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ABSTRACT

Magnetorheological finishing (MRF) is a relatively new technology used in
precision polishing. It utilizes micron-sized magnetic carbonyl iron (CI), nonmagnetic
polishing abrasives, aqueous or nonaqueous carrier fluids and hydrodynamic flow in a
magnetic field to remove material from a part surface. The versatility of the MR fluid
has been exploited in order to study the mechanisms of material removal in the MRF
of glass.

Macroscopic aspects of MRF are studied. The design and operation of a
magnetorheometer is described. This new instrument is shown to be able to accurately
measure the dynamic yield stress of an MR fluid in the same field orientation used in
polishing. This field orientation is shown to be an important consideration in the
determination of the magnitude of the yield stress. This result is used to model the
bulk flow of the MR fluid underneath a glass part during polishing, allowing for the
calculation of the shear stress at the surface of the glass part using experimentally
determined pressure distributions. These shear stress distributions are shown to
correlate with removal profiles.

Mechanisms on the microscopic scale are also investigated. The nanohardness
of the individual particles are characterized with novel nanoindentation techniques.
Removal experiments show that the nanohardness of the CI is important in
nonaqueous MR fluids with no abrasives, but is relatively unimportant in aqueous MR
fluids and/or when nonmagnetic abrasives are present. The hydrated layer created by
the chemical effects of water is shown to change the way material is removed by hard
CI as the MR fluid transitions from a nonaqueous MR fluid to an aqueous MR fluid.
Drag force measurements and atomic force microscope (AFM) scans demonstrate that,
when added to an MR fluid, nonmagnetic abrasives move to the region between the CI
and part surface and become responsible for material removal. Removal rates increase
with the addition of these polishing abrasives (cerium oxide, aluminum oxide and
diamond). The relative increase depends on the amount and type of abrasive used
because of differences in how each interacts with the glass surface.
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Removal rate vs. elastic modulus of the glass for the removal rate
experiments with the nonaqueous MR fluids.

Removal rate vs. hardness of the glass for the removal rate
experiments with the nonaqueous MR fluids.

Removal rate vs. the ratio of the glass hardness to particle hardness
for experiments done with the nonaqueous MR fluids.

(a) Photo of the top view of the “standard” fluid jet and ribbon.
The nozzle has a diameter of 16 mm, the ribbon has a width of
about S mm at the wheel surface. (b) Side view of the “standard”
fluid jet. No significant bend is seen in this jet.

(a) Photo of the top view of the MR fluid jet and ribbon for the
aqueous MR fluid with soft CI. This is also the jet and ribbon
given when the diamonds were added. The 16 mm diameter
nozzle gives us a length scale with which to compare ribbon
widths. This ribbon is approximately 2.5 mm wide, which is half
of that seen with the normal ribbon. (b) Side view of the same
fluid. A bend is seen in the MR fluid jet that is characteristic of
the MR fluid. It is not seen with the standard fluid jet (see Fig.
5.12).

MR Fluid ribbon given by soft CI and NanoTek alumina MR fluid
(MR Fluid 8). The length scale given by the nozzle allows for the
demonstration of the change in width of the ribbon. In this case,
the ribbon is approximately 10 mm wide.
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Figure
5.15

5.16

5.17

5.18

5.19

Topographical view from the New View 100 of a FS surface after
a material removal experiment using 40% hard CI. There are still
some slecks from the hard CI interacting with the part surface, but
the aqueous MR fluid has significantly reduced this effect
compared with MR Fluid 2 on FS (see Fig. 5.6).
Areal rms roughness = 1.3 nm, p-v =29.5 nm
peak removal rate = 0.14 um/min

Topographical view from the New View 100 of a FS surface after
a material removal experiment using 40% soft CI. There are small
sleeks now visible from the soft CI interacting with the part
surface. The water has hydrated the surface enough so that the
soft Cl is now able to leave small pits in the surface.
Areal rms roughness = 0.8 nm, p-v =28.2 nm
peak removal rate = 0.23 um/min

AFM scan of a FS surface after an experiment with 40 vol% hard
CI and the aqueous slurry. Faint grooves are seen in the direction
of flow.
Areal rms roughness = 0.5 nm, p-v=4.7 nm
peak removal rate = 0.14 pm/min

AFM scan of a FS surface after an experiment using 40% of the
soft CI and the aqueous carrier fluid. Again, faint grooves are seen
in the direction of flow. There is little difference between this
figure and Fig. 5.17 even though the CI was 5x softer for this
experiment than it was in Fig. 5.17.
Areal rms roughness = 0.4 nm, p-v =3.5 nm
peak removal rate = 0.23 pm/min

AFM scan of a FS surface after removal by an MR fluid with 45
vol% hard CI and the aqueous MR fluid. This is similar to Fig.
5.17 with a slightly higher roughness. Faint grooves are seen in
the direction of flow.
Arcal rms roughness = 0.8 nm, p-v=7.9nm
peak removal rate = 0.62 um/min
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Figure Page
5.20 AFM scan of a FS surface after a removal experiment using 45 136
vol% of the hard CI and 0.05 vol% cerium oxide. More
pronounced grooves have become visible due to the presence of
the cerium oxide.
Areal rms roughness = 1.0 nm, p-v roughness = 11.1 nm
peak removal rate = 0.94 um/min

521 AFM scan of a FS surface after an experiment with 45 vol% hard 137
CI, 0.5 vol% cerium oxide and the aqueous carrier fluid. More
pronounced grooves are visible due to the increased amount of
cerium oxide.

Areal rms roughness = 0.9 nm,p-v=11.1 nm
peak removal rate = 3.01 pm/min

522 AFM scan of a FS surface after a removal experiment with 45 138
vol% hard CI, 1.0 vol% cerium oxide and the aqueous carrier
fluid. More distinct grooves are seen in the direction of flow due
to this relatively high loading of cerium oxide in the MR fluid.
Areal rms roughness =0.9 nm, p-v=8.1 nm
peak removal rate = 3.51 pym/min

5.23 AFM scan of a FS surface after removal experiment using 45 vol% 140
of the hard CI and 0.05 vol% aluminum oxide. The discontinuous
grooves consistent with aluminum oxide become visible.

Areal rms roughness = 1.4 nm, p-v roughness = 14.6 nm
peak removal rate = 0.9 um/min

524 AFM of a FS surface after a removal experiment that used the 40 141
vol% hard CI,1.0 vol% aluminum oxide and the aqueous carrier
fluid. The discontinuity of the grooves in the direction of flow for
alumina MR fluids help explain the low removal rate with respect
to cerium oxide and diamond MR fluids.
Areal rms roughness = 1.2 nm, p-v=21.5 nm
peak removal rate = 0.49 pm/min
525 AFM scan of a FS surface after removal experiment using 45 vol% 142
of the hard CI and 0.025 vol% diamond. The distinct grooves
associated with the diamond are apparent after adding only 0.025
vol% diamond
Areal rms roughness = 1.1 nm, p-v roughness = 7.3 nm
peak removal rate = 2.59 ym/min



Figure
5.26

527

5.28

5.29

5.30

5.31

5.32

Page

AFM scan of a FS surface after a removal experiment using 45 143
vol% hard CI, 0.10 vol% diamonds and the aqueous carrier fluid.
The continuity and depth of these grooves help to explain the
increased removal rate due to the diamond MR fluids.
Areal rms roughness = 1.4 nm, p-v=99nm
Peak removal rate = 4.66 pm/min

Removal rate vs. drag force (5.27(a)), and removal rate vs. peak 145
pressure (5.27(b)) for MR Fluid 4. Removal rate increases linearly

with both pressure and drag which is consistent with Preston’s

equation. The pressure and drag were changed by varying CI
concentration.

Removal rate vs. vol% abrasive for 45 vol% hard CI and the 146
aqueous carrier fluid. The diamonds are shown to have an

immediate impact, dramatically increasing removal with less than

0.1 vol% concentration. The cerium oxide gradually increases

removal. The aluminum oxide proves not to be very effective at
increasing removal rates.

Sectional profile of the AFM scan shown in Fig. 5.22. Theboxto 148
the bottom right shows the vertical and horizontal distance

between the corresponding arrows (numbered 1-3). Typical

grooves are between 1-2 nm deep.

Sectional profile of the AFM scan shown in Fig. 5.24. The box to 149
the bottom right shows the vertical and horizontal distance

between the corresponding arrows (numbered 1-3). Typical

grooves are approximately 4 nm deep.

Sectional profile of the AFM scan shown in Fig. 5.26. The box to 150
the bottom right shows the vertical and horizontal distance

between the corresponding arrows (numbered 1-3). Typical

grooves are approximately 4 nm deep.

Effect of the CI concentration on removal with maximum amount 153
of abrasive present. Once again the diamonds prove to be most

efficient reacting strongest to the increase in CI concentration.

The cerium oxide data is made up of both hard and soft CI. This

shows that the hardness of CI is unimportant in the presence of the
abrasive.



Figure
533

5.34

6.1

6.2

Removal rate vs. drag force (5.33(a)), and removal rate vs. peak
pressure (5.33(b)). Again, removal rate increases linearly with
pressure and drag force. The linear fits for the drag force
essentially go through the origin, but do not for the pressure. This
means that there can be removal with a nonzero pressure, but with
no drag force (therefore no shear) there will be no removal. This
supports the idea that shear stress controls removal rate.

Effect of adding abrasive to MR Fluids 4, 5, and 6 containing 45
vol% CL In each case the addition of abrasive reduces the drag
force supporting the idea that MRF becomes a three-body abrasion
problem. The cerium oxide maintains a high drag force, which
supports the theories that cerium oxide has “chemical tooth”.
Minimum drag force measurements are in agreement with the
estimate of the yield stress multiplied by the contact area.

Plot summarizing the key results of the experiments using
different MR fluids. The nonaqueous MR fluids (Region I) give
very low removal rates and the roughness depends on the relative
hardness of the abrasive and part surface. When the MR fluid is
made up of only CI and the aqueous carrier fluids (Region II) the
removal rate dramatically increases and the roughness is between
0.8 and 1.0 nm rms independent of the CI hardness. Further
addition of nonmagnetic nanoabrasives increases the removal rates
further as the abrasives start to control removal. The rms
roughness remains between 0.8 nm and 1.0 nm.

Schematic showing how the abrasives moving to the surface could
reduce the drag force. In Case I, the part is in direct contact with
the CI chains and therefore working against the magnetic restoring
force. In Case II, the abrasives come to the surface and insulate
the part from the chains. These abrasives are free to move relative
to the CI which reduces the drag force (i.c. (Firng)>(Faragn). The
CI becomes a lap that conforms to the shape of the part.
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Schematic diagram providing an explanation as to how the 166
abrasive removes material from the part surface. The abrasive is

dragged across the surface by the relative motion of the MR lap

(CI) and the part and abrades the soft hydrated layer. In 6.3(a) the

cerium oxide is shown to remove material through adhesion. The

glass is carried away by the cerium oxide. In Fig. 6.3(b) the

diamond or aluminum oxide removes the glass with a cutting

mechanism leaving the glass to be swept away by the carrier fluid.

Both of the actual removal processes could be through a fracture
mechanism.

Schematic of how abrasives can remove material through a 171
fracture mechanism. The abrasive interacts with the asperity on
the surface as described by Lambropoulos et al. [3] Figure 7.1(a)
shows how this interaction could lead to the fracture of the
asperity. The dashed circle shows a crack formed at the base of
the asperity. This crack is driven by the loading of the abrasive.
Water in the MR fluid reduces the fracture toughness making
fracture easier. In the case of adhesion for an abrasive like cerium
oxide (7.1(b)), the abrasive bonds with the asperity and the
material is removed as described by elastic emission machining.
[23] The asperity remains bonded with the cerium oxide abrasive.

Schematic diagram showing the contact between the MR fluidand 174
the glass. The first callout shows the internal structure of the flow.

The removal rate increases in the region of the core due to the

increased shear stresses that result from the throttling action of the

core (see Ch. 3). If material removal is considered over a small

material volume, a Preston-type equation based on the local shear

stress at the part surface can be used to describe the removal

process.



Chapterl
REVIEW OF POLISHING PROCESSES

1.1 Introduction

The mechanisms important to glass polishing have been an important area of
study for years. Cumbo (1] describes the goals of precision polishing to be to shape
the glass to within 0.1 pm of the desired form, remove subsurface damage (SSD)
created by grinding operations and to reduce the peak to valley (p-v) roughness to less
than S nm. While there are several proposed mechanisms of material removal in
polishing, none are widely accepted. Some authors describe polishing in terms of
small-scale fracture [2, 3], while others describe it as “plastic scratching” of a
hydrated layer [4] or a tribo-chemical wear process [S]. The goal of this thesis is to
try to use some of these existing theories to explain the mechanisms of removal
during glass polishing using magnetorheological finishing (MRF).

Preston [6] gave a classic theory of removal in glass polishing that is still
being studied today. He states, “(...the rate at which material is removed) is
proportional to the rate at which work is done on each unit area of the glass.”
Furthermore, he defines the work done in time, t, as

w = pApvt (1.1)
where: w = work (N'm)

u = coefficient of friction

A = area of contact between the glass and polishing lap (m?)

p = pressure applied to the glass part (N/m?)

v =relative velocity between the lap and the part (m/s)

t = time work is done (s)



The term, pp, is the specific traction, or drag divided by the contact area, of
the polishing lap (felt in his case) on the glass. The expression in Eq. 1.1 states that
the work done on the material is proportional to the specific drag force multiplied by
the area of contact and the velocity. He continues to say that if the specific drag force
remains constant then the removal rate is proportional to *“...the amount of felt that
passes over it...this is independent of velocity, except in so far as velocity may affect
the amount of felt passing over”. [6] In general, this thesis will show that these
statements are true in MRF as well. Namely, that the material removal scales with
the drag force and is primarily controlled by the time of contact between the abrasive
and the glass surface.

Preston’s equation is commonly written in a slightly different form,

% =C, %% (1.2)
where: dz/dt = the change in height in time, or removal rate (m/s)

C, = Preston’s coefficient (m?*/N)

L = total normal load applied (N)

A = area over which wear occurs (m?)

ds/dt = velocity of the work piece relative to the tool (m/s)

The difficulty comes in defining Preston’s coefficient in equation Eq. 1.2.
The discussion above shows that a friction coefficient makes up part of it, but there
are several other things accounted for in this coefficient. Beyond showing bulk
mechanisms of removal in MRF, we demonstrate the importance of various effects
that make up Preston’s coefficient. One of these is the chemical effects associated
with the presence of water in the MR fluid. The mechanics associated with how
different abrasive types affect the removal of material in MRF are also given. Before
beginning to describe the mechanisms of material removal in MREF, it is instructive to
discuss proposed mechanisms in other polishing processes.



12  Review of Mechanisms of Material Removal

Preston’s equation says that the removal rate in glass polishing is proportional
to the mechanical work that is put into the system in terms of velocity and force
transmission (i.c. normal load/drag force) as well as how the abrasive interacts with
the glass surface. A discussion of how the mechanical work is transferred to the
abrasive/glass interaction is deferred to Ch. 2. Here, the factors that affect how the
abrasive and carrier fluid interact with the glass surface are discussed.

Silvernail and Goetzinger {7, 8] summarize various factors that are important
to glass polishing. Aside from pressure and velocity, they note that the polishing
agent, liquid carrier fluid and polishing lap are all important. Their results show that
addition of water to the slurry dramatically increases the removal rate of a crown
glass. They conclude that the improved removal rate due to the addition of water is
independent of the other parameters in the system (e.g. abrasive concentration,
pressure etc.) and that the interaction is primarily with the glass. Their results
showing changes in polishing due to lap type are inconclusive. An increase in
removal rate is seen with an increase in cerium oxide content, showing that the
concentration of the slurry is important to material removal. This effect generally
levels off at a concentration between 10 wt% and 20 wt% (approximately 1-3 vol%).
Furthermore, they discuss how cerium oxide behaves as an excellent abrasive while
other rare earth oxides that are similar in structure are not good abrasives. They can
not explain the increased polishing effect of cerium oxide.

Other authors describe glass material removal in terms of small fracture
events caused by the abrasive interacting with the glass surface. Buijs and Korpel-
Van Houten [2] describe material removal of glass surfaces by abrasive particles
through an indentation fracture theory (see Fig. 1.1(a)). This process is intended to
explain lapping, but a polishing process based on a similar theory could be
envisioned. Essentially they describe how the abrasive particle acts like a Vickers
indenter under a normal load. Material removal occurs through lateral cracking of the
glass under the indenter-like abrasive.






