
The Far-Field Angular Distribution of High-Order Harmonics Produced 

in Light Scattering from a Thin Low-Density Gas Target 

by 

Justin Bruce Peatross 

Submitted in Partial Fulfillment 

of the 

Requirements for the Degee 

Doctor of Philosophy 

Supervised by 

David D. Meyerhofer 

and 

Joseph H. Eberly 

Department of Physics and Astronomy 

College of Arts and Science 

University of Rochester 

Rochester, New York 

1993 



CURRICULUM VITAE 

The author was born in Portland, Oregon on April 26, 1965. He attended 

Brigham Young University from 1983 to 1988, and graduated Cum Laude with a 

Bachelor of Science degree in Physics. He came to the University of Rochester in the 

fall of 1988 and began graduate studies in the Department of Physics and Astronomy. 

His research work was performed under the direction of Professor David D. 

Meyerhofer at the Laboratory for Laser Energetics. 

PUBLICATIONS 

"The Angular Distribution of High-Order Harmonics Emitted from Rare Gases at Low 
Density," J. Peatross and D. D. Meyerhofer, Phys. Rev. Lett., submitted, 
(1993). 

"Novel Gas Target For Use in Laser Harmonic Generation," J. Peatross and D. D. 
Meyerhofer, Rev. Sci. Instrum., to be published, (1993). 

"Sequential Ionization in 3 ~ e  with a 1.5ps, lpm Laser Pulse," J. Peatross, B. Buerke, 
and D. D. Meyerhofer, Phys. Rev. A 47, 1517-1519 (1993). 

"Laser Temporal and Spatial Effects on Ionization Suppression," J. Peatross, M. V. 
Fedorov, and D. D. Meyerhofer, J. Opt. Soc. Am. B. 9, 1234-1239 (1992). 

"Suppression of the Pedestal in a Chirped-Pulse-Amplification Laser," Y.-H. Chuang, 
D. D. Meyerhofer, S. Augst, H. Chen, J. Peatross, and S. Uchida, J. Opt. 
Soc. Am. B 8, 1226-1235 (1991). 

Conference Publications: 

"Angular Distribution of High order Harmonics From Low-Density Targets," D. D. 
Meyerhofer and J. Peatross, to be published in proceedings of the 6th 
International Conference on Multiphoton Processes, (Quebec, Canada, June 
1993). 



"Measurement of the Angular Dismbution of High-Order Harmonics Emitted from Rare 
Gases," J. Peatross and D. D. Meyerhofer, to be published in proceedings of 
Short Wavelength V: Physics with Intense Laser Pulses, (OSA, San Diego, 
CA, 29-3 1 March 1993). 

"Angular Dismbution of High-Order Harmonics," D. D. Meyerhofer and J. Peatross, 
to be published in the proceedings of the 3rd Conference on Super Intense 
Laser-Atom Physics, (NATO, Han-sur-Lesse, Belgium, January 1993). 

"Spatial Dismbution of High-Order Harmonics Generated in the Tunneling Regime," 
Augst, C. I. Moore, J. Peatross, and D. D. Meyerhofer, in Short Wavelength 
Coherent Radiation: Generation and Applications, edited by P. H. 
Bucksbaum and N. M. Ceglio, (OSA, Monterey, CA, 1991), Vol. 11, pp. 23- 
27. 

"Barrier Suppression Ionization and High-Order Harmonic Generation in Noble Gases 
at Laser Intensities of 1 Atomic Unit and Above," D. D. Meyerhofer, S. Augst, 
C. Moore, J. Peanoss, J. H. Eberly, and S. L. Chin, in Multiahoton 
Processes, edited by G. Mainfray and P. Agostini, (CEA, Paris, 1990), pp. 
3 17-323. 



ACKNOWLEDGMENTS 

I am grateful to Dr. David Meyerhofer for the excellent supervision throughout 

the course of my research at the Laboratory for Laser Energetics. I appreciated his 

skillful blend of direction and autonomy. I also wish to thank Dr. Joseph Eberly, my 

advisor within the Department of Physics and Astronomy, for his thoughtful critiques 

and suggestions, especially in regards to this thesis. 

I would like to thank a number of my fellow graduate students from whom I 

learned many important experimental skills. I thank Yung-Ho Chuang who taught me 

much about the laser system, and Steve Augst who instructed me on the techniques 

used in our atomic physics measurements. I thank Brian Buerke for many insightful 

conversations, Benedikt Soom for his much assistance with the laser system, and 

Yoram Fisher for setting up the CCD camera. 

The support staff of the Laboratory for Laser Energetics has been very helpful 

in providing resources and expert advice. In particular, I wish to single out Dick 

Fellows for teaching me machining skills and for welding together many components 

of the vacuum chamber. 

This work was supported by the National Science Foundation under contract 

PHY-9200542 Additional support was provided by the U.S. Department of Energy 

Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03- 

92SF 19460 and the University of Rochester. 



ABSTRACT 

The far-field angular distributions of high-order optical harmonics have been 

measured. Harmonics up to the 41st order were observed in the light scattered from 

noble gas targets subjected to very intense pulses of laser radiation with wavelength 

1053nm. The experimental conditions minimized collective effects such as phase- 

mismatch due to propagation or refractive index effects caused, for example, by free 

electrons arising in the ionization of the target Ar, Kr, or Xe atoms. 

The angular dismbutions of many harmonic orders, ranging from the low teens 

to the upper thirties, all of which emerge collinear to the laser beam, could be 

distinguished and recorded simultaneously. Gaussian laser pulses, 1.25-times- 

diffraction-limited and 1.4ps duration, were focused to intensities ranging from 1x1013 

W/cm2 to 5x 1014 ~ / c m 2  using fnO optics. A novel gas target localized the gas 

distribution to a thickness of about lmm, less than one tenth of the laser confocal 

parameter, at pressures of 1 Torr and less. The narrow and low-density gas 

distribution employed in these experiments allows the harmonics to be thought of as 

emerging from atoms lying in a single plane in the interaction region. This is in 

contrast with previously reported harmonic generation experiments in which 

propagation effects played strong roles. At these pressures, an order of magnitude 

below pressures used in other experiments, free electrons created by ionization of target 

atoms had a negligible effect on the far-field harmonic profiles. 

We have found that the far-field distributions of nearly all of the harmonics 

exhibit a narrow central peak surrounded by broad wings of about the same width as 

the emerging laser beam. The relative widths and strengths of the wings have been 

found to vary with harmonic order, laser intensity, and atomic species. Since the 

intensity varies radially across the laser beam in the atomic source plane, an intensity- 



dependent phase variation among the dipole moments of the individual atoms can give 

rise to constructive and destructive interferences in the scattered light. This appears to 

be the fundamental cause of the broad wings observed. 
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CHAPTER 1 

INTRODUCTION 

Laser light can be made sufficiently intense such that it can modify the physical 

properties of any material. When this occurs, the interaction between the light and the 

material becomes nonlinear. One such interaction in a material is the conversion of light 

into harmonics of the applied frequency. Laser harmonic generation was first 

discovered by Franken et al.l in 1961 when the second harmonic of a Ruby laser was 

created in a solid. Since then, harmonic generation has been an important topic in the 

field of nonlinear optics. 

Experimental harmonic generation was well described for many years within a 

perturbative framework; each successive harmonic order generated by an applied field 

was much less intense and had no impact on the harmonics of lower order. Each 

harmonic depended only on harmonics of a lesser order and on the laser field. 

According to lowest-order perturbation theory, the strength of the harmonic emission 

depends on the strength of the applied field raised to the power of the harmonic order. 

For example, the intensity of the third harmonic is proportional to the third power of the 

laser intensity. The traditional formulation of nonlinear susceptibility implies this kind 

of behavior. That is, the component of the polarization within the medium which 

oscillates with the harmonic frequency is written as Pq = xq(o)Eq, where E is the 

amplitude of the laser field, q is the harmonic order, and xq is the nonlinear 

susceptibility. xq is generally considered to be independent of the field strength. For a 

review of this topic, consult almost any nonlinear optics te~tbook.~-5 Fig. 1.1 shows 

the general behavior of harmonic production in the perturbative regime. 



Harmonic order Laser intensity 
(arbitrary units) 

Fig. 1.1 A schematic of (a) the harmonic production as a function of harmonic 

order in the penurbative regime , and (b) the 3d and 5& harmonic production as 

a function of laser intensity. Both plots are done with a log-log scale. 



Harmonic generation depends as much on the macroscopic arrangement of the 

atoms as it does on the individual atomic response to the laser field. To achieve the 

high laser intensities necessary to induce harmonic generation, the laser often must be 

focused into the medium. In the neighborhood of the focus, the laser beam wavefront 

experiences srrong phase variations as the beam undergoes diffraction. In addition, the 

laser wavelength usually has a different refractive index in the medium than the 

harmonic wavelengths. These two effects contribute to phase mismatches between the 

laser field and the harmonic fields which can strongly influence the efficiency of the 

interaction. These phase effects, first studied by D. A. Kleinman in 1962, are well 

understood within the framework of perturbation the~ry .~- l l  

1.1 HIGH-ORDER HARMONIC GENERATION 

Until the late 1980's, the highest harmonic orders generated and observed in 

materials were not much past the 5h, and the shortest resulting wavelengths were about 

100nm.11 In 1987, McPherson et a1.12 observed surprisingly intense generation of up 

to the 17h harmonic of a 248nm KrF laser focused into neon vapor. This produced 

coherent radiation at a wavelength of 15nm, which is far into the ultra-violet. Soon 

after, Ferray et a1.13 reported the similarly striking generation of harmonic orders up to 

the 3314 by a 1064nm laser focused into argon vapor. Though the conversion 

efficiencies for these very high-order harmonics are several orders of magnitude less 

than the conversion efficiencies of lower-order harmonics generated in solids or metal 

vapors, they are surprising in the sense that they depart markedly from the perturbative 

trend illustrated in Fig. 1.1 (a). Typical data shown in Fig. 1.2 illustrates the new 

phenomenon, a "plateau" of harmonics that is almost flat for several or many orders as 

the laser intensity is increased. The very high-order harmonic production is made 

possible by laser fields which are able to influence strongly the tightly bound electrons 



in atoms such as the noble gases. The required intensities, on the order of 1014 

~ / c m 2 ,  have become readily available only in the last decade. Since those initial 

0bservations,~~.*3 a number of groups have been studying the phenomenon of high- 

order harmonic generation. High harmonics are seen in many of the noble gases. With 

the KrF laser, harmonics up to the 25h order have been observed.14v15 Harmonics up 

to the 135h have been generated in He and Ne by a 1054nm, Ips laser.l6 These 

harmonics have photon energies in excess of 100eV, far above the ionization potentials 

of the atom. High harmonics with similar photon energies have been reported by 

groups using the same or other laser ~ a v e l e n ~ t h s . l 5 - ~ ~  

The experimental data in Fig. 1.2 was taken by L'Huillier and co-workers, who 

have been very active in researching high-harmonic generation [Ref. 21. Fig. I]. The 

figure shows harmonics of a 1064nm, 36ps laser pulse which was focused to peak 

intensities around 1013 w/cm2 in a lmm thick distribution of Xe at a pressure of 15 

Torr. As the laser intensity increases, the plateau is evident. At the higher intensities, 

the higher-order harmonics are almost as strong as the lower-order ones. The plateau is 

strikingly inconsistent with lowest-order perturbation theory, which assumes that each 

harmonic order is much weaker than the previous ones (recall Fig. 1.1 (a)]. At the 

lowest laser intensities shown, the strength of the harmonics falls off more rapidly with 

increasing order. If even lower intensities were shown in  Fig. 1.2, the harmonics 

would diminish very quickly with increasing order, a behavior consistent with lowest- 

order perturbation theory. Thus, lowest-order perturbation theory is able to describe 

harmonic generation up to a certain point. If the laser intensity becomes too strong, the 

description is no longer sufficient to explain the results. A simple way to understand 

why this is so is the following: if each harmonic of higher order depends on the laser 

intensity raised to an increasingly higher power, then there must exist an intensity at 



which the steeper higher-order curves catch up to the lower-order curves. At this point, 

the assumptions from which the power laws were derived are violated. 

- 
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Fig. 1.2 The harmonic emission from a 15 Ton, lmm distribution of Xe 

observed by L'Huillier et al. The 1064nm, 36ps laser pulse was focused to a 

4mm confocal parameter. The peak laser intensities for each curve from top to 

bottom are 3x10~3, 1.3~1013, 9x1012, 7x1012, and 5x1012 w/cm2. 

[reproduced from Ref. 2 1, Fig. 11 
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Fig. 1.3 The emission for the 5b and 17b  harmonics generated in Xe as a 

function of laser intensity observed by L'Huillier et al. [reproduced from Ref. 

21, Fig. 21 



Fig. 1.3 shows the amount of emission for the 5fi and 17fi harmonics 

generated in Xe as a function of laser intensity [Ref. 21, Fig. 21. Again this data was 

taken by L'Huillier and co-workers under the same conditions as described above. The 

rapidly-increasing portion of the curves is consistent with the intensity-to-the-qa-order 

power law described by perturbation theory. In the intensity region where the plateau 

occurs, the harmonic energies discontinue their rapid increase. Such a sharp deviation 

from the power law as seen at the top of the curves is another illustration of the failure 

of perturbation theory. Curves similar to those shown in Figs. 1.2 and 1.3 have been 

generated for many of the noble gase~ .~*-~69~9-3~ 

This thesis presents a study of high order ( q l l l )  harmonics of 1054nm light 

generated in thin samples of Xe, Kr, and Ar vapors. The rare gases are of interest 

specifically because they exist as single atoms. The primary goal of this work is to 

study high-field atomic physics. The physics of atoms in strong light fields is a topic 

of considerable research a ~ t i v i t ~ . 3 ~ * 3 ~  An investigation of harmonic generation by 

single atoms can help provide an understanding of how an atom interacts with the light. 

The work presented in this thesis minimized complicated propagation effects common 

to most harmonic generation experiments. This made the single-atom response to the 

laser more accessible to interpretation. A secondary goal of this work is to better 

characterize high-harmonic generation since the harmonics might prove to be a useful 

source of coherent vacuum ultraviolet radiation. 

High-order harmonic generation is the strongest at laser field intensities where 

ionization readily occurs. For this reason, gases are the most suitable medium for high- 

harmonic generation. At these intensities solid materials would be damaged beyond use 

but a gas is self-healing. In addition, gases tend to have the deepest electron binding 

potentials, and there is evidence that this is associated with the creation of higher 



harmonic orders. Because single-atom potentials are centrosymmemc, they create only 

the odd harmonics, as opposed to solids which in general have noncentrosymmemc 

potentials and can create both even and odd harmonics. This may be understood 

through classical arguments or through quantum-mechanical angular-momentum 

selection rules. 

Given the relatively high gas pressure required to observe high-order harmonic 

emission, it was initially considered to be a collective many-atom phenomenon. 

However, in 1989 Kulander and ~hore33t34 and Eberly, et a1.S5-s7, showed that 

plateau formation and the generally non-penurbative behavior of the harmonic emission 

similar to the earliest experimental reports are smctly a consequence of single-atom 

dipole response. Their analysis used the atomic wave function (obtained exactly 

numerically for a one-electron atom) to calculate the dipole moment and its spectrum. 

Subsequent refinements of the atomic model and the incorporation of propagation 

effects, by a Saclay-Livermore collaboration, have led to good quantitative agreement 

between theory and experiment in several r e ~ ~ e c t s . ~ ~ ~ ~ ~  Many other more simplified 

models have also shown at least qualitative agreement with e~~er iment .38-~~ 

Recently, a mostly classical picture put forward by K. Kulander, K. Schafer, 

P. Corkum and others provides physical insight into the mechanism that gives rise to 

the harmonics with energies far above the binding energy of the a t0m.~ l -~3  They 

suggest that the electron can be ionized and pulled away from the atom by the laser 

field. When the oscillating laser field reverses direction, the electron is pushed back 

toward the atom where i t  can collide, releasing a photon with energy up to the 

ionization potential V, plus about three times the ponderomotive potential U 

(U = e 2 ~ 2 / 4 m 0 2 ) .  The ponderomotive potential is the average kinetic energy of 

oscillation that a free electron has in the laser field. The number of harmonics contained 



in the plateau for given laser parameters and atomic species appears to agree well with 

the Vo+3U rule. 16*17*19*43 

1.2 MEASUREMENT OF THE HARMONIC FAR-FIELD PATTERN 

Until recently, experiments have measured the total harmonic emission, 

temporally and angularly integrated. The temporal and angular structure can provide 

additional information about the harmonic emission process. Recent work by Faldon, 

et al., explored the effects of ionization on the temporal structure of the high order 

harmonics with a 50ps laser pulse.44 Smith, et al., have recently observed the angular 

distributions of high-order harmonics in He near the end of the plateau.21 Augst, et al., 

who explored harmonics produced in Xe and Kr, were the first to observe the far-field 

angular distributions of high-order harmonics.45 In these, and in all other high 

harmonic experiments known to the author, the gas target pressure was at least a few 

Torr and, typically, much higher. At these pressures the effects of phase-mismatches 

caused by ionized elecuons cannot be ignored. It seems likely that the broad featureless 

far-field patterns first observed by Augst, et a1.45, were dominated by effects of free 

electrons and tight focusing geometry. In contrast, this thesis presents observations of 

the far-field angular patterns of individual harmonics produced in gases with pressures 

less than 1 Torr. For these experiments, a very weak focusing geometry was 

employed. Under these conditions, propagation effects inside the medium are 

unimportant, and the harmonic far-field patterns are dominated by the atomic dipole 

response to the laser in the plane of the focus. The far-field angular distributions of 

harmonics produced in Xe, Kr, and Ar were studied at laser intensities both above and 

below where ionization readily occurs. 

To investigate the atomic response of the medium, i t  is essential to characterize 

the propagation effects so that they can be separated out. When harmonics emitted 



from different locations of the interaction region have mismatched phases, the 

destructive interference not only affects the overall signal, but can influence the angular 

distribution of the emission. This is especially true if the laser intensity is high enough 

to ionize the medium. If the density of the ionized electrons becomes too high, the laser 

beam intensity profile becomes significantly modified by refraction while still in the 

interaction region, violating the usual approximations made in phase-matching 

calculations. The work presented in this thesis approaches the problem of isolating the 

atomic response by experimentally minimizing the propagation effects. This work 

constitutes the first observations of high-order harmonic generation under conditions 

where the propagation effects are clearly unimportant, even under conditions of strong 

ionization. The far-field harmonic patterns measured under these conditions reveal that 

the phase of the individual atomic harmonic emission varies strongly with the laser 

intensity. 

In these experiments, the highest observed harmonics from Ar. Kr, and Xe 

were respectively the 41g, 35h, and 29h. Nearly all of the harmonics show an 

angularly narrow peak in the forward direction. The width of the peak is typically less 

than one third the width of the laser profile. Many harmonics show additional broad 

wings with about the same widths as the laser profile. Fig. 1.4 shows the measured 

far-field angular distribution of several harmonics generated in Xe, Kr and Ar. The 

laser intensity profile, which has a diameter of 14 mrad (measured from the l/e2 

intensity level) is depicted in the last frame for comparison. The broad wings appear 

differently on the various harmonics, depending on the atomic species. The appearance 

of the wings is a marked departure from what would be expected from lowest-order 

perturbation theory. The wings come about from an intensity-dependent phase of the 

atomic dipole. This intensity dependence implies a radial variation of the dipole phase 

in the interaction region because the laser intensity varies radially. Such phase 



variations can cause the harmonic light to interfere in the far-field, leading to the broad 

wings in the angular profile. 

mrad 

Fig. 1.4 The far-field patterns of the 13h, 15h and 17h harmonics emitted from 

Xe (thick), Kr (thin), and Ar (dashed). Each curve is a four shot average. The 

grey line depicts the laser profile. The 1.5ps, 1054nm laser pulse was focused 

with a 1.2cm confocal parameter into lmm gas dismbutions of pressures 0.5 

Torr, 1.2 Torr, and 2 Tom respectively. The peak laser intensities were 

9x1013, 1 . 2 ~  1014 and 2 . 1 ~  1014 ~ / c m 2  respectively. 



1.3 OUTLINE 

Chapter 2 explains the experimental equipment used in the production and 

measurement of the far-field angular distribution of the harmonics. The experimental 

equipment was designed to minimize phase mismatches in the interaction region. This 

accomplishes the goal of making the individual atomic behavior more accessible when 

interpreting the results. The laser is discussed, and recent improvements to the laser 

system are described. Limitations in the dynamic range and resolution of the harmonic 

spectrometer are also explained. 

Chapter 3 describes the novel gas target developed specifically for these 

experiments. The gas target provides a well-characterized, thin (-lmm) and low- 

density (SlTorr) gas distribution for the laser harmonic interaction. The low density is 

necessary to ensure that phase mismatches do not effect the far-field angular profile of 

the harmonics in a complicated way. The localization of the gas to a thin region is 

necessary to minimize geometric propagation effects which can also complicate the far- 

field angular profile of the harmonics. 

Chapter 4 presents the experimental measurements of the far-field harmonic 

profiles. The dependence of the harmonic production on parameters such as gas 

density, gas distribution thickness, and target position relative to the focus shows that 

the experiments are indeed done in a regime where propagation effects inside the 

interaction region are minimal. Thus, the harmonics can be thought of as emerging 

from atoms lying in a single plane in the interaction region. 

Chapter 5 provides an overview of the issues involved when considering 

radiation from a collection of dipoles. The phase-matching integral is formulated, and it 

provides the bridge between individual atomic responses and the observed collective 

emission when a gas is illuminated by a laser. The chapter gives a basis for 

understanding how the various macroscopic experimental parameters can influence the 



production of harmonics. This is important since the goal of this work is to increase 

our understanding of individual atomic behavior by separating out collective effects. 

The derivations in Chapter 5 deviate from traditional derivations in that they are not 

done using the language of nonlinear susceptibilities. Rather, everything is expressed 

in terms of the atomic dipole oscillation. The reason for this choice is that the language 

of nonlinear susceptibilities is built around the power laws of lowest-order perturbation 

theory, while we are interested in the regime where perturbation theory breaks down. 

The chapter explains our conclusion that the broad wings in the harmonic far-field 

patterns result from an intensity-dependent phase of the atomic harmonic emission. It 

is explained that for our conditions the wings cannot be the result of propagation effects 

in the focus nor the result of diffraction due to ionization. 

Chapter 6 discusses the possible origins of the intensity-dependent phase which 

appears to cause the wings observed in the harmonic far-field profiles. A classical 

anharmonic oscillator, a simple model which has been successful in describing 

harmonic emission from atoms in weak fields, is used to describe harmonic emission in 

the strong-field regime of the plateau. The model is incorporated into phase-matching 

calculations to produce harmonic far-field profiles. The simple model illustrates the 

point that the broad wings arise from dipole phase variations across the source plane, 

and these originate in the radial intensity dependence of the laser. 

Appendix A is a printout of the computer code used to calculate the gas density 

and flow rate in the gas target. Appendices B and C make specific application of 

formulas derived in Chapter 5 to conditions appropriate to harmonic generation 

experiments. Appendix B investigates the geomemc phase-matching effects associated 

with the relatively flat intensity dependence of the plateau regime for harmonics 

produced in a focused laser. Appendix C investigates the effects of ionization on the 

harmonic far-field profiles. The calculations show that for our conditions the broad 



wings observed in the harmonic far-field profiles cannot be attributed to these effects. 

Appendix D provides a simplified approximation to the motion of a driven anharmonic 

oscillator. 
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CHAPTER 2 

EXPERIMENTAL CONDITIONS 

An important goal of this work is to present evidence that the strong-field 

response of individual atoms can contribute significantly to harmonic far-field emission 

patterns. In particular, when harmonic light emitted from different locations of the 

interaction region has mismatched phases, the resulting interference can strongly 

influence the angular distribution of the emission. Collective effects such as field 

propagation in an extended target volume can obscure individual atomic response, and 

we have worked to reduce their role. In addition, if the laser intensity is strong enough 

to produce free electrons in the interaction region, and if the density of the free electrons 

becomes too high, the laser beam can become significantly modified by refraction while 

still in the target volume. This effect has also been minimized. 

In this chapter we describe the experimental setup and the spectrometer used to 

detect the harmonics. The focusing quality of the laser beam as well as other 

characteristics of the laser are also described. In addition, we discuss how to minimize 

the effects of refraction of the laser beam due to ionization of the atomic medium. 

Details of a gas target which accomplishes this are given in Chapter 3. 



2.1 EXPERIMENTAL EQUIPMENT 

2.1.A Experimental Chamber 

To accommodate the special requirements of these experiments and to avoid 

conflicts with other experiments in the laboratory, it was necessary to construct a 

separate experimental vacuum chamber. The chamber was designed and constructed 

primarily out of existing equipment. Fig. 2.1 shows a top-view schematic of the 

vacuum chamber. The laser beam enters the system through a 153cm lens which is 

mounted on the end of a long tube. The lens itself serves as the vacuum window. The 

laser focuses to the middle of the central tank where the gas target is positioned. The 

chamber is evacuated by a diffusion pump with an 8 inch throat. The background 

pressure is below 10-6 Torr. The long tube connects to the central tank through a 

flexible bellows which allows the lens to be accurately positioned. Once the tube's 

position is set, a fastener holds it securely in place. 

Near the focus, the laser intersects a thin gas target which provides a low- 

density gas distribution. The target consists of two thin metal plates separated by a 

small gap wherein gas flows. A small hole drilled in the plates allows the laser to pass 

through and interact with the gas. The density of the gas within the hole remains 

relatively high, while outside of the hole it disperses quickly. To align the target, it is 

necessary to observe the laser beam emerging from the target. However, when the 

harmonic spectrometer is in place (described later), the forward path of the laser is 

blocked. A mirror attached to a mechanical lever allows the emerging laser beam to be 

momentarily diverted out through the side window. 
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Fig. 2.1 A top-view schematic of the vacuum chamber. The distance from the 

lens to the focus is approximately 1.5 m 



Fig. 2.2 The gas target operating system from the side view of the vacuum 

chamber. 



Fig. 2.2 shows the system which operates the gas target from the side view of 

the vacuum chamber. The gas is fed into the target through a long tube which also 

serves as a holder. The tube is held by an x-y-z positioner, and an actuated valve 

allows gas to flow into the tube from the storage volume when the laser fires. The 

valve opens for about a second so that the flow can be thought of as continuous rather 

than pulsed. The inner diameter of the tube is much wider than the dimensions of the 

target opening, so the gas pressure backing the target is well approximated by a gauge 

reading on the storage volume. A leak valve allows the stomge volume to be filled 

accurately to the desired pressure, typically a few Torr (as opposed to many 

atmospheres in the gas bottle). 

The pressure is measured with a Granville-Phillips convectron gauge (series 

275). The response of the gauge to He, Ne, Ar, and Kr is provided in the gauge 

documentation, but the response to Xe is not. The convectron gauge was calibrated for 

Xe using two mechanical pressure gauges. As a check of the calibration, the 

measurement was repeated for Kr, and there was good agreement with the gauge 

documentation. Fig. 2.3 shows the calibration curve for Xe. The two distinct lines are 

the measurements from the two mechanical gauges which gave readings over different 

pressure ranges. 
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Fig. 2.3 Convectron gauge calibration curve for Xe. The two lines visible were 

produced from separate gauges which operated in different pressure ranges. 
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Fig. 2.4 Schematic of the experimental setup, including the gas target and the 

angularly resolved spectrometer. 



Fig. 2.5 High harmonics generated in Xe as captured by the CCD camera on the 

detector screen. Twenty images were averaged together to produce this picture. 



2.1.B Spectrometer Design and Alignment 

The harmonics produced in the gas target emerge collinear with the laser beam. 

The harmonics must be spectrally resolved without the incident laser pulse damaging 

the spectrometer. Fig. 2.4 shows a schematic of the spectrometer. Augst et al. l were 

the first to use this basic spectrometer design to see high-harmonic far-field profiles. In 

our current setup, a slit is positioned approximately 30cm behind the gas target, 

sampling a 1-dimensional cut through the center of the laser beam (and harmonic 

beams). After the slit, the light passes through a gold transmission grating (either 1pm 

or 0 . 2 ~  spacing). The grating lines are oriented parallel to the slit so that in the 1st- 

order diffraction the individual harmonics are resolved after propagating a short 

distance. The harmonics are detected by a micro-channel plate coupled to a phosphor 

screen (Galileo model 8081). The microchannel plate is not UV enhanced so it cannot 

detect harmonics lower than the ninth (177111x1). Each harmonic appears on the detector 

as a distinct line which reveals the harmonic angular dismbution along its length. The 

relative energies of the different harmonic orders can also be seen. The images are 

recorded electronically with a CCD camera. Fig. 2.5 shows an average of twenty 

harmonic images generated with Xe. The different harmonic orders are separated in the 

horizontal direction, and their angular profiles are shown in the vertical direction. For 

this picture, the 0 . 2 ~  grating was used in the spectrometer. 

The slit is made from two pieces of uncoated glass held at an acute angle to 

reduce the laser intensity on the surfaces. Glass is used rather than metal because it has 

a higher damage threshold. The slit can be made narrow enough to cause the laser to 

strongly diffract, thereby reducing the energy density on the grating. This can be done 

without introducing significant diffraction to the high harmonics because they have 

much shorter wavelengths. Of critical concern is the energy density of laser light on the 

gold transmission grating. The slit width and the separation between the slit and 



grating must be chosen to keep the energy density below approximately 50 rnT/cm2 on 

the grating surface. Depending on the needs of the experiment, the slit width was 

varied in the range from lOOpm to 500pm. 

The detector is aligned one component at a time. To aid in alignment, a He-Ne 

laser simulates the laser path, and the mirrors immediately preceding the chamber are 

adjusted until the beam enters the lens on axis. This is accomplished when the 

reflections from both surfaces of the lens return along the path of the incoming laser. 

At the other end of the chamber, the He-Ne beam is checked to see that it hits the 

desired location on the micro-channel plate, before the grating and slit are installed, and 

while the gas target is out of the beam path. The place where the He-Ne beam hits is 

where the zeroth-order grating line will be located when the slit and grating are later 

installed. The zeroth-order line was often positioned off center to allow for more 

detection area on the microchannel plate. If the He-Ne beam does not hit in the desired 

position, appropriate adjustments are made to the position of the tube holding the lens, 

and the process is repeated beginning with realignment of the beam to the lens. Once 

the tube and the beam are positioned correctly, the slit is placed in the beam followed by 

the grating. The directions of the slit and the grating lines are oriented parallel to each 

other. 

2.1.C Spectrometer Resolution 

The slit width and grating position determine which harmonics appear with 

appropriate resolution on the detector screen. A narrower slit gives better harmonic 

spectral resolution by making the lines thinner at the detector. At the same time, a 

narrow slit can significantly diffract the laser, thereby reducing the intensity on the 

grating. This can occur without significant broadening of the harmonic lines because of 

the large difference in wavelengths between the laser and the high harmonics (q2l I). 



The laser reaches the Fraunhofer diffraction zone for the slit at a much shorter distance 

than do the harmonics. The distance to the Fraunhofer diffraction zone3 is 

approximately qa2/h, where q is the harmonic order and a is the slit width. For a 

200pm slit, the Fraunhofer diffraction begins to occur for the laser (h=1054nm) at a 

distance of about 4cm, but for the 11h harmonic, the diffraction does not begin until 

about 40cm. The distance is even longer for higher harmonic orders. The distance 

between the slit and the detector is typically about 30cm, so the harmonics do not 

significantly diffract and can be thought of as being clipped by the edges of the slit in 

the sense of a projection. Thus, the width in the dispersion direction of all of the high 

harmonic lines at the detector is approximately dla,d2, where dl is the distance from 

interaction region (laser focus) to the slit, and d2 is the distance from the slit to the 

microchannel plate. The grating does little to alter the widths of the harmonic lines but 

only redirects their propagation. 

The width of the laser light when it reaches the grating is given approximately 

by the width of the central peak of the Fraunhofer diffraction pattern from a slit3 This 

width is approximately 2Wa,  where d is the distance from the slit to the grating. The 

laser intensity on the grating decreases by the factor 2Waz compared to the intensity 

with the slit removed. For d=20cm and a=200pm, the intensity is reduced by a factor 

of 10. This simple estimate was checked by measuring the intensity at the grating 

position with and without the slit using a CCD camera. The measurement agreed with 

the estimate to within a factor of 2. This method enables higher laser intensities while 

protecting the grating against damage. Without the intensity-reducing effect of the slit, 

the energy density on the grating positioned 50cm after the laser focus would be 100 

m~/cm2 when the peak laser intensity in the focus is loi4 w/cm2. With the slit in 

place, it is possible to achieve intensities of a few times 1014 w/cm2, without exceeding 

the 50 m.J/cm2 limit on the grating. 



The distance between the grating and the microchannel plate is chosen to bring 

onto the detector screen whichever harmonics are desired to be seen. The spacing on 

the detector surface between the fmt-order diffraction lines and the zeroth-order line is 

given by 

where x is the distance from the grating to the microchannel plate, and h is the periodic 

spacing of the grating structure. The higher the value of q, the closer the hannonic line 

appears to the zeroth-order line. For the higher harmonic orders, the arcsine and 

tangent can often be approximated by their arguments, so the spacing between two 

consecutive harmonic lines is approximately Lq - Lq+2 . 2xh/hq2. If this value 

becomes less than the width of the harmonic lines, the harmonics will no longer be 

resolved. 

The second-order diffraction lines of the higher harmonics fortunately do not 

overlap the frst-order diffraction lines of the lower harmonics, so this is not an issue. 

In Fig. 2.5. the faint line which appears to the side of the 11h harmonic is the second- 

order diffraction of the 23d harmonic. In some of the images that are shown in this 

thesis, the second-order diffraction lines appear even brighter than some of the near-by 

lower-order harmonic lines and should not be confused with them. 



Fig. 2.6 Electron micrograph of the 0.2pm-period, O.5mm-thick free standing 

gold grating. The perpendicular 4pm grating substructure is apparent. [Ref. 31 



2.1.D Detector Dynamic Range 

The spectrometer is not absolutely calibrated so that only relative levels of 

harmonic emission can be measured The dynamic range (not the gain) of the detector 

is only about one order of magnitude, so care must be taken to know at what point it 

begins to saturate. The dynamic range was checked by taking advantage of a 4pm 

periodic substructure which runs perpendicular to the lines on our 0 . 2 ~  transmission 

grating. (The lpm grating has no periodic substructure.) Fig. 2.6 shows an electron 

microscope image of the 0 . 2 ~  grating.3 The 4pm grating substructure is apparent. 

The additional lines form a grating which causes weak ghost images to appear 

superimposed but slightly off center along the slit direction for each harmonic. In Fig. 

2.5 the ghosts caused the central peaks to appear one to two rnilliradians wider than 

they might otherwise. Rotating the transmission grating so that the 0.2pm lines are 

skewed relative to the slit causes the ghost images to appear distinctly outside of the 

main harmonic lines. Since the ratio between the energy in the ghost images to the 

energy in the main harmonic images is fixed, this ratio can be monitored as a function 

of detector illumination to determine at what point the detector saturates. Because of 

this investigation, it is known that the central peaks in Fig. 2.5 are significantly 

saturated. 

The small dynamic range of the detector used in these experiments is one of the 

more serious limiting factors in this work. Many of the images shown in this thesis 

have portions of them which are significantly saturated. This was done purposefully to 

enable the weaker portions of the harmonic images to be seen. As the harmonic data is 

presented in Chapter 4, it will be pointed out which portions are saturated. 

The relative amount of light that goes into a grating's first-order diffraction is 

independent of wavelength provided the gaps between the grating wires are much larger 

than the wavelength.* For harmonic orders below the mid twenties (Lq 2 50nm). this 



condition is not well satisfied for the 0.2pm grating. When the light wavelength is 

about the same as the grating wire gaps, the gaps function as wave guides in some 

complicated fashion, creating a wavelength dependence to the amount of light 

diffracted. This effect caused the lower-order harmonics in Fig. 2.5 to appear weaker 

than they actually should. A comparison between harmonic data taken with the lpm 

and 0 . 2 ~  gratings reveals that our 0.2pm grating attenuates the 1 lh harmonic signal 

relative to the highest ones by about a factor of 4. This attenuation gradually decreases 

with increasing harmonic order until harmonic orders in the mid twenties, after which 

the relative efficiency is roughly constant. 

The fact that the 0.2pm grating attenuates the lower harmonics is sometimes 

advantageous because it allows a larger number of harmonics to be seen simultaneously 

within the dynamic range of the detector. Another reason for using the 0.2pm grating 

is that our lpm grating has many defects which scatter the light, obscuring the higher 

harmonics in noise. 

2.1.E Tradeoffs in the Detector Configuration 

The spectrometer was configured in a variety of ways to obtain the different 

harmonic far-field images presented in this thesis. The detector setup was chosen in 

each case to reveal a specific feature of the far-field pattern. Not all features could be 

accurately seen simultaneously. As pointed out previously, it is important to avoid 

saturation of the microchannel plate in order to get an accurate representation of the far- 

field harmonic angular profile. The linearity of the response is best when the harmonic 

signal is weak so that only a small fraction of the microchannels are depleted. On the 

other hand, enough of the channels must respond to achieve a clear signal. One way to 

improve the harmonic signal detection is to configure the spectrometer so that each 

harmonic line illuminates a wider strip on the detector. This increases the number of 



microchannels involved in detecting each harmonic, thus improving the statistics when 

a lesser fraction of the channels are depleted. The disadvantage is the sacrifice in 

resolution; only a few harmonics can be distinguished at a time. 

With a wide slit in place, the grating must be positioned a greater distance 

behind the slit to avoid damage by the laser beam. Because the harmonic beams are 

continually expanding, a larger grating area is required to avoid clipping the light. The 

lpm grating (2cm clear aperture) was best suited for this kind of measurement. The 

spectrometer was aligned using a 500pm slit and the l p n  grating was positioned 35cm 

behind the slit. The microchamel plate was placed an additional 30cm behind the 

grating. At the detector, the harmonic lines were approximately 1.5mm wide. Fig. 2.7 

shows an image of the harmonics produced in Xe taken with this detector setup. The 

purpose of the measurement was to obtain an accurate representation of both the bright 

and dim parts of the far-field patterns without saturation on a single shot. 

The 0 . 2 ~  grating was better suited than the lpm grating to simultaneously 

measure a large number of harmonics. The 0.2pm grating was also better able to 

observe harmonic orders in the mid twenties and higher because of the high-quality of 

the grating structure. The smaller clear aperture (1.2cm) of the 0 . 2 ~  grating required 

the grating to be positioned no further than 50cm from the focus to avoid clipping the 

harmonic light. The microchannel plate was positioned between 5cm and 7cm behind 

the grating depending on the required harmonic spectral range. The slit had to be set at 

approximately 2 0 0 p  or less to reduce the laser intensity on the grating. This made the 

thickness of harmonic lines at the detector about 300prn The narrower harmonic lines 

made it difficult to see the dim portions of the harmonic profiles without the bright 

portions saturating the detector. 



Fig. 2.7 An average of five harmonic images produced in 0.5 Ton Xe at 9x10~3 

W/cm2. The spectrometer used a 5 0 0 ~  slit and a l p  grating. 



2.2 LASER CHARACTERISTICS 

The experiments presented in this thesis benefitted from an extensive upgrade to 

the laser system which increased the f ~ n g  repetition rate and improved the focusing 

characteristics of the beam. The path layout of the laser was re-configured, and many 

components of the system were changed or reconstructed. The energy capability of the 

system was also significantly increased. Our experiments, however, did not take 

advantage of this increase. 
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2.2.A Laser System 

The laser is a neodymium glass system which operates on the principle of 

chirped-pulse amplification.4 The system, which temporally compresses the pulse to a 

picosecond after amplification, can achieve peak powers of about a terawatt The laser 

has been well characterized and is described in the literat~re.~*5 Fig. 2.8 shows a 

schematic of the principle stages of the laser system 

The laser beam originates in an actively mode-locked YLF oscillator cavity 

which produces a train of band-width-limited pulses separated by 10ns. The 

wavelength is 1054nm, and the pulses are 50ps in duration with about 1n.J of energy. 

The pulse train goes through a lkm glass fiber which increases the bandwidth from 

about 0.3A to 35A through self-phase-modulation. The pulses are then temporally 

stretched to 500ps by a pair of gratings, which gives a linear chirp to the pulses. A 

single pulse is selected and injected into a Q-switched regenerative amplifier cavity. 

After about 70 round trips in the cavity, a 0.3 mJ pulse is selected from the beam which 

emerges through an 80% cavity end mirror. Gain narrowing in the cavity reduces the 

35A quasi-square spectral profde of the seed pulse to a gaussian with full-width-at-half- 

maximum 16A. the bandwidth required for a Ips pulse. The beam emerging from the 

regenerative amplifier has a diffraction-limited gaussian profile with a diameter of 

2.0mm (defined by where the intensity falls to l/e2 of the peak). To this point, the laser 

system remains relatively unchanged from previous descriptions.5 Further 

amplification of the beam does not significantly effect its spectral and temporal 

characteristics. However, care must be taken to preserve the focusing characteristics as 

the beam must pass through and reflect from many optical components before reaching 

the end of its path. To help preserve the focusing quality, the beam goes through four 

different spatial fdters as it is several times up-collimated and twice amplified. 



After the regenerative amplifier, the beam goes through a 200cm air spatial filter 

with a magnification of 3. The pinhole diameter is 600pm. The emerging 6.0- 

diameter beam enters the 9mm-diameter amplifier system which passes the laser pulse 

through the amplifier rod three times for a total gain of 150. Fig. 2.9 shows a 

schematic of the 9mm amplification system. An important feature is the 90cm, 1 : 1 

spatial filter between the second and third passes through the amplifier rod. This 

allows the diffraction caused by the rod to be removed before its final amplification. 

Another important feature of the amplification system is the manner in which the Pockel 

cell is switched. Rather than switching after amplification, the cell is switched before. 

If the cell fails to switch, the pulse is unable to enter the amplification system in the first 

place. This scheme protects the regenerative amplifier from the energy produced in the 

9mm amplifier. Energy cannot return down the system in the event that the Pockel cell 

does not switch or only partially switches. Another advantage of this setup is that the 

laser pulse does not go through the Pockel cell after the last mp through the amplifier 

rod. This is advantageous because the Pockel cell has a lower damage threshold than 

most optical components and is relatively expensive. One disadvantage to the system is 

caused by the limited contrast typical of the coatings for Brewster's-angle polarizers. 

This gives a pre-pulse from the exiting polarizer which is only a factor of 102 smaller in 

energy than the main pulse. However, since the prepulse comes out after the second 

pass through the amplifier, the main pulse which comes out after the third pass can be 

made to have a slightly different direction. Thus, the subsequent spatial filter is able to 

block the prepulse completely. 



Fig. 2.9 Schematic of the 9mm amplification system. The pulse enters the 

system by reflecting off the frst polarizer and transmitting through the second 

one, the polarization being rotated by the Pockel cell. Before the pulse returns 

to the Pockel cell, the voltage on the cell goes to zero so that it has no effect. 

The pulse is spatial filtered between the second and the final pass through the 

amplifier. 
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Further expansion and amplification of the beam is straightforward. It consists 

of two more vacuum spatial frlters with a 30mm amplifier in between. The fmt spatial 

filter has a length of 160cm with a magnification of 3 so that the emerging beam has a 

diameter of 1.8cm. The pinhole diameter is 200pm. The amplifier can produce a gain 

of up to 30, after which the beam goes through the last spatial filter. This spatial filter 

has a length of 275cm and a magdication of 1.2. The pinhole diameter is 200pm. At 

this point, depending on the energy of the beam and the desired focusing conditions, 

the beam can be sent either through or around a galilean up-collimator with 

ma@cation 813. Finally the chirped pulse is temporally compressed to Ips duration 

on gold holographic gratings (1740 lines per mm). After the beam is compressed, it 

goes through a lcm glass wedge which splits off 2% of the energy for diagnostics. 

The beam then goes off two alignment mirrors before being focused into the 

experimental chamber. The diagnostics consist of an energy monitor and an 

autocorrelator which can measure the pulse duration on every shot. The focusing 

length of the lens is 153cm, and depending on whether the beam goes around or 

through the galilean up-collimator, the resulting f-number is 70 or 25. For these 

experiments the f/7O setup was used exclusively. 

2.2.B Focusing Characterization 

Fig. 2.10 shows a scan of the f/7O laser focal spot which has been imaged with 

a magnification of 4 onto a CCD camera. The pictures are taken at various positions to 

show how the beam goes into and out of focus The diameter of the focal spot at the 

beam waist is approximately 1.25 times larger than the theoretical diffraction limit. Fig. 

2.1 1 shows a comparison between the measured beam radius and the diffraction-limited 

radius of an f/7O beam. The radius of the beam was determined by integrating over the 

intensity to find the effective area and then by calculating the radius ( to the l/e2 



intensity point) assuming a gaussian distribution. The confocal parameter of the focus 

as defined by the diffraction-limited curve is 13mm. 

The peak intensity of a spatially and temporally gaussian laser pulse is given 

very nearly by b=E/(A1leTfwhm) where E is the pulse energy, Alle is the focal spot area 

inside the l/e intensity contour, and Tfwhm is the full-width-at-half-maximum of the 

pulse duration. The energy of the pulse is measured on each shot by a photodiode 

connected to a charge-integrating device. The relative uncertainty in the energy 

measurements is about lo%, and the absolute uncertainty is about 20%. The pulse 

duration is monitored also on each shot using an auto-correlation technique. For most 

of the experiments, the pulse duration was about 1.4ps with a fluctuation of about 

25%. The uncertainty in each measurement is about 25%. The focal-spot area is not 

measured every shot. However, when the area was measured, it was observed that it 

fluctuated very little from shot to shot (14%). The measured focal area for the beam 

used in the experiments was about 5500pm2 with an uncertainty of about 10%. 

Together, the different uncertainties give an absolute uncertainty for the laser intensity 

of about 35% and a relative uncertainty of about 25%. 



Fig. 2.10 The laser distribution for various positions in front and behind the 

focus. The p i c m s  were taken by imaging the laser focus with a magnification 

of 4 into a CCD camera. 
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Fig. 2.11 Plot of the measured laser beam waist as a function of axial position 

along the focus, showing that the beam is 1.25 times diffraction limited with 

f/70 optics. The solid line shows the theoretical diffraction limit. 



2.3 REFRACTION OF THE LASER BY FREE ELECTRONS 

A laser propagating through an ionized medium can undergo refraction due to 

the radial profile of the free electron density.617 To determine under what conditions 

ionization in the laser focus significantly alters the beam, the laser was focused through 

the gas target and imaged onto a CCD camera with various xenon gas pressures and 

with various peak laser intensities. The target was positioned at the laser focus. Fig. 

2.12 shows a schematic of the setup. This is essentially the same setup used to 

measure the focus [see Figs.2.10 and 2.1 11. Fig. 2.1 3, first row, shows the imaged 

focal spot as a function of laser intensity where the gas pressure is 0.6 Torr. At the 

highest intensity the xenon is 2 and maybe 3-times ionized at the center of the focus. At 

this low pressure, the imaged focal spot is virtually identical to that observed with no 

gas, independent of the laser intensity. When the pressure is increased to 3 Torr as in 

the second row of Fig. 2.13, a decrease in the imaged focal area is observed as the laser 

intensity increases. This is due to refraction which increases the cone angle of the laser 

as it leaves the gas target. The larger emerging beam images to a smaller spot. Fig. 

2.14 shows a scan of the imaged focal spot radius for two gas pressures and 

intensities. As the beam refracts more, the imaged focus not only gets smaller but also 

moves toward the imaging lens. Because the imaged focus moves toward the imaging 

lens shows that the effect is due to free electrons and not to self focusing in the neutral 

gas. Such a significant change in the laser beam path indicates that the basic phase- 

matching assumption, that the laser is unaffected in the medium, cannot be used. To 

avoid this complication, the experiments presented in this thesis were performed under 

conditions where refraction does not occur. This is in contrast with other experiments 

which have measured high harmonics in a regime where strong laser refraction can 

occur.1J+17 
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Fig. 2.12 A schematic depicting the imaging technique used to study defocusing 

from free electrons. The imaged spot gets smaller.when the beam undergoes 

refraction at the origin. 



Imaged laser spots: 

Incident intensity: 1 x 1014 w/cm2 2 x 1014 w/cm2 
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Fig. 2.13 The imaged laser focus as a function of intensity and gas target 

pressure. The first row shows images with 0.6 Torr of Xe in the target, and the 

second row shows the same scan for approximately 3 Torr. The gas target is 

positioned at the laser focus. 
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Fig. 2.14 A scan of the imaged laser focal spot radius for several gas pressures 

and intensities. The horizontal axis refers to the position along the beam axis of 

the camera relative to the imaged focus. Refraction from free electrons causes 

the imaged focus to grow smaller and to shift toward the imaging lens. The gas 

target is positioned at the laser focus. 



A simple estimate of the refraction is consistent with the results observed above. 

If the altered beam emerging from the gas target is assumed to follow a gaussian 

profile, the effective f-number of the emerging beam can be related to the on-axis 

electron density in the target. This simplification neglects the temporally-dependent 

appearance of the free electrons. It also implies that the electron distribution in the 

focus acts as a perfect thin lens. Depending on the laser intensity, the gas density, and 

the position of the gas target relative to the laser focus, the effective f-number of the 

emerging beam can increase or decrease relative to the initial beam. If the gas 

distribution is very thin, the position of the gas target relative to the exiting beam's 

focus, whether virtual or real, is given approximately by 

where zo and zVo are the Rayleigh ranges of the incoming and exiting beams 

respectively, and z and z' are the target positions relative to the incoming and exiting 

beam focuses. 

Akl is the on-axis phase mismatch caused by the free electrons. Its value is 

given by kl(1-n) where n is the optical index of refraction in the free electrons, and l is 

the gas target thickness. The optical index of refraction is given by 

where og = e 2 ~ o / ~ o m ,  is the plasma frequency and o is the laser frequency. It 

follows for a low-density singly-ionized ideal gas that the index of refraction is 



where P is the pressure of the medium. For k1054nrn. ~ = 3 0 0 ' ~ ,  and P=l Tom, Eq. 

(2.3.3) gives n- 1 =- 1.6~10-5. k is Boltzman's constant. 

The magnification of the divergence of the exiting beam relative to the incoming 

beam is defined by 

2,' is found to be equal to z@. 

For the approximate conditions of of the upper right picture in Fig. 2.13 (0.6 

Tom, 3 ionized electrons per atom, P=lmm, z=O), Eqs. (2.3.1) and (2.3.3) give 

z'lz'o=Akl=0.2. From Eq. (2.3.4), the magnification in diameter of the exiting beam 

is which is negligible. This is in agreement with the picture which shows no 

change to the beam. For the pressure and intensity used to obtain the lower right 

picture in Fig. 2.13 and also the lower curve seen in Fig. 2.14, Akt approaches unity, 

giving a beam cone magnification near a. This reduces the imaged focal spot radius 

by near a factor of as observed. 
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CHAPTER 3 

GAS TARGET 

High-order harmonic-generation experiments traditionally have been carried out 

by focusing a laser into a jet of gs . l -6  A gas jet relies on the principles of fluid flow to 

propel gas from its orifice in a thin stream, making a localized gas distribution which a 

laser can intersect. Lomprk et al. measured the characteristics of such a gas jet.6 They 

were able to produce a 1-mm gas distribution with a peak pressure of 25 Torr. A gas 

jet must operate at a sufficiently high pressure so as to ensure a narrow stream of flow. 

Typically the backing pressure of the jet is hundreds of Torr, while the usable region of 

the jet is of the order of tens of Torr. A lower pressure causes a more diffuse gas 

distribution in the plume, making the phase matching in the experiment more difficult. 

The density of the gas expelled from a jet varies as a function of distance from the 

orifice, the dismbution becoming broader as the distance increases. This can make the 

systematic alignment of the intersection between the laser and the gas jet a difficult and 

tedious task. 

A gas target was designed to create well-characterized, narrow gas distributions 

at low densities (1-2 Torr or less). This low-density regime is desirable to reduce the 

phase-matching effects during the harmonic generation. Also, the low backing 

pressure has the advantage of reducing the possibility of dimer formation in gases such 

as ~ e . 6  



3.1 GAS TARGET DESIGN 

The gas target, shown in Fig. 3.1 (a)-(c), consists of a small cylindrical hole 

through which the focused laser passes. Gas enters the cylindrical hole from the sides 

of the cylinder wall. Because the laser beam goes through the target, the alignment of 

the device is comparatively simple. The gas target operates on the principles of 

molecular flow rather than fluid flow as in the gas jet. Since the flow rate is low, the 

target can be operated in a continuous mode rather than pulsed. The density of the gas 

within the hole remains high while the gas outside the hole disperses quickly (it goes as 

the inverse square of the distance from the hole edge). The target operation is limited to 

low densities just as the gas jet is limited to high densities. If the gas in the target hole 

is at too high a pressure, plumes may develop out of its ends that would lie on top of 

the incoming and outgoing laser beam. The jet and the target are thus complementary in 

the sense that they operate in opposite ranges of pressure. 

The gas distribution in the target is characterized experimentally. It is perhaps 

more difficult to characterize than the jet since the gas densities are much lower, and the 

off-axis line of sight to the interaction region is obstructed by the target itself. 

However, the gas density profile was measured in the region just inside the target 

opening and outward. There is good agreement between the measurement and a 

calculation of the gas distribution using a Monte-Carlo computer simulation of free 

molecular flow. The same calculation also predicts the gas flow rate from the target. 

The flow rate has been measured for two gas target designs. In both cases, there is 

good agreement between the predicted and the measured gas flow rates. 



Fig. 3.l(a) A cutaway view of the two cylindrical gas target pieces that are glued 

together at their outer rims. Gas is fed into the outer ring-shaped pocket. 

Fig. 3.l(b) An inside view of a single gas target piece that shows the ring-shaped 

pocket from which the gas flows across the thin plate toward the center hole. 



Fig. 3.l(c) A photograph of two gas targets. One has been glued together and the 

other is unassembled. The scale shown is in centimeters. 



3.1.A Gas Target Dimensions 

The gas target consists of two identically machined cylindrical aluminum pieces, 

which are glued together with a thin layer of vacuum epoxy. Aluminum is chosen 

because of its ease of machining. Fig. 3.l(a) shows a cut-away pomon of the two 

pieces (upper and lower) which are already attached around the outer rim. Fig. 3.l(b) 

shows the inside of a single piece so that the cylindrical symmetry is observable. Fig. 

3.1 (c) is a photograph of two gas targets; one has been glued together and the other is 

still in separate pieces. Gas flows from the outer ring-shaped pocket into the gap 

between the thinly spaced plates and toward the hole at the center. The gas then 

escapes out both ends of the hole. When gluing the pieces together, the drill bit that 

made the holes is inserted through both pieces to ensure alignment. As shown in the 

figures, a is the separation of the plates, c is the thickness of the plates, d is the hole 

diameter, and L is the length from the hole center to the inside edge of the outer gas 

pocket. Typical values for these are a = 0.2 mm, c = 0.4 mm, d = 0.5 mm, and L = 4 

mm. 

3.1.B Molecular Flow Range 

A gas that flows within a boundary such as a pipe or some other confining 

shape is in the molecular flow range if the collisional mean free path of the particles is 

longer than the characteristic dimension of the boundary (such as a pipe diameter). 

Knudsen's number (Kn) is the ratio of a gas particle's collisional mean free path to a 

typical dimension of the boundary. Pure molecular flow begins when Kn > 1. This 

regime of gas flow is the best understood. The flow of gas in this range is completely 

determined by the geometry of the walls and can be calculated numerically using 

Monte-Carlo averaging t e chn iq~es .~~~  The standard assumption is that a gas particle 

travels in a straight path until encountering a wall where it is re-emitted at some new 



angle. Due to the molecular coarseness of almost any surface, the new direction of the 

particle has virtually no correlation to the incident direction. The distribution of the 

rebound is generally taken as the cosine to the surface normal. This assumption has 

been experimentally verified for various geomemes.718 The problem is usually treated 

in terms of throughput; that is, for a given system, how likely is a particle that enters 

one end of the system to emerge out of the other end. 

Harmonic-generation experiments often use the noble gases. The room- 

temperature mean free paths of the lighter noble gases are 2 mm, 1 mm, 0.8 mm, 0.6 

rnm, and 0.4 mm for He, Ne, Ar, Kr, and Xe, respectively, at 0.1-Torr ~ressure.8 For 

the purposes of this paper, these numbers should be compared with the typical 

dimension of the gas target center (0.5 rnm). The mean free path scales inversely with 

pressure. 

The fluid flow regime begins when Kn c 0.01. The flow of the gas in this 

range behaves very differently from molecular flow. In the fluid flow regime the 

intraparticle collisions rather than particle-wall collisions dominate the flow of the gas. 

The regime in between fluid and molecular flow is not well understood. In this case 

both types of collisions have importance. However, it is likely that much of the 

dispersive nature of molecular gas flow is preserved even with Kn as low as 0.1. 

3.2 CALCULATION OF TRAJECTORIES IN A MONTE-CARL0 

SIMULATION 

This section describes the details necessary for numerically simulating 

molecular flow through the target. The particles are assumed to move in straight lines 

between encounters with the target walls. Intraparticle collisions are ignored. Particles 

enter the region between the thinly spaced plates of the target from the ring-shaped gas 

pocket at a distance L from the center [refer to Fig. 3.1 (b) and (c) throughout this 



section], When particles hit the target walls, they rebound in some new direction, and 

their trajectories are recorded. Each particle propagates until it either exits the target 

opening or returns to the ring-shaped gas pocket. 

The various straight segments of a particle's trajectory are represented by 

equations of straight lines. The more natural coordinate system for straight lines is 

Cartesian, wherein the equations for a straight line in three dimensions can be written as 

x = m,z + b, and y = myz + by. The azimuthal symmetry of the target also requires 

the use of cylindrical coordinates, which are obtained with the transformations 

r = and 0 = tax~-l(~/x), where @ + 0 + R if x < 0. The z-axis is chosen to 

lie along the target axis of symmetry, and the origin is taken to be the target center. 

When the particle encounters the planar surface of the interior of one of the thinly 

spaced plates, the position of impact is found from z'= +a/2. The standard 

assumption at this point is that the particles leave the surface with a Lambertian 

dismbution. This is the same dismbution as produced by an ideal gas escaping from a 

small hole in a thin-walled container. Under the diffuse rebound assumption, the 

slopes for the new line emerging from the point on the planar surface are given by 

m;=tanacosp and m;=tanasinp, (3.2.1) 

where a and p are given by a = sin-l(Rndl) and p = 2n(Rnd2). Rndl and Rnd2 

indicate two independent random numbers that have values between 0 and 1. The new 

z-plane intercepts are calculated by 

b; = b, + (m, - m;)z' and b; = by + (my - m;)z' . (3.2.2) 



This completes the cycle, and the equations for the new particle flight path are defined. 

These are then used to find the next point of impact with the target wall. 

A collision of the particle with the interior of the target's cylindrical hole is more 

complicated. The z-value at the point of impact is given by 

recall that d is the hole diameter. The azimuthal coordinate of the point of impact is 

-1 myz'+ by @=tan where Q + $ + K  if mXz'+bx<O. (3.2.4) 
mxz' + b, 

The slopes for the new line emerging from this point under the diffusive rebound 

assumption is calculated by 

sin @ tan a cos p - cos @ cos@tanacosp+sin@ 
m i  = and m i  = -  , (3.2.5) 

tan asin (3 tan a sin p 

where a and p are given the same as before, following Eq. (3.2.1). Again, the new z- 

plane intercepts are calculated by Eq. (3.2.2), and the cycle is complete. The trajectory 

for the particle leaving the point of impact is defined, and the process can be repeated. 

The initial position for a particle's trajectory is at the inside edge of the ring- 

shaped pocket at r = L where the gas density is assumed to be known. The direction of 

the initial path is dismbuted randomly over the half-sphere that points toward the target 

center. The slopes for this path are calculated by Eq. (3.2.5), with a = cos-'(E2ndl). 

Because of azimuthal symmetry it is not essential to choose $ randomly, but for 



conceptual completeness we take @ = 2xRnd3. The starting z-position is given by 

zo = a ( ~ n d ~  - 112). and the z-plane intercepts are determined by b, = Lcoso - m,z, 

and by = LsinQ - myzo. Each particle propagates b m  the input position until it either 

goes out of the target hole or returns to the ring-shaped gas pocket at radius L. The 

flow rate of the particles can be determined from the ratio of the number of particles that 

successfully exit the target to the total number of mal particles. The density of the gas 

as a function of position is obtained by summing over the intersections of all of the 

particle trajectories with each elemental volume of the target. 

3.2.A Calculation of Gas Density within the Target 

The gas disaibution in a target was calculated using the Monte-Carlo computer 

simulation of free molecular flow described above. Appendix A is a printout of the 

computer code used. The dimensions of the target in the simulation were a = 0.2 mm, 

c = 0.4 mm, d = 0.5 mm, and L = 4 rnrn [See Fig. 3.1 (b) and (c)]. The number of 

particles propagated through the system was such that 10,000 successfully exited the 

hole. The throughput probability for an individual particle was 0.014, which later will 

be used to find the gas flow rate. This small number indicates that very few particles 

entering the system actually exit the target opening before returning to the starting point 

(1 in 70). This can be understood in part by the relative sizes of the entrance and exit 

areas (a factor of 16 difference). Figure 3.2 (a) shows the calculated density of the gas 

as a function of z (the cylindrical axis) for five different radii uniformly spaced inside of 

the center hole. The density is normalized to the density at the inside edge of the ring- 

shaped gas pocket (length L from the center), where the backing pressure is known. 

As can be seen, the density is only weakly dependent on radius. The small dip near 

z=0 results from the fact that the particles which enter the hole from the plate region 

tend to move in the z-direction, whereas the particles which rebound from the interior 



surface of the hole tend to move in the radial direction. When particle-particle collisions 

were included in the calculation using a crude model (assuming Kn=l), the dip in the 

center tended to fill in while the rest of the density profile remained largely unchanged. 

Along the z-axis, the density falls off sharply at the edge of the hole (located at 0.5 

mm). The reason for this sharp drop is that the particles within the hole tend to have a 

strong radial component to their velocity so that when they exit the hole into the free 

vacuum, they quickly spread away from the z-axis. Fig. 3.2 (b) shows the calculated 

particle density as a function of radius for z = 0. Again the density is normalized to that 

in the ring-shaped pocket, so that at a radius of 4mm (the boundary with the pocket), 

the density is 1. From there, the density continually drops until inside the target 

opening (r c 0.25 mm), where the density on average is -0.2. 



Fig. 3.2(a) The density of the gas as a function of z (the cylindrical axis) for five 

different radii uniformly spaced inside of the target hole. The origin is at the 

target center. The density is relative to the density of gas backing the device. 



Fig. 3.2(b) The distribution of gas particles in the target as a function of radius (z = 

0) from the target center out to the inside edge of the gas pocket (r = 4mrn). 

where the density is assigned a value of 1. The target hole's cylindrical wall is 

at r=0.25mm. 



3.2.B Gas Flow Rate 

The flow rate of gas through the target can be derived from the throughput 

probability calculated using the Monte Carlo technique described above. The rate of 

particles exiting the nozzle per time is 

where p is the backing particle density, A is the entrance area at the edge of the ring- 

shaped gas pocket (27taL), vmf is the mean free velocity of the particles, and y is the 

throughput probability. 6 ,  introduced here briefly for conceptual convenience, is a 

small thickness that when multiplied onto the entrance area creates an element of 

volume. The factor of 4 in the denominator comes about since only half of the particles 

within the volume element are moving in a direction that will take them into the plates, 

and their component of velocity normal to the entrance is on average one half of the 

mean free velocity. Replacing p by NN, where V is the fixed backing volume, and 

solving the differential equation yields 

Since pressure is proportional to the number of particles, Eq. (3.2.7) applies as well to 

pressure. A useful term for comparison with experimental measurement is the time that 

it takes for the pressure to drop by a factor of 2. The half-life of the pressure is 



This theoretical result can be compared with experimental measurements as a check of 

the model. 

A gas target with the same dimensions as those used in the numerical simulation 

of Section 3.2.A has been tested. The half-lives of the backing pressure in our system 

predicted by Eq. (3.2.8) for He, Ar, and Xe were 6 s, 19 s, and 35 s, respectively; we 

measured 9 s, 25 s, and 45 s. The measurements were taken at the pressures where the 

molecular flow range was expected to begin for the various gases. The backing 

pressures were 1 Ton, 0.5 Torr, and 0.3 Torr, respectively. Recall that the pressure at 

the target center is a factor of 5 below the backing pressure [See Fig. 3.2 (b)]. For 

each gas, thalf fell by approximately a factor of two when four times the backing 

pressure was applied. The higher backing pressures produced faster flow rates since 

intraparticle collisions began to reduce the randomness in the direction with which the 

particles drifted through the target. However, these pressures were still very far below 

the viscous flow regime (Kn>O.l). At very low pressures (Kn>2), t h d f  increased 

because particle collisions with the walls of the tube feeding the target began to play a 

significant role (i.e. molecular flow began to occur also in the tube). 

To further test the accuracy of the model, we machined a different gas target 

with the dimensions of a = 0.12 mm, c = 0.17 mm, d = 0.35 mm, and L = 3.0 mm 

[See Fig.3.1 (b) and (c)]. The calculated throughput probability was 0.013, which for 

our system predicted a pressure half-life of 43 s for Ar, the measured half-life was 35 s. 

The reasonable agreement between predicted and measured flow rates lends confidence 

to the accuracy of the model. 



3.2.C Sensitivity of Gas Flow and Density to the Nature of the 

Surfaces 

The question arises-how sensitive is the flow of the gas in the target to the 

material nature of the walls? In other words, how good is the assumption that the 

particles rebound from the walls of the target with a Lambertian distribution? To 

answer the question, we explored what happens in the Monte-Carlo simulation if a 

fraction of the particle-surface rebounds are specular or mirror-like. For a specular 

reflection from the planar surface, the new slopes, rather than those of Eq. (3.2.1), are 

given simply by m i  = -mx and m i  = -my. For a specular reflection from the interior 

surface of the cylindrical hole, the new slopes, rather than those of Eq. (3.2.5), are 
2 2 given as m i  = (2sin $ - l)m, - sin(2$)my and m i  = -sin(2$)mx - (2sin $ - l)my . 

The Monte-Carlo simulation was run with up to half of the interior particle-surface 

collisions treated as specular reflections, and it was found that there is very little effect 

on the spatial distribution of the gas. Only an increase in the gas flow rate was 

observed (40%). The model therefore seems only mildly sensitive to the nature of the 

surfaces. 

3.3 EXPERIMENTAL MEASUREMENT OF GAS DENSITY 

We have measured the gas distribution for a target with the same dimensions as 

previously described (a = 0.2 mm, c = 0.4 mrn, d = 0.5 mm, and L = 4 mm). The 

distribution of gas from the target opening outwards is characterized using a 4S0-off- 

axis imaging system that observes the recombination light from laser-induced ionization 

of Xe.6 The imaging system employs a lens, a slit, and a photo-multiplier tube, which 

observes recombination light from a -500-pm section of the laser beam. The gas target 

is positioned at various distances away from the section of the beam. Fig. 3.3 shows 

the experimental setup for the measurement. The laser beam was a 1 -pm, 1 -ps pulse 



that was focused with f/70 optics to a peak intensity of 2 x 1014 ~ / c m 2 .  Fig. 3.4 

shows the effect of the spatial resolution of the detection scheme on the calculated 

density. The figure shows the axial gas distribution taken from Fig. 3.2 (a) along with 

its convolution with the experimental resolution of - 5 0 0 ~ .  The measured gas density 

must be compared to this convolved curve to assess agreement with the calculated 

density. 

The experimental results agree well with the theoretical predictions, especially at 

lower pressures. Fig. 3.5 shows a comparison in absolute pressure between the 

predicted and measured gas density for a backing pressure of 1.7 Torr. Again, it 

should be noted that the theoretical predictions are convolved by the experimental 

resolution. As seen in Fig. 3.4, this causes the peak density to appear below the actual 

value by a factor of 2. The density was calibrated by comparing the results to the signal 

obtained when back filling the vacuum chamber (target removed) to a known pressure 

(0.1 Ton). A low pressure had to be used for calibration to avoid significant refraction 

of the laser before it arrived to the imaged position. The gas density is proportional to 

the square root of the instantaneous (time scale on the order of tens of nanoseconds) 

recombination signal.9 

Fig. 3.6 shows the results obtained for a wide variety of backing pressures. 

The gas density decreases rapidly outside of the target hole along the laser axis even for 

pressures up to ten times the molecular flow range cutoff. In the molecular flow range 

(backing pressure of 0.5 Ton), the gas density fell by more than a factor of 10 at a 

distance of lmm from the target opening. With backing pressures of 3 Torr and 10 

Tom applied to the target, the density dropped by a factor of 10 and 5, respectively, at 

lmm. These comparisons neglected the convolution effect of the experimental 

resolution. Inclusion of this effect improves the contrast by about a factor of 2. The 

experiment thus shows that the pressure in the gas target is capable of exceeding the 



molecular flow regime to Kn as low as 0.1 without serious distortion to the gas 

distribution. It was also found that over this range of pressure the density in the target 

hole scales roughly with the backing pressure. Fig. 3.7 shows the measured density in 

the target opening plotted against the backing pressure. On the log-log plot, the points 

should follow a slope of 1 for them to behave like pure molecular flow. The deviation 

from a slope of 1 shows that the gas density profile has a slight pressure dependence 

when the target operates at pressures above the molecular flow range. 



z-adjustment 

Fig. 3.3 The experimental setup for measuring the gas density just inside the 

target opening and outward along the z-axis. 



Fig. 3.4 The calculated density of the gas as a function of z along the cylindrical 

axis [see Fig. 3.2(a)] compared with its convolution with the detector 

resolution. 



E6524 Target position (mm) 

Fig. 3.5 A comparison between the predicted and measured gas density profiles 

for a backing pressure of 1.7 Torr. The triangles are the predicted values, and 

the squares are the measured ones. The third square shows a typical error bar 

from the experimental fluctuations. 
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Fig. 3.6 The measured density of the gas as a function of z (the cylindrical axis) 

for ten different backing pressures: 0.6, 0.8, 1.2, 1.7, 2.5, 4, 6, 8, 12, and 17 

Torr. The recombination light measured by the photo-multiplier tube is 

proportional to the square of the gas density. 
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Fig. 3.7 The measured density in the target opening plotted against the backing 

pressure. The solid line, which is shown for comparison, has a slope of 1. The 

recombination light measured by the photo-multiplier tube is proportional to the 

square of the gas density. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

We have measured and studied the far-field angular distribution of high-order 

harmonics created under the conditions described in Chapters 2 and 3. We have 

cha rac t ed  the dependence of the harmonics on various experimental parameters such 

as gas pressure, target position, and laser intensity. The measurements indicate that, 

under these conditions, propagation effects within the medium play a minimal role in 

detexmining the far-field angular distribution of the harmonics. 

4.1 FAR-FIELD ANGULAR DISTRIBUTION 

The harmonics appear on the detector as a line of finite width (refer to Figs. 2.5 

and 2.7). The width of each line typically occupies about 10 CCD pixels while the 

length of the line occupies about 200 pixels. Each pixel is assigned a numeric value (O- 

255) according to the brightness of the harmonic image. Thus, for each harmonic line, 

there are approximately 10 onedimensional rows of pixels which sample the energy 

along its length. These several can be averaged together and plotted as a function of 

position along the harmonic line to reveal the far-field angular profile of the harmonic. 

Fig. 4.1 shows the angular profiles of the 11h through 21st harmonics produced in Xe 

at an intensity of 8 x l 0 ~ ~ ~ 1 c m ~ .  The approximate laser dismbution is also depicted for 

comparison. The pressure of the gas in the target for this shot was 0.3 Tom, and the 

target was positioned at the laser beam waist. The data was taken with the l p n  grating 

setup described in Chapter 2. The harmonics all show a narrow central peak which 

diminishes slightly in width as the harmonic order increases. The 13h harmonic shows 

broad wings which are slightly wider than the laser beam itself. If the signal is 

enhanced by increasing the gas pressure, similar wings are observed on almost every 
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Fig. 4.1 The far-field angular profiles of the 1 lh through 21a harmonics 

produced in 0.3 Torr Xe at an intensity of 8x10~3  w/cm2. The profiles were 

obtained from a single shot. 



harmonic. However, increasing the signal causes the central peaks to saturate on the 

detector. For Xe, the wings are the strongest on the l a .  Similar behavior can be seen 

in Kr and Ar, the wings appearing most pronounced on the 15h harmonic in Kr and on 

the 17h in Ar. 

Fig. 4.1 was obtained from a single shot. Because the creation of the 

harmonics is a strongly non-linear process, small fluctuations in the laser parameters 

can cause significant variations in the harmonic images from shot to shot. However, 

the overall features seen in Fig. 4.1 are typical of data with nominally the same 

conditions. As a rule of thumb, the noise in the data is related to the amount of 

asymmetry in the harmonic curves. That is, any feature in the harmonic profile which 

does not appear the same on both sides of the center must be due to emr, whether from 

scattered light or particles hitting the detector, from distortions in the laser or gas 

distribution, or from nonuniformities in the detector itself. An analysis of the 

fluctuations and mors in the data is given in Section 4.5. 

4.2 DEPENDENCE ON GAS TARGET PARAMETERS 

A number of experimental parameters were varied to explore what effects there 

might be on the harmonic emission. Some of these parameters are: the gas target 

thickness, the target position relative to the laser focus, the gas density, the laser 

intensity, the laser frequency, and the laser polarization. A discussion of the harmonic 

dependences on the laser parameters is given in the next section. For our experimental 

conditions, only a variation of the atomic species or the laser parameters such as 

intensity or polarization fundamentally alters the far-field profiles of the harmonic 

emission. 
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Fig. 4.2 The far-field angular profiles of the 1 l h  through the 21s  harmonics 

produced with 0.5 Tom Xe and 8x10~3 Wlcm2 (at focus) for shots at three 

target positions: z=- 1.7q,, z=0, and z=+ 1.7%. 



4.2.A Dependence on Target Position 

The far-field angular profiles of the harmonics were investigated as a function 

of gas target position relative to the laser focus. In contrast to experiments by 

L'Huillier and co-workers14 who saw dramatic changes in the harmonic emission with 

a change in gas target position, the changes observed in these experiments were 

primarily due to the decrease in intensity associated with moving away from the focus. 

The reason for the difference is that in this work, the gas distribution is much narrower 

than the laser confocal parameter. Fig. 4.2 shows the far-field angular profiles of the 

1 lfh through the 21g harmonics at 0.5 Torr Xe and 8x1013 ~ l c m 2  (at focus) for shots 

at three target positions: z=- 1.7z,, z=0, and 2=+1.7z,, where z, is the Rayleigh range 

of the laser focus. The data was taken with the 1km-grating setup described in Chapter 

2. As the target is moved away from the focus in either direction, the harmonic energy 

drops and the wings diminish and disappear altogether at a distance of about z,. At 

z = f z,, the laser intensity is half what it is at the focus. When the laser intensity is 

doubled at these positions, the wings can be seen again but they are less pronounced 

and slightly narrower. The narrower far-field pattern can be attributed to emission from 

a wider interaction area when it is considered that the wings come from a phase 

interference. The central structure, however, does not grow narrower and may even 

broaden slightly (not evident in Fig. 4.2). 

4.2.B Dependence on target thickness 

Two additional targets were fabricated which have thicknesses of 0.5m.m and 

2mm. Harmonic production from these targets was compared with the production from 

the usual lmm target. Their far-field harmonic angular patterns were virtually identical 

to the far-field patterns generated by the lmm target. This is expected since all of the 

target thicknesses are much less than the 13mm laser confocal parameter. The fact that 



the far-field angular profile is not influenced by small changes in the target thickness 

indicates that a regime has been achieved where the harmonics can be thought of as 

emerging from a simple plane at the focus. The thickness then only influences the 

efficiency of production. The strength of the harmonic emission was about the same 

for the lmm and 2mm targets, and about 50% less for the 0.5mm target. At first it 

might seem that each time the target thickness is doubled, the harmonic emission should 

increase by a factor of 4. However, this is only true if each gas target thickness is 

significantly less than the haxmonic coherence length. The coherence length is defined 

to be the propagation distance over which harmonics get out of phase with newly 

created harmonics by a factor of n. As will be explained in Chapter 5, the geometric 

coherence length of the harmonics for our conditions is approximately lmrn, so using a 

2mm target rather than a lmrn target does little to boost harmonic production.5~6 The 

0.5m.m target is thinner than the harmonic coherence length and so the conversion 

efficiency decreases. A more detailed comparison between the relative strengths of the 

harmonic emission from the different targets would require a more careful calibration of 

the targets. Only the lmrn target was calibrated in detail so there is some uncertainty in 

the relative target pressures. However, for these experiments the pressure in a l l  of the 

targets was calculated to be the same. 

4.2.C Dependence on Pressure 

The total energy for a given harmonic can be found by integrating the harmonic 

far-field distribution, taking into account the circular symmetry. Since the detector is 

not absolutely calibrated, it is sufficient to do the calculation as 



where 8 is the angle of divergence from the z-axis. The dependence of the total 

harmonic energy is plotted in Fig. 4.3 as a function of target pressure. The 0.2pm 

grating setup was used to obtain this data. As expected, the harmonic signal follows 

very nearly the square of the pressure. This indicates that at these pressures the optical 

index of the medium does not contribute significantly to the collective characteristics of 

the harmonic emission. The fact that the harmonic production can be adjusted by 

changing the gas pressure allows the convenience of bringing into proper detector range 

whatever feature of the harmonic far-field pattern is of interest. Because of the good 

control over the gas pressure, this technique can be used to produce scans with a 

greater dynamic range than what the detector itself will allow. 

4.3 DEPENDENCE ON LASER PARAMETERS 

The harmonic emission increases rapidly with laser intensity until a saturation 

limit, above which the signal increases only gradually. This is the range of the 

harmonic plateau, where many harmonic orders are emitted with approximately the 

same strength. The intensity at which saturation of harmonic emission occurs is about 

5x1013 w/cm2 for Xe, 8x10~3 wlcm2 for Kr, and 1.5x1014 wlcm2 for Ar. These 

intensities are roughly a factor of 2 below where the gas is strongly ionized.7~8 
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Fig. 4.3 The total harmonic energy plotted as a function of target pressure. Each 

point is a 20-shot average taken in Xe at 5 . 3 ~ 1 0 ~ 3  w/cm2. 
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Fig. 4.4 The relative harmonic energy for the 1 lfh through 27fh harmonics in Xe 

as a function of laser intensity. The pressure has been varied to keep the 

detector from saturating, and the measured signal was adjusted by the square of 

the pressure. Each point is an average of approximately 20 shots (typical 

fluctuation 25%). The uncertainty in the absolute laser intensity is 35%. 



Fig. 4.5 (a) Images of the angular distributions of harmonics generated in Xe as a 

function of laser intensity at 0.85 Torr. Each image is an average of 20 shots. 
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Fig. 4.5 (b) A similar intensity scan for Xe as in 4.5 (a), but the pressure is varied 

so that the detector signal remains roughly constant. Each image is an average 

of 20 shots. 



4.3.A Dependence on Laser Intensity 

Fig. 4.4 shows the relative energy in the 1 lh through 2 7 a  harmonics in xenon 

as a function of laser intensity. The 0 . 2 ~ m  grating setup was used in this 

measurement. Each point along the curve was determined by averaging together twenty 

shots. To enhance the dynamic range, higher gas pressures were used to determine the 

points of weaker emission, and lower pressures were used to determine the points of 

stronger emission. The pressure dependence was assumed to be quadratic. The 

development of a plateau with increasing laser intensity is evident. The center of the 

focal region begins to ionize strongly around 8x1013 ~ / & 7 * 8  

Fig. 4.5 (a) shows far-field images of harmonics produced in Xe as a function 

of laser intensity. Each picture is an average of 20 images. A discussion of the 

averaging technique as well as the amount of fluctuation and error in the data is given in 

Section 4.5. The 0 . 2 ~  grating configuration was used to obtain this data and all other 

data presented in this section. The pressure was held constant at 0.85 Ton for tnis 

series of pictures, so at the higher intensities the central portions of the harmonic lines 

are saturated. With increasing intensity, more harmonics become visible and a broad 

wing structure becomes apparent on nearly every harmonic. It should be recalled that 

the 0.2pm grating attenuates the lower harmonics (orders in the teens) relative to the 

higher ones. The lower harmonics should in fact appear about 4 times brighter than 

they do. Fig. 4.5 (b) shows a similar scan in Xe, but the pressure is reduced as the 

harmonics get brighter to avoid detector saturation. Still, the central peaks in many 

cases are saturated. This scan clearly shows that the wing structure is a function of 

intensity. For example, at the lower intensities, the 1 0  harmonic shows little if any 

sign of the having the wing structure while neighboring harmonics exhibit wings. 



However, at higher intensities, the 13h harmonic shows some of the strongest wings, 

while the wings on the neighboring harmonics are not as strong. 

Fig. 4.6 shows the energy of the harmonics produced in Xe as a function of 

harmonic order for a number of different laser intensities. As the intensity increases, 

the harmonic plateau extends further out as more harmonics appear. Each point along 

the curve was determined from an average of twenty shots. Again, the pressure was 

varied to enhance the dynamic range of the measurement. 

Figs. 4.7 (a) and 4.7 (b) are similar to the intensity scans of Figs. 4.5 (a) and 

4.5 (b) except that these are generated in Kr instead of in Xe. It should be noted that 

the second-order diffraction of the higher harmonics produces lines in the region near 

the lower harmonics. At times, they are quite bright and should not be confused with 

the lower harmonics. The harmonics generated in Kr behave similarly to the harmonics 

generated in Xe. Kr is able to produce more harmonics than Xe, and the wings are 

configured differently on the various harmonics. In Kr a prominent set of wings 

appears on the 1 9  harmonic similar to the set seen on the la harmonic in Xe. 
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Fig. 4.6 The harmonic energies as a function of harmonic order for various laser 

intensities in Xe. The gas pressure was varied for the different data points to 

avoid detector saturation, and the measured signal was adjusted by the square of 

the pressure. Each point is an average of approximately 20 shots (typical 

fluctuation 25%). The uncertainty in the absolute laser intensity is 35%. 



Fig. 4.7 (a) Images of the angular distributions of harmonics generated in Kr as a 

function of laser intensity at 2 Tom. Each image is an average of 20 shots. 
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Fig. 4.7 (b) A similar intensity scan for Kr as in 4.7 (a), but the pressure is varied so 

that the detector signal remains roughly constant. Each image is an average of 

20 shots. 



Fig. 4.8 Images showing the highest-order harmonics observed in Xe, Kr, and 

Ar respectively. The gas pressures were 1 Tom, 2 Tom, and 4 Torr 

respectively. Except for the highest harmonics, the central peaks on the 

harmonics are well saturated. Each image is an average of about 4 shots. 



4.3.B Highest Harmonics Observed 

The gas pressure and laser intensity were increased in an effort to see the 

highest harmonic orders possible with the experimental setup. Fig. 4.8 shows the 

highest-order harmonics observed in Xe, Kr, and Ar respectively. The gas pressures 

used were respectively 1 Tom, 2 Tom and 4 Tom. These shots were taken with the 

0.2pm grating setup. In Xe, harmonics up to the 29h (34eV) were visible, in Kr 

harmonics up to the 35h (41eV) were visible, and in Ar harmonics up to the 41s 

(48eV) were visible. The energies of the harmonics are far in excess of the electron 

atomic binding potentials which are 12. lev, 14.0eV, and 15.8eV respectively. 

4.3.C Dependence on Beam Polarization 

The harmonic production has been studied as a function of laser polarization. A 

half-wave plate was inserted in the laser beam before the focusing lens, and the 

harmonics were observed as a function of the direction of linear polarization. Rotating 

the polarization had no effect on the harmonic emission. In other words, the harmonic 

beams which are sampled by a 1-dimensional cut through their center, are indeed 

circularly symmetric. This observation could have been made as well by rotating the 

spectrometer instead of the beam polarization. 

Harmonic production was also investigated as a function of laser beam 

polarization ellipticity. The ellipticity is defined as the ratio of the peak field along the 

minor polarization axis to the peak field along major polarization axis (Ey/'Ex). A 

quarter-wave plate placed in the laser beam introduced varying degrees of ellipticity 

depending on its orientation. For circularly polarized light, the harmonics completely 

disappear as expected by angular momentum arguments. The closer the laser light is to 

being linearly polarized, the more efficiently the harmonics are generated. Fig. 4.9 

shows harmonic production at fixed laser intensity as a function of beam ellipticity for 



Xe and Kr. Each point represents an average of about 20 shots. The elliptical light can 

be thought of as the sum of purely linear and circular fields. As the light becomes more 

elliptical, the harmonic production decreases more rapidly than can be explained simply 

by the reduction in the strength of the linear component of the field. The higher-order 

harmonics decrease faster with increasing beam ellipticity than do the lower-order 

harmonics. 

4.3.D Harmonics of Green Light 

The laser light was frequency doubled using a KDP crystal, and the resulting 

527nm beam was used to generate harmonics in Xe. The focal spot area was measured 

to be a factor of 2 smaller than the 1054nm beam. This was verified by measuring the 

spot with a CCD camera. For our doubling crystal, the temporal envelope of the green 

beam is of about the same in duration as the 1054nm beam. Fig. 4.10 (a) shows the 

far-field pattern of the harmonics of the green beam as a function of intensity. Each 

image is an average of several shots. As the intensity of the green light increases, the 

number of harmonics increases. Harmonics above the 7h  appear rather suddenly and 

only at a relatively high intensity (1x1014 W/cm2). The angular patterns of the 

harmonics are similar to the patterns observed with the infrared beam, bright central 

peaks with broad wings. Fig. 4.10 (b) shows the harmonics created at the highest 

intensity shown in Fig. 4.10 (a), 1x1014 w/cm2, as a function of gas pressure. It was 

determined that the wings are less in intense than the central peaks by a little more than 

an order of magnitude. 
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Fig. 4.9 Harmonic producrion at 7 x 1 0 ~ 3  ~ / c m 2  laser intensity as a function of 

laser ellipticity for Xe (a) and Kr (b). 



Fig. 4.10 (a) Far-field images of the harmonics of green light (527nm) produced in 

1.5 Torr Xe as a function of laser intensity. Each image is an average of 

approximately 10 shots. 



' O : 0.4 torr 

. . . . 

. ... . . 
.. . . . . . . . . . . .  , . . . .  ,. . : . . . : . . .  - : 

. . .. . . . .... - ' ..: .... . . 
, . . . , .. . . 

. . .. . . . , . . . . . .* . . 
.... . . 

. . .. . . . .  .. . . . 

. . . . 

. . 

7 9 13 

10 
0.85 torr 1 

Fig. 4.10 (b) Far-field images of the harmonics of green light (527nm) in Xe 

produced at 1x1014 w/cm2 for different gas pressures. Each image is an 

average of approximately 10 shots. 



4.4 ATOMIC SPECIES DEPENDENCE 

The angular profiles of harmonics generated in Kr and Ar have behaviors 

similar to the profiles of harmonics generated in Xe. An important difference, as 

previously discussed, is the number of harmonics created and the laser intensities 

required to make them. One feature which is common to all of the far-field 

distributions is the development of broad wings. The strength of the wings is not only 

a function of harmonic order but also of atomic species. A striking difference between 

the atomic species can be seen in the wing structure on the lower-order harmonics. The 

far-field emission for Xe, Kr, and Ar is shown in Fig. 4.1 1. Each curve is an average 

of four shots. The 1pm grating setup was used for these images. For this data, some 

of the central peaks are slightly saturated. For Xe, Kr and Ar, a prominent set of wings 

appears on the 13&, 1 and 17h harmonics respectively. These wings appear on the 

harmonic with energy which, for each gas, is one order higher ( 2 ~ 0 ~ )  than the first 

harmonic with greater photon energy than the field-free atomic ionization potential. The 

shift of the pattern with atomic species is evidence that the effect is a manifestation of 

atomic physics and not simply an artifact of propagation in the medium. 

Although the intensity of the harmonic wings is typically an order of magnitude 

less intense than the central peaks, they often carry a large fraction of the total harmonic 

energy, owing to the circular symmetry. Investigations of harmonics produced in Xe 

and Kr showed that the wings of many harmonics often contain about three times the 

energy as the center peaks. 
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Fig. 4.11 The far-field patterns of the 1 l h 2 1 3  harmonics emitted from Xe (thick 

line), Kr (thin line), and Ar (dashed line). Each curve represents a single shot. 

The gas pressures were 0.5 Ton, 1.2 Tom, and 2 Tom, and the peak laser 

intensities were 9x 1013 w/cm2, 1 .2x1014 w/cm2, and 2.1~1014 w/cm2 

respectively. 



4.5 FLUCTUATIONS AND ERRORS 

Many of the pictures presented in this Chapter were produced by averaging a 

number of far-field images together. This was done by numerically averaging 

electronic images from single shots. The averaging significantly improved the signal- 

to-noise ratio of the data. Background signal was removed by subtracting an average 

of a few images of shots taken under the same conditions but with no gas in the target. 

Fig. 4.12 shows the angular profile of the 1 3 ~  harmonic obtained from a single shot in 

Xe at 0.3 Torr. The laser intensity for this shot was approximately 7x1013 w/cm2. 

The lpm grating was used for this measurement. However, the detector was 

configured in the manner usual for the 0.2pm grating. This included a relatively 

narrow slit of 200pm which caused each harmonic line to have a width of -400pm at 

the detector. This is in contrast with other data taken using the lpm grating for which 

the harmonic lines had a width of 1.5mm at the detector. Wider lines improve the 

signal-to-noise ratio for a single shot as can be seen by comparing Fig. 4.12 to the 1 3 ~  

harmonic in Fig. 4.1 which was obtained with similar conditions. 

Fig. 4.13 shows a superposition of harmonic profiles from 5 different shots for 

the same conditions as in Fig. 4.12. All of the lines show the 13h harmonic. The 

typical amount of fluctuation in the data is evident. Fig. 4.14 shows the 13rh harmonic 

profile obtained from an average of approximately 20 images. As can be seen, the 

signal to noise ratio is greatly improved. The laser intensity for all of the shots falls 

within the window defined by 7x1013 W/cm%15%. A similar window was used to 

select shots of equivalent intensity for the data averages shown throughout this chapter. 

One source of noise in the harmonic images is randomly scattered light which 

reaches the detector. Defects in the transmission grating can cause the harmonic light to 

be scattered. Also, plasma generation on the slit or grating can cause noise from light 

and charged particles which reach the detector. In addition, if the target gas is strongly 



ionized, recombination light can produce significant noise at the detector. Fig. 4.15 

shows the profile of the noise between the l a  and 15* harmonic lines on the detector 

for the same 20 shot average as in Fig. 4.14. This smp of background noise was 

sampled in the same way as the harmonic lines, using a strip of CCD pixels of equal 

width, A comparison of Figs. 4.14 and 4.15 reveals that the wings seen in the far-field 

profile are far above the noise level. The small structure seen on the curve in Fig. 4.14 

cannot be important since it is on the same scale as the noise in Fig. 4.15. 

Because of the cylindrical symmetry in the experimental setup, it is expected 

that the harmonic far-field profiles be symmetric about the laser axis. The much of the 

small structure in Fig. 4.14 is not symmetric with respect to the origin. Fig. 4.16 

shows the curve of Fig. 4.14 superimposed on a reflected version of itself. The 

reflection takes place with respect to the vertical axis through 8=0. The coarser features 

which are preserved in the reflection are the ones which can be taken seriously. In this 

image, the wings show a definite two-tier structure. 

For Figs. 4.4 and 4.6, the pressure was adjusted to avoid detector saturation. 

To compensate, the measured harmonic signal was scaled according to the square of the 

pressure. As can be seen in Fig. 4.3, the harmonic signal deviates from this scaling 

law by about 25% over the range of pressures used in the experiment. Thus, this 

scaling technique introduces only a small error between the higher and lower harmonic 

signal levels in Figs. 4.4 and 4.6 The data in these figures was taken using the 0.2pm 

grating. As mentioned before, this grating attenuates the lower harmonics relative to 

the higher harmonics. A comparison between harmonics obtained with the 0 . 2 ~  and 

the lpm gratings gave the following attenuation factors: 4.1, 3.8, 3.0, 2.5, and 1.5 for 

harmonic orders 11u through 19h respectively. The signals in Figs. 4.3,4.4, and 4.6 

were multiplied by the appropriate attenuation factors to compensate for this error. For 

the 21s harmonic and above, there was no apparent attenuation. 
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Fig. 4.12 The angular profile of the 13h harmonic obtained from a single shot in 

Xe at 0.3 Torr and 7x1013 w/cm2. The laser profile is depicted for 

comparison. 
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Fig. 4.13 A superposition of harmonic profiles from 5 different shots for the same 

condtions as in Fig. 4.12. Each curve is for the 13h harmonic. 
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Fig. 4.14 The 13h harmonic profile obtained from an average of approximately 20 

images for the same conditions as in Fig. 4.12. The laser profile is depicted for 

comparison. 
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Fig. 4.15 A sampling of the noise in between the 13h and 15h harmonic lines for 

the same 20-shot averaged image used to generate Fig. 4.14. 
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Fig. 4.16 The curve of Fig. 4.14 superimposed with a reflected version of itself. 
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CHAPTER 5 

RADIATION BY A COLLECTION OF DIPOLES 

The radiation emitted from a collection of driven oscillating dipoles depends as 

much on their geometrical configuration and temporal phase relationships as on their 

individual oscillation amplitudes. Variations of their spatial and tempoxal arrangements 

not only influence the distribution of the radiation, but also the total emitted power. 

Experimental investigations into high-order harmonic generation require large numbers 

of atoms to attain practical signal levels. Thus, a fundamental understanding of the 

atomic medium's macroscopic response is essential before the individual atomic 

behaviors can be discovered. Indeed, it will be seen that it is exactly this macroscopic 

effect which allows a signal enhancement making measurements possible in the frrst 

place. This chapter outlines the general framework necessary to consider these issues. 

Specific application of the framework which is relevant to our experimental conditions 

is also made. 

5.1 RADIATION FROM A TWO-DIPOLE SYSTEM 

As an illustration of how the radiation emitted from a collection of dipoles can 

be influenced by their relative orientations, consider the simple problem of two identical 

dipole radiators positioned side by side. Fig. 5.1 shows a diagram of the 

configuration. Let the first dipole be located at the origin with its oscillation in the z- 

direction defined by zl=~cos(ot).  Let the second dipole be located at a distance d on 

the x-axis with its oscillation also in the zdirection defined by z2=~cos(ot+a). The 

electric field at a very distant point ? due to the dipole positioned at the origin is 

approximatelyl 



eo2zo sin e 
E, (r, 8.0) = - 4moc2r C O S ( ~  - of)  

and the contribution to that same point which is made by the second dipole is 

approximately 

eo2z0 sine 
~ ~ ( r ~ 9 . O )  = - cos(k(r - dsin ecos+) - o t  + a ) .  (5.1.2) 

4mOc2r 

Eqs. (5.1.1) and (5.1.2) are expressed in the usual spherical coordinates (r.8.O). The 

equations employ the MKS system of units, as is the case for all equations in this 

thesis. Eq. (5.1.2) is an approximation valid only when n>d The term IT - id1 has 

been replaced by r in the denominator, and by r - dsinecos@ in the cosine argument. 

Let the point f be so distant relative to the dipole separation d that the electric field 

polarization from each dipole is virtually identical. Thus, the total electric field at point 

f can be taken as the sum Etot=E1+E2. The time-averaged field intensity at position ? 

is 

2 4 2  e o z, sin2e 
1(r,e,$) = ?EL = [I + cos(kd cos $ sin 0 + a)]. (5.1.3) 

16x2~,c3r 

The intensity retains the dependence of all of the spatial variables so that a highly 

nonuniform radiation field is evident. Some regions experience an intensity 

enhancement due to constructive interference between the two fields. Other regions 

experience relatively weak intensity due to cancelations between the fields. Exactly 

where these occur depends strongly on d and a. 



Fig. 5.1 Two identical dipole radiators positioned side by side shown with the 

coordinate system used. 



Fig. 5.2 The average power radiated from a two dipole system as a function of 

dipole separation for five different relative phases. The power is expressed in 

units of the power radiated from a single dipole. 



The total average radiated power from the system can be calculated by 

integrating the intensity over a distant spherical surface centered about the origin. The 

integration can be performed analytically2 to obtain 

e2dz2 { [sin kd ("ld cos kd)]}. (5.1.1) ~ ( a , d ) = +  2+3cosa -- 
12m,c kd -7- 

Fig. 5.2 shows a plot of the power as a function of dipole separation for several 

different values of relative phase a. Just as the values of d and a effect the spatial 

distribution of the radiation, they also effect the amount of power radiated. When the 

two radiators are far apart, the power emitted is simply the sum of the powers emitted 

from two individual dipole radiators. Closer together, however, the dipoles can emit 

up to twice that amount, or they may reduce their emission to zero depending on their 

relative phase and separation. 

For this example, the oscillations of the dipoles were exactly specified. It is 

interesting to explore how the oscillations might differ if they resulted instead from an 

applied sinusoidal force. The question is whether radiative forces might significantly 

affect the oscillations as a function of their separation and relative phase. The answer 

is that the dipoles do not significantly influence each other's oscillations for parameters 

of experimental interest. For example, the inertial force required to cause an electron to 

oscillate is usually far greater than the electron's radiative self force.3 The radiative 

force that two identical electron oscillators exert on each other is on a similarly small 

scale for parameters in the range of our experimental conditions. This is true even 

though the total radiated power can be strongly influenced by the relative orientation of 

the dipoles. It should be pointed out that, on average, the work done by the driving 

force in the absence of radiative forces is zero. It is only the work done against the 



radiative forces which is nonzero. It can be shown that the total radiated power from 

the two-dipole system is equal to the rate of work done by the individual radiative self 

forces plus the rate of work done by each dipole's field on the other dipole. 

If the two dipoles in the example given above are electrons driven by a 

sinusoidal force with amplitude ~ = - z ~ m ~ o 2 ,  the dipoles will undergo the same 

oscillations as previously specified provided the radiative forces are negligible 

compared to the driving force. The radiative self force3 that a single oscillating electron 

feels is FWr = e2Yi/6m0c3. Fsew can be obtained perturbatively from the equation of 

motion for an electron experiencing only the driving force Fcosot. It is found that F,w 

is also oscillatory with amplitude e20~/6moc3m,. For frequencies in the range of 

visible light, Fself is on the order of 10-8~. Thus, the perturbative assumption is 

justified. Even for frequencies in the range of x-rays, the self force is small compared 

to the driving force. When the two dipoles in the example are very close together, the 

radiative force that they exert on each other1 has an approximate strength of 

In a gas at 1 Torr and 300'~. the inter-atomic spacing is on average 32nm. If d is 

taken to be this distance, then for optical frequencies, l/(kd)3 is about 102 which falls 

short of the factor of 108 required to distort the oscillations. Thus, the individual 

oscillations of the two dipoles are virtually unaffected by the fact that they are members 

of a group. 

A similar situation arises in high-harmonic generation in low density gases. An 

applied laser field stimulates the atoms which induces bound electrons to oscillate at 

frequencies which are harmonics of the laser frequency. The motions of the electrons 

in the individual atoms are determined exclusively by the applied laser field. As in the 

example above, the electron motions are not significantly influenced by harmonic 

emission from neighboring at0ms.~-6 Thus, the response of each atom to the driving 

field is decoupled from the responses of the other atoms. This is an important point 



which makes possible the extraction of single-atom information from the radiation 

emitted from a large group of atoms. 
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Fig. 5.3 A collection of dipole emitters which radiate into the surrounding space 

shown with the coordinate system used. 



5.2 HARMONIC GENERATION IN A MANY-DIPOLE SYSTEM 

Harmonic generation experiments are performed with large collections of 

atoms. The medium is driven by an applied electric field oscillating at a frequency a. 

As the bound electrons respond to the field, they can oscillate with frequency 

components which are harmonics of the applied field frequency. Each harmonic 

frequency component in the emission from the medium can be considered separately. 

In other words, the total average power emitted from the medium equals the sum of the 

average power emitted at each harmonic frequency. Thus, it is appropriate to consider 

a collection of dipoles, stimulated in some manner, emitting radiation at a single 

frequency. 

To find the electric field at a point in space due to a large collection of dipoles, 

the same procedure as employed in the previous section may be used. That is, the 

contribution from each dipole with its unique position, phase, and strength can be 

summed to give the total electric field at a distant point. As was previously discussed, 

the influence of each dipole's radiation on its neighbors may be ignored. For 

simplicity, let all of the dipoles be oriented parallel to one another (say along the x- 

direction), and let the point in question i be far outside the atomic medium so that the 

polarization of the field contribution from each dipole is the same. In addition, let the 

atomic medium have low enough density that the harmonic radiation can be considered 

to travel at speed c. These assumptions are well maintained for the experimental 

conditions employed in this work. Fig. 5.3 gives a schematic of the situation. The 

electric field at position ? can be constructed beginning with the expression for the 

radiation emitted from a single dipole [see Eq. (5.1.1)], and by summing over all 

dipoles in the region. The summation can be written as 



ikq IT - f 1 - iqat + iaRq ( t - y ) ] + C . C .  (5.2.1) 

where 6, is a unit vector in the direction of T (approximately the same as ? - G), and 

%, and q ,  are the oscillation amplitude and phase for the nh  dipole. The subscript q 

on the electric field specifies and elsewhere the field component with harmonic 

frequency q o  where o is the frequency of a driving field. Eq. (5.2.1) is valid only 

when r is much larger than the region containing the dipoles. The interaction region is 

assumed to be near the origin. For a very large number of identical electric dipoles, the 

summation can be done as an integral over the region of space containing the dipoles. 

Thus we have, 

ikq I? - ?'I - iqat + iaq ( r , t - - i~i ' ' ) ]+C.C. (5.2.2) 

where N o  is the dipole volume density. To perform the integral, the spatial and 

temporal dependence of xq and q must be known. These, of course, depend on how 

the dipole medium is stimulated and how the individual dipoles respond to the stimulus. 

For harmonic generation experiments, the stimulus is provided by a laser field which 

has a well known spatial and temporal distribution. For our conditions, the electron 

oscillations depend entirely on the individual atomic responses to the laser field. 

However, the response of the entire system depends on the configuration of the 

medium relative to the laser. 



5.3 HARMONIC EMISSION LNDUCED BY AN APPLIED FIELD 

In the case of experimental harmonic generation, the dipole medium is 

stimulated by an oscillating electric field. Two important driving fields are gaussian 

and plane wave laser fields. In cylindrical coordinates, they can both be written as7 

where for a plane wave 

and for the gaussian laser field 

-p2 
kp2 

W0 w2b) and a(p, z) = - - tan-' (z/z0). f (p* z) = - (5.3.3) 
w(z) 2R(z) 

p and z are the usual cylindrical coordinates. The width of the gaussian laser beam is 

defined by w(z) = wodl  + z2/zt . where wo is the radial distance from the laser focus 

to where the electric field decreases by a factor of e, and zo is the Rayleigh range 

defined as the distance along the z-axis from the focus to where the field decreases by a 

factor of a. Their values are wo=2hf#/~ and zo = mut/h, where f# is the ratio 

between the distance to the focus from the lens and the beam diameter (l/e) at the lens. 

The term R(z) = z + z:/z = z:w2(z)/w:z is identified with the radius of curvature of 

the laser beam wave front. 



The field defined by Eq. (5.3.1) can be substituted into Eq. (5.2.2) to yield the 

response of the dipole medium to the driving field. The phase of each dipole's 

emission is determined from the phase of the laser as well as from the the dipole's 

individual response. Thus, aq of Eq. (5.2.2) is written as aq(pf,z') = qklz' + 
qa(pl,z') + vq, where vq is the difference between the dipole phase and q times the 

local phase of the laser. The last tern is unimportant unless it varies during the laser 

pulse. As is proposed in this thesis, vq indeed can have a very strong dependence on 

the laser field strength, and this is the primary cause of broad wings observed in the 

harmonic far-field patterns. We consider the oscillation amplitude xq and phase vq to 

depend adiabatically on the local instantaneous field amplitude and not on the past 

history of the field. The result of the substitution is 

xexp[ikqli - f'l+ iqklzf - iqot + iqa(pf,zf) + iv,] + C.C. (5.3.4) 

It has been assumed in Eq. (5.3.4) that the driving field is not signrficantly affected by 

the harmonic interaction. However, the wave number k, can in principle depend on the 

local optical index of the atomic medium. The spatial variation of this dependence must 

be weak so that the driving field does not experience defocusing such as described in 

Section 2.3. By contrast for the high harmonics (q2ll)' kq is assumed not to depend 

on the atomic medium at all, and is taken to be qdc .  

The propagation direction of the driving field, which enters into the phase of the 

dipole emission [qklz' enters into ocg(rl,z')], causes the harmonic field to have a similar 

propagation direction. This can be seen easily by observing that the term 

exp[ik,li - ifl + iqk1zf] in Eq. (5.3.4) is strongly oscillatory unless 17 - 7'1 z z - z'. 



Thus, the overwhelming portion of the harmonic emission comes out along the z-axis 

in the forward direction. Although the field emission in the other directions is not 

exactly zero, it is very nearly so compared with the field emission in the forward 

direction. This fact allows for the following simplifying approximations which may be 

applied to Eq. (5.3.4): 

If the interaction region is small compared to the distance r, then li - F l  in the 

denominator may be approximated as r, and exp{i kqp'2/2z] may be set equal to one, 

the Fraunhofer approximation.8 If, in addition, the interaction region is located very 

near the laser focus, then within the temporal pulse envelope of the field, IF - f'l is 

approximately equal to z - z' + p2/2z, giving an envelope of ~ , [ t  - (z + p2/2z)/c] 

which is independent of the variables of integration. This can be properly done 

provided the neglected terms within the field envelope are all small compared to the 

pulse duration o. Specifically, the following conditions must be satisfied: 

p'2/2(z' + z:/z') , z'p2/2z2 , p'p/z , ~ ' ~ / 2 z  << co. 

Experimentally, these conditions often hold very well. Neglecting the terms implies 

that all emission which anives at point i at a given moment come from dipoles which 

were experiencing the same portion the laser temporal envelope. Finally, if No (7) has 

azimuthal symmetry so that it can be written as No(p',z'), then the only angular 

dependence inside the integral of Eq. (5.3.4) comes from the last exponent [note the 



approximation in Eq. (5.331. The azimuthal integration can be performed analytically 

All together, the approximations of Eqs. (5.3.5) - (5.3.7) when inserted into Eq. 

(5.3.4) yield 

(5.3.8) 

where r = 4- s z + p2/2z, and Ak=b-qkl. The collection of points in the far- 

field with fixed r defines a spherical wave front. Fig. 5.4 gives a schematic of the 

situation described in Eq. (5.3.8). Eq. (5.3.8) is referred to as the phase-matching 

integral because it describes how the collection of dipole emitters cooperate in creating 

the radiative field 



Interaction 

w 

Fig. 5.4 A schematic depicting the propagation of laser harmonics into the far 

field. 



Ak of Eq. (5.3.8) is a constant only if the dipole density distribution is uniform 

throughout the interaction region. However, in general this is not the case. The 

medium density can vary spatially causing qkl-lq to be different throughout the 

interaction region. In addition, if ionization of the medium occurs during the 

interaction, the resulting free electrons can change the value of G-qkl. This is 

particularly complicated because the electron density not only varies with position but 

also with time. To include these effects correctly, hkz' must by replaced by499910 

dzUAk(p', z", t) . 
-OD 

In the case of ionization, the density of the medium must also be considered to be a 

function of time and written as N,(p',z',t). 

In general, Ak is nonzero because light of different frequencies travels at 

different velocities in any material. When the harmonics and the laser propagate 

through the medium, their phases become mismatched so that harmonics created in 

different regions interfere. High-harmonic generation experiments are often performed 

using the noble gases. The phase mismatch in these gases is usually unimportant at 

pressures less than 10 Torr. However, if the gas undergoes ionization, a much 

stronger phase mismatch can occur due to the presence of free electrons. Ak is given 

by qo(nq-nl)/c, where n, and nq are the indexes of refraction for the laser and the 

harmonic. For high-order harmonics (q21 I), nq is approximately 1 for conditions of 

interest in this thesis. For a fully ionized gas at 1 Torr (1 electron per atom), 1-nl is 

1 . 6 ~  10-5 assuming h=1054nm [see Eq. (2.3.3)]. Table 5.1 gives the phase mismatch 

(Akz) associated with propagation though neutral Xe and through an ionized gas as a 



function of harmonic order.4 The gas pressure is chosen to be 1 Tom, and the 

propagation distance is lmm. 

Table 5.1 The phase mismatch associated with propagating though lmm of neucral 

Xe and a fully ionized gas (1 electron per atom). The values are calculated at 1 

Tom and 300"~,  and the fundamental wave length is 1054nm 

9 

Xe 

elect, 

High-order harmonic generation experiments have often been carried out by 

focusing a laser into a jet of gas at a pressure of 10 Tom or more [see Refs. 1-6 of 

Chapter 31. If during the interaction the gas strongly ionizes, the phase mismatch can 

be severe. For example, the phase mismatch for the 21s harmonic of 1054nm light 

traveling lmm through 10 Tom of a singly ionized gas is ~ Y C .  Under such conditions, 

the path of the laser beam itself can become significantly distorted as discussed in 

Section 2.3. To keep the phase mismatch for lmm of propagation below YC, the 

pressure of the ionizing gas should be about 1 Tom or less (see bottom row of Table 

5.1). 

3 5 7 9 11 13 15 17 19 21 

.00031~ 0.0021~ 0.0071~ 0.051~ -0.011~ -0.031~ -0.041~ -0.051~ -0.051~ -0.051~ 

0.091~ 0.161~ 0.221~ 0.281~ 0.36~ 0.411~ 0.47~ 0.531~ 0.601~ 0.661~ 

5.4 APPLICATION OF THE PHASE-MATCHING INTEGRAL 

High harmonics emitted from different locations in the interaction region can 

have mismatched phases due to a number of reasons. One source of phase mismatch is 

the frequency-dependent refractive index of the interaction medium as discussed above. 



Phase mismatches can also arise from the geometry of the interaction medium and the 

laser field. This includes phase mismatches associated with the strong diffraction 

associated with a laser focus. Phase mismatches not only reduce the efficiency with 

which harmonics are produced, but they can also affect the angular distribution of the 

emission in complicated ways. For high harmonic generation, it is difficult to create a 

situation where phase mismatches from all sources completely offset one another. 

Thus, the approach used in this work has been to minimize all of the different sources 

of phase mismatch. This is accomplished through the use of a thin, low-density gas 

dismbution. This section provides insight into how the thickness of the atomic medium 

influences the angular dismbution of the harmonics. It is established in this section and 

in Appendices B and C that for our conditions the harmonic far-field patterns can be 

thought of as emerging from a plane in the interaction region. At the same time a 

number of possible sources for the broad wings observed in the harmonic profiles are 

eliminated. 

5.4.A Harmonic Generation by a Plane Wave Incident on a Cylindrical 

Medium 

Consider the q h  harmonic generated by a plane wave incident on a cylinder of 

radius p, and length 1. For simplicity, we consider a uniform density No. Fig. 5.5 

shows a diagram of the setup. From Eqs. (5.3.2) and (5.3.8), the harmonic electric 

field at a point in the far-field is 



R s a l l  that r = I/-. By performing the integration and solving for the intensity. 

we find 

where p/z i sine 8. As expected, the intensity of the harmonic depends on the 

square of the cylinder length P and the square of the density No. The square of the 

factors inside the brackets ranges between 0 and 1. The first or the second factor can 

dominate the angular profile depending on the length of the cylinder. The first factor 

describes the far-field angular pattern from a circular aperture. It contains the radial 

information of the emission from the interaction region. The second factor depends on 

the length of the cylinder. When P is large enough, the term introduces a radial 

distortion which obscures the angular profile of the circular aperture. Fig. 5.6 shows 

the far-field distribution of the harmonic intensity for several different values of P 
2 ranging from kqpo/2 to 8kqp:. Eq. (5.4.2) is plotted for two different values of Ak. 

All factors outside of the brackets of Eq. (5.4.2) are ignored. 

The fact that the far-field angular profile is sensitive to the cylinder length 

illustrates the principle that a thinner interaction region (P small) makes the 

interpretation of the far-field profile less complicated. That is, if the interaction region 

is thin enough, the harmonic emission can be thought of as emerging from a single 

plane. For the example of the cylinder, the far-field profile is that given by a circular 

aperture when P<U(2q82) [see sine term in Eq. (5.4.2)]. This criterion can be used to 

give a simple estimate of how thick the interaction region can be before the far-field 

angular profile is strongly affected. For our conditions (P=lmrn, X=1054nm, q=13), 



the criterion is violated for €I 2 7 rnrad. The angular widths of the harmonic profdes 

presented in this thesis lie more or less within this range. Thus, complications arising 

from a thick medium were avoided. 

Incident Interaction 
plane wave region 

P 

Fig. 5.5 A schematic of a plane wave laser field incident on a cylindrical 

harmonic generation medium. 



Fig. 5.6 The far-field patterns for harmonic generation by a plane wave in a 

uniform cylindrical medium. The thickness of the medium l is 114 (thick 
2 solid), 1/2 (dashed), 1 (dotted), 2 (dash-dot), and 4 (thin solid) times 2k,p,. 

The left plot shows the case Ak=O, and the right plot shows the case 

Ak = 1/2kqp;. 



5.4.B Harmonic Generation by a Focused Laser in a Thin Medium 

Consider harmonic emission from a single plane positioned at the laser focus. 

Because the laser intensity varies radially, the harmonic emission also varies radially. 

The radial profile of the laser field in the focus, as seen from Eq. (5.3.3), is 

For simplicity, assume that the strength of emission for the qh harmonic is proportional 

to the laser field raised to a power p. For perturbation theory, this assumption is 

exactly correct if we take p=q. In the range of the harmonic plateau, where high 

harmonic emission depends more gradually on the laser field, the emission is 

approximately modeled with p < q .  Under this assumption, the radial profile for a 

given harmonic in the laser focus is 

This profile creates a gaussian beam with waist woq = wo/$. Note that this model 

implies that the phase of the harmonic is the same throughout the focal plane. The 

Rayleigh range of the harmonic beam is zoq = q zo/p. As the beam propagates, its 

2 2 radius is given by wq (z) = wOq,/-. In the far field, the radius becomes 

This shows that the width of the harmonic far-field profile is q/fi times narrower 

than the laser field. For example, if q=19 and p=4, the harmonic profile is 

approximately 10 times narrower than the laser beam. 



The very narrow far-field patterns predicted by this model are inconsistent with 

the broad wings observed in the data. Appendix B extends this analysis to 3 

dimensions to include the effect of a finite interaction region thickness. When the 

interaction region is thick relative to the laser confocal parameter, this model can 

produce broad structures in the harmonic far-field patterns. However, it is clearly 

shown for this model under our conditions, that the harmonic far-field profiles are 

approximately the same as if genemted in a single plane. 

As pointed out near the end of Section 5.3, a phase mismatch due to ionized 

free electrons is not very severe for our operating pressures. However, when a portion 

of the interaction region ionizes, diffraction of the harmonics can result from the lack of 

emission in the ionized portion. Because the size of the ionized portion varies in time, 

the diffraction can in principle create broad structures in the far field profde. Appendix 

C investigates this issue, using as a basis the harmonic emission model described in 

Appendix B. The ionization rate is assumed to follow a simple power law. The results 

of the calculation show that under our conditions, the effects of ionization cannot 

explain the broad wings observed in the experiments. 

The term tan-'z'l~, contained in a(p',z9) of Eq. (5.3.3), has a strong effect on 

the phases of harmonic light emitted in different regions of the laser focus. Because the 

term is independent of radius, it does not effect the angular profile of the harmonic 

emission, but only the overall amplitude. If the assumption is made that once a 

harmonic is created it propagates as a gaussian beam having the same Rayleigh range as 

the fundamental beam (true for p=q in the model above), then the phase mismatch 

between harmonic light emitted from points zl and z2 is 



If zl and z2 are respectively -z, and +%, the phase error is qd2. If zl and z:! are - 4 1 0  

and + d l 0  respectively, the phase error is qxl32. 

The distance in the interaction region over which the harmonics get out of phase 

by a factor n is called the coherence length. Harmonic production is limited by this 

length because, when the interaction region is longer, the harmonic emission from 

different locations begins to interfere destructively. As seen above, the coherence 

length for the production of the 31sf harmonic in a laser focus is approximately b110, 

where b=2% is the confocal parameter. For most of the data presented in this thesis, 

the interaction region was about the same thickness as the coherence length. This is in 

contrast with most other high-harmonic generation experiments in which the interaction 

region was many times longer than the coherence length. 

5.5 EXPLANATION OF THE FAR-FIELD WINGS 

The preceding section showed that propagation effects in the interaction region 

are insufficient to explain the broad wings observed in the experiments reported in this 

thesis. To explain the wings, we found it necessary to postulate that the phase of the 

atomic dipole depends on the laser intensity. Thus, since the laser intensity has a radial 

dependence, the harmonic emission from different radial positions of the interaction 

region can strongly interfere in the far field, creating the broad patterns seen. 

As a simple test of this idea, a harmonic far-field profile was calculated wherein 

the emitted harmonic field was multiplied by a minus sign whenever the laser intensity 

was above 90% of its peak value. (In Eq. (5.3.8), vq was changed from 0 to x.) 

Other than the sign change, the emission was assumed to follow the penurbative power 

law. The calculation included the integration over the temporal evolution of the pulse 

[see Appendix C, Eq. (C.7)]. Ionization effects were not included in this calculation. 



Fig. 5.7 (a) shows the emission pattern when the sign change is not included. Fig. 5.7 

(b) shows the emission pattern when this single sign change is included. The strong 

wings caused by the phase shift are evident. Possible explanations of why harmonic 

emission from real atoms might exhibit a strongly intensity-dependent phase are 

addressed in Chapter 6. 



Fig. 5.7 The far-field pattern for q=13, and p=13, where (a) the phase of the 

harmonic emission does not change with laser intensity, and (b) the phase 

changed by IT when the laser intensity goes above 90% of its peak value. The 

far-field pattern shows the cumulative energy over time. No ionization is 

included in this calculation. 
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CHAPTER 6 

INTENSITY DEPENDENCE OF THE DIPOLE PHASE: A CAUSE OF 

BROAD WINGS IN THE FAR-FIELD PROFILE 

Many of the proposed mechanisms leading to high-harmonic emission by a 

strongly driven atom show variations in the phase as a function of laser intensity. 

Thus, our postulate in Section 5.5, that the dipole oscillation phase depends on the laser 

intensity, is consistent with the behavior one might expect from a strongly driven atom 

As an illustration, this chapter shows calculations of harmonic far-field patterns 

generated from a strongly-driven anharmonic oscillator. The anharmonic oscillator is 

one of the simplest models consistent with high-harmonic emission. It includes such 

features as the formation of a harmonic plateau, and it exhibits a strong intensity 

dependence in the oscillation phase. 

6.1 HARMONIC EMISSION FROM A CLASSICAL ANHARMONIC 

OSCILLATOR 

A driven classical anharmonic oscillator has been successful in modeling 

harmonic generation in the perturbative regime and has often been discussed in texts on 

nonlinear 0~tics.1-3 Anharmonic oscillators are known to generate high harmonics 

when driven strongly.4 While an anharmonic oscillator is not expected to model a real 

atom very closely, it does show qualitative agreement. The reason for examining 

harmonic emission from such a model and comparing it with experimental results is that 

it provides a useful illustration. In this sense, a simple anharmonic oscillator model is 

thought of as a generic representation of atomic behavior. 



6.1.A Parameterization of an Anharmonic Oscillator Model 

The equation of motion for a particularly simple type of classical anharmonic 

oscillator can be written as 

where p parameterizes the quartic anharmonicity, F=eEdme is a measure of the strength 

of the driving field, and oo is the natural frequency of the oscillator when the 

anharmonicity is neglected. The motion of the oscillator can be expressed as 

where xq is the amplitude of the q h  harmonic component of the motion. As outlined in 

Appendix D, an approximate solution can be obtained by expanding the motion in terms 

of harmonic components and retaining only the most imponant terns. The oscillator is 

parameterized as a function of F by the values of a, and P. It is appropriate to choose 

values for these parameters which are plausible for an atom. We chose hao to be the 

binding potential of the atom we wished to model, and we chose P to fit the third 

harmonic emission, as follows. 
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Fig. 6.1 The conversion efficiency of the laser into the third harmonic for Ar, 

Kr, and Xe as a function of laser intensity. The gas target thickness is lmm 

and the 1.3-times diffraction limited beam is focused with f/7O optics. 



Fig. 6.1 shows the measured conversion efficiency of the laser into the third 

harmonic for Ar, Kr, and Xe as a function of laser intensity. This data was taken by 

imaging the third harmonic into a CCD camera (Sony model XC-77). The response of 

the camera was calibrated for 532nm, and the response at 351nm (3rd harmonic) was 

extrapolated using a response curve provided in the camera documentation. To increase 

the signal, the gas distribution for al l  three gases was held at 4 Torr, unusually high for 

the gas target. The results were checked against a similar scan in Xe at 1 Torr, and the 

signal scaled by a factor of 16. Thus, the target seems to function reasonably well even 

at 4 Torr, and the measurements at this pressure are justified. The curves follow the 

permrbative power law of I3 = 1: which gives a slope of 2 on the log-log plot showing 

the conversion efficiency. The measurement shows that the a harmonic follows this 

perturbative power law even in the intensity range where the higher harmonics 

experience the plateau. 

The magnitude of the 3rd harmonic oscillation amplitude x3 can be determined 

by calculating the total energy in the harmonic pulse. [Eq. (B.7) of Appendix B is used 

with p=q=3.] The total energy is 

The measured conversion efficiency at a given intensity is set equal to the ratio between 

(Energy), as calculated from Eq. (6.1.3) and the laser pulse energy. Thus, the only 

unlcnown parameter x3, is determined. The experimental conversion efficiency must be 

divided by the amount that the focal spot area is larger than the diffraction limit (in our 

case, 1.7). This is to account for the fact that the interaction area is larger than the area 

implied by the diffraction-limited calculations. At a laser intensity of 1 x 1013 WIcm2, 



the values for x3 are 5 x 1 0 ~  8, in Ar, 2x10-3 8, in Kr, and 4x10-~  8, in Xe. Based on 

experimental uncertainties, we estimate the error in determining these values to be a 

factor of 2. The parameter P is determined in the perturbative limit by setting the value 

of x, as calculated in Appendix D (Eqs. (D.3), @A), and 0 .22)  with F corresponding 

to 1x1013 ~ / c m 2 ]  equal to the values of x3 as determined above. The value for P was 

calculated to be 2x1035 (8, s)-2 in Ar, 2x1035 (8, s)-2 in Kr, and 1x1035 (8, s)-2 in Xe. 

In each case, hwo was chosen to be the binding potential of the atom. 

With the parameters of the oscillator model fixed, the formulation of Appendix 

D can be used to determine xq as a function of laser intensity. Fig. 6.2 shows the 

strength (absolute value) of the harmonic emission (proportional to the oscillator 

acceleration) calculated by the anharmonic oscillator model for Xe. The intensity range 

of the harmonic plateau coincides with the intensity range observed experimentally. 

The phase of the emission slips by a factor of x around each resonance peak, giving a 

strong intensity dependence to the phase of the harmonic emission [see Fig. D.l (b) in 

Appendix Dl. This strong phase variation as a function of laser intensity is similar to 

that seen in many models which describe high-harmonic emi~sion.5-~0 It should be 

pointed out that the slope of 3 d  harmonic as calculated by the oscillator model for 

intensities in the range of the plateau, is distinctly less than the perturbative-like slope 

which was observed experimentally. 



Intensity w/cm2 

Fig. 6.2 The harmonic emission curves for different harmonic orders given by an 

anharmonic oscillator model parameterized to Xe. 



6.1.B Far Field Patterns 

The purpose for showing calculations involving an anharmonic oscillator is to 

illustrate the kind of behavior observed in the experiments. In particular, the phase of 

the dipole has a strong intensity dependence in the region of the harmonic plateau. This 

phase variation is sufficient to cause the broad wings observed in the far-field pattern. 

Fig 6.3 shows the far-field angular profiles of the harmonics as predicted by the 

anharmonic oscillator for Xe. The far-field pattern is calculated using Eq. (5.3.8). 

These calculations include the temporal integration of the pulse as described by Eq. 

(C.8) in Appendix C. The peak intensity was chosen to be 8.6~1013 w/cm2, the value 

predicted by classical barrier suppression where ionization begins to occur. l lJ2 It was 

assumed that no atoms ionize below this intensity, so the effects of ionization were not 

included in this calculation. The phase-matching parameters in the calculation were 

chosen to match experimental conditions. Broad wings which appear around a central 

peak contain about two to three times the energy of the peak. This is similar to what 

was observed experimentally. 

To clearly make the point that the broad wings seen in Fig. 6.3 are caused 

primarily by the intensity-dependent phase, the far-field profiles were calculated again 

using the absolute value of the dipole response (no phase included). Fig. 6.4 shows 

the result of this calculation. As can be seen, the wings are significantly reduced when 

the intensity-dependent phase of the oscillator is ignored. The small amount of 

structure which remains in the wings is caused by the strong amplitude variation 

associated with the sharp peaks seen in Fig. 6.2. The analysis of Appendix B shows 

that narrow harmonic far-field patterns are expected when the strength of the emission 

varies smoothly with the laser intensity in the absence of phase variation. Fig. 6.4 



shows that even if the emission does not vary smoothly with laser intensity, the 

resulting far-field saucture is similarly quite narrow in the absence of phase variation. 

Fig. 6.3 The far-field harmonic angular profiles calculated with an anharmonic 

oscillator model for Xe. The phase-matching parameters are those used in 

experiments. 



Fig. 6.4 The far-field harmonic angular profiles calculated for the identical 

conditions as Fig. 6.3 except that the phase of the emitted harmonics is held 

constant. 



6.2 POSSIBLE ORIGINS OF THE INTENSITY-DEPENDENT PHASE 

One possible origin of the intensity-dependent phase is the effect of AC-Stark 

shifted resonances. The effect of resonances on the susceptibility of low order 

harmonics is well known.13 The sign can change as the frequency is tuned across a 

resonance. Under strong-field conditions, the atomic energy levels can be shifted into 

resonance by the AC-Stark effect. The effect of Stark-shifted resonances is apparent in 

above-threshold-ionization electron spectra (for a recent review see Ref. 14), though 

the effect of resonances has not been observed in ionization rates of noble gases with 

lpm, Ips laser pulses.ll~12~15 Crane et al. have observed resonant enhancements of 

harmonic generation in ~ r . 1 6  Balcou et al.17 recently invoked a sc phase slip around a 

resonance to qualitatively explain the intensity dependence of the 7a harmonic emission 

in Xe. Resonances with atomic states might be expected to effect a few of the 

harmonics primarily, but because all of high harmonics can have intermediate 

resonances, this effect might show up similarly on many of the harmonics.18 

It has been suggested that the harmonic plateau comes about when the higher- 

order pathways for the generation of any individual harmonic become comparable to the 

lowest order ones.19 By lowest-order pathways, it is meant the processes in which 

each harmonic depends only on harmonics of lesser order. Higher-order pathways are 

the processes in which harmonics are influenced by harmonics of higher order. Such 

processes might be described in the following way: 

Lower order: h0q-2 + 2hm1 + Amq, Higher order: hmq+2 + 2fim1 + Amq. (6.2.1) 

Because each pathway is independent, they need not have identical phases. In this 

scenario, with the onset of the plateau, brought about when higher-order processes 

become important, the phases of the individual harmonics should exhibit a strong 



intensity dependence of the driving field. All of the harmonics in the plateau could 

show this effect, but the effect need not be identical for each harmonic due to the 

different pathways. The effect of the higher-order pathways has been observed in 

calculations of harmonic emission from the two-level atom.5 This is similar to the 

effect seen in the anharmonic oscillator model of the previous section. 

Recent studies of high-order harmonic generation have suggested a quasi- 

classical description of harmonic generation.6e7 The description is only applicable to 

harmonics close to the end of the plateau with energies well in excess of the atomic 

binding potential. In this scenario, after an atom is ionized, the electron follows a 

classical trajectory in the laser field and may collide again with the atom, releasing an 

energetic photon. The highest observable harmonic is approximately equal in energy to 

the ionization potential plus the maximum energy the electron can have when it returns 

to the nucleus (3 times the ponderomotive potential e2~2/4rno2).6.7 Recently, a 

calculation based on the same idea in which the electron trajectory is treated quantum 

mechanically has shown a similar cutoff.* The authors have pointed out that different 

possible electron trajectories can have different phases. Since the electron trajectories 

strongly depend on the laser intensity, this leads to an intensity-dependent phase of the 

harmonic emission. This has also been observed in the simulations based on the 

classical trajectories.18 
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CHAPTER 7 

CONCLUSION 

The experiments presented in this thesis are the first observations of high-order 

harmonics in a regime where propagation effects are unimportant. Under our 

conditions, the laser focusing depth and ionized free electrons cannot significantly 

affect the harmonic far-field emission patterns. The thin and low-density gas 

distribution employed in these experiments ailows the harmonics to be thought of as 

emerging from atoms lying in a single plane in the interaction region. As discussed in 

Chapter 5, a narrow far-field pattern is expected under our conditions for assumptions 

appropriate to the harmonic plateau if the phase of the dipole emission is independent of 

the laser intensity. Even under conditions of strong ionization, the far-field pattern is 

expected to be narrow. The most important finding of this work is the occurrence 

broad wings which appear in the far-field pattern of nearly every high harmonic. 

Because other possible origins for these wings can be discounted for our conditions, 

we conclude that the phase of the dipole response has a strong laser-intensity 

dependence. Since the laser intensity varies radially in the interaction region, this 

intensity dependence implies a radial variation for phase of the dipole emission. Such 

phase variations can cause the harmonic light to interfere in the far-field, leading to 

broad wings in the angular profile. A strong intensity-dependent phase of the atomic 

dipole response is a feature common to many high-hannonic generation models. 



APPENDIX A 

GAS TARGET COMPUTER PROGRAM 

c  Fortran Program: t a r 9 e t . f  
C 

c  T h i s  program t r a c k s  p a r t i c l e s  i n  a  s p e c i f i c  type  of gas t a r g e t  using a  
c  Monte Carlo averaging technique. The program assumes molecular flow 
c  with the  usual  boundary condi t ion  t h a t  t h e  p a r t i c l e s  bounce of t h e  wa l l s  
c  with a  cos ine  d i s t r i b u t i o n  t o  t h e  s u r f a c e  normal. To explore  
c  t h e  limits of t h i s  model, two e f f e c t s  a r e  approximated: c o l l i s i o n s  and 
c  non-diffuse bouncing. The non-diffuse bouncing i s  modeled by having 
c  a  given f r a c t i o n  of t h e  bounces occur with a  specular  o r  mir ror - l ike  
c  r e f l e c t i o n .  This f r a c t i o n  i s  s p e c i f i e d  by t h e  program user .  The 
c  c o l l i s i o n s  a r e  modeled by a  midf l ight  r e d i r e c t i o n  of t h e  p a r t i c l e  
c  d i s t r i b u t e d  randomly over two ha l f  spheres:  one d i r e c t e d  toward t h e  
c  e x i t  and one d i r e c t e d  away from t h e  e x i t .  The program user  s p e c i f i e s  
c  t h e  p robab i l i t y  between s c a t t e r i n g  i n t o  one o r  t h e  o the r  hemisphere. 
c  The mean f r e e  path i s  assumed t o  be uniform between t h e  p l a t e s  
c  and uniform i n s i d e  t h e  hole.  The program user  s p e c i f i e s  
c  t h e  mean f r e e  path of t h e  p a r t i c l e  i n  t h e  two regions.  
c  Once out of t h e  hole,  no c o l l i s i o n s  a r e  modeled. I f  t h e  
c  user  does not  want c o l l i o n s ,  they should simply e n t e r  a  very long mfp. 
c  The c o l l i s i o n a l  modeling i s  very crude and should only be used t o  
c  g e t  a  very rough idea  of what happens a s  t h e  d e n s i t y  inc reases .  
c  The program assumes a  gas t a r g e t  with c y l i n d i c a l  symmetry, t h e  o r i g i n  
c  being a t  t h e  exac t  cen te r  of a  two-sided e x i t  hole.  Gas flows between 
c  two i d e n t i c a l  t h i n  p l a t e s  separa ted  by a  small  d i s t ance .  The hole goes 
c  through both p l a t e s  and i s  where t h e  gas  e x i t s  t h e  system. P a r t i c l e s  a r e  
c  t racked from a  s p e c i f i e d  d i s t ance  back from t h e  hole  cen te r  between 
c  the  p l a t e s .  Each p a r t i c l e  i s  t racked u n t i l  it e i t h e r  e x i t s  t h e  hole  
c  o r  e l s e  goes back between t h e  p l a t e s  p a s t  where it s t a r t e d .  The 
c  program repor t s  t h e  r a t i o  of t h e  number of hole e x i t s  t o  t h e  number 
c  of t r i a l s .  This al lows t h e  flow r a t e  of t h e  t a r g e t  t o  be ca l cu la t ed .  
c  I t  i s  assumed t h a t  t h e  dens i ty  of gas  i s  known a t  t h e  p o s i t i o n  where 
c  t h e  p a r t i c l e s  appear.  The f i l e s  which a r e  c rea t ed  show t h e  dens i ty  
c  of t h e  gas throughout t h e  t a r g e t  a s  a  f r a c t i o n  of t h e  i n i t i a l  dens i ty .  
c  One f i l e  shows t h e  dens i ty  a s  a  funct ion  of rad ius ,  from t h e  hole 
c  center  t o  t h e  t h e  i n i t i a l  p o s i t i o n  between t h e  p l a t e s .  The o the r  f i l e  
c  shows t h e  dens i ty  i n  t h e  hole a s  a  funct ion  of z .  This i s  done f o r  
c  5  r a d i i  wi th in  t h e  hole.  The r a d i i  a r e  equal ly  spaced from t h e  
c  center  t o  t h e  hole edge. A t h i r d  f i l e  is  made which s p e c i f i e s  a l l  
c  of t h e  parameters f o r  t h e  given program run. Another f i l e  i s  c rea t ed  
c  which g ives  t h e  average value of t h e  dens i ty  a s  a  funct ion  of z. 
c  The f i l e s  a r e  respec t ive ly :  r f i l e ,  z f i l e ,  n f i l e ,  a f i l e .  
C 

I M P L I C I T  NONE 
REAL x, y, z, xo, yo, zo,mx,my,mxo,myo, bx, by, phi ,  a lpha,  be ta ,  t a ,  

+ a ,  c ,d,  r, L, lambdap, lambdah, spec, e ,  f,gr h, t a sb ,  sp ,  cp, cb, rper ,  
+ zper,  zmin, zmax, zmaxo, zplus,  zrmnus, zclose,  zc,  z f ,  r c ,  r f ,  l en ,  
+ l eno ,denl ( l :5 ,1 :150)  ,den2 (1:500),  z d i r ,  zd i ro ,u ,p ,  z t , n o m ,  
+ ran,acos,asin,dl,d2,d3,d4,d5,probp,probh 

INTEGER c y l ,  e x i t ,  i, i o ,  j ,  iL,nurn, k, kmin, kmax,q, qmin,qmax, zdim 
DOUBLE PRECISION count 
DATA zdim /150/,  den1 /750*0./, den2 /500*0./ 
j=-1 
WRITE (* ,*)  'Enter  p l a t e  th ickness  ( c )  .' 
READ ( * , * I  c  
WRITE (*,  * )  'Enter  p l a t e  sepa ra t ion  ( a  > c/25)  .' 



READ (*,*) a  
zper = ( c  + a / 2 . ) / ( z d i m / 6 . )  
WRITE (*, * )  'Enter  hole diameter (d)  . ' 
READ ( * ' * )  d  
r = d / 2 .  
rper  = r / 5 .  
WRITE ( * , * I  'Enter  length  from c e n t e r  where dens i ty  i s  known ( L ) . '  
WRITE (*,*) ' I t  w i l l  be t runca ted  t o  t h e  nea res t  10th of hole  diameter. '  
READ ( * ' * )  L 
i L  = L/rper  
L = i L  * rpe r  
WRITE ( * , * I  'Enter  mean f r e e  pa th  of p a r t i c l e  (between p l a t e s  on ly ) . '  
READ (*,*) lambdap 
WRITE (*,*) 'Enter  t h e  r a t i o  of p r o b a b i l i t i e s  between s c a t t e r i n g '  
WRITE (*,*) 'uniformly over a  hemisphere d i r e c t e d  toward t h e  e x i t '  
WRITE (*, * )  'and away from t h e  e x i t  (between p l a t e s  only)  . ' 
READ (*, * )  probp 
probp = probp/ (1. + probp) 
WRITE (*,*) 'Enter  mean f r e e  pa th  of p a r t i c l e  ( i n s i d e  of hole on ly ) . '  
READ ( * , * I  lambdah 
WRITE (*,*) 'Enter  t h e  r a t i o  of p r o b a b i l i t i e s  between s c a t t e r i n g '  
WRITE (*, * )  'uniformly over a  hemisphere d i r e c t e d  toward t h e  e x i t '  
WRITE (*,*) 'and away from t h e  e x i t  ( i n s i d e  of hole  o n l y ) . '  
READ ( * ' * )  probh 
probh = probh/ (1. + probh) 
WRITE (*,*) 'Enter  t h e  p robab i l i t y  t h a t  a  r e f l e c t i o n  w i l l  be specular . '  
READ ( * , * I  spec 
WRITE C*,*) 'Enter  requi red  number of S U C C ~ S S ~ U ~  p a r t i c l e s . '  
READ (*,*) nun 

i = 0  
count = O.dO 

Main program loop begins here.  The loop w i l l  cont inue u n t i l  
t h e  s p e c i f i e d  number of p a r t i c l e s  success fu l ly  l eaves  t h e  hole.  
DO WHILE (i .It. nun) 

count = count + 1 .dO 

I n i t i a l  condi t ion  f o r  a  new p a r t i c l e .  
z  = RAN(j) * a /2  
ph i  = 2  * 3.14159 *RAN(j) 
x  = L * COS (phi )  
y = L * SIN(phi) 
alpha = ACOS(RAN( j )  1 
be ta  = 2  * 3.14159 * RAN(j) 
t a  = TAN(a1pha) 
t a s b  = ta*SIN(beta)  
P ro tec t ion  aga ins t  d i v i s i o n  by zero.  
I F  (ABS ( t a s b )  .It. .001) GOT0 100 
cb = COS ( b e t a )  
sp  = SIN(phi1 
cp = COS(phi) 
mx = ( sp  * t a  * cb  - cp) / t a s b  
my = - ( cp  * t a  * cb + sp )  / t a s b  

z d i r  i n d i c a t e s  whether t h e  p a r t i c l e  pa th  i s  i n  t h e  d i r e c t i o n  of 
i nc reas ing  o r  decreasing z .  
I F  (be t a  .It. 3.14159) THEN 

z d i r  = 1 
ELSE 

z d i r  = -1 
END I F  



c cyl=O means t h a t  t h e  p a r t i c l e  i s  not  y e t  i n  t h e  c y l i n d r i c a l  ho l e .  
c y l  = 0  

C 
c Propagat ion of a  p a r t i c l e  through t h e  nozzle  u n t i l  it e x i t s .  

e x i t  = 0  
DO WHILE ( e x i t  .eq.  0) 

C 
c  ***** Begining of t h e  s i n g l e  s t e p  propogat ion of t h e  p a r t i c l e .  *****  
C 
c Se t  t h e  z - in t e r cep t s  and s lopes  t o  what was f i gu red  
c t h e  l a s t  t i m e  through t h e  loop. 

b x = x - m x * z  
b y = y - m y * z  
ZO = 2 

mxo = mx 
my? = my 
z d l r o  = z d i r  
e and h  a r e  computed f o r  l a t e r  use.  They're used t o  
c a l c u l a t e  an i n t e r s e c t i o n  of t h e  l i n e  with t h e  
c y l i n d r i c a l  ho le ' s  wal l .  
e = mx**2 t my**2 
IF  (e .It. .0001) THEN 

P r o t e c t  a g a i n s t  d i v i s i o n  by zero l a t e r .  
e=. 0001 

ENDIF 
f - m x  * b x t m y  * by 
g  = bx**2 t by**2 - r**2 
h  = ABS(f**2 - e * g)  

Propagat ion of a  s i n g l e  s t r a i g h t - l i n e  s t e p  of t h e  p a r t i c l e  
and c a l c u l a t i o n  of new s lope  f o r  next s t e p .  

IF  ' ( c y l  .eq. 1) THEN 
Path beginning i n s i d e  c y l i n d e r  i f  c y l = l .  
Ca l cu l a t e  t h e  i n t e r s e c t i o n  of t h e  l i n e  with t h e  hole  w a l l .  
z  = (-f t zdiro*SQRT(h)) / e 

IF  ( z  .It. 0 . )  THEN 
Makes a  mi r ro r  r e f l e c t i o n  o f f  of p lane  z=0. Because of 
symmetry wi th  t h e  z-plane, t h e  p a r t i c l e s  need only 
propagate  i n  1/2 of t h e  nozzle  t o  g ive  t h e  r e s u l t .  
Give t h e  new p o s i t i o n  and s lopes .  
z  = 0. 
mx = -mxo 
my = -my0 
The p a r t l c l e  i s  headed upward. 
z d i r  = 1. 

ELSE 
H i t s  on i n s i d e  wal l  of c y l i n d r i c a l  hole .  
x = m x o * z t b x  
y  = myo * z  t by 
P r o t e c t  a g a i n s t  d i v i s i o n  by zero.  
IF (ABS (x )  .It .  r/10000.) THEN 

x  = r/10000. 
END IF  
Ca lcu l a t e  azimuthal  p o s i t i o n .  
ph i  = ATAN(y / x )  
I F  (x .It .  0 . )  THEN 

ph i  = p h i  t 3.14159 
END IF  



IF  ( R A N ( j )  . g t .  spec)  THEN 
Makes a  d i f f u s i v e  r e f l e c t i o n .  
Ca lcu l a t e  new s lopes  and z -d i r ec t i on  of p a r t i c l e .  
a lpha  = ASIN (RAN ( j )  ) 
b e t a  = 2. * 3.14159 * R A N ( j )  
t a  = TAN(a1pha) 
t a s b  = ta*SIN (be t a )  
I F  (ABS ( t a s b )  .It. .001) GOT0 101 
c b  = COS(beta1 
s p  = SIN(phi1 
c p  = COS (ph i )  
mx = ( s p  * t a  * c b  - cp )  / t a s b  
my = - ( cp  * t a  c b  + s p )  / t a s b  
I F  (be t a  .It. 3.14159) THEN 

z d i r  = 1. 
ELSE 

z d i r  = -1. 
END IF  

ELSE 
Makes a  specu la r  r e f l e c t i o n .  
Ca lcu l a t e  new s lopes .  z -d i r ec t i on  s t a y s  t h e  same. 
mx = (2* (SIN(phi)  )**2 - l)*mxo - SIN(2*phi) *my0 
my = - (2* (SIN(phi1) **2 - 1) *my0 - SIN(2*phi) *mxo 

END I F  
END I F  

F igure  ou t  i f  a  c o l l i s i o n  has  taken p l a c e  be fo re  t h e  
p a r t i c l e  h i t  t h e  wal l .  
u  = RAN(j) 
P r o t e c t  a g a i n s t  d i v i s i o n  by zero.  
I F  (u .It. .0001) GOT0 102 
u  - lambdah*LOG(l/u) 
p  - mx0**2 + my0**2 + 1. 
IF  (z . g t .  a /2 .  t c )  THEN 

Don't cons ider  p o s i t i o n s  o u t s i d e  of t h e  ho le .  
z t  = a /2 .  t c 

ELSE 
z t  = z  

END I F  
I F  ( p  * ( z t  - zo)**2 . g t .  u**2) THEN 

C o l l i s i o n  has  occured i n s i d e  ho le  be fo re  reaching  new p o i n t .  
Find t h e  new s l o p e s  and p o s i t i o n s  a t  t h e  po in t  of c o l l i s i o n .  
z  = zo + zdiro*u/SQRT(p) 
a lpha = ACOS (RAN ( j )  ) 
b e t a  - 2 * 3.14159 RAN(j) 
t a  = TAN(a1pha) 
mx = t a  * COS (be t a )  
my = t a  * SIN(beta)  
I F  (RAN( j )  .It. probh) THEN 

This  comparison dec ides  whether t h e  p a r t i c l e  should 
be d i s t r i b u t e d  i n  t h e  hemisphere po in t ed  toward t h e  
e x i t  ho l e  o r  away from it. 
z d i r  = 1. 

ELSE 
z d i r  = -1. 

END IF  
ELSE I F  ( ( 2  . g t .  0 . )  .and. ( 2  .It. a / 2 . ) )  THEN 

Goes back between p l a t e s  s o  set cyl=O. 
c y l  = 0 
cont inues  with o r i g i n a l  s l opes .  
z d i r  = zd i ro  
mx = mxo 
my = my0 

END I F  



ELSE 
Pa th  beg ins  between p l a t e s  i f  cyl=O. 

I F  ( z d i r o  . g t .  0 . )  THEN 
The  p a r t i c l e  is  t r a v e l i n g  upward s o  it h i t s  t h e  p l a t e .  
z = a / 2 .  
Next it w i l l  be t r a v e l i n g  downward. 
z d i r  = -1. 
I F  (RAN(j) . g t .  s pec )  THEN 

The p a r t i c l e  makes a  d i f f u s i v e  r e f l e c t i o n .  
Find t h e  new s l o p e s .  
a l pha  - ASIN (RAN ( j )  ) 
b e t a  = 2. * 3.14159 * RAN(j) 
t a  = TANlalpha) 
mx = t a  * COS(beta1 
my = t a  * SIN(be ta )  

ELSE 
The p a r t i c l e  makes a s p e c u l a r  r e f l e c t i o n .  
F ind  t h e  new s l o p e s .  
mx = -mxo 
my = -my0 

END I F  
ELSE 

Makes a  m i r r o r  r e f l e c t i o n  o f f  of p l ane  z=0. Because of 
symmetry wi th  t h e  z-plane,  t h e  p a r t i c l e s  need on ly  
p ropaga te  i n  1 / 2  of t h e  nozz le  t o  g i v e  t h e  r e s u l t .  
F ind  t h e  new s l o p e s  and p o s i t i o n .  

- z  = 0. 
mx = -mxo 
my = -my0 
Now t h e  p a r t i c l e  w i l l  be  go ing  upward. 
z d i r  = 1. 

END I F  

u  - RAN(j) 
P r o t e c t  a g a i n s t  d i v i s i o n  by zero.  
I F  (u  . I t .  .0001) GOT0 103 
u  = larnbdap*LOG(l/u) 
p  = mx0**2 t my0**2 t 1. 
IF  ( p  * ( z  - z0)**2 . g t .  u**2) THEN 

C o l l i s i o n  has  occured be fo r e  reach ing  new p o i n t .  
F ind  t h e  new s l o p e s  and p o s i t i o n s  a t  t h e  p o i n t  of c o l l i s i o n .  
z  = zo t zdiro*u/SQRT(p) 
a l pha  - ACOS(RAN(j)) 
b e t a  = 2  * 3.14159 * RAN(j) 
t a  = TAN(a1pha) 
t a s b  = t a*SIN(be ta )  
P r o t e c t i o n  a g a i n s t  d i v i s i o n  by ze ro .  
I F  (ABSttasb) . I t .  .001) GOT0 104 
c b  = COS ( b e t a )  
s p  = SIN(phi)  
cp  = COS ( p h i )  
mx = ( s p  * t a  * c b  - cp )  / t a s b  
my = - ( c p  * t a  * cb  t sp )  / t a s b  
Decide which i s  t h e  new d i r e c t i o n  i n  z  f o r  t h e  p a r t i c l e  
t o  move. 
I F  ( b e t a  . I t .  3.14159) THEN 

z d i r  = 1 
ELSE 

z d i r  = -1 
END I F  
P a r t i c l e  i s  d i r e c t e d  toward t h e  e x i t  ho l e .  



I F  (RAN(j) . g t .  probp) THEN 
This  comparison dec ides  whether t h e  p a r t i c l e  should 
be d i s t r i b u t e d  i n  t h e  hemisphere poin ted  toward t h e  
e x i t  hole  o r  away from it. 
z d i r  = - zd i r  
P a r t i c l e  i s  d i r e c t e d  away from t h e  e x i t  hole .  

END I F  
END I F  

I F  ( (mxo*z+bx) **2 + (myo*z+by) **2 .It.  r**2) THEN 
Goes i n t o  cy l inde r .  Continues with o r i g i n a l  s lopes .  
z  = (-f - zdi ro*  SQRT(h)) / e 
c y l = l  meanes t h a t  t h e  p a r t i c l e  has gone i n t o  t h e  hole .  
c y l  = 1 
z d i r  = z d i r o  
mx = mxo 
my = my0 

END I F  

END I F  

End of t h e  s i n g l e  s t e p  propogation of t h e  p a r t i c l e .  ***** 

Exi t  cond i t i ons  f o r  p a r t i c l e .  
I F  ( z  . g t .  C + a  / 2. )  THEN 

P a r t i c l e  has l e f t  ou t  t h e  top  of t h e  hole .  
IF  ( z  . g t .  zdim * zper)  THEN 

It went t o o  f a r  ou t  hole ,  s t o p  it before  i t s  p o s i t i o n  i s  out  
of range f o r  t h e  a r r a y  den. 
z  = zdim * zper  

END I F  
Exi t  t o  g e t  onto t r a c k i n g  t h e  next p a r t i c l e .  
e x i t  = 1 
Keep t r a c k  of how many p a r t i c l e s  go out  t h e  hole .  
i = i + l  

ELSE I F  ((mxo*z+bx)**2 + (myo*z+by)**2 . g t .  L**2) THEN 
P a r t i c l e  has  gone r a d i a l l y  f a r t h e r  from t h e  c e n t e r  than  where 
it s t a r t e d .  Stop it a t  t h e  s t a r t i n g  p o s i t i o n  xA2+yn2=LA2. 
9  = bx**2 + by**2 - L**2 
h  = ABS(f**2 - e * g)  
z  = (-f + zdiro*SQRT(h)) /e 
Exi t  t o  g e t  onto t r a c k i n g  t h e  next p a r t i c l e .  
e x i t  = 1 

END IF  

XO'X 

Y o=Y 
Figure t h e  curent  p o s i t i o n  of t h e  p a r t i c l e .  
x = mxo*~  + bx 
y  = myo*z + by 

From here  t o  t h e  end of t h e  program loop, t h e  pa th  of t h e  
p a r t i c l e  i s  appropr i a t e ly  en t e red  i n t o  t h e  dens i ty  a r r ay .  

Ca lcu la t e  t h e  pa th  range over  z .  
Consider t h e  e n t i r e  t r a j e c t o r y .  
I F  (zo . I t .  z)  THEN 

Tra jec tory  i n c r e a s e s  i n  z .  
Ca lcu la t e  t h e  z-elements f o r  t h e  a r r a y  den wherein 
t h e  . p a r t i c l e  pa th  l ies.  



kmin = z o / z p e r  
kmax = z l z p e r  
I F  (kmax . I t .  z / z p e r )  THEN 

kmax = kmax + 1 
END I F  
zmin=zo 
zmaxo=z 

ELSE 
T r a j e c t o r y  d e c r e a s e s  i n  z .  
C a l c u l a t e  t h e  z-elements f o r  t h e  a r r a y  den wherein 
t h e  p a r t i c l e  p a t h  lies. 
kmin = z / z p e r  
kmax - z o / z p e r  
I F  (kmax .It. z o / z p e r )  THEN 

kmax = kmax + 1 
END I F  
zmin=z 
zmaxo=zo 

END I F  

I F  ( ( ( x * * 2  + y * * 2 ) / r * * 2  . g t .  1 . 0 1 )  . o r .  
+ ( (xo**2  + yo**2) / r**2  . g t .  1 . 0 1 ) )  THEN 

The p a r t i c l e  i s  between t h e  p l a t e s .  
I F  (zmin . I t .  z p e r )  THEN 

Only b e  conse rned  w i t h  t h e  p a r t  of  t h e  t r a j e c t o r y  
w i t h  z<zper .  
I F  (zmaxo . g t .  z p e r )  THEN 

zmaxo=zper 
kmax=l 

END I F  
ELSE 

S k i p  down t o  t h e  end of  p a r t i c l e  l o o p  s i n c e  t h e  
t r a j e c t o r y  does  n o t  i n t e r s e c t  t h e  d e n s i t y  a r r a y .  
GOT0 275 

END I F  
END I F  

F ind  t h e  v a l u e  of  z  where t h e  l i n e  is  c l o s e s t  t o  t h e  z - a x i s .  
z c l o s e = - f / e  
DO 250, k = kmin+l, kmax 

zmax and zmin s t a n d  f o r  t h e  ext reme v a l u e s  of z  w i t h i n  
t h e  g i v e n  e lement  k of  a r r a y  den.  
I F  ( k  . e q .  kmax) THEN 

zmaxo<>zper*k s i n c e  it may be  i n  t h e  middle  of  an  e lement  
of  a r r a y  d e n l .  
zmax=zmaxo 

ELSE 
zmax=zper* k 

END I F  

C a l c u l a t e  t h e  p a t h  range o v e r  r .  
F ind  p o s i t i o n s  w i t h i n  e lement  k of den  which a r e  c l o s e s t  and 
f a r t h e s t  from z - a x i s .  
I F  ( z c l o s e  . g t .  zmax) THEN 

The c l o s e s t  p o i n t  t o  t h e  z -ax i s  on t h e  l i n e  i s  above zmax 
s o  zmax i s  t h e  c l o s e s t  p o i n t  t o  t h e  z - a x i s  w i t h i n  e lement  k 
of a r r a y  den.  zmin i s  t h e  f u r t h e s t .  
Z C  = zmax 
zf  = zmin 

ELSE I F  ( z c l o s e  . I t .  zmin) THEN 
The c l o s e s t  p o i n t  t o  t h e  z -ax i s  on t h e  l i n e  i s  below zmin 
s o  zmin i s  t h e  c l o s e s t  p o i n t  t o  t h e  z -ax i s  w i t h i n  e lement  k 
of  a r r a y  den .  zmax i s  t h e  f u r t h e s t .  



zc = zmin 
zf = zmax 

ELSE 
The closest point to the z-axis on the line falls within 
within element k of array den. 
zc = zclose 
IF (zmax-zc .gt. zc-zmin) THEN 
zf = zmax 

ELSE 
zf = zmin 

END IF 
END IF 

Calculate the furthest and closest radii contained within 
the z-element k of array den. 
rf = SQRT((mxo*zf + bx)**2 + (myo*zf + by)**2) 
rc = SQRT((mxo*zc + bx)**2 + (myo*zc + by)**2) 
Figure the maximum and minimum r-elements q wherein the 
line passes. 
qmax = rf/rper 
IF (qmax .It. rf/rper) THEN 
qmax = qmax + 1 

END IF 
qmin = rc/rper 

Increment the density according to where the particle passed. 
-leno = 0. 
DO 200, q = qmin + 1, qmai 
Calculate difference of lengths inside 2 consecutive radii. 
g = bx**2 +by**2 - (rper*q)**2 
h = ABS(f**2 - e*g) 
zplus and zminus are the two intersections of the line 
with the radius rper*q. 
zplus = (-f + SQRT(h))/e 
IF (zplus .gt . zmax) THEN 
Chop off anything outside of z-element k of den. 
zplus = zmax 

END IF 
zminus = (-f - SQRT(h) )/e 
IF (zminus .It. zmin) THEN 
Chop off anything outside of z-element k of den. 
zminus = zmin 

END IF 
len = SQRT ( (mxo**2 + myo**2 + 1) * (zplus-zminus) **2) 
Here the element of array den is incremented by the length 
of the line segment passing through it. 
IF (q .le. 5 )  THEN 
denl (q, k) = denl (q, k) + len - leno 

ELSE 
den2 (q) = den2 (q) + len - leno 

ENDIF 
lenotlen 

CONTINUE 
Prepare to increment the element which has the next value of z. 
zmin = zmax 

CONTINUE 

ENDDO 
End of the loop for a single particle. 



P r o g r e s s  r e p o r t  t o  s c r e e n  and f i l e  e v e r y  t i m e  100 p a r t i c l e s  l e a v e .  
I F  ( ( i / 1 0 0 0  . eq .  i / 1 0 0 0 .  . o r .  i .eq .  num) .and.  i .ne .  i o )  THEN 

i o = i  
WRITE (*, * )  i 

W r i t e  t o  t h e  f i l e s  what has  been acomplished s o  f a r .  

Normalize t h e  d e n s i t y  m a t r i x  and d i v i d e  by t h e  r a d i u s .  
W e  d i v i d e  by t h e  r a d i u s  ( a c t u a l l y  t h e  d i f f e r e n c e  between 
t h e  s q u a r e s  of  2 c o n s e c u t i v e  r a d i i )  s i n c e  t h e r e  h a s  
been no d i s t i n c t i o n  made of t h e  az imutha l  a n g l e  when 
e lements  of a r r a y  den a r e  incremented.  

Write a l l  of  t h e  d a t a  t o  f i l e s .  
OPEN (20, FILE-' z f  i le '  , STATUS" unknown' ) 
OPEN (25, FILE=' a f  i l e '  , STATUS-' unknown' ) 
DO 400, k=l ,zdim 

Div ide  by t h e  normal and t h e  r a d i u s .  
d l  = d e n l  ( 1 , k )  /norm 
d2 = d e n l  (2,  k )  / (norm*3) 
d 3  = d e n l  (3 ,  k )  / (normf5) 
d4 = d e n l  ( 4 , k )  / (norm*7) 
d5 = d e n l  (5 ,  k )  / (norm*9) 
z = k*zper  
WRITE (20,300)  z, d l ,  d2, d3, d4, d5 

300 FORMAT ( 6  ( f 8 . 6 , ~ ~ )  
WRITE (25 ,* )  z, ( d l  + d2 + d3  + d4 + d5)  /5 .  

400 CONTINUE 
CLOSE (20)  
CLOSE (25) 
OPEN (30,  F I L E = ' r f i l e t ,  S~ATuS='unknown') 
DO 500, q=1,5 

WRITE (30 ,* )  q * r p e r , d e n l  ( q , l )  / (norm* (2*q - 1) ) 
500 CONTINUE 

Do 600, q=6,iL 
c Div ide  by t h e  normal and t h e  r a d i u s .  

WRITE (30, *)  q*rper ,den2  ( q )  / (norm* (2*q - 1) 
600 CONTINUE 

CLOSE (30)  
OPEN (50,  FILE=' nf i l e '  , STATUS=' unknown' 
WRITE (50, * )  ' P l a t e  Thickness  (c)  = ' , c  
WRITE (SO,*) ' P l a t e  Spacing ( a )  = ' , a  
WRITE (SO,*) 'Hole Diameter ( d )  = ' , d  
WRITE (50, * )  ' D i s t a n c e  from C e n t e r  t o  Known Dens i ty  (L) = ' , L 
WRITE (SO,*) 'MFP (Between P l a t e s )  = ' , lambdap 
WRITE (50, * )  'Skew R a t i o  (Between P l a t e s )  =' , probp/ (1. -probp) 
WRITE (50, * )  'MFP ( I n s i d e  Hole) - ', lambdah 
WRITE (50, * )  'Skew R a t i o  ( I n s i d e  Hole) =' , probh/ (1. -probh) 
WRITE (SO,*) ' P r o b a b i l i t y  of  Specu la r  R e f l e c t i o n  = ' , s p e c  
WRITE (SO,*) ' N u m b e r  of  E x i t i n g  P a r t i c l e s  = ', i 
WRITE (50, * )  'Throughput p r o b a b i l i t y  = ' , i / c o u n t  
WRITE (SO,*) ' E n t e r a n c e  Area (2*pi*L*a) = , 2*3.14159*L*a 
WRITE (SO,*) 
WRITE (SO,*) 'The t i m e  it t a k e s  f o r  t h e  backing p r e s s u r e  t o '  
WRITE (SO,*) ' d r o p  by a f a c t o r  of  2 i s  g iven  by, '  
WRITE (SO,*) 
WRITE (50, * ) ' 4ln2 (Backing Volume) / [ (En te rance  Area) (mfv) ' 
WRITE (50, * )  ' (Throughput p r o b a b i l i t y )  I ' 
CLOSE (50)  

ENDIF 



C 

C 

ENDDO 
c End of program loop. 
C 

STOP 
END 

C 
REAL FUNCTION RAN ( idum) 

c This subroutine is taken from Numerical Recipes sec. 7.1. 
c Returns a uniform random deviate between 0.0 and 1.0. Set 
c idum to any negative value to initialize or reinitialize the 
c sequence. 

REAL rm 
INTEGER m, ia,ic, j, iff, iy, ir(97) 
PARAMETER (m-714025, ias1366, ic=150889, rm-1. /m) 
DATA iff /0/ 
IF (idum.lt.O.or.iff.eq.0) THEN 
iff-1 
idum-MOD (ic-idum, m) 
DO 14, j=1,97 
idumwod (ia*idum+ic, m) 
ir( j) -idum 

CONTINUE 
i d m o d  (ia*idum+ic,m) 
iy-idum 

ENDIF 
j=1+ (97*iy) /m 
IF (j.gt.97.or.j.lt.l) PAUSE 
iy=ir ( j) 
ran-i y * rm 
i d m o d  (ia*idum+ic,m) 
ir (j) =idum 
RETURN 
END 



APPENDIX B 

HARMONIC EMISSION FROM A FOCUSED LASER CALCULATED 

FROM A SIMPLE POWER LAW 

For low field intensities, the production of the q& harmonic depends on the qh 

power of the laser field intensity. As the laser field increases and we enter the plateau 

regime, the qh harmonic is created with an effective dependence on the laser field 

which is of much lower order. This section investigates the properties of the far-field 

emission pattern under this scenario. To simplify the problem, the emission of the qh 

harmonic is assumed to follow a power law of order p where pcq. This will provide a 

general idea of how the emission dependence in the plateau region effects the harmonic 

far-field profiles. L'Huillier, et al., did calculations based on this model to study the 

harmonic field strengths inside the interaction region.13 However, they did not 

calculate the far-field harmonic profiles, which is calculated here. 

If the dipole emission for the qh harmonic is proportional to the laser field 

strength to the fl power, then Eq. (5.3.8) becomes 

xexp{-iAkz' + ik, p2z'/2z2 + iqa(p',z')} + C.C. (B.l) 

The atomic distribution N,(z') is assumed to be independent of radius. The possibility 

of ionization is not considered, so the integration is free of any temporal dependence. 

Note that the phase of the dipole for this model is independent of the laser field 

strength. Substitution of Eq. (5.3.3) into Eq. (B.l) gives the more explicit form 



The radial integration of Eq. (B.2) can be performed analytically with the formula1 

DO 

e -p2/4a 
p'dp'e-q'2 J, (pp') = (Re a > 0). 

2 a  

The result of the integration gives for the second line of Eq. (B.2) the following: 

where q = 

Eq. (B.3) is now reduced to a 1-dimensional integral. Before inserting Eqs. (B.4) and 

(B.5) into Eq. (B.3), it is convenient to make a variable change as defined by 

Then Eq. (B.3) becomes 



where 1 = 1 cos2 u +  q p sin u .  /.I ( 2l 2, 

The integration of Eq. (B.7) must be performed numerically. The reason for the 

change from z' to u is that it improves the computational efficiency by making each 

numeric segment of the integration (change in u) of approximately equal importance to 

the final answer. p/z has been replaced by sine 8. The values of ul and u2 are 

respectively tan-l(zl/zo) and tan-l(z2/z,). In the case of p=q (lowest order 

perturbation), q = 1 and all terms involving 8 in Eq. (B.7) are able to be brought out in 

front of the integral. The angular dependence of the harmonic has the form 

exp (-q(28f#)2). From Eqs. (5.3.1) and (5.3.3), the far-field angular profile of the 

laser beam has the form exp(-(28f#)2). Thus, for perturbation theory the qh harmonic 

angular profile is a gaussian which is 4 times narrower than the emerging gaussian 

laser field. A remarkable feature of the perturbative case is that the far-field harmonic 

profile is independent of the thickness of the gas distribution. The atomic distribution 

only effects the strength of the harmonic emission, but not the far-field angular 

distribution. 

Of particular interest is the case where p<q since this is the situation for the 

harmonic plateau. For this general case where p does not necessarily equal q, the far- 

field angular profile can be understood analytically for a very thin gas target (f=z2- 

zl<<b) in two limits: the target positioned at the focus (u=O), and the target positioned 



far outside the Rayleigh range (u-~12). In the two limits, q can be approximated as 1 

or p/q respectively. In either case, the gaussian term containing 8 can be brought out in 

front of the integral. Its width is q/fi times narrower than the laser profde for the 

case where the target is positioned at the focus and fi times narrower than the laser 

profile for the case where the target is positioned far outside the Rayleigh range. For 

target positions ranging between the two limits, the thin target approximation yields 

gaussian profiles with widths that lie somewhere between the two limits. 

Fig. B.l shows the square modulus of the integral of Eq. (B.7) for the 25h 

harmonic generated in a thin target (L=bllO) as a function of target position relative to 

the focus. b is the confocal parameter which is equal to 220, and p is taken to be 5. The 

terms in front of the integral are ignored. The target thickness L=bllO is approximately 

the thickness used in the experiments of this thesis. The dashed line is the laser profile 

(lIe2 radius at 28fX=1), the dot-dashed line is a distribution which is fi times 

narrower than the laser, and the dotted line is a distribution which is q/fi times 

narrower than the laser. Subsequent graphs will also show these reference lines. As 

the target position moves away from the focus, the width of the far-field profile varies 

between the two limits discussed above. The fact that the far-field profiles are very 

nearly gaussian shows that a target thickness of b110 is thin enough that the harmonics 

can be thought of as being generated in a single plane. 

The thin gas target approximation holds near the focus (z=0) as long as q-1, or 

in other words as long as (ql/pb)2<<1. For the parameters of Fig. B.l (q=25, p=5, 

L=bllO), qLlpb is equal to 0.5 which marginally satisfies the condition. As either q or 

L increases, the condition fails and the far-field angular profile is no longer a gaussian. 

Fig. B.2 shows the far-field patterns for different harmonic orders for a thin target 

(L=bllO) positioned at the laser focus. p is chosen to be 5. The thin target 

approximation breaks down as q gets very large. In accordance with the previous 



estimate, the thin target approximation holds for q=15 but begins to deviate for q=31. 

The cases for q=63 and q=125 are repeated in Fig. B.2 with a magnified scale so that 

the non-gaussian structure can be clearly seen. It is important to note that for higher 

values of q, as the structure becomes more complex, it does not significantly broaden. 

In other words, a broad far-field pattern does not come about simply because q is very 

large, but may come about when the harmonics are created in a region away from the 

focus as sten in Fig. B.1. As the thin target approximation breaks down, the far-field 

angular profile, though it may become complicated, still obeys the simple rule 

illustrated in Fig. B.1. That is, when the harmonics are created away form the laser 

focus, either because the target is thick or positioned off center, the angular profile, 

whether gaussian or more complicated, is bounded by a gaussian curve that is f i  
times narrower than the laser profile. 

Fig. B.3 shows what happens as a gas target positioned at the laser focus 

becomes thicker. A broader and more complicated far-field profile is the result . Even 

so, in the most extreme case the curve is no wider than a gaussian which is f i  times 

narrower than the laser profile. While the complexity of the far-field pattern can be 

influenced by several parameters, it is again apparent that the overall width is 

determined almost exclusively by the width (or position) of the gas target relative to the 

confocal parameter. 



Fig. B.l The far-field profile (square modulus of the integral in Eq. (B.7)) for a 

thin target, P=bllO, for several target positions (solid line). The dashed line is 

the laser profile, the dotted line is the laser profile to the $ power, and the dot- 

dashed line is the laser profile to the p*/q power. For all figures, q=25, p=5, 

and k = O .  



28f # 28f # 

Fig. B.2 The far-field profile (square modulus of the integral in Eq. (B.7)) for a 

thin target, P=bllO, for several values of q (solid line). The dashed line is the 

laser profile, the dotted line is the laser profile to the p2/q power. For all figures 

p=5 and Ak=O, and the target is positioned at the origin z=0. The cases for 

q=63 and q=125 are shown twice using different scales so that the structure is 

more apparent. 



Fig. B.3 The far-field profile (square modulus of the integral in Eq. (B.7)), for 

several target thicknesses (solid line). The dashed line is the laser profile, the 

dotted line is the laser profile to the pth power, and the dot-dashed line is the 

laser profile to the p2/q power. For all figures q=31, p=5 and Ak=O, and the 

target is positioned at the origin z=0. 



L'Huillier and co-workers192 were the first to investigate the phase-matching 

effect of harmonic production by the simple power law studied in this appendix (qh 

harmonic generated as the fl power of the laser). Their calculations investigated the 

harmonic fields in the region of the laser focus. They did not investigate the far-field 

profiles. They demonstrated how rather complicated and broad structures can be 

induced by this model inside the interaction region. Fig. B.4 shows their calculations 

of the electric field distribution within the interaction region for various values of q and 

p [Ref. 2, Fig. 121. The broad structure in the focus does not necessarily translate into 

a broad structure in the far-field pattern. In fact, if the gas target is thin relative to the 

confocal parameter, the converse is true. However, the experimental setup used by 

L'Huillier et al. employed a relatively thick gas target, l=b/2. The pictures in Fig. B.4 

were generated for this target thickness. Complicated and somewhat broad far-field 

patterns can result in this case. Fig. B.5 shows the far-field angular profiles calculated 

for these conditions. Even in this case the structure is narrower than the laser profile. 

Fig. B.6 shows the far-field angular profiles calculated for these same 

parameters except the target thickness is l=b/lO, the thickness used for the experiments 

presented in this thesis. In all cases, the far-field profiles are almost identical to the 

laser profile raised to the p2/q power as expected from a thin target. As is evident, the 

far-field pattern has very narrow structure relative to the laser beam. Thus, this model 

cannot explain the broad wings observed in the experiments presented in this thesis. 

The conclusion of this investigation is that the broad wings must come from some other 

mechanism besides the geometry of this power law. 



Fig. B.4 The modulus of the harmonic elecmc field dismbution in the laser focus 

for various values of q and p: (a) q=7, p=5, (b) q=13, p=5, (c) q=21, p=5, (d) 

q=13, p=2, (e) q=13, p=8, (f) q=13, p=5, Akz, z 2. The dipole medium is 

centered at the laser focus and has a thickness L z b/2. [reproduced from Ref. 

3, Fig. 121 



Fig. B.5 The far-field profile (square modulus of the integral in Eq. (B.7)) for the 

same conditions as used to generate Fig. B.4 (1=b/2). The dashed line is the 

laser profile. 



Fig. B.6 The far-field profile (square modulus of the integral in Eq. (B.7)) for the 

same conditions as were used to generate Fig. B.4 except that the gas 

distribution is taken as C=b/lO, the thickness used for the experiments in this 

thesis. The dashed line is the laser profile. 
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APPENDIX C 

THE EFFECT OF IONIZATION ON THE HARMONIC FAR-FIELD 

ANGULAR PATTERN 

This appendix shows the details of a model used to explore the effects of 

ionization on the harmonic far-field profiles. As expected, the results show that for the 

experimental conditions of this thesis, ionization does not strongly influence the far- 

field profiles. Calculations based on the formulas derived in this appendix conclusively 

eliminated the possibility that ionization causes the broad wings observed. 

The ionization rate is assumed to follow a simple intensity power law of order 

n. The probability that at a given time an atom has ionized is 

2n dt' 

where T~ is chosen to give physical significance to Es. T~ is chosen so that 

2x1 dt' I ' S  -T = ( ~ 0 1 ~ s ) ~ "  

where E, is understood to be the peak value of the field in the focus. Thus, Es is the 

saturation field strength. That is, when the peak value of the field E, equals Es, the 

term in the exponent of Eq.(C.l) becomes -1 after the pulse is ended. This marks the 

point where the exponent can no longer be represented by its two leading expansion 

terms. When Eo is below Es, the exponent can be reasonably represented by its first 

two expansion terms. When Eo is less than Es, then at the end of the pulse 

P(=) n (E,/E,)~'. When Eo is greater than Es, then at the end of the pulse P(=) n 1. 



Thus, Es is a field strength value which marks the onset of  strong ionization. It is 

known as the saturation field. Es depends on the temporal shape and duration of the 

pulse. 

The laser pulse temporal envelope is assumed to be a gaussian, which can be 

written as 

Recall that r = dw. For the gaussian laser pulse defined by Eqs. (5.3.1) and 

(5.3.3), the probability of ionization at a temporal and spatial point within the beam is 

T~ has been entered explicitly as z2/-. If the transfoxmarion defined by Eq. (C.6) is 

used along with the transfoxmation defmed by 

s(p') = exp { -- wfi:/)} * ds =-- 
w2 (r') 

then Eq. (C.4) can be written as 

~ ( u ,  s, t ) = 1 - exp (C.6) 



Using the transformations defined in Eqs. (C.6) and (C.5) and the model outlined in 

Appendix B, and assuming the ionization rate described in Eq. (C.6). the phase- 

matching integral defined by Eqs. (5.3.8) and (5.3.9) becomes 

1 

x j  ds s p-1 eiqln(l/s) tan u [l - ~ ( u ,  s, t)] exp 

0 

The integration of Eq. (C.7) must be performed numerically. The reason for the 

change from (p',z8) to (u,s) is that it improves the computational efficiency by making 

each numeric segment of the integration of approximately equal importance to the final 

answer. An additional reason for this choice of variables lies in the fact that for fixed s, 

a change in u follows a path which is perpendicular to the laser wavefront. The integral 

in the exponent on the second line of (C.7) describes the dephasing of a point on the 

laser wavefront due to its having passed through free electrons. With fixed s rather 

than futed p', the integration follows the contour of the laser beam. 

As the atoms ionize, the number of dipole radiators decreases. The term 1-P on 

the second line of Eq. (C.7) accounts for this effect. The many other terms in integral 

of Eq. (C.7) are the various phase-matching components that arise from the interplay 

between the gaussian laser focus and the model chosen. If terms describing ionization 

were not present, the integral over s could be performed analytically and Eq. (C.7) 

would be obtained. 



Eq. (C.7) was computed numerically to see how the inclusion of ionization 

affects the harmonic far-field pattern. Since there is a temporal dependence inside the 

integral, the far-field pattern will evolve in time. In the experiments, we observe the 

total energy deposited during the entire pulse as a function of angle. Thus, the profile 

of interest is that of the time-integrated energy, 

Fig. C.l shows far-field patterns calculated by (C.8) together with (C.7) for 

peak fields below and above the saturation field Es (indicated in terms I,, the intensity 

which corresponds to E,). All of the constants in front of the integrals have been left 

off. The electron-induced phase mismatch is calculated for the typical experimental 

pressure of 1 Torr. For the pictures involving the higher intensities, the atoms at the 

center of the focus are strongly depleted during the pulse pulse. As this occurs, the far- 

field pattern narrows somewhat, and small wings appear. This effect is due primarily 

to the diffraction caused from the absence of harmonic generation in the center of the 

interaction region and not to the phase-mismatch induced by the free electrons. 



Fig. C.l The far-field pattern calculated by Eqs. (C.7) and (C.8) for peak laser 

intensities below and above the ionization saturation intensity Is. For this 

calculation, q=25, p=5 and L=bllO. The gas density was taken at 1 Torr. The 

far-field pattern shows the cumulative energy over time which includes the 

effects of the evolution of the ionization. 



APPENDIX D 

ANALYSIS OF AN ANHARMONIC OSCILLATOR 

This appendix develops an analytical approximation for the motion a strongly 

driven anharmonic oscillator. The analysis shows the underlying behavior responsible 

for the creation of a high-harmonic plateau. The equation which we are interested in 

solving is the following: 

With some manipulation, Eq. (D.l) can be recast into the form, 

where 

ax x'=- and f=-F a-3 
("L 2 0 ~  

A harmonic expansion can be introduced under the assumption that only harmonics of 

the driving frequency are important to the oscillator motion. 

This expansion can be inserted into Eq. (D.3) to give 



The complex conjugate of Eq. (D.5) yields precisely the same equation in a*-q. 

Therefore, 

Eq. (D.4), when combined with with Eq. (D.6), reveals that x' can be written as 

When Eq. (D.7) is combined with Eq. (D.3), the oscillator motion is seen to be 

The difficulty in solving Eq. (D.5) lies in the last term. If it were missing, the equation 

would reduce to the simple harmonic oscillator which could be trivially solved. Some 

progress can be made by rearranging the last term of Eq. (D.5) in the following 

manner. 



Eq. (D.9) shows that frequencies of orders r,p,s mix together to create a new frequency 

of order r+p+s. If r,p,s are all odd numbers, then their sum is also odd. Since the 

fundamental frequency is referenced by the odd integer 1, it is seen that all harmonics 

will be of odd order for this model. 

Further manipulation to Eq. (D.9) can be made by setting s=q-r-p and then 

summing over q. This allows Eq. (D.9) to be put into the form 

(D. 10) 

where 

(D. 11) 

A substitution of Eq. (D.lO) into Eq. (D.5) yields 

(D.12) 

The complicated mixture of all aq's in the cq terms makes Eq. (D.12) impossible to 

solve. To proceed further it is necessary to make approximations. 

Significant progress can be made under the assumption that the fundamental 

frequency term a1 is much larger than any other. That is, the most important 

conmbutions to each harmonic term cq involve the strongest available mixings with al. 

This is a kind of perturbative assumption similar to treatments given in many nonlinear 

optics texts.1-3 However, this treatment is more general because it allows higher 



harmonics to influence lower-order ones. As will be seen, this leads to the creation of a 

harmonic plateau. The cq of Eq. (D. 1 1) under our assumption simplify to 

2 2 2 
c1 = 3allalJ + 3a3a*, , c3 = a: + 6a31all + 3a5a*: . 

2 2 2 c,,~ = 3aq_2al + 6aq(a11 + 3aqc2a*l. (D. 13) 

Eq. (D.6) was employed to arrive at Eq. (D.13). With the approximations of Eq. 

(D. 13), Eq. (D. 12) in the cases of q=2 and q=3 can be written as 

2 f - ~ a ,  a3 2 al /3 + K ~ S  
al = and a3 = -al , 0 1 4 )  

ot/ot + lal? - 1 + i r / o L  o, /ot + 21al 12 - 32 + i3 r /oL 

where K = a*:/a:. For q>3 the relationship is 

where 

If for some high q, aq tends to zero, then Eq. (D.15) yields the relationship 

aq = -Sqaq-2 

where Sq is obtained from the recursion formula 

(D. 15) 

(D. 16) 

(D. 17) 

(D. 18) 



Eq. @. 18) is initialized with Sq,, = 0 In the case of a resonance at q-2 (Lq-2 = w), 

Eq. (D. 18) shows that Sq-2 = -l/Sq. 

To find the solution to Eqs. (D.14)-@.IS), a1 must first be found. For a given 

f, this is difficult to do. A much better approach is to choose a1 and then find what f 

corresponds to it. Thus, it is convenient to rewrite the relationship for a, in Eq. (D. 14) 

to read 

(D. 19) 

where the phase of a, is chosen to make f real and positive. 

In general Eq. (D.19) gives a complex value for f except for specific choices of 

al. However, we are interested in solutions where f is real and positive. This does not 

present a problem because symmetry requires that the relative phase between f and a1 

be fixed for a given field strength. Thus, after solving Eqs. (D. 14)-(D.19) for a given 

a1 with arbitrary phase, the equations can be solved a second time for a1 multiplied by 

Ifllf, and the solution where f is real is obtained Solving the equations the second time 

is unnecessary because the new solution is related to the old one in the following simple 

matter 

This can be seen from Eqs. (D. 14)-(D. 16). For example, from the first relationship in 

Eq. (D.14), a shift in the phase of a, and f requires 3 times the shift in the phase of a,. 



In summary, the solution procedure is the following: First a1 is chosen, and 

Eqs. (D.16) and (D.18) are used to find all Sq from some very high q where Sq s 0 

down to and including S3. Then a3=S3al/3, and all aq>3 are found from Eq. (D.17). 

Eq. (D. 19) is used to find f, and all aq are adjusted using Eq. (D.20). f is then replaced 

by Ifl. Fig. D.l (a) shows laql plotted for several q as a function off .  For this plot, 

o,/o,=lO, and T/oL=O.Ol. As the field strength increases, the development of a 

plateau is evident. Fig. D.l (b) shows Re(aq) plotted over the same range on a linear 

scale. In the range of the plateau, the harmonic oscillation phases vary strongly with 

the driving field strength. It should be pointed out that when T=O, aq is real and the 

phase variation manifests itself as a sign change. 

In the low-intensity limit, the coupled set of equations (D.14)-(D.17) reduces to 

lowest-order perturbation theory. If the conditions a,>>a3 and aq@>aq (qL5) are met, 

then the set of equations can be written as 

(D.21) 

The equations can be successively solved beginning with the first. As an example, a3 

from Eq. (D.21) is found to be 

It is readily seen that a, = f q  which is the familiar penurbative power law. This 

behavior can be seen at low field strengths in Fig. D.l (a). 



Fig. D.l (a) The absolute value of the harmonic components of motion for an 

anharmonic oscillator as a function of the driving field [see Eqs. (D.l), @.3), 

and (D.8)]. For this log-log plot, o d ~ = l 0 ,  and T/%=O.Ol. 



Fig. D. 1 (b) The real part of the harmonic component plotted on a linear scale (same 

conditions as in Fig. D. 1 (a)). 
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