such instability has ever been observed by using 

two pump waves that have the same polarization, but different frequencies. Two 

assumptions made in the derivation of the coupled NSE's are that the waves have 

narrow spectra centered on their respective carrier frequencies and tha t  the co- 



lierent F\Vh,I i~iteraction I)ct\veen two incident waves can be ~ieglected.~".'" The 

self-consist,c:ric!- of the ~)reciictccl ~) l ie t io~~ie~ia  anti these itssuniptions ~iiust i~l~vays 

l)e cliecltccl. 

--In alter~iatij-c: ill)proacli to nonlinear \\litve interactions 11x5 been eleveloped l)y 

Zaltharo\:.~""' 'This itl)procli does not require the wave spectra to I)e narrow or 

the no~il i~iear  c:oupli~ig to l)e irlciel)etident of frequency. It has bee11 to the study 

of several insta1)ilitics in the Huids arid I)lasmils.4"47~58~G%nd is well suitecl to the 

stud!- of tlie i t f~ re~~ ien t io~ icd  olltical interaction. Such an analysis sho\\ys that  cross- 

phase ~ u o t l ~ ~ l i l t i o ~ i  is Iiot a sllfficiciit conclition for the existence of i~istal)ilit!. in the 

nor11.ial-clisl)crsiori rcgitnc. S\)(?cificiill!-. the i~~i l )or ta~ice  of the effects of cross-phase 

~iiocl~llatio~i (lcl)oticls 011 t,lie form of the elisl)c~rsion (:nrve and the i~iciclc~it-wave 

frequeticics. 

Let us consider :I. single tuocle fiber with linear clispersion relationship [ ~ ( L J ) .  

The tnodc-c.ouplitig. or Zal<haro\-. ccluation4G"'7 takes the form 

.4* (w' , z )  A4(wi1. z )  A4(wi11, z )d (w  + w' - d l i  - w'") dw'dw''dw"', (4 .1)  

where P(w)  is the linear  ravenum umber corresponding to the frequency w .  To within 

a factor of order unity that depends on the transverse mode structure, the non- 

linear coupling coefficient is given, in electrostatic units, by 

27rw,y(3'(w; w'. d", ;J"') 
y ( w ;  w' ,  w", ~ 3 " ~ )  = 

c n ( w )  Aeff 

where n ( w )  is the refractive indes of the fiber and A,# is its core area." 111 the 

limit of narrow bandwidth. the Zal<harov equation 4.1 reduces to the NSE. Both 

equations require nonlinearity to be weal< and to produce spatial variation of the 



Fourier a~i~pl i tudes  011 a scale lor~g cori~paretl to ill1 optical n.aveler~gth. 

4.2 Harmonic analysis 

Suppose that tllc illput fielcl is giver1 i)y 

c.orrc>sl)o~~tli~~g t o  two I)urill) n'nvos of peak ..1)o\v("r" ? P I  i u ~ d  'Pi. \lrit1lout loss 

of ga~"ri~lit!- .  dl  < ;.. T11e ovolutior~ of .1 with clistilnce is deterriririetl by the 

Zakharo\- oclllatior~ ( 1.1). Because the iriput Fourier spectruni is cliscrete. the 

iritegratio~rs iri the Zakharo\- equation recluce to summations. -4 simple analysis 

of this eql~atiori shows that the nonli~rear terrrls on the right-hancl side are of two 

types: incolrerent self- arrcl cross-pliase rilodulatio~i terms, which produce rroriliriear 

\\.a\~enuml)er shifts a t  the input frecluencies. and colierent coupling terms. \vhicli 

transfer criergy to other frec(uer~cies. such as 3d1, 2u2 + W I  and 2w2 - 

Since tlie generateel w ~ ~ v e s  all reelllire a considerable clistance to 81-onr to finite 

amplitude. the initial evolution of the input field can be cletermined by retaining 

in the Zakiiaro\- equation only those Fourier components associated with the two 

pump frecluencies. .4t the frecluency w l ,  the Zalcharov equation reduces to 

[d, - i ~ 3 ( w l ) ] L 4 ( ~ l ,  z )  = i?(Pl + 2P2)A(wr, z ) ,  

where a degeneracy factor of 3 has been irlcluded in definition (4.2) and y(wl; wl, ~2~ - ~ q )  

has been assumed comparable to y(wl; u l ,  W I !  -wI).  Throughout this chapter: y 

mill be assumed to depend only nrealdy on frecluency and its arguments will be 



on~ittecl for simplicity of ~iotatiorl. Sliould the rieed arise. i t  is not difficult to 

estencl the analysis of this paper to i~icludc the frecluency del>eridence of -y as wa.5 

clo~ie for one pump wave ill Chapter 3. The solution of Eq. (-1.4) is 

.-I sirnilar xrial!-sis shows that 

Solutions (~1.5) arid (-1 .G)  represent two pu~i ip  waves with rlonlinear wavenum- 

ber shifts a~icl arc valid near the eritrancc to tlic fiber. \Vlle~l the ariiourit of' energy 

transferred to tlie generated \\.aves is srnall, they are also globallv-valid ec~uilib- 

rium solutions of tlie Zal<liarov equation. Due to the frecluencv dependence of the 

refractive index? tliis condition is usually satisfied for third-harmonic and sum- 

frequency generation. However, the generation of light a t  the difference frequency 

2w2 - u / , !  \vhicIl is close to w2 if tlie incident frequencies are not too dissimilar? 

warrants further investigation. Fro111 the Zal<llarov equation. 

[d, - ib(2w2 - yll)]A(2ui - W I ,  I) = i 7 ~ 2  Jp1 esp  [i242(z) - $1 (;)I 

In the undepleted pump-wave approximation, the solution of Eq. (4.7) is facili- 

tated by writing 

,4(2w2 - wl, I) = B ( z )  esp  [iP(2w2 - U J ~ ) Z  + i2y(P1 + &)I] 



It follows imnlecliatel!. that 

where 

is the total (linci~r ~)lus  ~ ~ o r l l i ~ l e i ~ r )  ~ ~ a ~ : r . ~ ~ u n l b e r  r~iismatch of this partic1i1i.u genera- 

tion process. 'l'lius. the c.ilerg!- t1.aiisfc.r tlue to ~)urnp-l)uinp F\Vll wiil l)e ~liii~iiilal 

~)ro~-iclecl that 

Ineclualit!. (4.11) recluires the \~a~;e~iu~iiber-r~lisnlatch (4.10) to I)e 111uc.h larger 

thau the nonliiicar coupliiig tern1 in Ecl. (-1.7) to suppress tlifference-freq~~ency 

generation. \\.'he11 this coritlitioli is satisfied! the nonlinear term call be o~nittecl 

fro111 the derio~ninator of inecluality (-1.11). -1 similar iiiecluality follows from the 

consideration of light generation a t  the difference frecluency 2 4  - u2. 

Suppose that inequality (4.11) is satisfied and, hence, that Eqs. (4.5) and (4.G) 

describe an  equilibriun~ solution of the Zalcharov ecluation. To study the stability 

of this ecluilibrium: one shoulti linearize the LIaxweH and polarization equations 

underlying the Zalcharov equation around the equilibrium solution. To the order 

of accuracy of the Zalcharov equation, this procedure is equivalent to linearizing 

the Zalcharov equation itself. However, one can avoid a formal linearization of 

the Zalcliarov ecluation by using harmonic analysis: Due to the intrinsic linearity 

of the stability analysis, any perturbation of the ecluilibrium can be deconlposed 

into small-amplitutle nraves at various frequencies. Consecluently! one only needs 



to stud!. tlie c\-olutio~i of cacli group of sniall-aml~litude waves. These nliives 

are referrctl to ;is "siclel>ii~itls" of the l)u~nl> waves I>ccause the frecluc~icies of any 

unstal>le group arc close r.o tlic 1)uml) frequencies. as will be clemo~istratecl. 

Considcr tlic (:I-olutio~i of a \)rol>e \iravc! of' frcclllenc!. ;, + ;. Sul~pose first 

that  >> ;, - d l .  111 this case. the interaction of the ~)rol)e and 1)uinp \va\;es 

produces Iiar~noiiics n.liose i~~i lp l i t l lde~  arc ~nucli smaller than the prol~e aniplitucle. 

Althougli tlic ~)rol)cl \\.;~vc: is silb.ject to a  ionl linear ~\?i~venumber shift. its energy 

is essetitiall!. ~lntl(:l)lctctl. l'his l iar~no~iic gerieratio~i is similar to that tlcsci,ibed 

i~bo\-(l. c!sccl,t that r l ~ c  ~)rol)c: II~;LI-(-' c.ontributcs one of the clri\-ing co~npoiicnts on 

tiif? l ' ig~lt-~liL~l(~ s ~ ( \ O  ( 1  f tllc ~ill<1lkLl'O\~ ~ ~ c ~ l l i ~ t l O ~ l .  

Con\-c~rsel!.. silppose that ; d . ~  - d l .  111 tliis CilSe. some of the gerieratecl 

nravcs can bc ~icarly 1,hase ~iiatcliecl. One esample is the wave generatecl a t  the 

freclue~ic!. ;I + J? - (d, + w) = d~j2 - w z w?. For these waves. the n~aveiiunlber- 

misn~atcli  tcrrns arc cornl,aral)le to. or smaller than. the rionlinear coul~ling terms. 

Hence, they can l>c clriven to amplitucles is large as the probe amplitucle. In turn,  

these generated waves ~nodify the prol>e wave. Consecluently, the evolution of 

the entire group of waves ~ n u s t  be determinecl self-consistentl~r. Notice tha t  this 

scenario automatically iricludes the previous scenario as a special case. 

T h e  seconcl scenario is now considered in detail. Suppose that  the probe wave 

has frequency + UJ. where < (w2 - w1)/2. Only those sidebands a t  the 

frequencies wl -w. w2 + w and w2 -UJ can be driven near-resonantly, unless special 

arrangements are made to allow other FWM processes to occur. This situation is 

illustrated in Fig. 4-1. 

When (ij2 - d 1 ) / 2  < ( w (  < 3(w2 - w1)/2, the interaction is identical to  the 

preceding interaction. To see this, suppose that w > (w2 - wl)/2 and define 

W' = (w2 - wI)  - W. Then sil + w = w2 - w', with I w ' I  < (w2 - wl)/2,  and the 



> 
Frequency 

Side bands 

Figllrc. -1-1: I~otuicr sl)ectrurii of' the rlectric field. 'The large l)eal<s rel)roseiit the 
two 1)1iii11) n.il\-c;s. wlicreas t l ~ c  four sillall  illis is rcl~resent tlie four siclel)aiicls n,liose 
c!~.olutioii is c:or~plecl I)y tlic 11ol11iiie;uitic.s ill the Zakharo\- c:cluatioil (-1.1). 

l)rol,c n.il~-c\ slloulcl I) (>  regarded ;I >idel)iuid of the higher-frecluenq- prlrup wave 

(11n1cs.s. of course. the pu~lip \\.ilves itre orthogonally polarizecl). Honrevrr. the 

physics of tlic iuteraction is ulialterccl. as statecl. \Vhen Id( > .3(w2 - ~ , ) / 2 ,  the 

other sitlebaricls are usually tlrivcn nonresonaiitl!. ancl. hence. the irlteraction is 

llsually stable. Conseclucntl!.. i11 the following analysis. the frequency cliffererice 

between the 1)rol)e and tile lower-frccluency pump wave is assumed to satisfy the 

ineclualit!- 

The derivation of the sideband e\lolutiori ecluations from the Zal<harov equation 

is straightfor~vard. ,Just as the purllp waves are subject to nonlinear mavenumber 

shifts. so also are the sidebaiicls. In anticipation of these \vavenurilber shifts, it is 



convenient to clefixie 

Tlie sidebaiicl ecluations then tilke the form 

where tlie c1isl)ersion functions 

D l - ( a .  k )  = k + P(u1 - d) - P(WI ) ,  

D 2 + ( ~ ,  k )  = A: - / 3 ( ~ 2  + UJ) + iI(w.~),  

The physical significance of these ecluations can be seen as follo\\rs: Suppose 

that  the nonlinear terms in Eqs. (4.5) and (4.14) are absent. Then, from the 

second of Eqs. (4.5) and the first of Eqs. (4.13) - (4.15), 

where 



and the prol~e \\rit\;c propagates with its natural \\raveriumber. Thus. tlie term 

3 ( w l  + ;) - r j ( ~ , )  is the linear ruisniatcli I)et\veen the natural wave11uml)er of 

the prol)e wave ailel the \virvenuml>er at which it is clriven I>y the terrils on the 

right-haricl side of the mocle-coupling ecluation. when they are present. The four- 

sidebi~ncl interactiori tlescril~etl I,? Eels. ('1.1-1) arid (,1.15) can l)e unstable. The 

spatiirl growth rirtr of this iristitl)ility tlel~cnds or1 the rio~ilinear coul)lirig l)etween 

the side1)i~ricts. whicli tcncls to I)e c1estal)ilizirig. iuid the intrinsic linctitr. iuitl 11011- 

linear \ v i ~ ~ - c i ~ u ~ ~ i l ) c ~  shifts of' cach sidcl)and. which tcnd to be stal>ilizirig. 

L3\. c:urnI)irii~~g Eqs. ( 1.1.1). one (:it11 slio\v that 

The solutior~s o f  this irlstaI>ility dispersion ecluation cleperid or1 the sllape of tlie 

fiber clispersior~ curve and. ill gericral. inust Ile cleternlillecl riun~ericall~.. T l ~ e  rela- 

tive anlplitudes of the sicleba~ids the11 follow from Eqs. (4.14) and (4.15). For the 

limit in which UJ << s12 - dl,  Eq. (4.18) reduces to the usual dispersion equation 

that is derived from couplecl NSE 'S . ' ' ~ ' "~~~  

4.3 Results and discussion 

Three different cases are illustrated in Fig. 4-2. Consider first Figs. 4-2(a) 

and 4-2(b), for which both pump frecluencies are in the normal or anonlalous 

dispersion regime of a conventional single-mode fiber and are not too close to the 

zero dispersion point. Suppose that tlie clispersion curve can be approximated by 

a parabola over the frequency range [sll - (u2 - d1)/2. s l 2  + (w2 - u1)/2]. Such 



Frequency Frequency Frequency 

Figure . I - ? :  Disl)ersiorl (:IIs\-(~ of a con\-entiolial fil~cr. (;I) Both pu~ill) freclucncies 
are ill tlie nor~nal  dispersion regi~lic. ( I ) )  Both pump freclucncies arc ill the anorna- 
lous disl)crsio~l rcgirnc. ((:) Orie ~ ) u ~ i i l )  freclucncy is in the ~iornlal dispersion regime 
and the other p ~ l n ~ l )  frecl~~ciicy is i11 the ano~nalous disl)ersion regime. Notice that 
the ~)urnl) frecllle~icies (:;In I)e chosen in such a way that the pnm1)-wave group 
velocities are equal. 

a 1)aral)ola car1 be characterized by its first derivative dpldw = PI aud second 

derivative d 2 P / t l ~ '  = /j2 evaluated a t  d l .  .Although this parabolic approsinlation 

canliot be illacle for all clispersion curves, it serves to illustrate the physics of the 

interaction. For eclual 1)ump l)o\\.ers. tlie dispersion ecluatiori (4.18) becomes 

{[k - /31wl2 - (P2w2/2)[2yP + (p2w2/2)]) 

{[k - 1 3 1 ~  - !w2 - UJ,)132wI2 - (P2w2/2)[2yP + (P2w2/2)]) 

= ( 4 y ~ ) ~ ( P ~ w ~ / 2 ) ~ ,  (4.19) 

while condition (4.11) for the absence of pump-pump F\Yhl becomes 



.Aiialysis of Eq. (4.19) is fiicilitated bj- the change of variables 

k - i j L d  (w2 - iu'l)2/$ 112 CAI 
I< = . c = s i i .  s = 1 I . R = ( - I " ~  > 0.(4.?1) 

? p  2rP 'LyP 

Tlie parameter C' is equal to 1 or. -1. according to whether the pu111p frequencies 

are in the riorriial or ariornalous <lispe~sioii regime. respecti\-el!.. Tlie other three 

variables ha\-c tlie form of n~;tl-criurnber shifts tli\yided by the nonlinear n~a~renun~ber 

shift iiiipose<l or1 each sitlel)i~ric\ I)y the appropriate purnp wave. 111 terms of these 

cli~nc.nsiorilcss I-i\riablcs. Eq. ( 1.11)) I~ecorncs 

Conditiori (.l.'LO) rc!cluircs that 5' >> 1 ant1 contlitiori ( , I . l '>)  requires that I1 < 5'12. 

First: suppose that I< - (2 - 1. Tlieii tlie second group of terms iri Eq. ( .1.22) is 

of ordcr S' arid the rnoctulatio~ial iriteractioiis of the two p~uilp waves clecoul>le. 

For the lower-frequeric!. ~)unlp  nrave. tlie reduced dispersion relation is 

\Vhen C = 1. con.esl)onding to nornlal dispersion. the lower-frequericy pump 

wave is stable. \Vhen C = - 1. corresponding to anomalous dispersiori. the lower- 

frequency punll) wave is inotiulationally unstable by itself; the effects of cross- 

phase modulation are insignificant. Similar results apply to the higher-frecluency 

pump The approsin~atioii used in deriving Eq. (4.23) is self-consistent 

whenever 



Since conclitio~i (..1.'24) is satisfied for all R 5 S /2 ,  no cross-~~llase-iriciucc?cl insta- 

l~il i ty cilii exist. ;\ltliougli this result nvils 1)rol-eel for a parabolic clispersiori curlre. 

the key ingreclic~it is that tlic clirvaturc of tlie clis1)ersioii curl-e iiot chaiige sign 

in the afore~ne~itio~iecl freclue~icy range. Thus. nre expect the stated result to be 

true for conventional fibers in general. When S  1, the preceding analysis is not 

1-alicl l~ecause puml~-punl~p l:\Vhl occurs and Eels. (4.5)  and (-1.G) clo not describe 

an  ccluilibriu~ii solution of the Zalcharov etluatiori. However. tlie wave cvolution 

for this case l i i ~  lwen stuclietl ~iun~erically I)? Rothenberg.-l5 Yo evidence of mod- 

ulational iiisti~l)ility was found. 

Figilic' '1-2(c) i l lustrat~s  tlie case i11 which is ill the anomalous tlispcrsion 

regime illid ;? is in tlie normal dispersion regime. As shown in the figure. it is 

alnra!.s l)ossil~lc to fintl 11111111) frccluencics for which the pump-wi~ve groul~  velocities 

are eclual. Tliis situation is si~iiilar to the one i~nalyzecl I)? Iiiouc.'.' Iii tlie spirit 

of tlie r ises  ;~nalyzed previousl~.. suppose that the ctispersioii curve is parabolic 

in the vicinities of botli puml:, frecluencies. Then the clispersiori ecluation (-1.18) 

becomes 

where I< and O are as defined in Ecls. (4.21) and 

Since the pump frequencies are well separated, there is no reason to  assume tha t  

the  ~ilagnitudes of CI and G are eclual. as they were in the previous two cases. 



The solutions of Ecl. (4.25) can be written in the form 

0 1 2 3 4 5 

Modulational frequency 

Figure 4-3: Spatial growth rate plotted as a f~uiction of the ri~oclulational frecluency 
for the case in nrhicli one pump frequency is in the norrnal dispersion regime 
and the other pump frequency is in the anon~alous dispersion regime. and the 
pump-wave group velocities are equal. The riormalizations of the spatial growth 
rate and the n~odulatioi~al frequency are given in Eqs. (4.21). The broken line 
corresponds to C2 = 2, the dot-dashed line corresponds to C2 = 1 and tile solid 
line corresponds to C2 = 0.5. 

The rilost unstable branch of Ecl. (4.27) is displayed in Fig. 4-3, for three 

values of C2. The curve corresporiding to C2 = 1 is particularly interesting, 

because it seems to imply that instability esists for arbitrary values of the mod- 

ulational frequency SZ. For future reference, notice that Eci. (4.27) reduces to 

I< z f (Oz * ia) when C2 = 1 and SZ2 >> 1. To understarid this result! recall 



that  the coupled inotlulational instability of two pump waves: which involves four 

sideb;\ritls: is coii1l)rised of tliree clistiiict two-side1)ancl interactions. The nloctula- 

tional iiistal)ility of tlie lon~or-Irecl\lenc!. p u ~ n p  wave iiivo11.e~ B I +  ancl B I  - , and is 

charactcrizec4 I)!. tlie v.aveliuriiber rnis~~iatch 

--I si~ni lar  c~spressio~i c!sists for tlie ~iiisrilatcli of the moclulational instal~ilit!. of 

t i  i i i e - I  I i .  1;orivi~rcl F\\'hl invo1i.e~ D l -  arld D.l-. and is 

characterizetl I)!- tlic ~~iis~iiatc:ll 

This  interactio~i car1 Ix uristal,le. Bragg reflection involves Bl+ arid B2+, is char- 

acterized by tile rilismatcli 

and  is intrinsically stable. For the case under discussion, only fornra1.d FWM is 

(linearly) phase ~natched when f12 >> 1 aiid must be responsible for the predicted 

instability. The  associated matching condition (4.29) is illustrated by Fig. 4-4. 

This argument can be quantified: If one retains only B1+ and B2- in Eqs. 



Frequency 

Fig~lrc' (1-4: \ \ . ~ ~ \ . ( ' I I u I ~ ~ ~ ) c Y  111atvhi1lg conclitio~l illustrated for the case in \vhich one 
~ ) u ~ ~ i i )  Srcc l~~c~~cy is irl the norl~lal clispc:rsiorl rcgirue ;~rlcl  the other ~)urllp Srecluency 
is i r ~  the n ~ ~ o m ; i l o ~ ~ s  clisl)el.sion rclginlc. The pump-\vxvc group \-clocities :we equal 
and CI2 = 1. 

which has the solution 

\Vhen C2 = 1, Zi = -R2 * id in agreement with the corresponding limit of 

Eq. ( 4 . 7 ) .  Having analyzed this two-sideband interaction cluantitatively, one 

can now understand the stated result physically: When C2 = 1, the dispersion 

curvatures associated with the frecluencies wl +w and W.L -W are equal arid opposite, 

and the (linear) nravenumber nlismatch is identically zero for all 1-alues of w. 

This degeneracy can be removed by retaining w3 terms in the matching condition 

(4.29). The other two curves in Fig. 4-3 correspond to coupled nlodulational 



instabilities. To see t,liis. simply ol~ser~.c  that  neither curve lias the precise sliape 

requireel I)!. Eel. ( 1 . 3 2 )  o I E l .  (1 .23)  [For tlie case in \vl~icli C'? = 0.5: 

the spatial gro~vt,h rate ~)reclic:tccl l ~ g  Eel. (,1.32) is a reasonable approximation to 

the  esact  gro\vth rate iri the range Q > :3.] Even thougli Eq. (4.:32) cloes riot 

predict these t \ ~ ~ o  c :ur~~cs  accllratel!.: oIie can still use i t  to gain sorile insight into 

tlie cliffere~~cc I,et\veen thern: \\'hell Cf2 = 2.0. tlie liliear tuid ~ ~ o ~ i l i ~ l e a r  i~iismatch 

terins in Eel. (-1.32) reiriforce one a ~ ~ o t l i e r .  \\-hereas. \\.hell C2 = 0.5, the!, oppose 

one ;~notl lcr  01-c>r a liiiiitecl range of' ~~ io t lu la t io~ ia l  frccl~le~~cies.  '1-llis ol)ser\-atio~i is 

co~isistcnt  \\,ith the fact tliat tlie range of nloelulational freclue~~cies corresponding 

to inst;~l)l!it!. is larger for t l ~ c  Iattor ciLse t l la i~  for tlie fo r~ner .  For cases ill tvhic11 

0 < IC', I - C;, << 1. the 1ine;~r rnisnlatch tern1 cancels the  ionl linear rilisnlatch 

term \\lhei~ the ~ ~ i o d ~ l l a t i o n a l  frcc~uciicy is large: Ecl. (4.32) is rcle\;ant ;uid tlie 

peak sllatial g r o ~ ~ t l i  rate of the instal~ility is 2. rather than A. 
Not\. suppose tha t  the I,unl\)-witve group 1-elocities are urieclual. 'l'liel~ the 

four-sidel~and interaction is governed by 

where 

characterizes the  difference between the pump-wave group velocities. Forward 

FbVh:I is described by Eq. (4.31), with C2R2 replaced by -2SR + C2R2.  Corre- 



It is evicleiit froin Eel. (~1.3.3) that the ~nodulational i~iteractions of the two pump 

waves clccouple when S (  >> 1 and Q' N 1: the lower-frecluenc!. pump wave is 

moclulationall!~ unstable I)y itself. whereas the higher-frec~uency pump wave is 

inodulatioriall!- staljle. Sirice Ecl. (-1.33) is not bicluadratic i11 I<: it has no simple 

solutions to facilitate stnd!. of the regi~ne in 1\rliicli Q >> 1. Honrever. it is clear from 

Ecls. (.1.28) - (.1.30) rliat rhc iliottulatioiial instal>ilities of each purnl) n.;l\-c arc riot 

(linearly) \)has(: r~iatched. a ~ i d  that f'or\vnrcl l:\V,\l and 13ragg rcfiectiori caririot Ile 

(linearly) 1)hase r~iatchctl simultaneo~lsl~. 'Thus. orily i l  fornra1.d F\.l'h'l i11staI)ilitg 

can exist. s l ~ l ~ j e c t  to the recluire~nent that the dispersion coefficients have different 

mag~iituctes. Xotice that the wavenu~iil~er matching condition (4.29) recluires the 

modulational frecl~lency to have a definite sign; symmetric Stolces and anti-Stolces 

emission cannot occur. This ~011~1~sio i i  also follo\vs from Ecl. (4.35). When 12 

is positil-e, Ecl. (4.35) corresl~onds to the interaction of B1, and B2-, as stated 

pre\,7iously. \Vhen fl is negative: Eq. (4.35) corresl~onds to the interaction of B1- 

and B2+. It has already been demonstrated that cross-phase-induced instability 

esists when S = 0. By continuity, \ire expect that cross-phase-induced instability 

can exist when S - 1, over a limited range of Q. However, Eq. (4.33) must be 

solved numerically to obtain cluarltitative results. 

In related work, Schadt and Jasicorzynsl~a~~ considered the interaction of a 

strong punl i  pulse: prol~agating in the normal dispersion reginle, and a weak con- 

tinuous signal wave. propagating in the anomalous dispersion regime with a group 

velocity conlparable to that of the pump pulse. By nunlerically solving a pair of 



Modulational frequency Modulational frequency 

Figure 4-5: Spatial gronrtli rate plotted as a function of the rilodulational frequency 
for the case in which one pump frequency is in the normal dispersion regime and 
the other pump freclueiicy is in the ariorilalous dispersiorl regime. The normaliza- 
tions of the spatial growth rate arid the nlodulatiorial frequency are given in Eqs. 
(4.39). The pump-wave group velocities are equal and C2/C1 = - 1.4. (a) The 
power ratio of the lower-frequency to the higher-frequency pump wave R = 1. (6) 
The solid line corresponds to R = 0.25, the upper dot-dashed line corresponds to 
R = 0.16, the broken line corresponds to R = 0.11 and the lower dot-dashed line 
corresporids to R = 0.09. 



coupleel NS ecluations: they sllowed that the cross-phase n~odulation inlposecl by 

the pump pulse 011 the signal wave i~lduced tlie formation of a short signal pulse, 

eve11 though the pu~ilp pulse hacl an intrinsic tendancy to broaden and the signal 

1va1~-e \\as too wcalc to l)c rnodulationally unstable by itself. This effect has: been 

denlonstrated csperimentally by Creer et a/.*' The ~ilost unstable branch of Eq. 

(-1.27) is ciispla\.ecl in Fig. -1-5(a), for C2/C1 = -1.4, the ratio llsecl Ily Scllaclt 

and .Jaslcorz!~nslca in their ~iumerical simulations. Since the peal< spatial growth 

rate of the instal~ili t~. ilnd the range of modulational frecluencies corresponding 

to i~lstal~ilit!. ;ire Imth larger than those of the rnodulational i~~stabi l i ty  of the 

lower-frcclue~~cy p11111p n';ivc: I)!. itself [see Ecb (4.23)], the results of this paper 

are similar to those of Schaclt nrlcl ,Jaslcol~z!.~lslca. However. a fairer comparison of 

the l.osults l.ec11lires a stucl!. of the cross-l~hase-iriclucecl i~istabilities for the case in 

~vhich the lo~~~er-frec~uenc!r pump wave is mucli wealcer than the higher-frecluency 

pump wave. T l ~ e  cletails of suc11 an analysis are given in the Appendix. The main 

results are t~~vofold: \Yhen i~lstability exists, the peak growth rate of the cross- 

phase-inclucecl instability is larger than that of the nlodulational illstability of the 

lower- frequent!. pump wave by itself: for most values of the pump-wave illtensity 

ratio. Ho~vever: no instability esists when the pump-wave illtensity ratio is less 

than a certain critical value. These results are illustrated by Fig. 4-5(b). The 

latter result differentiates the physics of the instabilities of two continuous waves 

and the interaction of a continuous wave and a short pulse. 

The frecluency d e p e ~ ~ d e ~ i c e  of the rlatural wavenumber in a dispersion-flattened 

fiberi2 is shown in Fig. 4-6. There are two frequency domains in which the 

fiber esibits nor~nal  dispersion, separated by a domain in which the fiber eshibits 

anomalous dispersion. The analysis of the cases in which one pump frequency is 

in the donlain of anonlalous dispersion and the other pump frequency is in either 



Frequency 

Figure ' 1 4 :  I)isl)crsio~i ( : I I ~ V ( >  of a tlisl)ersio~l-flatte11ecI fiber. The two ~ ) ~ l m p  fre- 
clue~icics \re i l l  separate ~ i o r ~ n a l  c.lisl)ersio~i rcginies. Sotice that the ~ ) I I I ~ I ~ )  fre- 
quencies c;ui I ) ( >  chosen ill such ;L that the I)urnp-\\.ave group \-clocities are 
equal. 

of the tnro tlonlains of normal dispersion is identical to the corresponding analysis 

for light-\\rave ~)ropagat io~i  in a coriventional fiber. Hence, it need not l)e discussed 

further. Figure -1-G illustrates the case in which the pump frequeilcies are in sep- 

arate tlonlairis of iiornlal dispersion. It is clear from the figure that the pump 

frequencies can be chosen i11 such a way that the punlp-\\rave group velocities are 

equal. The dispersion equation for this situation is Eq. (4.25), with CI = 1 and 

C2 > 0. For the special case i11 which C2 = 1, a cross-phase-induced modulational 

instability is lcnolvn to  occur.‘"^"^ However, since the pump frequencies are \\re11 

separated, there is no reason to assume that the dispersion coefficients are equal. 

The  spatial growth rate of the coupled nlodulational instability is displayed in Fig. 

4-7, for three values of C.;. Varying C2 alters the pealc growth rate of the instability 

and the range of frequencies correspor~ding to instability. The latter effect can be 

understood qualitatively by regarding (C1 +C2)/2 as the effective dispersion coef- 

ficient; increasing the effective dispersion coefficient reduces the range of unstable 



wavenumbers, whereas reducing the effective dispersion coefficient increases the 

range of unstable n~avenumbers, as is the case for a single nlodulationally unstable 

wave. However, the couplecl modulational instability is less sensitive to the value 

of Cr, than are the instabilities associatecl with Fig. 4-2(c). I11 particular, there is 

no clistinct fornrard F\VM ixistability when C2 = 1. This result also follo\vs from 

Eq. (-1.29). 

0 0.25 0.5 0 .75 1 1.25 1.5 1.75 

Modulational frequency 

Figure 4-7: Spatial growth rate plotted as a function of the riloclulational frecluency 
for the case in which the two pump frecluencies are in separate nornlal dispersion 
regimes and the pump-wave group velocities are equal. The normalizatio~ls of the 
spatial growth rate and the nzodulational frequency are given in Eqs. (4.3). The 
solid line corresponds to C2 = 0.5, the dot-dashed line corresponds to  C2 = 1.0 
and the broken line corresponds to C2 = 2.0. 

Now suppose that the pump-wave group velocities are unequal. Then the 

four-sideband interaction is governed by Eq. (4.33), with S as defined in Eq. 

(4.34), Cl = 1 and C2 > 0. The interaction of B1+ and B2- is governed by 

Eq. (4.35). Suppose, temporarily, that C2 = 1. The dispersion equation for 

this case is mathematically equivalent to Eq. (4.22). I t  follows immediately that,  



when IS1 >> 1 and 0 - 1, the rilodulatio~ial i~iteractions of the two pump nraves 

decouple a ~ i d  110th punlp nravcs arc ~nodulatio~ially stable. [Vhen 12 >> I. further 

analysis is recluircd. Fortunately, the ciispcrsion ccluation lias the exact solution 

froni whicli i t  follon's that tlic c.oriditioli 

 nus st I,r satisfictl for i11stal)ility to exist. L'roni tlie discussio~i follo~virlg Eel. (4.35). 

it follo~vs that t,his i~istabilit!. is forward FLVhl. Tlie agreement bctnyee~i t he pre- 

dictions of Ecls. (-1.35) and (4 .X)  is evident iri Fig. 4-8 a ~ i d  confirms the prececiing 

assertion. In tlie prese~it case. solutio~ls (-1.35) and (4.3G) are ~ileaningful Ixcause 

Bl+ and B2- are pliysically distinct from the t~vo  pump waves. One need only 

check that  tlie modulatio~ial frecluenc? is not so large that the Taylor expansion 

of the natural waveriutnber. used ill  the derivation of Eqs. (4.22) and (4.33), is 

invalid. Previously, S2 was assumed to be positive. No generality was lost in this 

assumption due to the synl~iletry of the frequencies of the four interacting side- 

bands. When S is positive, the ~llisniatch terms in Eq. (4.35) cancel for i2 = s. 
This cancellation results in a peak spatial growth rate of 2, as shonrn in Fig. 4- 

8(a) .  (In contrast, when C2 = -1 such a cancellation does not occur and the 

peak spatial growth sate is fi.) When S is negative, the mismatch terms do not 

cancel, and the interaction of BI+ and B2- is ,not phase matched. However, by 

changing the sigu of the modulational frequency in Eq. (4.29), one cau show that  

the interaction of Bl- and B2+ is phase matched. This change is equivalent to 



changing the sign of R in Ecl. (4.35) aricl also results in a peal< spatial growth rate 

of 2. as shon.11 i11 Fig. -1-8(1)). When C.L # 1> solutiori (4.36) is no longer relevant. 

However, the tlccoul>lirig of the two ~iiotlulational interactions when 52 - 1 is not 

sensitive to the value of and still occurs. The forward F\VM instability is still 

governed by Ecl. (-1.35). 

In other types of dispersive rneclia. it is possible for the pump frecluencies 

to l ~ e  in sel)arate i~riornalol~s tlisl~ersion rcgimes. I11 this case, both pump waves 

are ~ i ~ o d u l a t i o n a l l ~  unstal~le I)y themselves. Cross-phase nlodulatiori couples the 

single-pump instal,ilities to protlucc i l  two-l~unlp instabilitv that has a lilrger spa- 

tial growth r ;~ t c  than either of the single-pump i~istabilities." '." The analysis of 

this cxse is sirnilar to that described in the preceding two paragraphs: as are the 

conclusions. 

Modulational frequency 

2 . .  
(b) 
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Figure 4-8: Spatial growth rate plotted as a function of the modulational frequency 
for the case in which the two pump frequencies are in separate normal dispersion 
regimes and the pump-wave group velocities are unequal. The normalizations of 
the spatial growth rate and the nlodulational frecluency are given in Eqs. (4.3). 
The  solid line corresponds to the exact result (4.36), whereas the brolcen line 
corresponds to the approsinlate result (4.35). (a )  S = 10. ( b )  S = -10. 



4.4 Conclusions 

Tlie 11iet11ocl of Zaliliaro~. \\:as 11sect to study illstabilities induceti I)>. cross-phase 

~nodulat ion i r l  a single-r~iode fiber. 'This rlletliotl is valid for diffcrenccs I)etween 

the punlp arid sidebancl frccluerlcies that are larger than those allo\~c~tl in the usual 

SS anal>-sis. Corltrar>. to the  r re dictions of coupled NS ecluations. the existence 

of cross-phase modulation does riot guarantee the existence of instability. 

If both ~)unil)  frcclucncies are in the nornlal dispersion regime of a conventional 

fibcr. there is rio irlsti~l,ilit!.. I f  I)oth ~)urlip frecluencics are irl t,1ie ;~rionialous 

ctisl)c~rsioll rcgir~ic. t l ~ c  I)llnll) \\rilIT('s arc ~~iotlulationall!. 11nstilblc I)!. tlie~~isclves. 

hut tlo riot c.ool)clratc to ~)rocl~~c.c il coupled 111. [;'or tlisl>crsivcl rliecii;~ i l l  gcncral. a 

sufficient conctition for the esiste~lce of a (four-sideband) coupled A11 is that the 

difference betnveerr the pump-wave group velocities can be made small without 

l>rocluciiig 1)unlp-l)ump T:Mrlll. This situation can arise in a conventional fiber 

when the two pump frequencies are in different dispersion regirnes (~iorrnal a ~ i d  

anomalous). 

The  dispersio~i curve associatecl with a dispersioii-fiattencd fiber lias two re- 

gio~is  in which dispersion is normal, separated by a region in which dispersion is 

anomalous. Coupled hlII can also occur in a dispersion-flattened fibel. when the two 

pump frequencies are in different normal dispersion regimes and the pump-wave 

group velocities are comparable. 

In  each type of fiber, the coupled RII is suppressed by the presence of a large 

difference in the pump-wave group velocities. Hoivever, cross-phase ~llodulation 

can still induce a (two-sideband) FWM instability. 

The  central theme of this chapter is how dispersion controls which of the 

three constituent two-sideband interactions are phase matched for a particular 



value of the ~noclulational frcciuency. \Vith clispersive effects replaced by geomet- 

ric (cliffractive) effects. this theiiie is also relevant to transverse illstabilities of 

two copropagating light waves. 'These iristabilities are analyzed in detail i1141)42 

and .GG-G8 

4.5 Appendix: Unequal pump-wave powers 

It follo\\~s fro111 Eq. (4.18) i ~ i i c l  the assu~ilption that tlie ctispersioii curve is 

paralmlic iri the ricighborhoods of the pump frecluencies. that the tiislxrsion eclua- 

tion for r . 1 ~  four-sit1cl)artd instability is 

where 

All quantities in Ecl. (4.38) were normalized relative to those associated with the 

higher-frecluency pump wave, because the co~nparison of this instability analysis 

with the work of Schadt and J a s k o r z ~ ~ n s k a ~ ~  is facilitated by holding P2 fixed while 

PI is varied. The  solution of Eq. (4.38) is 

As mentioned in the Summary, there are many similarities between modu- 

lational iristabilities in which the linear n~averiumber misnlatches (4.28) - (4.30) 



are clue to clispersioii aiicl those ill which the linear n~avenumber inismatches are 

due to diffractiori. 111 ~)articular. tlie tlependence of the spatial gro~vth rate of 

the coupletl inoclulatio~ial ii~stal)ilit!- oil the p11iilp-\\fiL\7e power ratio nras stucliecl 

in  nefs.. l l  .C'6.."8 for tlie arialogs of the cases i l l  \vhicli Ijotli puri~l) frcclueilcies are 

in the ~lorrnal or ariorilalo~ls tlispersio~i regirne. The dependence of the spatial 

growth rate of' the F\Vhl i1istal)ility or1 the pump-wave power ratio was studied 

in Refs,'J. c ' c , c ' ~  Consecl~~c~ritl!.. these cases ~ieecl iiot 1)e cliscussetl herein. 

For tlie (.as(: ill which CI2 = 1 aucl C ,  < 0. it mas tlctermiried empirici~lly that 

iristill)ilit!- oc:c:~lrs \vllcil the tc:r~ii ir i  I)i~;lc:es ill Ecl. (~1.40) is 11egatij.e. .I iieccssary 

;11id s~lfficioi~t c:ontlitioi~ for this to hal)l)eri is that 

For Fig. -1-r>. C ,  = -0.714. Corresl)o~icliiigl~ the secorld of ineclualities (4.41) 

predicts tha t  iristabilitj. will occur when the pump-wave power ratio esceecls 0.100, 

in agreerilerlt with the figure. Further aiialysis of Eq. (4.40) sho~vs tha t  the second 

of inequalities (4.41) is a sufficierit conditiori for instability, for all negative values 

of C , .  



Chapter 5 

Modulational Instabilities of 

Counterpropagating Waves in a 

Finite Dispersive Kerr Medium 

5.1 Introduction 

The nonlinear iriteraction between counterpropagating waves in a finite Iierr 

medium has been been studied e s t e n s i ~ e l j r ' ~ ~ ~ ~ ~ ~ ~ - ~ ~  because of its relevance to 

many practical optical devices such as optical gyroscopes, lasers, fiber interferom- 

eters: and various bistable switches. Such an interaction eshibits rich norilinear 

dynarilics ranging from bistability to optical chaos since the I<err nonlinearity 

tends to destabilize the steady-state propagation of the counterpropagating pump 

waves. 

Instabilities are classified into tivo categories known as convective and absolute. 

Even for a I<err nledium ivithout group-velocity dispersion (GVD), an absolute 

temporal instability of the counterpropagating pump waves can occur in the pres- 



ence of I~ouiltlary reflections. wliich effectively form a Fal~ry-Perot ( F P )  cavity.Gg 

Tliis instal)ilit\- lias I)ceii sho~vn to I I ~  ail I'P-cilvit!- versioii of Iketla i~istability 

that \vi~s first fou~itl ill  a ring cavity for it uniclirectio~ial pump \vil\-e7' it~id can 

I)e csplai~iecl i l l  tcriils of tlie i t~i~l~lificatio~i of the siclehitiicls of the ~ ) u i ~ i l )  \\firve 

clue to four-\vit\,c riiisiiig (FM'AI). Of course. tlispersive effects \\fill coiile illto pla!- 

a t  higlier te~nl)oritl frccluencies of the perturbittion. In recent years. considerable 

itttentioii lias I)eeii pilitl to stutlying the effects of CVD on optical instabilities 

occ l~r r i~ ig  in Iierr ~nedia .  It is \\.ell I<no\vn that the spectral sidebands of a 11nidi- 

rcctioiial ~ ) i l r i i l )  \\.iLv(! t:iln I)(: itrnl~lifietl I)!- the c.otivective temporal ~iiocl~~liltional 

i~istal)ilit!- (All) clue to the c.oiiibi~ictl cffcct of F\/'hl ai~tl  aiio~iialous tlisI)c:rsio~i.'' 

Tliis XI1 ('itn I)eco~ne itI)soll~tc i~isiclc i\ rill;: ~ . i~\ ; i ty  O(:C;~I~S(: of tlie fceclbaclc pro\-itled 

I)y the c:a\~ity.'"-'" In fact, A11 lasers have been ~~roposecl and t l e n ~ o i ~ s t r a t e t l ~ ~ - ~ ~  

for the ring-citvity config~uation. Lilce the temporal Cr VD effects. the spatial 

diffractive effects liave also I~een consiclered for the ring 

Con~l)arecl with the case of a ring cavity with a unidirectional pump wave. 

the i~iclusion of GL-D effects in a filiite ~ i l ed iu~n  with cou~iterprol)agati~ig pump 

\\7a\1es is   no re cliffic~~lt~ mainly l~ecause the  ionl linear i~iteraction in\rolves t\vo pairs 

of siclebaiitls (one pair for eadl  purill) wave). Such an interaction is induced by 

GVD, self-phase nlodulation (SPh4) and cross-phase nlodulation (XPM).  Previ- 

ous \\rorlc has found that  even when the boundary reflections are neglected, the 

counterprol~agating pump waves in a finite medium can become absolutel~r unsta- 

ble.49.70)71 However., the treatment was quite i~ivolved ~nathematically and did not 

provide physical insight since an  eigenvalue problem in a four-dimensional vector 

space had to  be solved numerically. Consequently, the studies \Irere linlitecl to  the 

special case of identical pump \vaves with only small differences in power. It is 

thus desirable t o  establish a simpler model that gives a clear physical picture and, 



a t  the same time. provide alialytical result for the inore general case of uneclual 

11unll1 po\\lers. Xloreover. it is not clear how the i~istability would l>e affected by 

the \\fealt boundary reflections tliat al~vays exist in practice. The nonlinear dy- 

riamics car1 l~ecome Inore intriguing ill such a case since the boundary reflections 

provide adclitional coupling I,et\\~eeii tlie turo pair of sicleba~icls. 

This cliapter is a conll~reliensive ;~nalytical study of the combi~ied effects of 

four-sidel~a~id coul~lirlg. CC'D. aiid I,ouildar!. reflections in a couliterl,rol)agati~ig 

systcln. ;\lthougli a silica fiber is usecl as an example. the results are npplicable to 

;t~i!. clisl>crsivc lierr 111ecli111ii. nenr l~erturbatiori rnethocl applied to tliis ~ ~ r o l ~ l e m  

rcsults ill ;t ~)liysically traiisl>i\l.eIit r~iociel iri t c r~ns  of a cloul~ly-resonarit piua~ilet- 

ric oscillator for ;t photori-p;tir that ;tllo\i~s sinlplifict~tion ancl cllaracterization of 

the complex systeril ill a fanliliar language. The general result can be i~iterpreted 

in analog!. to a detunect distributccl-feedback \vaveguide subject to boundary re- 

flectioris. Analytical espressiori for the instability threshold arid gro\vth rate are 

obtained naturall!.. In the special case of antireflecting boundaries and equal 

counterprol->agatin pump powers. our results agree with the previous riumerical 

results. Ho\vever. tlie effects of boundary reflections are shown to l ~ e  ilnportant. 

In the lour-freclueiicy limit ill which clispersion effects are negligible, our results 

reduce to those for the lltecla instability. At high frecluencies, dispersive effects 

lead to  new instabilities both in the normal and anonlalous regions. In particular, 

it is shown tha t  the absolute nlodulational instability dominates in the anonlalous 

dispersion regime. 

The chapter is organized as follows. In Sec. 5.2, we carry out a linear stability 

analysis of the coupled riorilinear Schrodinger equations (NSE7s) that  describe the 

propagation of the counterpropagating pump waves in a dispersive Kerr medium. 

The theoretical model is completed in Sec. 5.3 when the boundary conditions 



are i~icorl~oratecl arid the l>arametcr regions are classifiecl. Tlie results are usecl in 

Sec. 2.4 to clisc~lss tlie i~istal)ilit!. for the case of weal< or anti-refiectiori bouridarics. 

Sectio~is 5.5 a~icl 5.G are (Icvotc:cl to tlie strong reflection case. al)o\-e tlie illstability 

thresliolcl a~icl I)elonr it. rcspectivel!.. Tlie nlai~i results arc s ~ ~ r n ~ n a r i z e ~ l  i r i  Sec. 5.7. 

The Kerr Medium 

Figure 5-1: Schematic illustratiori of a finite clispersive Iierr nlecliu~il of length 
1 and tlie t~vo counterprol~agati~lg pump waves. Tlie front and back surface are 
labeled as f and b! respectively. 

5.2 General solution 

The system under investigation is illustratecl Fig. 5-1, where two counterpropa- 

gating punlp waves esist in a clispersive Iierr nlecliunl of length 1 with front (left) 

boundary "f" and back (right) boundary "b". In the scalar wave approsirnation, 

the nonlinear interaction of tnro counterpropagating optical waves in a clispersive 

I\'err nledium is described by tlie coupled NSE's12 



where ,- and t are the spatial and temporal coordinates, and P C ' ,  /32 and y are the 

group 1-clocity. C \*D c:ocfficicnt. iultl nonlinear coefficient: rcsl>ectively. .-1 (t! z )  

and . 12(t. ;) ;Ire the cor~iples c:nvclol)cs of the forn~ard arid bacl<mi~rd 11rol)agating 

n7avcs arlct are relater1 to the corresponding phasors of the fields by 

El ( t .  z )  = '4, ( t ,  ,-)e'h'oz. 

E2 ( t .  z) = .-I2 (t. ; )erko( ' - ' )  

rvbcrc the s ~ ~ l ) s c ~ i p t s  1 arid 2 refer to fornfard and bacl<n~arci propagatirig waves, 

resl~ectivol\-. X (1  i h  tlic li11ciu ~\.ii\-(>riurllbc~ of the couriter11ro\1agating nrilr-cls. itnd 1 

is the Icrigtli of the K e n  rnecliurn. Tlie (~11stilnt phase phase factor csl>(zkol) llas 

bee11 factoyc<t out for later coril-enierice. it11tl the fields have I~eeri norrnalizecl so 

that 1.1112 and 1.4212 rel>resent tlie powers of the two beams. 

The couriterprol>agatirlg cw pump fields in the medium corresporid to the 

stead!--state solutiori of Ecls. (5.1) arid (5.2) given by 

where the constants Alo = I.410l e ~ p ( i q + ~ )  and = e ~ p ( i 4 ~ 0 )  contain both 

the amplitude and phase informatior1 for the two counterpropagating waves in the 

medium. However. only their phase difference $20 - is of significance because 

we can always assume without loss of generality that one of tlie yhases is zero. 

We study the stability of the steady-state solution by performing a standard 

linear stability analysis. For this purpose, \Ire perturb the steady state slightly 



and write tlie respective perturbations for the two pump waves as 

By inserting . \ ,  = . - I I ,  + ri.41 aiid .-I2 = . I?, + ci.A2 into Eqs. (5.1) alicl (5.3). the 
- 

linearizecl c1cl~~atioris for (t .  z )  a11cl (1. L( t .  :). nrrittc:ii in the f~ec~~~eric!. cloriiairl. 

are 

(ia; + ; j I d  + ij2d2/2 + 7 l.410/2)Od41 (L. z)  

- + [ - l O 1  ( d .  ) + . - l [ o . - l . A ( d  ) + - I l O 4 ( - .  ) I  = 0 (5.9) 

(-iaZ - , I l& + ij2d2/2 + :;I. \1oI2)(1,4;(-d. z )  

+ T [ . - \ ; ~ d - l l ( d . Z ) + ' L . - 1 ; o . ~ 2 o 6 - 1 ~ ( - d . Z ) + 2 . ~ ; 0 . - 1 ~ o h . ~ 2 ( ~ . ~ ) ] = ~ .  (5.10) 

( -iaz + fil w + fi2w2/2 + 3.(.-120 (2)h.42 (d, z)  

+y[d4;064;(-~. Z )  + 2.420A;Od~11(~! Z )  + 2A20Alo64;(-~7 z ) ]  = 0. (5.11) 

(is; - jjl, + !j2w2/2 + 3.1.420 12)(5.4;(-d. z) 

+ Y [ . ~ . ~ ~ h ~ ~ 2 ( d . z ) + ~ . ~ ~ o . - ~ L o d i ~ ( - ~ . ~ ) + ~ . ~ ~ ~ o ~ ~ ~ o h ~ l ( ~ ~ ~ ) ] = ~ .  (5.12) 

- 
where 64 (d!  :) and (d. z)  are the h ~ u r i e r  transfornls of nl ( t ,  2) aricl ciciA2 (t, z ) ,  

respectively. 

The  standard technique used to solve linear equations leads to the following 

general form of solution for bil l  (w! z ) ,  &4;(-d, z ) ,  6A2(u, z )  and 6A;(-W, a)  in Eqs. 



where the arbitrar!. ( : o ~ i s t i ~ ~ t s  cl .  Q, c:, and c4 represent the magnitudes of the 

four indepeildent eigeri~nodes of the solution while the rest of the coefficients are 

functions of the rnodulational frecluency a. The k's are the propagation constants 

cletermirletl by the dispersion relations for the eigeniilodes, a ~ l d  the coupliiig co- 

efficients r ' s  and e's are the relative amplitudes of the four sidebands [ii,41(w, z ) .  

6A; ( -LJ. u) , 6-42 (LJ. u )  , aild d.4; (-LJ, z ) ]  for the corresponding eigennlodes. 

It is generally difficult to get the esact analytical espression for the dispersion 

relations a ~ i d  other coefficients in Eq. (5.13). For this reason, iiumerical stud- 

ies have beell performed in the p a ~ t . ' ' ~ ~ ~ ~ ~ ~ '  However, we show in the following 

that  approsimate analytical espressions can be obtainect with sufficiently liigh 

precision. 

Before writing clown the approsimate analytical espressions, we introduce sev- 

eral characteristic leilgths and frecluencies. The n~all<off length and the GVD length 

2 -1 a t  a given nlodulation frequency w are defined as lev = (Plw)-' and l o  = ( P ~ w  ) . 

Note that the ~vall<off length for two counterpropagating waves is simply the spa- 

tial scale of envelope variation of the fields. Without loss of generality, we assume 



the power ratio S - ( . - L 2 0 ) 2 / 1 . A 1 0 J 2  5 1 (i.e. the power of the bacl<n~arcl pump wave 

is eclual to or less than tlic fornliutl orit:). The rionlirlear leligth ilt a given ponrer 

of tlic forlvilrtl prlrnp lvi~l-c. P = 1 .  L i O  1 2 .  is tlefined as L!v = (yl.Alo 1 2 ) - ' .  \Ve further 

tiefine d l \ -  = 7 PI/), iulid r g  = J?P/w to represent tile rec111ir~cI 1iiotl111ationa1 

frecluericics ilt which the nlall<off le~igth and the tlispersiori length are equal to the 

riori1i1ie;~r lc~igtli. respcctivel~.. 170r iiiotlulatiorial frecluencies l~elow ;,.I.. aricl wD, 

the effects of willl<off and G\.'D iue not important, resl)ectivel!.. 

The ratio i = c . l l . / ~ o  = is a s~ilall cloantit!; if tlie 1)orver and the 

C\.-D c.oefficicnt iurc not too  largc. Even for materials with relativel!. Iiuge GVD 

cocfficic!~its ; ~ i d  iut relatil-ol!. high l)onfers. this ratio is still quite srllall since, in 

prilc:ticc. the C\.'D c'ffect is sirnply riegligible nrlie~i tlie nlall<off lengtli is co~nparable 

to tlie ~ioiili~icar length. In this I)ill)er. tlie clispersive rionlinear effects are of 

primary concern. thus the ~iormalized ~noclulational frecluency Q = d / w D  and 

nornlalizecl length L = l/LN are often used. This means that the G\ 'D effects 

are riegligible when SZ << 1. i11 which case the I<err ~nedium can l)e treatecl as 

clispersionless (/J2 = 0). Another ratio, E Q  = L c r ; / L D  = SZc. represents the reIative 

importarice of G\YD and the nrall<off a t  a given modulational frecluency. This is 

also a small cluantity sirice SZ << 1/c is usually satisfied. 

Using silica fiber as an il lustrati~~e e ~ a m p l e , ' ~  we assume a forward-pump power 

of P = 1 1<W, a nonlinear coefficient of y = 10 kV-'l<m-', a group velocity of 

l /P1 = 0.2 nlnl/l)s, and a G\rD coefficient of Ik( = 20 ps2/l<m. Then. lN  - 10 

cm. -1lthough we have chosen a case of high power with large nonlinear coefficient 

as the example, c is only lo-'. d b r ;  and W D  are - 2 ns-' (320 MHz) and - 20 

ps-l (3.2 THz),  respectively. Even for a large nlodulational frecluency of - 40 

ps-' (6.4 THz).  C Q  is only - lo-'. 

By treating E and E* as small parameters, we obtain the following analytical 



espressioris for the coefficients in Ecl. (.5.13). The dispersion relations can be 

~vrittcii is 

The other coefficients arc given by 

The procedure leading to the above espressions consists of solving Eqs. (.5.9) 

and (.5.10) for 641 (w, z) and 64;(-w, z )  by first assuming bA2(w, z) = 0 and 

~5,3; (-w, z )  = 0. Thus, the dispersion relation kl* (w) and coupling coefficients 

rli(w) are obtained. Nest, we insert the obtained solutions for 64*(w, z) and 



&.I;(-w,z) into Ecls. (5.11) ancl (5.12) to find C L ~ ~ ( L J , Z )  and &A:+.,-), which 

;ue re1ated to the cspressiolis for E ,  r = i ~ ) .  The snilall parameters t and cn have 

allowecl LLS to use 1; << ,!?lid i\ l ic l  i'j2u12 << ,!?lid to simplify cspressiolis. 'Thus the 

disl)ersion relr~tions and all tlie coupling coefficients for the c ,  a ~ i d  c2 niocles in 

Eq. (5.13) are ol~tained. The error i~itroclucecl I)y this al)prosimation is checked 

by putting the ol)tai~icci h.-12(ul. z )  imcl &.-l;(-d. z )  (nlhicli, although \.cry h~nall. are 

nonzero) I)aclc into Eels. (5.9) and (5.10) ancl verifving that the perceritage error 

is O(E .  c C 1 )  ancl is c l~~ i t e  sliiall. ;\ similar proceclure is used for tlie cg a ~ i d  c., nlocles 

iri Ecl. ( . j . l3) 1)). starting with Eqs. (5.11) iuicl (5.12). 

It ( : ; ~ i  1x1 sliowri f'rorii Eqs. i;. 16)-(;.'23) that the 7,'s can ljc O ( I )  \\rliilc the e ' s  

;\re ilt ~iiost O ( c ) .  ?The significilncc of this ol)serirntiori cilii l )~ :  seen 1)). rcfcrring to 

Ecl. (5.13). For the c ,  aricl c.2 ~~ioclcs, the coupli~ig I)etwceli the two f'orn';\rcl sicle- 

bancls is representetl I)y 7 . [ = ( ~ )  while the coupling to the two I)aclcivard sidebands 

is rel~rese~itecl I>. the eI ,=(d) 's .  Comparing with the case of a single forward pump 

wave. it is worth noticing that T ~ = ( J )  are not affected by the presence of the back- 

ward punlp. :llso, tlie dispersion relatioris kll(w) for the cl and c . ~  modes are the 

same as if the other pump wave did riot esist. In the case of a single fornrarcl pump 

wave, it is well lcnonrn that the coupling between the the two forwarcl siclebands 

is caused by F\Yh,l between the sidebands and the forward pump.12 Thus the 

presence of a counterpropagating pump wave introduces backward coupling into 

the eigerimodes through the coefficients el**. The FPVkl picture of this coupling 

was clescribed in." Similar comments apply for the c3 and c4 modes with respect 

to the bacl<ward pump wave. 

The above cliscussion indicates that the e\rolution of sidel~ands associatecl with 

the forward l ~ u n l p  wave, &4l(w, z )  and dA4;(-w, z ) ,  is affected only by the rela- 

tively weal< additive contributions from the distributed feedback (DFB) occurring 



because of the presence of a lx~ckn~ard pump wave, and vice versa. However, note 

that when 1; (or 1;) is [-cry small. tlie c ,  and c:! rilodes (or c.3 arid c ,  ~nodes)  Ix- 

come degerlerate. This rneans that Eq. (> . I s )  is not in a proper form to represent 

the general solution of Ecls. (3.9)-(3.1'2) iii such a situation. Tllus. it is not clear 

what woulcl I)(. the tlie ~nagnitude of tlie I)ilcl<~catteriiig contribution ill geiieral. 

In order to find a proper gcileral solutioii that car1 cover such cases. we trans- 

form tlie fonr constarits c.1 ;tnd c?. aud CJ arid c , ,  to c,, and c ; - ,  and cb, and ct-, 

respec. t il-ely. 11y 

Basicall!., nre (tenland that CJ + and cj -  represent the contributions to ci.-ll,(u, 0) 

and L-1, - ( y ~ .  0) fro111 the c, and c . ~  lnodes i11 Ecl. (5.13), a ~ i d  cb+ and ct- represent 

the contributio~is to dLi2+(&, 1) iuid 6.-12- (u. 1) from cg and c~ ~nodes. The general 

solution (5.13) can l)e put in the follonring form in terms of the nenr constants c ~ , ,  

~ j - ,  c b +  alld c;-: 

where 



- 
and we have aclopted the  iotat ti on, ci..4(w, z) = [64(w. I)! &A*(-w. z ) ] !  ancl c' = 

[c+. c t ] .  Tile rnatrix elenlerits ase 

and 

The expressions for Mb and Mbf are similar to Mf and Mfb, respectively, be- 

cause of sjrnlmetry. Note that Mf (w, 0) = 1 and Mb(w, 1) = 1. 

The two parts of the general solutions (5.28) and (5.29) have a clear physical 

meaning. The forward and back~vard transfer ~llatrices Mf and Mb give the 

transformation of the sidebands of the forward and the baclcward pump waves 

along their respective propagation distance as if the other pump wave did not esist, 

while the cross nlatrices Mbf and Mfb give the contribution to their evolution 



from the other purnp wave clue to l>aclcscattering (or DFB). Equatioris (.5.28) arid 

(5.29) ;Lye the illair1 rcslllts of this section since they provicie a simple niociel to 

describe el-olution of the sidel)a~icis due to clifferent physical mechanis~ns. 

Fro111 Eels. (3.30) a ~ i d  (5.31). it is easy to see that the relative magnitude of 

M f b  anti A I f  is normall!. O ( E )  U I ~ ~ ~ S S  the tlenominator 1 - r l + r l  - is very small. 

:\ careful arial!.sis shows that this o1i1y occurs \\?hen 11; (/(7(.-llo12) << 1. which is 

pclui~-ille~it to (.ither I! << 1 for both normal and anomalous dispersion or Q -2 << 1 

for iiriorualous tlisl>ersioii. L'iider these circumstances, the o l  and c2 ~ilodes are 

degenerate. Honrcver. I~ecause of our choicc of the new set of constants. Eqs. 

(3.28) :~nci (5.291 iL1.e still a valid for111 of the general solutiori sixice the rnatris 

elenlcrits iure firlittl. 111 htct. it can I)(.  shown that when Q << 1. Ecp. (: .32)-  (5.39) 

reduce to 

and 

Similar espressions hold for Mb a ~ i d  Mbf . It turns out that these solutioris esactly 



satisfy Eqs. (5.9)-(3.12) for i j2 = 0. ~vhich is not surprisi~ig because the conditio~i 

0 << 1 i1nl11ies that  G\rD is not i~nportiuit. Tlius. our general solutioli (:.28) and 

(5.29) includcs the tlispersionless case. Tliis case has Ixen stucliecl in previous 

~vorl<"%tncl is riot the ~ilairi concern here. Eqs. (5.40)-(5.47) show that  even in the 

clegerierate case. the ~najinitude of the cross ~ n a t r i s  over that  of the transfer 

matrix -\I, is 110 more than O ( r / Q ) .  arid the same is true for '\Ibj it11~1 -\Ib.  Tlius. 

this conclusiori ;tl)o~lt the relati\-(: magnitudes of ;\IJl, and .\I,, and .\Ibl i ~ n d  :\Ib, is 

cluitt' general sinco i t  is also true wherl !! << 1 is 11ot satisfied (inclucli~ig the case 

I2 - '1 << 1 ill tlie i~no~nalous-tlispel.sion 1.cgime). 

.The solutiori givcri I)y Eqs. (5.28) it11cl (5.29) (:an also l)e written as 

The  form of Ecl. (5.48) sho~vs that  the general solution is the superposition of tnro 

"mocles" rel~resented by c'/ and Fb. I11 the case << 1 or w >> WI.V, the c'/ "mode" 

is primarily forward propagating with weal< bacl<scattering and the Fb '>mode" is 

primarily backnvard propagating with weal< forward scattering. I11 such a case, 

Eq. (.5,48) is the a~ialog of a similar equation found in DFB waveguides (see! for 

esanlpleS3) in the l i~ll i t  of large cletuning, except that,  here the M ' s  are inatrices 

and the c"s are vectors, whereas the corresponding entities "Af" and "c" are scalar 

quantities for a DFB waveguide. I t  is well l<nown that in a largely detuned DFB 

structure! the "c," term describes the forward propagation mode with L'3,1," and 

"A/lfbl' indicating the relative amplitudes of the propagating and backreflecting 

components for a single frequency photon (and similarly for the "cb" term). Thus 



Ecl. (5.48) is a generalizetl DFB formalisnl to the case of a pair of couplecl photons 

itt two cliffercliit frequencies. :\ large tlctuiiii~g is linolvn to clecrease DFB. Siinilarly, 

the Iilrgc wi~lltoff ilffect f'or ;. << ;I,. rocluces the l)acliscat tcririg. 

Sot(? fro111 Eels. (:.3'2)-(5.31)) that . \ l j l l ( - l i .  Z )  - \ f 1 2 Z ( ~  z ) .  :\fjl2(-&, Z )  = ; \ f j 2 1 ( ~ ,  z ) ,  

(-LJ. I) = (UI.  I ) .  illid r\l;,,, (-d. Z )  = i\llozl (UI. z): as recluirecl by the 

syniii~etr!- I)etwc.e~i ; and -J. Furthernlore. it can be shown that Mf (-d. z )  = 

Mf (J. z )  aiici M f b ( - d .  I) = - Mfb(:ul. I ) .  Similar properties liold for Mb and 

Mbf. 

Esailiiniiig the iisymptotic.: Ijehal-ior of Mf (J. z )  over ;t clist;tiice 1. \ire rlotice 

that l)osiclos osc.illittioils. the rilagiiitiltlc of' its entries ( : i~ i i  illso ir~crc:;we li~ieilrl!- 

-. or c~sporlclltiitlly I)y the order of and esl)[L/LN], respecti\:ely. Ilie litter case 

occurs only for tlic aliornalous-tlispel.si011 reginle when R N a, whereas the former 

liapperis whenelrcr Il',(&)lb << 1. trarlslating into the recluirenlent of S2 << 1 (i.e. 

riondispersivc prop;tgatioii) for 110th rlorrnal and arlorilalous regimes or S2 - '1 << 1 

for the ar~orilalous rcgi~ne. It is easy to see that the espor~ential growth is due 

to As11 iii the anomalous-dispel.sioii regiine. Similar properties hold for Mb ill 

the I)ackl\ritrci clirec:tion. The amplifying nature of these transfer rilatrices are 

important I~ecause they lead to  al)solute instabilities when the system is subject 

to feedback. The asvmptotic behavior of the cross matrices sho117s oscillations or 

exponential dependence on the distance. 

5-.3 Boundary reflections 

Before cliscussing the instabilities of counterpropagating pump waves, we general- 

ize the analysis of Sec. 5.2 to include the feedback occurring at the tnro facets of 

the finite Iierr rnecliunl (see Fig. 5-1). The bouridary conditiorls at  the front and 



rear surface of the lierr riiecliunl car1 be written as 

where 

7./eLv'rJ 0 

Rf = [ (1 r /  c - f . d l ? ,  1 ! R b = ( f  + 6 ) .  (5.51) 

Herc. I . : , /  = d, / + A 2  i t ~ l c l  ~ ! , b  = or,, + A I .  where 111 = kol + ~ ( . 4 ~ ~ 1 '  +'21--L2u('!)l and 

= I,.Ol + ~ ( ( - - l ~ ~  1' + 2 1 .  / ' )1 ill.(' the !illear ancl ~loriliricar pliases associatecl with 

the propi~gatio~l of the fornlilstl ancl backrvard pump \rrxves. respectively. Furtlier? 

7 . j  e ~ p [ i 4 , . ~ ]  and 7.b e ~ p [ i 4 , . ~ ]  are the ~eflectiori coefficients for tlic front and rear 

boundaries. respectively (0 < I./ < 1 and 0 < 1.1, < 1).  

By using Eqs. (5.28) ancl (.5.29)! Ecls. (5.49) and (5.50) are trarisforriled into 

As a standard treatment, the solutio~i of Eqs. (5.52) and (5.53) in the complex 

domain of w represents an eigenvalue problem. In fact, such ecluations can be also 

found in the treatment of DFB lasers in the limit of large detuning, escept that 

the vectors and rnatrices in the above are replace by scalar quantities. Thus, the 

problenl can be corisidered as a doubly-resonant parametric oscillator7"\rith the 

generalized DFB effect. The follon~ing algebraic equation for w has to be satisfied 



for riontrivial solutions of (6: C'): 

The multiple solutioris w,, (1,. is a dummy indes) of Ecl. (5.54) stand for different 

longituclinal siipernlocles. The real part of each solution gives the mode position 

i~11d tlie ir~iagiriary 1)iil.t gives tlie gro\\rth or darnl~irig rate. :lbsolutc instal)ility 

occlus n.Iicric~.c~~~ there is a positi\-c imaginary part to w,,. I3v substituting the c'/,, 

i~ i lc l  C,,,, ol)tili~lcct l)y sol\-irig Eq. (3.52) iuld (5.53) into Eq. (5.48). \v(. ( . ; L I ~  c.i~lclllate 

the cigenfields corresl)oricli~ig to c2acli s11l)crmode. It is evitlent that there are 

gencrillly two co~~~i t e rp ro l~aga t i~ ig  pairs of sicleb:~rids for each lorigitutlinal  node. 

Therefore. the eige~i fielcls corresl)orid to pulsirig in the spatio-ten1l)oral clomain. 

Ecluation (5.5-1) c;~ri be sir~il~lifiecl by dividing the 1)ararnetcr space iiito sevc!ral 

regior~s. 17r0111 the discl~ssion in Sct:. 5.2. 1x.e l<no~v that if SZ << 1. this ccluation 

\\?ill reduce to the disl~ersioriless case ~vhicll has been studied before.""Therefore, 

we assume SZ >> 6 so that the nlagnitude of Mf b(ul? 0) and Mbf (LJ.  0) is much less 

than unity. Then the t ~ ~ o  inverse matrices in Eq. (.5.54) can be approximated by 

unity, and \ire obtain: 

D(w) = 11 - e"28~" ' [~ f  ~ b ( d ,  1)  - Mbf (d .  l ) ]  

[RbMf (w. 1) - M f b ( d .  / ) ] I  = 0. 

For very small 6 ,  there can be a region, 1 >> SZ >> E :  overlapped by the cases 

considerecl in this paper and in reference.Gg I11 this region, the frequency is low 

enough that  clispersion is not important. and yet high enough that cross coupling 

or DFB is \veal<. 



Two cases i1l.e associated with Eel. (3.55). If the iliagnitucles of \)ou~~clar!? 

reflcctioii coefficieilts i1re 11111(:11 larger than O(c/Q)! the cross-matris tcrlns ill Eel. 

(2.5.5) are inuch sinallcr thaii tlie transfer-inatris term ~nultipliecl I)!. the reflec- 

ti011 coefficieiits. ailti therefore c;ui I>e iieglectctl. Physically! this nieails that the 

localizeel fcectl~acli i ~ t  the facets is inuch stronger tliaii the weak DFB so that the 

latter effect call l)e ignored. Since F is quite s~na l l .  cl-en relati\-el!. weak reflections 

Go111 tlie 111icoi~tcd i\ir-glass I)oundar!.. nrliich lias an aml>litude reflectioii coeffi- 

cieiits of a l ~ o ~ ~ t  0.2. will fit into this categor!.. Tlie details of this case is discussed 

sel~arntcl!- ill Scc:. 3.5.j2 I11 the follo\viiig sectio~i. we cliscuss the case occurring 

\\,hen the I)oi~iicl;u.~. reflcctiori cocfficie~~ts ;ue c.oml>;uable to or less thaii O ( f / Q ) .  

5.4 Weakly reflecting and anti-reflecting bound- 

aries 

111 this case. Ecl. (2.55) car1 be further simplified by using (1 - e ~ p ( i / 3 ~ w l ) U (  = 

1 - e ~ p ( i 2 i 3 ~ d l ) T r U  + esp ( i4P1d)  IUI, where 

U = [Rf Mb(w., 1) - Mbf (.J. l ) ] [ R b M f  ( r ~ ,  1) - M f b ( d ,  l ) ] .  Thus: we liilve! 

where 

g(w) = T r U  = 

(Rfll-l lhii  - ! ~ ~ h f l l ) ( ~ 6 1 1 - ~ ~ f l l  -!ldfhll) + 

(Rfil-l16~2 - ~l~bf12)(Ri11-'l;12 lIf;b12) 

(R~112\i112 + l~ l l f12) (Rb~~dl l f i2  - lvfb12)  + 



i l ~ i c l  \\.hcrc n.(: liavc: ricglectocl (UI since. I)y llsing Ecls. (5.30) ancl (.5.31), we 

c:o~icluclo t.hnt its aluplitucle is intlepc:riclent of 1 imcl is a t  the rilost O(~/52)"for 

) T . J / !  (r.,,1 - E ) :  which is ~ u u c h  s~llallcr tha11 unity. --Ictually, one can prove that  IU( 

can I)(? 11eglectc:cl as lorig as 1 ,  /,r.(,I az I .  Ecl. (5.56) is in a stanclard form for the 

laser tlircsliolcl coliclition with g ( ~ )  representing the riet gain. Thus (g  (& ) I  > 1 is 

recl~lirctl for al)solutc instiil)ilit!.. 

l-rolli Ecl. (3.37). it  is el-itlent tliat fill. the \veal< bounclary rcflectiori (1 .~1 .  (T.[,I - 
( ~ )  1111tlcr ~~onsic.lc:~;ltioil. I!/( is iit the uiost O(c/52)' when the order of' the ~ i o ~ n l a l -  

izecl Icngtll L = l/l,v is eclual or ~nuc-:li less than unity, ancl thc s!-sten1 is \)elow 

instal~ilit!. thrcslloltl. ;Is L increiises. I ! / )  can either increase as L' for both the 

~ i o r ~ i l a l  ilncl i~nornalous ctispersion regime or a.5 esp(2L)  for the a~iomalous clisper- 

sion rcgime wheii I! - A. 170r tlie case of c~uildratic an~plificatio~i tha t  occurs 

when G V D  is 11egligil)le. previous results" i~idicate that  the t hreskiolcl condition 

recloires L to  be 0(1/ J-1. Tliis represents a very liigh thresholcl in the case 

of weal< l)ourictary reflections. 011 tile other hand. the e spo~ le~ i t i a l  aml~lification 

in the i~nonlaious regioli recluires L to be O[ ln(R/ t ) ]  to reach threshold. which 

is rnuch easier to  satisfy. Thus we concentrate on the anomaious dispersion case 

where R is O(1 ) .  By using Ecls. (.5.32)-(5.39), Eq. (5.57) beconles 



7.1 (&) = - ,d2d2/?)/(*, l-~lLOl') - 1. 

2 ~ . ~ ( w )  = (1; - ;d2d /2)/(;;l.-l20\') - 1. 

€'I (d) = (7.1 + l)?Ia-ll0-~20 l/(blu')> 

(!2(d) = (7'2 + 1 ) * , ' ~ : \ ~ " . 4 2 0 ~ / ( ~ ~ L ~ ' ) .  

o1 = or/ + knl + ?(1.-~201' + ?(.4101~)1 + q.0 - $ 1 0 1  

Or, = (orb  + X."l + -,(1--11"12 + 'l(.l.o12)l + $10 - 4.0, 

where. rc:alizi~ig rliat - ilrl (d) = (;) 1. \vhicli is tlie gairi cur\-(! of 111 of the 

fornri~rtl p11111p nfiL\.e. llavc. ig~iorctl csl)(- 1 ;  11) corilparecl with c'sp(l1 ll) since 

esl>1:J1-~ ( I )  - I ? / €  ill ortier to reach tlirestiolct. Howel-er, rti1;(&) can Ije irnagi~ia~.!r 

\vitlii~i the  A11 frecluenc!. rarige of the for\val.tt pump since we have assunlet1 the 

power ratio of the l~~~cl<n.ard a ~ i d  forn~ard 11u111p waves satisfies S 5 1. 

Ecluation (5.58) can be further simplified when the boundary reflections can 

be ignored for 1 ? . / 1 ,  lrol << 6 .  This is the condition when the boundary can be 

considered as  anti-reflecting. The instability gain is then given by 

or written in terms of normalized frequency Q and normalized length L, 



Ecluation (2.G8). which is still in thc stanclard for111 used to describe the thresh- 

old of laser oscillation. car1 b(! casil!. i~nalyzetl since 6 is a small paraIileter. Differ- 

erit villucs of Q for which Eel. (5.68) is satisfiecl correspond to various longitudinal 

sul)el,rnotlcs riic~itiorictl earlier. First. nre Iiote that the rilotle spacing is oiily -. E / L  

while the gili11 ij(Q. L )  varies 011 the frcc\uency scale of 1 /  L. Thus. the various mode 

can I)(: coiisiclcrctl c:oritinuousl!. tlistributctl u~idcr  the gain c\uve. For i \ I iv  riiode 

f~et~~~cric!.  ( 2 , .  the gronrtli (tlanil)ing) 1.ilte is il srilall cl~lantity anti is gi\-c~ri I)? 

or written in physical units, 

Compareel to the previous rlunlerical ~ o r l < . ' " ~ ~  Eels. (5.65)-(5.70) not orlly give 

analytic results for arbitrary power ratios, but also provides a simple physical char- 

acterization of the instability in ternls of the familiar language of laser oscillation. 

By using Eel. (.7.69), Fig. .5-2(a) and 5-2(b) show the growth (damping) rate 

versus frecluericy for cliffere~it forward pump powers (or normalized length) for the 

power ratios S = 1  and S = 0.5, respectively. The oscillatory behavior in Fig. 

5-2(b) occurs when 1; is real in the fsecluency region where the less intense back- 

ward pump wave is n~odulationally stable. In such a region the nonlinear phase 

shift 1 ; ( L J ) ~ ,  which depends on frequency, can cause constructive or destructive 

interference. 



Figure 3-2:  Growth (danlpirig) rate written as I t i / e  versus freclucnc!- 51,. for e = 
lo- ' .  (a) S = 1 (ecl~lal l,l1rii1, ~ ) o w ~ I . s ) .  arid the fornrarcl punlp powers correspond 
to L = 9 (cl;~shetl) i ~ n d  L = I:' (solicl). ( I ) )  S = 0.5 (uneclllal pump ponlers). arld 
the fornr;ucl punip powers correspond to L = 12 (dashed) and = 20 (solid.). 

The  iristability thresholcl coriditiori for any frequency is obtai~ied b ~ -  setting 

the right side of Eel. (5.69) or (5.70) to zero. Thus, the thresholcl curve is just 

the contour Ic"(R,. L)  I = 1. Figure 5-3(a) arid 5-3(b) shows the thresholcl curves 

for cliffererit I>oiirer ratios obtairlecl from Ecl. (5.67). The area above the curve 

indicates the instability region for the corresponding power ratio. .As in Fig. 5- 

2(b), the oscillatiori in Fig. 5-3(b) is causecl clue to a similar reason. 

For an order of rnagnitucle esti~nate,  let us assume equal pump ponrers (this 

is the case that  has been rlunlerically investigated p r e v i o ~ s l ~ " ~ ~ ~ ) .  Then, the 

thresholcl contour can be written as 

7 - S) - ~ 2 1  = i e x p [ ~  J s ~  - (0212 - ~ ) 2 ] / 2  in ~ q .  where we used s i n [ ~ J r  

(5.67) and  assumed S = 1. From Ecl. (5.71), the minimum L, or the threshold 

of the system, is achieved a t  R = 4 (which is the frequency for the maximum 



Figure 5-3: Thrcsholtl cllrves i11 12,-L plane. for c = lo-'. The area ilbove the 
curve currcspollds to iristability. (a)  S = 1 and (I)) S = 0.5. 

hII gain for a given punll) po\\fer), so that in general. L is approsinlately - 1 1 i ( ~ ) .  

This is ill agreeriieIit witti tiie previous n.or1<.49.70~7' l:or the nuinerical 1)aranieter 

E N lo-' i11 our esarnpie. L - 9 or 1 - 1 nl. In tiie rlornlalizetl frec,uency, the 

mode spaci~ig is f Q D / L .  ivhicli is 0.2 ns-' (30 hIHz) in our example. The 

growth (damping) rate is of the same order as the mode spacing according to Eq. 

(5.69). 

Although the above conclusions [including Eq. (5.70)] were drawn for the spe- 

cial case of negligible boundary reflections (or anti-reflection boundary condition), 

they are valid in general since a similar analysis can be applied. The only dif- 

ference is that  \ire have to use Eq. (5.58) instead of Ecl. (5.65) to include the 

effects of !veal< boundary reflections. Figure 5-4(a) shows the effect of boundary 

reflections on the growth (damping) rate under conditions identical to those of 

Fig. 5-2(a) except that both facets of the dispersive Iierr medium are assumed to 

have an  amplitude reflection coefficient of 5 x Figure -5-4(b) shows changes 



in the threshold curve and should be compared with Fig. 5-3(a) 

In general. even weak boundar!. reflections can substantially affect 110th the 

instalilit!- region and the gro\vtfi rate as long ils the a~nplitude reflection coeffi- 

cients are comparable to E (which is h. lo-'' in the esample used here). This is 

I>ecause the DFB and the facet feedl>aclc can be in phase or out of phase with 

respect to each other, tlepending or1 the rilodulational frecluency. 

Figure 5-4: Effects of weak boundary reflections, for 6 = rf  = q, = .5 x 
and S = 1. (a )  R,/c versus frecluency R, for L = 9, Of = = 7i/2 (dashed) aiid 
Of = Oh = 0 (solid). (b) Tliresholcl curves in 52,-L plane, for $,f = q5,b = kol = 0 
and $20 = 410. 
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removed, the above instability esists for ~vealc or even anti-reflection boundaries. 

r 

While the Il<eda instability draws on the linear or quadratic spatial growth of 

dispersionless F\YM, the instability discussed in this section draws on the espo- 

nential spatial growth of h4I. (The riormal dispersion case with relatively strong 

boundary reflections will be discussed in Part 11.) 

The treatment in this section is valid as long as the boundary reflection coef- 



ficients are much smaller than one. [~urthernlore, for relatively strorig boundary 

reflectiorls whose ;unpl i t~~de  reflection coefficients are ~ilucli larger thari c ,  the 

treatment iri Sec. 5.5 car1 ;~lso I)e applied. I11 the case of an optical fiber. the illus- 

trativo esarilple shows that the strong bountlary reflection conditior~ is likely to Ije 

satisfied ill practice uriless high cluality iuiti-reflection coatings (or iiicles iiiatching 

materials) and \:cry large 11urnp powers are used. In other words. when applied to 

optical fibers the results of this sectiorl shorv that  the previous for fibers 

with anti-reflection coatings 011 both ends is not realistic. \Ve coiisider tlie more 

realistic case in Sec. 3.5. Howcver. tlie resi~lts in this sectiori are cluitc gerleral for 

rlonliricar ctis1,clrsivc rnedia ;uid I)c i~nport;i~lt  when appliecl to  rilatcrials with 

selati\.ely large r ( l ~ u t  still 1nuc:h smallcr than unity). 

5.5 Strongly reflecting boundaries 

As discussed in Sec. 5.3, by strong reflection nre refer to cases in nrhicli S2 >> 6 

(or w >> ~u',,;) i111d the arilplitude reflection coefficierits of the FP cavity are much 

larger than O(~/12) .  \Vhen the first condition is satisfied. the forward arid back- 

ward propagating pairs of sidebands evolve independently as if the counterprop- 

agating pump wave were absent. The role of the counterpropagating pump wave 

is to induce a weal< scattering of the propagating sidebands through XPM in the 

opposite direction. This scattering can be considered as a weal< DFB with a mag- 

nitude O(t/S2). Thus it can be rieglectcd when the second condition is satisfied. 

As a result, the cross ~ ~ ~ a t r i c e s  M f b  and Mbf can be ignored in Ecl. (5.55) as well 

as in Ecl. (5.48). In such a case, Eq. (5.55) becomes 



where M f  (U;. 1 )  arid Mb(uj. 1 )  were shortened to M f  arid Mb. Note that this 

ecluatiori is the aiialog of the 1;'P laser eclnation. iri nlhicli the iliatrices il1.c scplacccl 

Ily scalars. Tliis rlial<cs serise since. after we ricglcct the \veal< DFB. we have a 

photon-pair FP laser. 

The  calculation of D ( d )  fro111 Eq. (.i.72) is straightfor\vard. The result is 

Ecluatioii (5.73) cilIl I)c 1'11t iri the fanliliar for111 of the thrcsliold coiiditioli for a 

laser: 

where the effective gain is 

Since Gel /+Gel /- = 1, either Gel/+ > 1 or Gej j -  > 1. For an  unstable super- 

mode, the gain should overcome the loss, i.e. 

For T / T ~  << 1. (GejJil >> 1 is rieeded for instability, which, in turn requires 

IG( >> 1. In this case, Ecl. (5.76) simplifies to yield G, G, while Ge / - can 

be neglected. I11 the follo\ving, \ve use the convention that the + sigri denotes the 



braiich \vitli liigher gain. Uiicler such a coriveiition, 111 lG, / /, 1 = - 111 lGeJJ- 1 > 0 

:111tl thc rict %air1 (;) ~lsetl iri the ~xevious sectiori is sirnpl!. T J I . ~ C ,  (d ) .  

I11 older to gain sorilc pliysical irisight. Ict 11s start with the special case of 

l..llo 1 = (-d2()1 SO that 1; = I., I . ,  = 7 3 .  Bv espressing the transfer rnatrices in 

terms of I;, 1; and r l  r2 as in previous section. Eq. (.5.74) becomes 

\vhc r~  I I J  = crJ + 02" - Oh = . ~ : ~ b  + - dZO and siric(x) = sin x/:c. \Vlien 

L:, J + LI,,~ aricl OJ - 0, arc multiples of '2;~. C in Eel. (5.78) is considerably sirilplified 

and Ecl. (5 .X)  I)c '( : oriles 

This ecluation lias a very si111l)le physical meariing since -21; is just the gain from 

hII ill the case of anon~alous ciispersion. where 1; is imaginary with a nlasimunl 

rilagnitude of 71.4 1 .  l2 

If P2 2 0. 1; is real. Thus. Ecl. (5.75) [when combined with Ecl. (.5.79] does 

riot have solutions with Imw 2 0, and the system is stable. However, for h < 0, 

Eq. (5.79) and (5.75) simply mean the MI gain can overcome the reflection loss, 

and the systenl can be unstable. This instability does riot correspond to  the 

conventional Ilteda instability since it does not exist for a dispersionless medium. 

Using the nornlalizetl frecluency R and length L, Fig. 5-5(a) shows the gain curves 

In lGeJj+J for P2 < 0. 

The frecluencies and growth (damping) rates for different modes are determined 



Figure 5-5: Gain curves 111 )C,J/ (R,)I for the case of anonlalous dispersion. (a) 
The pump power IA20)2 = lA10 1 2 ,  and the phases $, J 420 - 410 and - qrb 
are muitipies of 27r. The soiid curve is for L = l/lN = ly lAlo l 2  = 1 and the dashed 
curve is for L = 1.7. (b) Sanle as (a),  escept that ),42012 = 1,$10)2/3, and the solid 
and dashed curves are for L = 1.7 and 2.6, respectively. (c) Same as (a),  except 
that L = 1, and the soiid and dashed curves are for 420 - = 7r/4 and 7r/2, 
respectiveiy. (d) Same as (a), escept that L = 1, and the solid and dashed curves 
are for +,/ + $rb = 7r/2 and 7r, respectively. In all cases, the three horizontal loss 
lines represent the loss - I ~ ( T / T ~ )  for T / T ~  = 4% (upper), 30% and 50% (lower), 
respectively. The difference between the gain curve and the loss line indicates the 
growth or damping rate in units of 1/(21P1) = ww/(2L), depending on whether 
the gain is larger or smaller than the loss. 



by substituting Ecl (5.79) in Ecl. (5.75) and solving for R, i.e., 

mherc E = is the s~nall quantity introduced before. This equation 

can I)e solved I)!- treating c its a small pitra~ileter. For the typical case in which 

1 - 7 . f ~ ~  is 110t a s~nall quantity we come to tlie conclusio~i that l te[R(~l) ]  r R,(IL) is 

ttln~ost continuous 11ncler the gain curve (where 11 is the 11lode index). Tlie growth 

(clampi~lg) rate 0, is a. sniall ci~~antity itnd is given bv 

as a f111ictio1i of !!,. or written iri  tcrms of physical units, 

Apparently, the mode spacing is O(E) << 1 while the scale of variation of the gain 

curves is O(1) in the nornlalized frequency. 

.4lthough the above cor~clusior~s were drawn for the special case of equal pump 

powers with w,f + vrb and Of - 00 being r~iultiples of 2n, they are valid ill general 

since a similar analysis can be applied. Thus, the gain curves In IG, (w,) I give 

almost all tlie needed information. According to Eq. (5.81), the gain curve has to 

be higher than the loss line - ln(rfrb) > 0 for an unstable system, and their dif- 

ference cleternlines the growth or clamping rate of each supermode. The threshold 

condition around frecluency d ,  is I11 (G, + (w,) 1 > - 1 n ( ~  Q). The other branch 

of the gain curve In IGef/-I is always below threshold (it is actually below zero). 

The growth rate or damping rate is on a scale of 1/(21P1), which is about 10 ps-' 

if we use 1 = l / ( y P )  as a typical value, and use the previous values for y,  P and 



A,. For these parameters, the gain curves vary on a scale of 2 ps-' and the mode 

spacirig is or1 a scale of 10 L L S ' .  Generally: the rilocle spacing is or1 a scale of wl,l, 

while the growth (or clampirig) rate I-a.r.ics or1 a scale of ; D .  

Figure 5-.5(1))-(el) slion~ tlie gairi curves from Ecls. (5.7G) ;uid (5.7-1) for. uneclual 

pump intensities arid different values of tlie phases. A'Iultiple gain regioris esist 

because of the constructive or clestructive interference induced by the nonlinear. 

pliase sliifts. 

Figure 3-G shows t tie case of 11ornl;llly clispersive (/j2 > 0) Iierr ~nectia. Thus 

the i~~sri~l)il i t ics c,iui osist even for rlor~nal tlispersion. From the cliscllssion of 

Sec. 5.3. it sliould I)c rioted that these gain c.llrI-cs (lo not appl~ .  nrouncl the 

zero rnod~llatiorial frecluenc!. within il bandnridth covering several ;I,.. 111 this 

region. tlie rcsults fro111 the dispersionless treatment" indicate that the growth or 

damping sate in the presence of the Ilceda instability can vary on the scale of the 

mocle spacing. Honre~rer, tlie high-frecluency limit of the disl)ersiorlless treatment 

can still be described by the present n-iethod. corresponding to the low frequency 

end of our gain curve. 111 fact. the low-frequencj- limits of the gain curves in Fig. 

5-G(b) corresl~ond to the Ikeda instability. The same is true for the highest gain 

curves ill Fig. .5-G(a) and 5-G(c). There is no correspondence to the conventional 

Ilceda instability for the rest of gain curves shown in Figs. 5-5 and 5-6, where 

instability is due to dispersion. 

Since Gef ==: G can be used for large gain, Eq. (5.78) indicates that  a large 

pump powers or a long nledium (or both) are needed. In such a limit. the h4I 

gain contributes most to the gain curve in the case of the anomalous-dispersion 

regime. due its esponential dependence on both parameters. In fact, it can be 



Figure 5-6: Gain curves In lGeJJ(R,)/  for the case of normal dispersiori. (a) The 
pump powers 1.420)2 = JAlo(2,  arid the l~liases v, J -t Qrb and qrf - Qrb are nlultiples 
of 2n, q520 - = n/2. The dashed and solid curves are for L = 1 and 2.6 
respectively. (b) Sanze as (a),  escept that 1,420 l 2  = lA10(2/3, and the dashed and 
solid curves are for L = 2.6 arid 5 respectively. (c) Same as (a), escept tliat L = 1, 
lurf + Grb = r / 2 ,  and the dashed and solid curves are for 420 - = 0 and 7r/2 
respectively. 111 all cases. the three h.orizonta1 loss lines are the same as in Fig. 
5-5.  



shown that near the peal< of the gain cnrve 

\vherc \\re have ~ieglected esp(i1.; 1 )  = esp(- 11; (1) compared with e~p(- i1. '~1) .  \Ve 

have kept esp(fi1',l) since. with the assumption of /,420(2 5 1.410(2, 1 ; can either 

l)e iniagi~iary or real within the frcclue~icy range 0 < $1, < 2 where 1; is iriiagi~iar!-. 

L%r the I;11:ge gain liiiiit ill tlie ~ i ~ r i i i i ~ l - c l i ~ l ) e ~ ~ i ~ ~ l  case! how\-er. the Ion.-Gccluciicy 

-gain illcreases ;it   no st cl~~aclratic.ally (clue to the tlouble pass) with Imth of' the 

parameters. while thc higher-frequent!. gain is bounded. 

5.6 Probe transmissivity and reflectivity 

The sirilplificatiorl rilade by neglecting the cross ~ilatrices i11 the presence of strorig 

reflectio~i allo\i*s us to include the general case of probe i~ljectiorl in our ailalytical 

stud?;. 

If the probe fields dAi(w) are injected a t  the left mirror located a t  z = 0, the 

boundary condition can be written as 



Here. t', e ~ ~ [ i q 5 , , ~ ]  is the trans~nissio~i coefficient into the inedium a t  the left nlirror. 

\Ve also ha\.e. I):. apl~lying Eel. (.5.48) with tlie cross ~natrices set cclual to zero, 

Below the al~solute instability threshold, the field transmitted from tile svstem 
-. - - - 

is 64,(4)  = Tbd-!l(u;. 1) .  \i?hescits the I);~cl<rcflectccl field is 6-I,(;) = Tfd-\2(ui,0). 

where 

and t j  esp(zdlf)  and t6 esp(id16) are the transmission coefficients out of the medium 

at t,he front boundary and rear boundary, respectively. By using Ecp. (5.85). 

(5.86)) (5.83) and (.5.50), nre fincl that the transmitted and reflectecl fielcls are 

relatecl to the input field by 

where T and R are defined as the transmission and reflection matrices for the 



iionlincar F P  systeru. The!. s!-nlnlctric Ixtmeen -&I aiid so that Tll = 

TF2. T12 = T;, : ILL = R;2, aiicl = I(.;l. Physicall!. ?',[ arid TL2 indicate 

the trarisrnissioii coefficicrits i ~ t  the illput frcclueiic!. aiid a t  tlie F\Vhl f'l.ecluenc!., 

respecti\-el!.. So t c  that Ecls. (5.87) i11icl (5.88) are the coupletl-photon version of 

similar ccluatioris for the transmission arid refiectiori of a linear FP cavit!.. 

111 pump-l)rol,e csperimcrits. an esternal probe is injected into the cavity to- 

gether \vith tlic counterpropagating punlp I,canis i~ricl irlformatiorl about the cavity 

is giltlicsctl I,y ~ l i e i ~ s ~ ~ r i n g  ~)roljt: trarisri~issivity arid reflectivity I)elo\v the i~bsolute 

irlstill)ilit!. tlircsholtl of thc s\.storn. Tlie transruissiori and reflection ~natrices car1 

I)e t :a lc~~li~t t~cl  in ;L straiglitfor\~i~l.tl rna~ir~cr fro111 Ecls (5.87) ancl (5.88). The rcsults 

are 

where Tzl = T;27 Tzz = T;I, R21 = R;,, and Rz2 = R;,, satisfjving the aforemen- 

tioned symmetry between -u, and w. 

There two frecluency scales over which the transmission and reflection co- 

efficients vary. In the normalized variables Q and L, the fast scale of Q is in 

the term esp(i2Blwl) = esp(i2QLlc). resulting in O(E)-scale oscillations corre- 

sponding to lilode spacing. The frequency dependence of the other terms in Eqs. 

(5.89)-(5.92) and (5.73) is on the O(1) scale. The behavior on each scale can be 



studied ir1del)endently. 

Corisideral>le sinil)lificatiori can I>(: riiacle for the case i11 \vhicti 1.b << 1. In 

this liriiit. Eels. (5.89)-(5.92) 1)ecome 

Now it is easy to see tliat tlie frecluc:~ic!- response of these coefficie~its consists 

of fast oscillations a t  about the rnocle spacing deterniiriecl by the term e'2dlw1 in 

the denominator while the upper ;uld lower bounds are determined I)y setting 

the denoliiinator eclual to 1 7 I . ~ I ' ~ ( G ( w ) ( ,  respectively. Figure 5-7 shoivs the up- 

per and lower bounds of the frequency response of these coefficients by plotting 

ITll(UJ)l/(tbt;). lTLZ(~')l/(tb~;)- I R l I ( ~ ~ l ) l / ( t f ~ ; ~ b )  and IRl2(w)l/(tft)'b) for the case 

in whicli I . / I ' ~  = 4(X,,. .-IS the instability threshold al>l)roaches. the upper-bound 

goes to infinity, resultirlg in large amplification of the probe field. 

It should be noticed that ,Al0 and refer to the steady-state fields inside the 

cavity, which are related to the input pump fields outside the boundaries .Ali and 

by the boundary relations 



Figure 5-7: The frequency response of the nonlinear dispersive F P  cavity. (a) The 
transn~ission coefficient at the frequency of the probe. Only the upper and lower 
envelopes are shown here; the fast oscillations on the scale of the mode spacing 
are not shown. rjrb = 4%. The solid curves are the upper and lower envelopes 
for L = 1, and the dashed curves are for L = 1.5. Other parameters are the 
same as in Fig. 5-5(a). (b) Same as (a),  escept that the transmission coefficient 
a t  the FWM frequency is displayed. (c) Sanle as (a) ,  escept that the reflection 
coefficient is displayed. (d) Same as (a) ,  escept that the reflection coefficient a t  
the F\VM frequency is displayed. 



These relations can be used to calculated 'Ali and .q2i from .Alo and .A20, or vice 

\-ersa. Tlle ~liultistal~le behavior associated wit11 this type of eclllation 11% been 

studied cstensivcl!. ll ." a i d  is not the r~lain focus here. \Vhell the I~ounclarg 

reflectiorl is relatively \\veal<, we simply have .-Ilo = Alit; esp(i&ll) and --Izo = 

-AZitl ~ ~ p ( i @ ~ l ~ ) :  \\'here \vc have LLssunle~l (tbr j << . A l i  It;, 1.4 li  lt;T'(, << --hi It; 

and 1.j7.b << 1. 

5.7 Conclusions 

In c:oricl~lsion. tvc: analyticall!. studicct tlic system of cw counterl~ropagatin,ntig punlp 

waves in a finite dispersive Iierr rnedil.un. \Ve sliowed that for small rnoctulational 

frequencies. such that the nralltoff length is less or comparable to the lionlinear 

length. the sys tc~n can be considered dispersionless since the dispersion length is 

norn~ally rnuch longer than the nonlinear length in sucli cases. 

In order to study the effect of GVD! we conceiitratecl on the case in which this 

condition is ~ i o t  satisfied and found that the coupling between the two counter- 

propagating pairs of sidebands is very nlealt. This is because when dispersion is 

important (i.e. when the dispersion length is comparable to the nonlinear length), 

the walkoff length is so short that the counterpropagating pairs do not stay to- 

gether long enough to interact strongly. Consecluently, the evolution of each pair 

of sidebands is basically determined by the corresponding pump wave alone, which 

provides a coupling bet~veen its sidebands through the combined action of SPM 

and GVD. The effect of the counterpropagating pump wave is to provide a weak 

bacltscattered (or DFB) component to the pair's propagation, induced by XPM. 

The nlodel we developed based on the analysis turned out to be a generalization of 

the treatment of DFB lasers ~vi th  a large detuning, to the case of a doubly-resonant 



~>ararnetric oscillator for a pair of coupled photons. 

\Ye first conceritratecl on the case in which the weal< 1,ounclary reflection is 

less or cornpara1,lc to the DFB. \\'e for~nct that for absolute instabilities to occur. 

anomalous dispersion is rieeclccl to provide sufficicrit gain from hII. Each lorigitudi- 

rial superrnocte of the absolute insta1)ility consists of two counterl>ropagating pairs 

of sidebaritls. corresl)onclirig to pulsirig in the output fielcl. :\nalyticnl results were 

ol~tairiecl easil!. fro111 the sinil~le physical iiiodel we constructed. Botli tlie growth 

rate 1.crsus rnode frcclueric!. iiricl the threshold conditions were given. The rilode 

sl,ac.ing (.ill1 I)c corisiclerccl c.orit iri~~o~~s 11ndcr the growth rate c11rvc. 111 tlie special 

('ilsc of' iclcntic;\l 1)111111) \vi~~'c's \vith no I)o~lnclilr\. rc:flcctioiis. our results iigl.ccx \\.ith 

~ ) r e \ - i o ~ ~ s  riuriieric;\l \vorl<. 

\Ye tlieii c:orisic\erecl n stronger I,ounclar!. reflectioii for which the DFB clue to 

the scattcririg of the counterpropagating pumps waves were neglected compared 

to the localized rnirror feedback. The system behavior is governed the cou- 

pling of copropagating sidebands and the boundary reflections. This result can 

I>e interpreted iri terms of a FP doubly-resonant parametric oscillator for a pair 

of couplecl photoris. This physically transparent rilociel allonrs tlie cornl>licated 

svsteril to cliaracterized ill a silnl~le and falniliar language. 

For strong boundary reflections. absolute instabilities were found to occur in 

l>otli the normal and the anomalous dispersion regimes, and were described by 

gain curves in the nlodulational frecluency domain. -4s for the weak and anti- 

reflection cases, the discrete supermode frecluencies likely to become unstable are 

almost continuously distributed urider the gain curve. An analytical expressioii 

nras clerived for the growth (damping) rate of the supermodes a t  different fre- 

quencies. For each unstable supernlode, there are generally two sidebands due 

to the photon pair. which beat to cause pulsing in the field intensity. While the 



instal>ilit~. ;it low rnodulational frccluericies c:orresl)orids to the conventional Ilceda 

iristability. new i11stal)ility rc.gioris \ v t w .  f'ouncl that owe tlleir osistcricc to finite 

t~lisl)ersiori. For high l)\lnll> powt:rs or 1ill.g~ rilecliuril lcngths. the iristability ctriven 

1)y the 111 gairi ttorui~iatcs i11 the nriornalous dispersion regime l)ecause of the es- 

poncntial dependence of thc gain ori these parameters. For the normal clispersion 

regime, the contril)\~tion of the licrr or 1'\\.!hl effects to tile gain deperlcls a t  most 

c(uadraticall!- on  these parnrllc:ttlrs. 

Below tiircslioltl. wt? stutlictl the transmission arlcl reflection characteristics of 

the s!.stc:nl for n n.c\ak prol)e. 111 atitlition to their componerlts ilt the prol)c fre- 

ci\lenc:y. tllc tr'ans~nittc!tl and rc:flcc:tc~l I)c>ams liavc: comporierits at  tllc l:\V.\I fre- 

clltcric:y clue to the sitlcl);uitl co\~l)liri%. .Slie tri~nsriiissiori and rcflcction c:oefficicrits 

were obtninctl analyticall!.. 'l'licir Gcclucnc!- response consists of fast oscillations 

a t  al)out the ~lloclc spacing of tlic system wit11 an envelope that vi~ries slonrly on 

the s;lrne scale iLs the ga i~i  curve. .-1,s the tilresllold apl~roaclles, tile llpper Iwund 

of thc crlvelopc increases ttraniatically. resulting i11 large amplification. 



Chapter 6 

Incoherence Aspects of Nonlinear 

Dispersive Waves 

6.1 Introduction 

When a partially coherent electromagnetic field propagates througli a rnecliuru, 

its colierence properties usuall!. change.'G.",5G~57~5"81.82 More specifically, the 

output power spectrum arid relative intensity rioise (RIN) nlay differ substarrtially 

from the input ponTer spectrum arrd R.IN associated with the stationary stocliastic 

field. The transformation between t,he iriput and the output power spectra is 

a basic statistical property for many systems. For a linear system, the spectral 

transfornlation is related to the impulse-response function and can be calculated 

easily by using the C\riener-I\'hinchin t h e ~ r e r n . ~ ~ . ~ ~  In this chapter. we consider 

an optical field propagating through a single-mode optical fiber as an esample 

of a nonlinear dispersi1-e medium. The deterministic transformation of the input 

signal, in this case an optical field, is governed by a nonlinear Schrodinger ecluation 

(NSE), which takes into account group velocity dispersion (GVD) and the I\'err- 



type ~ i o ~ ~ l i ~ ~ e a r i t y  rc~spolisiblc for self-p11a.s~ ~iiotlulation [see Etl. (G .1 ) ] . 12 . ' ' 0  Tlius, 

the stittisticitl ])rol)el~ic!s of the o11tl)~t sigl~al. sucli as the 1)onrer sl)ecti.u~n aucl 

L2IN. ;He cletcr~nil~ecl i ~ o t  o111y I)!. tlie statistics of the illput signal biit also I)!. the 

clisl)ersi~-c nntl  o oil linear ~)rol>crtics of the fiber:" 

I11 sllcil s!.stcms. there esists an  intrinsic frecluency for a given average po\ver 

of p ropaga t io~~  that :illo~vs a clirect coni~parisoll between the dispersive nntl nonlin- 

ear tornls ill the XSE. This frecluc~~c!. (:orresponds to the 1)ealc-gain frcclllency of 

tllc ~~ io< l~ l ; t t i (~ l l i l l  i11stttl)ility (111) i l l  tile il~~olnalous clisl>c:rsio~~ regi~iic;.".'~ and is 

illso ~lsc.f~ll I)iualnctcr in tlie ~iorliial <lispersio~~ regime. Herc tlic ~)owol. used for 

c.;tl(.ul;tti~~g this f'roqucnc!- rc!f'ers to tlic il\.erage I)onrer of the s ta t iol~ary stochas- 

tic ficlcl. I f  thc! spectral n'i(lt11 is 11iuch I;trger that this irltrinsic frcclllency. the 

~~on l inca r  tclr111 can Lo l~cglectecl aricl the systelli can be considerctl linear to the 

first orcler of apl>rosiniatio~~. It is easy to see tliat the \Yiener-Iihinchir~ theorern 

~>retlicts 110 c t i a ~ ~ g e  in the I)on7er sl)ectrum ill this ciue. On the o t h c ~  Iiancl. the 

dispersi1-e tcrnl can be neglectctl if tlie spectral uricltli is much snlaller than this 

intrinsic frecluelicy. For systerns with negligible dispersion. the prol>len~ of spectral 

evolution lias heen stuclied for an input fielcl with Gaussian  statistic^.^^ 

Generally. tlie coesistence of dispersion and self-phase modulation rilaltes the 

problem of stocllastic propagation in~l>ossible to study If.  Ilo~vever. 

the input consists of a continuous-wave (C\Y) field plus a small noise fielcl whose 

amplitude is much snlaller than that  of the C\V fielcl, then the problem can be 

linearized. with the small field treatetl as perturbation. This case is considered 

in cletail in Sec. G.2, where analytical espressions for the evolution of the power 

s p e c t ~ u n l  and R.IN are given and are confirmed by numerical s i m ~ l a t i o n . ~ ~  It 

sllould be pointed out that the linearization rnethocl was first clevelopecl to study 

squeezing in cluantum ol~ti~s.85-87 Here. nre are concerrled \\lit11 the classical case. 



In the spectral domain, the linearizable case corresponds to an i~ ipu t  power 

spectrum that  co~isists of a (L f~~nc t io~ i  portio~i ~ ) lu s  a small part whose area is 

11iuch s~iiallcr than the ;\sea of tlie (1-fu~ictio~i ~)or t io~i .  111 practice. our alialysis 

applies to a liiser light with ii s111all c:oIliponeIit of broad-baiid l>acl<ground iioise. 

It call iilso be iq)l)liecl to the ciise of four-nvave ~ilising (F\Vh,I)12 of a partially 

c:olierent (I)roacl-l)a~icl) s i g ~ ~ a l  ill the preseiice of a C\V 1)unlp. Since. without 

tlie srilall perturbation. the C\V pump spectruin is unchanged. the linearization 

inetliod used here gives onl!. the pl~rnl) offects on the propagation of a ~)artiall!. 

coherent field iri  a ~ionli~ici\r clisl)ersivc ~necliuni. It is ivell I<nonln that  111 oc:curs 

i11 tlie iuiornalous clisl~ersio~~ regi~ne. .Thus. our r(3s~lts will provide i\ statistical 

tlescriptiori of 311. 

Note t ha t  riot all l<i~icls of i~icoherence can be deco~nposed as a co~nbi~iat ion of 

a small amplitude ~ioise and a coherent componeIit. Specifically, this is true for 

the i~npor tan t  case in which the purnl) beam has a finite spectral width. Even for 

a narrow l>andnitli, it only rileans the rloise is slow iristeael of being srnall. I11 Sec. 

(5.3 the e\rolutiori of the spectrum of an input pump bean1 with finite banclmith is 

studiecl l)v r~unierical sinlulatiori of two lcincls of noise." Tlie main results of this 

chapter are su~n~ilar ized in Sec. G.4. 



6.2 Pump-wave effects on the propagation of noisy 

signals in nonlinear dispersive media 

6.2.1 Noise propagation 

The go~rer~i i~ ig  XSE can I)c \\.rittc~i as"' 

w1icl.e . \ is the co~nples  held a~iiplituc\e. z is the propagation clista~ice. t is the 

retarded ! i ~ n e  ~iicasurccl i11 a f ' ra~~lc  no\-ing at the group \rc:locit!.. ; 3  is the C\ 'D 

coefficie~it slid -i is the ~ionliiicar cwfficient. To simplif!. the notatio~i.  \ve \\.ill 

often use /j = /I2/:! i11 t l i ~  following. .1?11e i1111ut field is assumed to l,e .-\(t. 0) = 

.Ao + &(t,  0 ) .  where 163(t. 0) ( << Iilo 1 .  To zeroth-order (without noise). we have 

the solutio~l .4,(t, ,-) = .-lo e~ l ) ( iy l . ! l~ (~z ) .  Thus. we assume a solutio~i of the form 

A(t. z )  = .4, + &4, = [-Ao + 6.4(t: z ) ]  esp(iylAo12z) and linearize Eq. (6.1) in the 

small pcrturbatiori 64 to obtairi the linear partial differential ecluutioii 

The  solution to  this equation is easily espressed in Fourier do~ilain. By taking the 

Fourier transfornls of the above equation and its comples conjugate, we have 

[d, - ipw2 - iY1.40/2ji)=I(~. z )  = ~~l.401~.4:a*(-lu., r )  

2 -  [d, + ipw2 + iyJAol 10.4 *(- lu. .  2) = . - i y l ~ o / 2 . 4 i a ( ~ .  r) (6.3) 

w h e r e - a  refers to  the Fourier transform of 6.I [i.e. a ( w )  = S-", dA esp(iwt)dt]. 

These equations show that  the basic physics is related to  FIVhll, which causes cou- 



piing I,ct~veeri t11c ~ I I W  sidcba~ltls ci..l(d. z )  and (r.-I*(-;J! 2 )  locatcxt s~.mruetricall;\. 

i~ro1111<l tlle C:\Lr l)u1111) frcclucr~c:.. 

It is easy to obtain t11c gcncral sol~~tiori  of' the abovc coupletl: linear. first-order, 

ordi~iar). differential cc(uatio11s. For each 2 ,  there are tnro irldependerlt solutions. 

Tlms. in terms of the two eigennlodes. the general solution is given by 

ancl 

7 4 - - k - ( w )  + Ow2 + yIAO12 - T - ( L J )  = 
k - ( d )  - ;h2 - yJA0I2 Y AG2 

Here r ,  - ( d )  are the relative amplitudes of the sidebands n ( w :  Z )  and ( - w ,  z )  

for each eigennlode. and k * ( w )  represents the corresponding dispelsion relation. 

If the field a t  the input 2 = 0 is ltn.own, Eq. (6 .4)  can be used to determine the 

two constants cl and c2) and the field within the fiber can be expressed in terms 

of the input. After some straightforward algebra, we obtain 



where 

6.2.2 Power spec t rumof the  field 

17rorii tlie \L.icner-liliirichi~i theorcrn.':' the l)o\vcr spcctru~n S(u. I). clefirictl as the 

h u r i c r  trarisf'orr~i of tlie ;~~ltoc.orrclatiori of the field. car1 be calculatecl ;w 

where the t i~l le  nri~idom T esterids to  inifinity as the limit. The  cross term vanishes 
- 

after averaging sirice .-I, car1 be rno\-ecl out of the average R I I ~  (64,) = 0. 

Define S ( w .  2 )  r S ( w .  2 )  - I-40126(w) , i.e. remove the unchangecl portion of 

the spectrum corresponding to the CLV signal . Since 6,4(w. 2) can be calculated 

from Eq. (6.8):  we have 

where nre have assumed ( n ( w .  o ) ~ ( - ~ J .  O ) ) / T  = 0 or, ec~uivalentlj.: (d4(t, 0)6A(t  + 
r,  0)) = 0 ,  which is true i11 most cases. The above equation is a linear transfor- 



~ilatiori betwee11 the spcxtruni S at the output and the input. Both sidebands 

participatirlg 111 tlic: l:\\'.\I process cl~ntribute to the output. 

.\fter f'urttlcr simplificatiorl. the output spectrum is given I,!. 

\vtlero i; is gii-e~l I)!. Ecl. ( 6 . 5 )  rcg;lrcllcss of tile sign c:o~lve~itiori. Soticc that 

\vhcrl I; is iriiaginar!.. corrc!sporldillg to h1I. si1i2[k((il)z]/k2(;u'! = ( l / ~ l ) [ e s p ( ( k ( z )  - 

O S P ( - J X : J Y ) ] ~ / J X ; J ' ~ .  

Eclu;~tiori (6.12) predicts ilo sl)ec.t-ral change in the limit of weal< pllmp power, 

collsistellt with the rcsult for a linear clispersive system. In the lirnit of zero 

dispersiori: Ecl. (G. 12) I)ecornes 

which is valid as long as ,- is snllall enough that the noise power remains rnuch 

srilaller tllarl the pump power. 

Figures 6-1 and (3-2 display tlle output spectrum a t  different distalices for a 

splnletr ic  input spectrum. for the cases of rlormal and anomalous dispersion, 

respectively. Sotice tliat even in the norrilal dispersion region where hi1 does not 

occur, the nonlinear dispersive effects greatl!. affect the spectral evolution. From 

Ecl. (6.12), the spectral intensit!. a t  any frequency oscillates with distance (escept 

at zero frequency where i t  grows as z2)  due to the factor ~ in~[k (w) , - ] / [k (w) ]~ .  The 

period is I lk (&) ,  which is longer for smaller frequencies and goes to infinity a t  

zero frecluency. Thus. the frequency components around zero lceep growing ulhile 

fringes are formect on the spectrum. ,At a fixed distance, the power spectrum 
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Figure G-1: The sl)ectral evolution at clifferent clistances in the ~iorn~al-clispersion 
region for a syn~rlletric input spectrum. FIY hl causes the quadratic growth and 
fringe formations. The distance is normalized to < = zylAo12 and the frecluency is 
normalized as  cj [(A I /  ( y  l.40)2)]1/2 /(.l.ir). The FWHhll of the input noist. spectrum 
is 0.4. its average intensity is -3.2 x lop5 tinles of the pump intensity. Tlle vertical 
axis has a relative unit. 
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Figure 6-2: Same as Fig. 6-1 except for the sign of the GVD parameter. hlI 
effects dominate a t  large distance. 



is a oscillating function of frequenc:y. The oscillatiolis beco~ile fdster at larger 

distarlces [see Ecl. (G.12). and also Fig. G-9 I>elonr]. The fornlation of the fine 

fringes i~idicatc a very long correlation time (since the autocorrelation of the field 

is just the Fourier transfor111 of this spectrum) even if it is short at the input. This 

is a n  interesting statistical pheiio~nenon since it seems to indicate that tlie input 

field l>ccomes inore coherent after l~rol>agatioii because of pump-iiiduced F1Yh.I. 

The cluadratic growth of the field sl)ectrurn near the zero frecluenc!. where the 

c[ispcrsion is 11cgligil)le (:;in also I)e csplained in tcrnls of self-phase modulation 

since the total field can tlie~i I)e \vl.ittc:n ;LS [.Ao + 6-l(t. O ) ]  e s p [ i ~ l . - l ~  + i).-l(t, 0) I'z] - 
-1, + ti.-l(t. 0) esl~[i-;).-l~)'z] + iy.-loz[--lo6.-l(t. O ) *  + c.L.] whel-e the term linear in z 

causes tlie cluadratic l )~\ \~c?r-sl~cctr~l~l i  growth. 

In the ;tilo~nalous clisl>cssioii rcgioii arid a t  large distances. the csponential 

growth due to 1\31 donlinates. For this case, Ecl. ((3.12) car1 be written as 

for large I. The output spectrum is symmetric? independent of the sJrrnnletsy of 

the input. If the illput spectrum is broad eilougll (as is in Fig. 6-2)! the two peaks 

are at the frequency of the peak gain of MI. whicli is the maximum of Ik(w)l a t  

w = f 3' AoJ2/P. The linear approsi~nation will eventuallj~ break down when the J I 
noise anlplitude beconles comparable to the pump amplitude. 

In order to confirnl of the validity of the linear approsimation, nre have also 

perfornled nunlerical sinlulations by assunling Gaussian statistics8"or the input 

field. Our numerical model is constructed as follows: For the noise field, two 

independent Gaussian random number generators are used as the real and the 

imaginary parts of the input field after going through a filter which determines the 



shape of spectrum. This is acltlecl to the C\+' field to form tlie input ficltl. Eel. (G.1) 

is solvc~l for (:ilcli ~)rc:pilracioli of the iriput. using the split-seep 15uricr tnethotl. l 2  

In order to avoicl colnplicatio~is ilt the temporal 1)oundaries. il l)roacl Caussian- 

pulse carrier is 11secl whose nvitlth is much. larger than the time scale of fluctuations, 

and tlie 11on-stationary clffects iritroclucetl by the carrier are elinlinatetl I)!. al)pl!ri~i,a 

a s~ilallcr wi~iclonr (tliari the pulse width) for calculati~ig the powc.r spectruIii aricl 

the 13.IK. The results ill.(: il~.erilgc(l over 100 rcalizations 1):~ i ~~ teg . r ; l t i~~g  tlie XSE 

100 t i~ncs .  

Figures G-3 ancl 6-4 slionr the ~iunlericall!.-detcrminccl spectral evolutions cor- 

r.esl)oncling to ITijis. G - 1  ancl 6-2. The il~ial!rti~al results agree with the nulnerical 

si1nu1;ltiotis. a l tho~~gl i  tlc~.i;ltioi~s I)ogin to occur for liuge tlista~ices in tlic ;ltioma- 

lous c ~ s c  nvheri thr  ;lrnl)lit~~tlc of tlie iiuise fielcl I~ccoines coii1paral)le to tlic punlp 

aml)litutle tlue to AII. 'l'lie apl)t.araiice of aclclitio~ial pealcs ill tlie sl)ectrunl. ~vhicli 

we at t r i l~ute to liigl~cr-orcler F\l'hI effect, also i~iclicates that our ;trial!-tical treat- 

ment I)ecolnes inlnlicl. 

6.2.3 Relative intensity noise 

Besides tlie autocorrelation or the ponrer spectrum of the field, another cluantity 

of statistical importance is the RIP!. It is defined as the Fourier transform of 

the autocorrelation of the relative intensity fluctuation 6 I / ( I )  of the field, where 

61 = I - ( I )  and I = 1AI2 is the intensity. Thus it is related to the fourth-order 

moment of the stochastic field. In our case, I = IAo + 6.4(t, , - )I2 .  Consistent with 

the linear approsimation, this leads to 
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Figure G-3: S~!umerical sinlulations c:orrespoiiding to Fig. G-1 .  The celiter portion 
is the CW spectrum, which is subject to finite resolution due to the finite temporal 
window used to calculate the spectrum. The sign of the GVD parameter is positive 
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Figure 6-4: Same as Fig. 6-3 except that the sign of the GVD parameter is 
negative. 



By using the \I7iencr-1l;hinchin theol.em? we find the RIN to be 

By using Eq. ((3.8). we obtain. 

Further si~nplificiitio~~ gives 

where k is given bj- Ecl. (6.5) regardless of thc sign convention. From this equation 

we have FUN(&, 0) = \ . - l o J - ' [ M ( ~ .  0) + AS(-;l, O ) ] ,  iudicati~lg that the RIN is 

always s!rmmetric a t  the input. The final result is thus, 

This is a linear transfol.mation between the RIN of the input and the output. 

Eq. (6.19) also predicts that without ilonliilearit~~ or dispersiorl (i.e., [.-lo 1' = 0 or 

,D2 = O), the RIN will riot change (in the linear approsirnation). 

Figures 6-5 and 6-6 show the evolution of the RIN corresponding to the cases of 

Figs. 6-1 and 6-2: respectively. Figs. 6-7 and G-8 are the corresponding numerical- 

simulation results. Like the power spectrum, even in the normal dispersion region 

where there is no VII, nonlinear dispersive effects change the RIN. Because of 



Nornlalized frequency 

Figure G-5: :\nalytic RIN spectra at different ciistances in the normal clispel.sion 
region under corlditioris identical to Fig. G-1. FIYM causes fringe formation. 
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Figure 6-6: Same as Fig. 6-5 escept that the dispel.sion is ano~nalous. >I1 effects 
dominate at large distances. 
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Figure (3-7: Sumerical sinlulation result corresponding co Fig. G-5. The G V D  
parameter is positive. The center portions of the specctra are che C\V resiclue. 
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Figure 6-8: Sarne as Fig. 6-7 escept that the sign of GVD parameter is negative. 



the factor sin2 [h . ( i~)z] / (23; ( .4~)~  + ,1w2) in Eq. (G.19), the RIN a t  ally frequency 

is oscillati~lg wit11 tlista~ice. escept i ~ t  zero frecluencv where tlie RIN is always 

unchangecl . The period l/k(;) is longer for siilaller frecluencics a ~ i d  it goes to 

infinity at the zero frccluency. Thus. tlie RIN a t  zero frecluency is unchanged 

while fringes will be formed a t  other frequencies. For a fised distance, the power 

spectrum is a oscillating function of frecluency and the oscillation beconles faster 

a t  larger clistances. 'The numerical sirnulatio~i confirnls our analysis. 

I11 tlie anomalous dispcrsio~i regic111 arid a t  large clistances. the A11 will domi- 

natc. siiicr! for large z .  Ecl. (6.19) (:ilII. I)e nrritteii as 

indicating an esporieritial irlcrease clue to the A11 gain. If the input spectrum is 

broad enough (as it is in our example), the two peals are a t  the frecluency of 

the peak h l 1  gain. i. = &J-. Tlie linear approsinlati011 will eventually 

break down a t  estremely large ,- when the noise anlplitude beconles conlparable 

to the pump amplitude. This is evident from the numerical sinlulations in which 

the appeararice of additional peal<s on the RIN occurrs because of higher-order 

FPVh.1 effects. 

6.2.4 Noise-induced four-wave mixing 

Four-wave nlisi~ig occurs when a C\Y pump wave and a weal< signal or probe wave 

(usually with a different carrier frecluency) coesist in a nonlinear nlediun1.l2 It 

has found many applications, including the use of its phase-conjugation effect to 

cancel the dispersive spreading of optical pulses in a fiber link for a broad-band 

comnlunication s y ~ t e n l . ~ ~ - ~ ~  In many cases, it is important to  understand the 



statistical properties of the fielcls after rlndergoing F\Ybl, such as the shape of the 

field spectru~ii  a11d the correlatio~i time. .llthough it was cleve1ol)ecl in il different 

contest, our formalisni foi the propagation of il stochastic fielcl is well suited to 

descrlbe F\\'Xl. 111 fact. Ecl. (G.12) can I)e applied clirectly to the case of F\YhI 

in which a C\V punll) arid ;i wale  loi is!. or l~roacl-11and probe are present a t  the 

input. 111 our linear approsiriiatio~l. the C\V pump is undepleted. Since Eq. (6 .12)  

is a linear transfornlation between spectrum of the nonpump part a t  the input 

and output.  nre first consicler il probe with a narrow spectrum centered on w' a t  

the input. i.c.. lS(d.0) = I+(0)cl(u: - J'). where I+(O) is a constant. Fro111 Eq. 

(6.1 '1) .  KC, ilavc. 

where 

2 2 . 2  I+(,-) = I+(O:l[l +(?I-401 ) sin [ l ; ( ~ ~ ' ) z ] / [ k ( w ' ) ] ~ ] ,  

2 2  . "  
I -  (2) = I+(O) ( y  1-40 1 ) sin- [k(wl) :] / [ l ; (w ' )] ' .  (6 .22)  

This equation describes the F\Vbl geiieration of the sideband a t  -wl or idler due 

to the coupling to the sideband a t  w'. 

Notice that  in the weak-pump limit, i.e. yJAoI2  << lIC(wr)I, the sideband a t  -LJ' 

is not generated since there is no coupling in this limit. In the case of zero GVD, 

the coupling behavior also changes, and Eq. (6.12) leads to 



These ecluations cease to be valid nriic.11 I, l~ecomes comparable to 1--Iol2. 

In the normal-dispersion case, I+ ilnd I -  exhibit in-phase oscillations with the 

propagatio~i distance. with a period l,/k(wl) that is longer a t  lower frequencies. In 

the ario~nalous dispersion case. I,(:) -- I - ( : )  I+ (0) (114) (? 1.4012)2 esp(2 ( X : ~ Y ) /  (kI2 

at large distances. with the esporieritial growth caused by the LII gain. 

0, I 
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Figure G-9: Spectral evolution at different distances in the riornlal dispersion 
region for an asymmetric input spectrum corresponding to F\.Vh,I with a noisy 
probe. The noise spectrum is centered at 0.05 with FPVHh/l=0.02 arld the other 
parameters are identical to those of Fig. 6-1. The GVD is nornlal 

Figures 6-9 and 6-10 show the spectral evolution associated with FWI'II in- 

duced by a probe of finite bandwidth for the cases of normal and anomalous 

dispersion. respectively. .A Gaussian probe spectrum is assumed: AS(w, 0) a 

esp  -[(w - wl)/Aw]'. With above arialysis for a narrow-bandwidth probe, the 

qualitative behavior can be understood easily since the spectrum call be linearly 

decomposed into many independent narrow-bandwidth probes. In the normal dis- 

persion region, a spectral wing is generated a t  the frequency that is symmetric to 
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Figure G-10: Sari~e as Fig. 6-9 escept that the rioise spectrum is centerctl at 0.15 
with F\VHhl=O.O.I i d  the GVD is anon~alous. 

the probe frecluericy. Initially, the illtensity oscillates with propagation tlista~ice. 

Since each freque~icy component has a different oscillation periocl and different 

initial intensity, the wings tvill be shifted and split to clevelop hinges. Tlie aver- 

age oscillatiori with ttistance will be saturated as more and more fringes appear, 

since they are all out of phase with each other. In fact, for large distance the 

envelope of the tnro wings settles down at frequencies around kw', with average 

intensities that is proportional to [l + (? JAoJ2)2/k2 (w)] esp -[(w - w')/AwI2 and 

[(?(Ao 1 2 ) 2 / k 2 ( ~ ) ]  esp -[(w + w')/AwI2, respectively. It is the inverse width of the 

fringes under the envelope that gives the approsirilate correlation time. Thus, 

the coherent time of the noisy signal and idler keep increasing as they propa- 

gate. In the anon~alous dispersion case, h/lI will produce symmetric wings a t  large 

distances. Because the gain peak is at  1\ /2?  J A ~ ~ ~ / & ,  the wings rvill be pulled 

toward this frequency position as they grow with distance. 



Note in both the nor~nal and anonlalous dispersion cases. the spectrum of the 

generated idler is ~ i o t  si~nply the rnirror image of the input spectrum of the signal. 

This is clue to the effect of G V D  011 the process of FWhl. From a practical poirit 

of view. this plieno~nenon irilplies that midsystenl spectral inversion by FWhl in a 

dispersion-shifted fiber. a technique proposed recently for dispersion compensation 

in fiber-optic con~riluriication can be affected by the resitlual dispersion 

in the dispersion-shifted fiber. --1 detailed study fro~n a svstems point of view can 

be found elsewhere ." 

6.3 Spectral evolution of large-amplitude noise 

*is  was poi~itecl out in Sec. 6.1. the noise that causes the finite bandwidth of the 

p u ~ n p  beall1 can not generally be treated as a small amplitude noise. The study of 

the propagation of a stochastic field in a nonlinear dispersive medium has not only 

theoretical importance but also prac:tical i m p l i c a t i ~ n s . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' - ~ ~ o r  example, 

the correlation time of the optical field (which is the inverse of the FFVHIvI of the 

spectrum) is very critical for short-time-resolution exper in~en t s .~~  

Although the governing equation is the well known NSE Eq. (G.l), there is 

no satisfactory analytical nray to predict the evolution of the power spectrum of 

partially coherent CIV light when bot,h dispersion and nonlinearity are iml>ortant. 

Thus numerical sinlulations are gene~,ally required. Previous \ v o r l ~ ~ ~  concerned an 

optical field with Gaussian statistics propagating in the normal dispersion region. 

However. the result can not be estrapolated to fields described by other stochastic 

processes. 

To see this, let us sinlply neglect dispersion and compare two lcinds of stochastic 

field a t  the input, one with Gaussian statistics and the other with only phase noise. 



For the Gaussian field. the l~revious n.08rl<~~ led to analytical results showing that 

the sl~ectruln is broatlened oil tlie scale of' the nonli~iear length L N . ' 2  Cjsi~ig a 

similar approach, n'v can further sliow t liat tlie held I)ecomes nonCaussial1 on the 

same scale. 

Ho~vever, a simple aiial!-sis using tlie SSE without the dispersion tern1 predicts 

no change of slIectrun1 for the field with only phase noise. 111 fact. since the 

intensity is a constant. the Iierr effect. which only respond to intensity. does not 

change the statistical properties at  all during the propagation. 

It is worth ~nentioning thar, the spec:tral e~rolution of a small additive noise to 

a cohercrl; C\\ '  wilve in il  ionl linear dispersive niediu~n is also or1 the scale of the 

In this section. nre corisidcr iriput fields with two conlrnon statistics. a Gaussian 

process that corresponds to a thermal. field and a diffusing-phase process that 

corresl~onds to l i ~ ~ e ~  liglit. arid study their propagation in both the 11ornla1 and 

anomalous dispersiori regions of a fiber. as an esarill~le of a nonlinear clispersive 

rnedium. Tlie parameter regions of the problem are classified and weal< turbulence 

theory58 is revieivetl. Tlie results from riun~erical sinlulations for strong-turbulence 

parameters are then presented and discussed. 

6.3.1 Classification of the parameter regions 

The governing NSE whicli relates the in.put and output field is showt~ in Ecl. (6.1) 

Thus, the statistical properties of the output field, such as the power spectrum, are 

determined not only by the statistics of the input field but also by the dispersive 

and lionlinear properties of the fiber. 

Since the coefficients of the NSE are time independent, it is easy to  prove that  



if the input field is a stationary (C\.\.') process, it will al~vays re~llairl a statio1ial.y 

process \\?it11 the sanle average intcasity, ().4)2) = P. We define the tionlinear 

length arid dispersion lcrigth as L N  = 1 / y P  arid Lo = 2/ [1 ,&l(~i lv)~] ,  respec- 

tivel!-, ivherc -Iu is the FWHh.1 of the power spectrum. Furthermore, we define a 

fretluerrcy i , ~  = J l ? y ~ / ~ l / ? l i !  which uorres~~onds to the peak groivth fiecloency 

of rnodulational iristability ( A I I )  if a coherent field with sarile po\ifer i11 the anoma- 
- 

lolls regio~l \verc consiclcretl. By \vo:rl<ing ill the rlosmalizecl viu.ial)lcs t = i i l u t .  

- 
z = :/LC) ancl 7 = .-l/ fi. we have the follo\\~irig ecluation: 

where the tr~agiiitude of 3 is the order of unity since ((>(') = 1. Tlie tc~nporal 

scale of its \.ariation is also the order of unity since we \\~osI< in the riormalized 

tirne. The ordy free parameter llonr is LU/LN.  

\Ve define weak turbulence by the conditiori 

\Yhen this condition is satisfied, the  onli linear term can be rieglected in the first it- 

eration of a perturbatio~i method. Sirice the power spectrunl is given by S(w, 2) = 
- 

(1Zl2) according Wiener-Lihinchin theorem, where ;i = 1/(2a)  J x e x p ( -  iwt)dt  is 

the Fourier transform of 2, we prefer to work in Fourier space and the solution is 
d o )  

sinlply '4 (w) esp(isignw2z). Continuing the iteration, we have 



where k = sign(/j2)u12 and k ,  = sign(/3;!)c;f ( i  = 1,2,3).  

The nest itcratiorl. n.llicll is of orcle:r (Ln/L,v )'. contairls a secular clriving term 

whicli procl~~ces large cllariges in .-I over a norrnalizetl lerlgth of order ( L N / L D ) '  

(or physical lcrigth of order L % / L D ) .  Bv similar consideration, Haselman and 

Benney ct  nl.""" derivecl the ccluation for the power spectrurn of a r~orilinear 

clispersi\-e water nr;l\re. 111 the c.ontest of our cliscussion. the result can be written 

;Is 

where .S = S(d. Z )  i11ld S, = S ( J , ,  Z )  ( i  = 1.2:  3). 

The physical meaning of this equation has been discussecl esten~i\-el!..~'."" Here 

it is erlougll to see that it ctescribes a stirrlulated process of four-photon irltcraction. 

The first terrn is clue to the inducecl generation of photons aud the secorlcl term is 

due to the i~iduced decay of photons. Indeed, it is easy to see that this equation 

predicts spectral change on a spatial sc-ale of order L%/LD,  which is much slonler 

than the L N  spatial scale obtained when Au = 0 (in which case condition (6.25) 

is not satisfied) i11.j~ 111 fact, the situatiori is much more conlplicated when the 

meal<-turbulence condition is not satisfied and the scale dependends on the specific 

stochastic process and on whether the dispersion is normal or anomalous, as  was 

mentioned in the introduction to this chapter. In the following section. nre perform 

numerical sinlulations on two lcind of in.put fields, one with Gaussian statistics and 

the other with a diff~~sing-phase statistics. 



6.3.2 Numerical simulation and discussion 

To sirnulate strong turbuleiice. it is helpful to use the normalized Icngth t = 2 / L N ,  

ant1 tirile ? = 1 / (27rv ,~ ) .  in which case the governing equation (6.1) becomes 

where (\XI2) = 1. The free parameter to change in the ~iunlerical simulation is 

riow tlie spectral wiclth. 

For an input field nit11 Gaussian statistics,'-' our numerical results are obtained 

b!- i~ ~iietliocl silililar to that 11sc:cl iri Scc. G.2. To sumr~iarize. two te1lil)oral series. 

corresl~oricli~ig to the rcal and imaginary part of a complex fielcl in time, are 

generatecl bj. two iiidependc~it Gaussian raridoril number generators. The conlples 

tenlporal field is then put t'hrough a digital filter which uses a filter f~~nct ion to 

perform a tori\-olution oil the input field. M'e change the FWHhl of tlie spectrum 

of tlie filtered field (which is also a Gaussiaii process) by using a filter function 

of Gaussian shape and 1-arying width. The filtered field is then riorn~alizecl so 

that the average intensity is unity and the normalized field is talcen to be one 

realizatioii of the input field. The nest realization is obtained by continued use of 

the Gaussian riunlber generators and aforementioned procedure is repeated. Eq. 

(6.27) is solved for each realization of the input field, using the split-step Fourier 

n1ethod.l2 The density of grids in time has to be much larger than the rnaxinlum 

spectral width of the field, both at the input and during the evolution within the 

propagation distance considered. 

In order to avoid complications a t  the temporal boundaries, a broad Gaussian- 

pulse carries is used n~liose width is much larger than the time scale of fluctuations 

both in the input field and during propagation within the distance considered. The 



non-stationary effects introclucetl by the pulsed carrier wave will not sho~v u p  if 

we xpply il s~nal ler  tc~ill~orill n.i~itlonr (than tlie carrier pulse width) i~round the 

peak of the total ficlcl \\.lien calculati~ig its Fourier transfor111 to get tlie sl)ectruln. 

In our case, we used a Gaussian shapecl winclonr. This temporal window limits 

the rcsolutio~i to al)l~rosi~ilatell!. its i~i\-c.rse width. hut we nlalte sllre that  nre get 

enough resolution 1)y using a large winl:\ow. This is similar to an experiment in 

which the laser pulse is long and the resolution of the spectronleter is sufficiently 

1inlitc:tl that tlie laser ciln I ) ( ?  c,onsiclcrecl C\\.'. 

i\ccorcliiig to tlie \,\ 'ie~icr-liliiiiclii~i ,tlieore~ii. the 1)01~t?r S ~ C C : ~ ~ L I I I ~  ih  ~ l ) t a i ~ i ~ c l  

I)!. avcrag..ig the i~itciisit!. of tlic l;'ol~rici sl~ec:trum cillcl~lated for c.ilcli realization. 

\\.'e averagc:tl over 100 rc;llizatioi~s I)!. integrating the XSE 100 times. The rcl- 

atively nricle temporal window, high te:mporal grid clensity and large number of 

realizations all lead to long computation times. 

In order to generate the tliffusing phase process, nre use tlie fact that  the ctiffus- 

i ~ i g  process is the integration of white ~:~oise." White ~ ~ o i s e  call be al>prosirnatetl 

by I>roadbaricl Gaussian noise, the generation of which was describecl above. Then 

the diffusing-phase process is generated I>y using the cliffusi~ig process ~nultiplied 

I>y a constant as the phase of a field of unit amplitude. .As this constant effectively 

changes the magnitude of the white noise. the FPVHM of the Lorentzian spectrum 

of the genearated field can I>e adjustetl by changi~ig the constant. The  broad- 

band Gaussian noise can be considered as white noise as long as its bandwidth is 

much larger than  the bandnridth of the Lorentzian spectrum of the cliffilsirig-phase 

process tha t  is generated. Thus nre have approsimatelj~ obtained a realization of 

the diffusing-phase process. The remaining considerations such as grid density, 

carrier pulse, temporal mindo~v, and averaging are similar to  the case of Gaussian 

statistics. 
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Figure G-11: Spectral evolutiorls over G nonlinear lengths for two Gaussian pro- 
cesses with different input bandwidths. The dispersion is normal. 
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Figure 6-12: Same as Fig. 6-11 t:scept that the dispersiorl is anomalous. 



The riumerical results for illput Gaussian ra~idorn processes are shown iri Figs. 

G- 11 and G- 12  for the ilornlal arltl ariornalous clisl>ersiori regions, rcs11ecti1-ely. Two 

differelit vales of the F1YHL.I of the iriitial Gaussian spectrum are consiclerecl. In 

all cases, the area of tlie spectl.uri1 is con.servecl as the wave propagates. as expected 

for a constant field iritensity. 

111 both the normal (Fig. (3-11) and anomalous disl)ersio~i (Fig. 6-12) cases! tlie 

spectra l~roaden over several nonliricar lengths. and the11 tend to settle clown. This 

is corlsistciit with o l ~ r  I)iirarlicter arlalysis. As tlie sl)ectra broaclcn. the tlisl)el.sion 

lerigths get sliortcr xhile the ~lorilinear length is unchanged. This \)rings the 

~vealc tu rb~~ lence  rcgiori closer. wliere the evolution sciilc is ~iiuch longc~ tliarl the 

norilinei~r lcrigth. Tlie figures also slion, that l~roacler initial spectra (11) rcacli the 

saturation stage faster. as expected. 'The spectral nridths at satnation are less 

different in (it) and (I)) than are the iriput spectral widths. This indicates that  

the asvnil)totic behavior of tlie spectr;al evolution for Gaussian input fields are 

determined primarily I>- the nonlinear dispersive nature of the medium, which 

is characterized I>? 7Y and ijl,. The anonlalous c u e s  (Fig. (3-12) show more 

broadening clue to the effect of AII. In fact. the feature of spectral wings of L,lI 

slightlv slion~s up in the case of the narrow input spectral width [Fig. 6-12 (a)].  

However, it is much less dramatic than in the case of a coherent pump with small 

additive noise.'" 

The corresponding results for input diffusing-phase processes are shonyn in Figs. 

6-13 and 6-14, for the normal and anonialous dispersion regions, and for smaller 

(a)  and larger (b)  F1YHbI a t  the input., respectively. In contrast to  the Gaussian 

process, the spectra in the normal dispersion cases do not broaden. but narrow 

slightly as the braves propagate. This is; partly due to the fact that phase noise is 

less effective than the amplitude noise in  terms of nonlinear spectrum broadening 
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Figure 6-13: Spectral evolutions over G nonlinear lengths for t~vo diffusing-phase 
processes with different band~vidths at the input. The dispersion is normal. 
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Figure 6-14: Same as Fig. 6-13 escept that the dispersion is anomalous. 



since the [<err nonlinearity is only intensity dependent. The slight narrowing mav 

be attributecl to the fact that F\JrhI iliteractions of the spectral corul>one~its are 

nearly pilase-~iiatchecl arouncl onl!. tile zero frccluency and produce clestructive 

interfererice for other frequencies (luring propagation over a long d i ~ t a n c e . ~ '  

In the a n o ~ n a l o ~ ~ s  tlispersion cilses (Fig. 6-14), tlie spectra still 1,roaden clue to 

the effect of hl1, a ~ i d  the wider sl)ectrum [Fig. 6-14 (I))] leads faster to a satuation 

of the 1)roaclcning. .-is in the case of an input Gaussian process. the spectral 

wing featllrc of hl1 is ~iiorc c\-idcnt for a narronfer input spectrum [Fig. 6-14 (a)] ,  

and is 111ucl1 wealter tlian i11 the c:ilse of a colierent pump. The I)roacle~iings are 

saturatecl liltcr with spectral \v ic l t I l  1 c b : i . s  cliffercrit ~ I I  Fig. G-1-1 (il) ;11icl ( I ) )  than 

the!. ;ire iriitiall!.. .She i~nplicatio~i uf this 1)chavior is si~nililr to that gi\-cn al~ovc~ 

for Gaussian input fields. 

6.4 Conclusions 

In this chapter, stochastic aspects of nonlinear dispersive wave propagation were 

investigated by studying the cases of small-amplitude noise and large-amplitude 

noise. 

For small-amplitude noise, the pump effects on the propagation of a stochastic 

field in a nonlinear dispersive medium were studied both analytically and numer- 

ically. Simple espressio~is were obtained for the evolutio~i of the power spectrum 

and the RIN as the propagation distance changes. It was found that in the case of 

anomalous GVD, h:II plays a dominant role a t  large distances, as expected, where 

both the power spectrum and the RIN grow exponentially according to the h41 

gain to achieve synlmetric patterns about the pump frequency. Even for normal 

GVD, the F W M  effects are not negligible. Each sideband generates another side- 



baud a t  the F\Yh/I frec(uency, thus establishing correlations between frecluencies 

sym~netrically located about the ~>unl.p frequency. This causes oscillations of the 

power spectrum (and tlie cl~~aclratic growth near the 11ump frecluericy) and the 

RIK with l)ropagation tlistance. Since the oscillations are frecluency clel)erident, 

fringe formatioris are found 011 the power spectrum and the RIN. The results were 

applied to tile case of a synln~etric input-spectrum, which corresponds to laser in- 

tensity rioise, aricl to the case of an asvmmetric input-spectrum, which corresponds 

to thc F\VAI of a lxoad-l~anci prol~e in the presence of a CW pump. 

For large-anlplit~~dc noise. we studied the spectral transformation of stationary 

rioise 1)rol)ngaing through a ~iorilinci~r dispersiove medium. The parali1etc.r rcgions 

were cliaractcrizcd I)? cornpi~ring tlie clispersion lcnth L o ,  which usually c:lianges 

during 1)ropagatiori. arid the ~ionliriear length L N ,  ~vhich is constant during prop- 

agation. For L D  << L N ,  nrealc-turbul'ence theory can be applied and predicts a 

spectral broadening scale of L k / L D ,  which is much longer than the nonlinear 

length. 1x1 strong turbulence case! ~iunlerical simulations were carried out in both 

the normal and arlorilalous clispersion regions for input Gaussian processes, which 

correspond to  thermal fields, and for diffusing-phase processes, which correspond 

to laser fields. Due to the effect of hi1 i.n the anomalous dispersion region. spectral 

broadening happens cluiclcly (over two or three nonlinear lengths for the chosen 

parameters) arld then slows down as t:he weak turbulence region approaches. The 

initial spectral width determines how fast the satuation happens but has less ef- 

fect on the value of the satuated spectral width. The spectral-wing feature of MI 

is more evident for narrow initial spectral widths and is much wealter than in the 

case of a coherent pump. In the normi11 dispersion region, the spectrum broadens 

and evolves towards the weak turbulence region (as in the anomalous region) if 

the input process is Gaussian. However, for an input difusing-phase process, the 



spectrum narrows slightly duririg the 1)rol)agation. This indicates that different 

1,oles i ue  ~)la!-~tl by phase noise a~icl a~nplitudc r~oise i11 the spectlaal ci-ol~~tiori of a 

wave prol~agating in a Iierr ~i iediu~n.  
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