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ABSTRACT 

The energy and angular distribution of electrons ionized from neon and 

subsequently ejected from a high-intensity optical-frequency laser focus has been 

measured. The effects of the ionized electrons' interaction with high-intensity optical- 

frequency radiation are the focus of these studies. 

An electron in a relatively low-intensity optical-frequency (ha - 1 eV) plane 

wave oscillates at the field frequency about a constant average position. The 

acceleration of the electron during the oscillations causes the electron to radiate at the 

field frequency in a dipole radiation pattern. This scattering process, known as 

Thomson scattering in low-frequency fields (ha << mc2, where mc2 is the electron's 

rest energy of 51 1 keV), becomes Compton scattering as electron recoil becomes 

important at higher frequencies (ha - mc2 or greater). 

If spatial variations are present in the incident field, the average position of the 

electron migrates from high- to low-intensity regions. The motion of the electron's 

average position is the same as the motion of a particle in an effective 

ccponderomotive" potential. Following ionization in a Gaussian laser focus, the force 

resulting from the ponderomotive potential causes electron ejection at 90' with respect 

to the laser I; if the intensity is relatively low. 



At high field intensities, the standard description of Thomson scattering in an 

optical-frequency field breaks down. As an electron's motion becomes relativistic, 

Compton-like effects cause the electron to drift in the I;-direction or recoil. This 

"high-intensity Compton scattering" results in electron ejection at an angle less than 

90" from I;. 

The experiments described in this thesis show a transition from the Thomson 

regime to the high-intensity Compton scattering regime at high laser intensities. 

Electrons interacting with relatively low laser intensities are observed at approximately 

90" from E,  as expected. Electrons interacting with high laser intensities are ejected 

with a significant component of momentum in the I;-direction (25% of total 

momentum or 75" from t). The observed ejection angles are in excellent agreement 

with the predictions of high-intensity Compton scattering. 
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Chapter 1 
Introduction 

The scattering of electromagnetic radiation from electrons has historically been 

divided into the low-frequency (Ao << mc' ) Thomson scattering and the high- 

frequency ( Ao >> mc2 ) Compton scattering regimes. 

In Thomson scattering, a classical electric field accelerates an electron via the 

nonrelativistic Lorentz force equation, 

mb = -eE(f,t)= ~ i ~ o c o ( C . ~ - w t ) ,  (1.1) 

where m and e are the electron's charge and mass respectively, Gi, is the polarization 

state of the scattered radiation, and the dot represents differentiation with respect to 

time. The radiation distribution from this charged particle acceleration is described by 

the Thomson scattering cross-section, 1 

where Go, is the polarization state of the scattered radiation and * denotes the 

complex conjugate. The absence of the O x B magnetic field term from (1.1) means 

the electron suffers no recoil in the I; direction. 
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Figure 1.1 : A high-frequency photon ( h a  - mc2 or greater) scatters from an 
electron via Compton scattering. The photon's high frequency and corresponding 
large momentum requires the electron recoil to conserve energy and momentum 
following the scattering. 

Compton scattering is said to take place when the frequency of the radiation 

field is high enough to make the electron velocity near-relativistic. Then the G x fi 

term must be included in (1.1) and the electron does experience recoil in the 

direction. It is more common to adopt a particle picture for the high-frequency 

Compton photon (see Figure 1.1) and to use quantum field theory to describe the 

interaction. The scattering cross-section is given by the Klein-Nishina formula,' 

where 0 is the angle between the incident (L) and scattered (Ed) photon wave 

vectors and but/ki, is given by the Compton formula 
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The factor k&ki, is a kinematical factor required to conserve energy and momentum 

when the electron recoils. The second term on the right side of equation (1.3) results 

from scattering by the electron's magnetic moment. The Compton scattering cross 

section obviously reduces to the Thomson scattering cross-section for low-energy 

photons ( Ao << mc2 ). 

An optical photon's low-energy (-1 eV) compared to the electron's rest 

energy (5 11 keV) normally allows a Thomson scattering description of the interaction. 

However, there exist at least two situations at optical frequencies where the Thomson 

scattering description is insufficient and the electron's recoil due to Compton-like 

effects must be considered. 

The first is the scattering of particles from a standing light wave. This is 

known as the Kapitza-Dirac effeet.2 A standing light wave consists of two counter- 

propagating traveling waves. Virtual absorption of one traveling wave's photons by a 

particle and stimulated emission into the counter-propagating wave causes a net 

momentum transfer to the particle of 2nAc, where 1; is the wave vector of the 

traveling wave and n is an integer that represents the possibility of multiple photon 

scatterings. Particles incident on a standing wave therefore gain even-integer multiples 

of the photon momentum and scatter from the standing wave (see Figure 1.2). Early 

attempts to observe the Kapitza-Dirac effect with electrons were inconcl~sive.'-~ 

Reproducible observations were first obtained using atoms.677 The recent availability 



of low-energy electron beams, obtained by multiphoton ionization, has permitted a 

corresponding experiment with electrons. 8 

The second situation in 

which electron recoil is 

significant at optical frequencies 

is so-called high-intensity 

Compton ~ c a t t e r i n ~ . ~ - ' ~  High- 

intensity Compton scattering 

occurs when the electron's 

motion becomes relativistic and 

the V xg term in the Lorentz 

force must be considered. The 

V x 6 term causes the electron 

Figure 1.2: The Kapitza-Dirac effect. A particle 
with initial momentum Po is incident on a standing 
light wave. Virtual absorption and stimulated 
emission of photons between the counter- 
propagating traveling waves of the standing wave 
causes a momentum transfer to the particle in units 
of uti; . 

i 

to drift in the k direction (what will sometimes be called the longitudinal direction). 

The electron's longitudinal motion in an ultra-high-intensity optical field will be shown 

to be analogous to the Compton scattering recoil of an electron by a high-frequency 

photon in chapter 2. 

High-intensity Compton scattering only results from single electron 

interactions with the field. Interaction of the electron with other particles in the 

presence of the field obviously destroys the simple picture of a free electron oscillating 
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in an electromagnetic field. The density of electrons and other particles must therefore 

be low enough to ensure the electron interacts with no other particles during its 

interaction with the photons. This was the case in the experiments described in this 

thesis. 

Brown and ~ i b b l e ~  predicted that an electron's longitudinal drift in a high- 

intensity field will result in a Doppler shift or an intensity-dependent frequency shift in 

the scattered radiation. Many papers were published on high-intensity Compton 

9-16 scattering, and an experiment was proposed13 to observe the frequency shift. To 

this author's knowledge, the frequency shift and drift were never experimentally 

observed. 

The first measurements of longitudinal electron drift due to high-intensity 

scattering at optical wavelengths are presented in this thesis. Observation of the drift 

confirms the existence of electron recoil due to high-intensity scattering. The 

frequency shift in the scattered radiation has not been observed. To understand how 

this drift manifests itself in a high-intensity laser focus, we must first discuss the 

ponderomotive potential. 

The ponderomotive potential is an effective potential experienced by charged 

particles in an electromagnetic field with a spatially varying intensity distribution. 

Spatial variation ofthe field causes a migration of charged particles from high- to low- 
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intensity regions. The motion of a particle's average position is described by the 

equation of motion, 

4 

m i  = -VaP 

where Qp is the ponderomotive potential, given by 

Here (e2) is the time-averaged square of the electric field and I = o(G2)/4rr is the 

field intensity. Clearly, mP is only dependent on the spatial distribution of the 

intensity. As a result, the average motion of the charged particle is independent of 

field polarization. An example of an electron scattering from the ponderomotive 

potential is shown in Figure 1.3. Boot and H a ~ e  discovered the ponderomotive 

17,18 potential in 1957 when they theoretically predicted and confirmed its effects in 10- 

Figure 1.3: An electron travels towards the center of a laser beam with a Gaussian 
intensity profile. The intensity distribution in a plane perpendicular to the field's 



cm radiation in a magnetron.I7 Further theoretical developments and understanding of 

the ponderomotive potential were given by Kibble and others. 19-22 

The h2 wavelength dependence of the ponderomotive potential causes long- 

wavelength fields to exhibit stronger ponderomotive potentials than short-wavelength 

fields of the same intensity. For example, the 10-cm field used by Boot and Harvie 

had a ponderomotive potential 10" times larger than a 1-micron field of the same 

intensity. The recent availability of high-intensity lasers allows the observation of 

ponderomotive potential effects at optical wavelengths. 23-30 

Bucksbaum et ale2' conducted the first experiment that observed the scattering 

of a low-density electron beam from the focus of an intense optical laser pulse. 

Electrons were scattered away from the intense regions at the center of the laser focus 

due to the effects of the ponderomotive potential. This experiment also showed the 

interesting effect of electrons gaining (or losing) energy by ccsurfing77 on the leading (or 

trailing) temporal edges of the laser pulse. This confirmed a prediction by Kibble that 

the ponderomotive potential can act inelastically and transfer energy between the field 

and the electron in time-dependent pulses, as with any time-dependent potential. 

The electrons investigated in the experiments described in this thesis were 

produced by ionization of Neon in a high-intensity laser focus. In 1989, Corkum et 

a?' examined the energy distribution of electrons ionized from xenon with a 2.5 ps 
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2 pulse length CO2 laser at approximately 1014 Wlcm (a,, = 1 keV). A large focal 

spot was used to ensure that the ponderomotive potential did not accelerate the 

electrons. This lack of ponderomotive acceleration was caused by the combination of 

a large focal spot with a short pulse. In this case, the electron had insufficient time to 

"roll down" the ponderomotive potential before the pulse was past (see section 3.4). 

In both linear and circular polarization, the observed energy distributions were in good 

agreement with theoretical calculations of the energy of an electron born at rest in the 

field. 

In our experiments, electrons are ionized from low-density Neon gas in an 

optical wavelength (fio = l e v )  Gaussian laser focus with a peak intensity of 

I 2 1018 w/cm2. The electrons are born approximately at rest3' and the force on the 

electrons, resulting from the ponderomotive potential, is proportional to the gradient 

of the intensity. This force is symmetric about 90" to for a Gaussian focus. 

However, the derivation of the ponderomotive potential does not include the effects of 

high-intensity Compton scattering. High-intensity Compton scattering results in a 

component of the electrons7 momentum in the direction of or the longitudinal 

direction. 

Our observations (see Figure 1.4) show a significant longitudinal component of 

electron momentum (25% of total momentum) for electrons ejected with high kinetic 

energies (84 keV) and relativistic velocities ( Vpeak = 0.66~).  The observed 
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longitudinal momentum agrees well with the predictions of high-intensity Compton 

scattering (solid line in Figure 1.4). 

10 20 30 40 50 60 70 80 90 100 

Energy of electrons (in keV) 

Figure 1.4: The kinetic energy of electrons versus their angle from following 
ejection fiom the laser focus. A forward component of the electrons' momentum that 
'pushes" the electrons toward t is evident. The observed forward component of 

1.1 Outline 

Chapter 2 derives the relativistic trajectory of an electron in an arbitrary- 

intensity plane wave. An electron is seen to develop a drift in the direction of I; at 

high intensities. This drift is shown to be the result of the absorption of momentum 

fiom the laser field and is consistent with high-intensity Compton scattering. 

Chapter 3 incorporates the plane-wave results derived in Chapter 2 into 

predictions for a laser focus with spatial and temporal variations. The ponderomotive 
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potential is derived in the non-relativistic limit. The temporal variation of our laser 

pulse is shown to have little impact on the experiments presented in this thesis. The 

high-intensity Compton scattering correction to the ponderomotive potential is 

addressed. 

Chapter 4 discusses a &lly relativistic Monte Carlo simulation of electron 

dynamics in the laser focus. The angular distribution is seen to deviate from the 

ponderomotive potential predictions due to high-intensity Compton effects. The high- 

intensity Compton scattering correction to the ponderomotive potential discussed in 

Chapter 3 accurately describes the l l l y  relativistic predictions. 

Chapter 5 describes the laser and the experimental setup of the magnetic 

spectrometer used for the detection of the electrons. The angular resolving 

capabilities of this spectrometer allow the measurement of the angular distribution of 

the electrons relative to i ,  and the corresponding axial component of the electron's 

momentum. 

Chapter 6 discusses the electrons' energy and angular distributions obtained in 

our experiments. The theoretical predictions of the electrons' energies and ejection 

angles are in good agreement with the experimental observations. 

The conclusions are presented in Chapter 7. 

Appendix A is a printout of the Monte Carlo simulation computer code used to 

calculate the trajectories of electrons ionized from the various charge states of noble 



gases. Appendix B shows the schematics of the magnetic spectrometer used for 

detection of the electrons in the experiment. Appendix C is a printout of the computer 

code used to calculate the electron trajectories through the magnetic spectrometer. 

Appendix D gives the measured electron energy spectra of the electrons ionized fkom 

Neon and subsequently ejected fkom the laser focus. These nine energy spectra at 

different angles from the laser i; were used to determine the angular distributions of 

the various charge states relative to i ; .  The angular distributions appear in 

Appendix E. 
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Chapter 2 
Electron dynamics in an arbitrary-intensity plane wave 

A free electron oscillating in an arbitrary-intensity electromagnetic field has an 

average quiver energy, 

where m and e are the electron's rest mass and charge respectively, c is the speed of 

light in vacuum, is the vector potential, and the brackets denote averaging over one 

cycle of the field. Another usehl parameter in high-field interactions with electrons is 

the quiver velocity, v,,. By this one means the electron's peak velocity in an 

electromagnetic field (ignoring relativistic effects), 

where A. is the peak vector potential of the field. 

2 When a,,-mc or vo,-c, an electron's trajectory must be calculated 

relativistically. An exact analytic solution of the relativistic equation of motion of an 

electron in an electromagnetic field is possible only in the simplest fields. This chapter 
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will find the relativistic trajectory of an electron using the simplest case of all, a plane 

wave. 

2.1 Electron 's equation of motion in a high-intensity plane wave 

Some of the many theoretical investigations of the behavior of electrons in 

intense fields are given in references 1-18. The relativistic equation of motion of an 

electron born at rest in a plane wave will be found here using the Hamilton-Jacobi 

technique. 11,13,19 The following derivation differs fiom Sarachik and Schappert's 

derivation13 by the assumption of an electron born at rest in an already intense field 

(Sarachik and Schappert assumed an electron at rest in the absence of any field and 

subsequent interaction with a pulsed field). The Hamilton-Jacobi equation of motion 

is found fiom the square of the four-vector momentum, 

2 2 pppp = m c (2.1.1) 

or 

where ~ ( i ,  t) is the electron's energy and P(f, t) is the electron's momentum. In the 

Hamilton-Jacobi formalism, the action or principal function S satisfies, 



and 

- 
where P,, is the canonical momentum. After substituting the above expressions for 

the energy and the momentum into equation (2.1.2), we find the Hamilton-Jacobi 

equation of motion, 

In a plane-wave oscillatory field, can be represented by, 

n ( ~ ,  t) = A(,) (2.1.6) 

where q = at - ? is the Lorentz invariant phase. With this dependence on ? and t, 

the solution of equation (2.1.5) has the form, 

S( i , t )=i i .?+pct+~(q)  (2.1.7) 

where 6 and p are constants found from the initial conditions, 

and q o  is the initial phase. The canonical momentum can be found by substituting 

equation (2.1.7) in equation (2.1.3), 



and the energy can be found by substituting equation (2.1.7) in equation (2.1.4), 

The trajectory of the electron is determined by differentiating the principal hnction 

with respect to the spatial constant 6, and equating this with the electron's initial 

position, 

" - "(,,? 
C 

4 dn' 
6 - k + p k  

To find the constants 6 and P, the initial conditions must be considered. We 

are interested in electrons released via ionization into an intense field. From Chapter 1 

we recall Corkum7s results2' showing that electrons are released with a very low initial 

velocity which we take to be zero. This gives the initial conditions, 

- eA(0) 
and 2 

Pcan = - E(O) = mc , 
C 



18 

where we arbitrarily choose the temporal and spatial coordinates of ionization as t = 0 

and ? = 0.  

The constant 6 can be separated into two components based on the transverse 

requirement of a plane wave. represents the component of 6 in the plane of 

polarization of the field, and a~ represents 6 in the direction of c .  The solution of 

equation (2.1.9) with the initial conditions defined in equation (2.1.12) gives 

and 

aG =-pkmc.  (2.1.14) 

Equation (2.1.10) determines the correct choice of sign in equation (2.1.14), 

a i + p = - m c .  (2.1.15) 

These constants are arbitrary except in their relation to each other. We can therefore 

use 

and 

without loss of generality. The choice of ai; = 0 and P = -mc defines the gauge and 

simplifies the algebra considerably. In their derivation, Sarachik and Schappert used a 

plane wave with a temporal envelope varying slowly compared to the period of the 

field. They considered an electron at rest before the pulse passed over the electron. 
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This resulted in 6 = 0 and P = -mc . An electron released into an intense plane wave 

results in 6 # 0 if A(0) # 0,  which is always the case in circular polarization. This 

result is a consequence of the electron being released into a field with non-zero initial 

canonical as will be discussed in section 2.2. 

Substitution of the constants in equation (2.1.16) into equations (2.1.9), 

(2.1. lo), and (2.1.1 1) gives the electron's momentum, energy, and trajectory, 

and 

The average energy of the electron is 

The first term is the rest energy of the electron. The second term arises as a 

consequence of the electron's release into a field with non-zero initial canonical 

momentum. 20-22 The third term is the average energy of the electron due to 

oscillations in the field, i.e., the quiver energy as defined in equation (2.1). 



2.2 Electron trajectories in linear and circular polarization 

To investigate the characteristic behavior of an electron in linear or circular 

polarization, we now consider an explicit choice of the vector potential, 

where the polarization is linear if S = f 1 or 0, or circular if S = f l/&. The 

electron's momentum and energy in the vector potential described by equation (2.2.1) 

are 

and 

and the electron's trajectory is 

1 

iti(1 - cosq) - f(1- a2)?(q - sin q) + 
(2.2.4) 

iC[(~-t i2)q-2j1-~2)s inq+1(~-t i2)s in2q]  2 2 2 2 I 



where qL is a dimensionless parameter defined by Sarachik and Schappert as 

m0,/mc2 . 

The experiments described in this thesis use electrons released by ionization in 

an intense laser field as a source of fiee electrons. The choice of ionization at q=0 sets 

conditions on the values of 6 for a physically realistic model of an electron released via 

ionization. This can be understood by a short description of the physics of strong field 

ionization in an optical field. 

Ionization of atoms with intense optical laser fields has traditionally been 

divided into two regimes, multiphoton and tunneling. The two regimes are 

differentiated by the Keldysh paramete?3 

where Ei, is the ionization potential of the atom. 

For y>l, the binding potential within the atom dominates the electron's 

motion, and the laser field can be considered as a perturbation to the atom. 

Perturbation theory can then be used to calculate the transition rates fiom the bound 

state to unbound states. This regime is known as multiphoton ionization (MPI). 23-33 

For y<l, the quiver energy of the electron in the field is greater than the 

binding energy to the atom, and the field can no longer be treated perturbatively. In 

this case, the electron is considered trapped in the Coulomb potential well of the atom 
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Bound state 

Figure 2.2.1: A conceptual picture of tunneling ionization. The normal Coulomb 
potential (left) is distorted by the addition of the electric field of the laser (right). The 
electron can tunnel through the Coulomb barrier and ionize from the atom (or ion). 
[or ion), and the electric field of the laser distorts the potential allowing tunneling 

through the Coulomb barrier (see Figure 2.2.1). This process is known as tunneling 

2329,3342 ionization. 

The strong field limit of tunneling ionization is Coulomb barrier suppression 

ionization (BSI)." In this case, the electron gains enough energy from the field to 

Bound state 

Figure 2.2.2: Coulomb barrier suppression ionization (BSI). The left figure shows an 
electron in a bound state of the Coulomb potential. The right figure shows the 
distortion of the potential when an electric field is added. The barrier has been 
suppressed eliminating one classical turning point allowing the electron to 
escape (ionize). 
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pass over the Coulomb barrier and become ionized (see Figure 2.2.2). BSI only 

occurs in low-frequency fields since the field must remain in one direction long enough 

for the electron to travel over the barrier before the field changes direction. The 

electric field at which BSI occurs is found by superimposing the potential of a static 

electric field on the Coulomb potential, 

where Z is the ionic charge (the charge of the ion created after ionization) and E is the 

quasi-static electric field of the laser. Only one dimension is necessary since the field is 

approximated as constant during the ionization process. The local maximum value of 

equation (2.2.6) equated with the electron's ionization potential yields the critical 

electric field necessary for ionization, 

The noble gas charge states examined in the experiments described in this 

thesis (He2+ and Ne3+ to Ne8+) have previously been shown to ionize in agreement 

with the BSI model of ion i~a t ion .~~  This model will therefore be used to describe the 

ionization process. 

The Coulomb barrier will be suppressed most when the electric field is at its 

maximum. The electron is therefore most likely to be released at the peak of the 

electric field. In the vector potential described by equation (2.2.1), 6 = f 1 
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corresponds to linear polarization with the electric field peaked at q=0, the phase 

chosen for release of the electron into the field. The other linear polarization case of 

6 = 0 corresponds to the electric field being zero at q=0, and is therefore not a 

physically realistic model of ionization. In circular polarization, 6 = + I,/&, the 

magmtude of the field is constant. Both values of 6 are therefore physically realistic 

since there is no "preferred" phase where the field is peaked. 

6 = f 1 specifies the vector potential as x(q) = k2& sinq , or polarization in 

the x-direction. This is not a general requirement. The form of the vector potential in 

equation (2.2.1) and choosing 7 = t = q = 0 has resulted in this requirement. In an 

actual experiment, the polarization of the field (which can be any direction) specifies 

the vector potential, and the position of the atom (or ion) specifies 7 .  The time at 

which ionization occurs is then determined by the phase at which the field is peaked. 

For 6 = +l , equations (2.2.2-2.2.4) reduce to 

and 



The electron trajectory, T(q), can be separated into individual components, 

Y =o, 

and 

where 

The equation for z contains a non-oscillatory term that is also apparent in the z- 

component of the momentum shown in equation (2.2.8). The electron therefore drifts 

in the z-direction and in high-intensity fields (q-1 or greater), the drift velocity is 

appreciable. As will be shown in section 2.3, the drift can be explained using the 

conservation laws of energy and momentum or, equivalently, the electron's recoil due 

to high-intensity Compton scattering. 

It is important to note that the trajectory described by equations (2.2.11) is not 

simply an oscillation at the laser frequency for x and twice the laser frequency for z, 

because -q itself depends on x and z. These are transcendental equations that contain 

an infinite number of harmonics in their solution, which generate an infinite number of 

harmonics in the scattered radiation. 3,4,13,15,17 



Figure 2.2.3: The "figure-8" motion of an electron oscillating in a high-intensity 
linearly polarized field in the electron's average rest frame. The axes are in units of the 

The orbits of the electron can be found by eliminating q in equations (2.2.1 I), 

Orbits for 6=1 (neglecting the drift) are plotted in Figure 2.2.3 for a variety of values 

of q. The orbits shown represent only one lobe of the allowed orbits. Another lobe 

will occur with all negative x values due to the possibility of ionization when the field 

is reversed from that assumed above, i.e., at 8 = -1. For q<<l, the electron oscillates 

predominantly in the x-direction, as expected for low intensities. As q approaches and 

exceeds one, the electron begins to experience significant oscillations in the z- 

direction. These oscillations in the z-direction occur at twice the frequency of the x- 



oscillations. This causes a "figure-8" motion in the electron's average rest frame that 

was shown by Sarachik and schappert l 3  

An inherently relativistic effect for an electron with q=100 is shown in Figure 

2.2.4. The maximum amplitude of the oscillations in z is given by klz - vdtl c 112 , 

while the oscillations in x are unbounded and increase linearly in q for large q. This is 

due to the effect of the electron's drift velocity in z. In the lab frame, the spatial extent 

of one wavelength of light sets an upper limit on the distance the electron can oscillate 

in z before being "turned around" by the field. The x-direction has no such limit. The 

Lorentz transformation to and from the rest frame of the electron explains this result. 

In the electron's average rest frame (the frame moving with velocity vd), the electron 

experiences a much longer wavelength due to the Doppler shift. When the electron 

Figure 2.2.4: A highly relativistic electron trajectory (q=100) in the electron's 
average rest fiame. Both axes are in units of the inverse of the wave number. The 
maximum amplitude of the oscillations in z is given by k(z - vdq < 112 while the 
amplitude of the oscillation in x is much larger. This effect is due to the limit imposed 
on the z oscillations of one wavelength. The x oscillations have no such limit. 
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motion is transformed back to the lab frame, the oscillations in z are transformed back 

to a maximum amplitude of one wavelength. However, the x oscillations are 

unaffected by this transformation, and therefore behave as if in the presence of a much 

longer wavelength field, resulting in a larger quiver amplitude than the z oscillations. 

For the case of circular polarization (6  = f I/&), 

and 

Equation (2.2.15) can be separated into individual components, 

1 v;ty 
y=Tv&tf--  sinq , 

k c 

and 

, 1 vbz z=v&t---- sin q , 
k c 

where 



q(l - yh) 
q2 V& 3- c and vby = 

,IT 
C 

2 + q2 

Both the y and z components now contain a drif't velocity. The orbit of the electron 

can again be found by eliminating q in equation (2.2.16) which results in 

and 

These two equations are equations for ellipses. For q<<l, Equation (2.2.17) reduces 

to the equation of a circle with radius q/&k, which is the standard trajectory of an 

electron oscillating in a non-relativistic, circularly polarized field. As q approaches and 

exceeds one, the x-y orbit becomes elliptical and oscillations in z become apparent (see 

Figure 2.2.5). 

The drif't of the electron in the y-direction is caused by the conservation of 

canonical rnomentum.20-22 When the electron is released into the field at q=O, the 

canonical momentum is non-zero in circular polarization and points in the direction of 

A(0) (the f y direction in the above example). As the vector potential rotates away 
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Figure 2.2.5: An electron's trajectory in its 
average rest frame in circular polarization for 
varying values of q. All axes are in units of 
the inverse of the wave number. 
(a) The oscillatory motion in the x-y plane. 
For q=O. 1 the electron exhibits non- 
relativistic circular motion. The trajectory 
becomes elliptical as q approaches and 

(b) Motion in the x-z plane displays an 
increase in the amplitude of the z oscillations 
as the electron motion becomes relativistic, 
i.e., as q approaches 1. 
(c) The y-z plane shows a rotation of the 
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-0.5 0 0.5 oscillations from the x-y to x-z plane as q 
approaches and exceeds 1. 
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from A(o), the total canonical momentum must be conserved, which requires that the 

electron gain momentum in the A(0) direction. M e r  the field rotates through x 

radians, this process reverses and the electron loses momentum to the field. This 

exchange of momentum continues throughout each laser cycle. The momentum 

gained by the electron is always in the direction of the initial canonical momentum. 

irection. This causes the electron to drift in the k(0) d' 

The y-direction of this drift is caused by specifllng i: = t = 0 as the position 

and time of ionization. In circular polarization, ionization is equally probable to occur 

at any phase since the probability of ionization is related to the amplitude of the field, 

and the amplitude of the field is independent of the phase. Ionization at an arbitrary 

phase results in an arbitrary direction to the canonical momentum drift, since the 

direction of the initial canonical momentum is dependent on the phase at the time of 

ionization. 

2.3 The longitudinal drift 

The motion of the electron in the direction is due to conservation of energy 

and momentum between the electron and the field. An electron oscillates in a plane 

wave with an energy (see equation (2.1.18)), 



The electron was ionized with zero initial velocity (E(O) = mc2) and has therefore 

gained an energy from the field of 

.'% 

The absorption of energy from the field must be accompanied by an absorption of 

momentum. The only available momentum is in the field propagation direction (E). 

Therefore, to conserve momentum, the electron's momentum component must be 

p~ is the same as the k momentum component of an electron oscillating in a plane 

wave (see section 2.1). 

The motion of an electron in the direction in a plane wave is therefore due to the 

absorption of momentum from the field. 

The forward drift found in linear and circular polarization in section 2.2 is 

caused by the positive-definite, non-zero average of the momentum shown in equation 

(2.3.3), 



The vector potential used previously in section 2.2, 

reduces equation (2.3.4) to 

For linear polarization ( 6  = +I) 

and for circular polarization (6 = f I/&) 

Equations (2.3.6) and (2.3.7) are the same as the non-oscillatory longitudinal 

components of the momenta found in equations (2.2.8) and (2.2.13) respectively. 

The concept that motion of the electron in the 6 direction is due to field 

momentum is a powerfbl tool for calculating electron trajectories in more complicated 

fields.22 This concept allows a calculation of electron trajectories ignoring field 

momentum effects, and later including these effects by requiring conservation of 

energy and momentum. This technique is used in Chapter 3 to generalize predictions 

for a relatively low-intensity spatially and temporally varying field to high intensities. 

The validity of this technique is shown in Chapter 4 where numerical solutions to the 
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electron's equation of motion in a high-intensity laser focus are calculated and 

compared to the analytical predictions. 

The behavior of electrons in a low-intensity optical field is hndamentally 

different than at high intensities. At low intensities, oscillation at the field frequency 

dominates the electron's motion and the drift due to high-intensity Compton scattering 

is negligible. At high intensities, the longitudinal drift dominates the electron 

trajectory and the oscillatory motion of the electron is negligible. 

The low- and high-intensity limits can be examined by comparing the energy of 

an electron traveling with a constant momentum of p, in the absence of an 

electromagnetic field to an electron oscillating in a field with an average forward 

momentum of (p,). Both electrons are traveling with the same average forward 

momentum. However, the one in the field has additional energy due to oscillations 

within the field. The electron traveling with a constant momentum has a kinetic 

energy (total energy minus the rest energy) of 

where 



The average kinetic energy of the corresponding electron in the field is 

The ratio of the energy of the electron traveling with a constant momentum to the total 

energy of the corresponding electron in the field is 

For low intensities or q<<l 

and therefore Ez << (~(q))  . In this case the energy due to the forward momentum is 

negligible compared to the total energy of the electron oscillating in the field. This is 

the regime of Thomson scattering since the oscillatory motion of the electron is 

dominant and the absorption of field momentum is inconsequential. 

For high intensities or q>>l 

Therefore, for q>>l, the energy due to the forward momentum gives the dominant 

contribution of energy and the oscillations contain relatively little energy. This is the 

ultra high-intensity limit of high-intensity Compton scattering where field momentum 



effects dominate and the quiver motion of the electron is insignificant. This is 

analogous to the high-energy photon regime (ha >> me2) of single photon Compton 

scattering, in which only the particle nature of the photon and the resulting recoil of 

the electron plays a role in the dynamics of the interaction. 
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Chapter 3 
Spatial and temporal effects in a laser focus 

The experiments described in this thesis use a short pulse 1-pm wavelength 

laser focused to a 10-pm diameter spot size. This laser field exhibits a strong spatial 

and temporal dependence. The impact of the field variations on an electron's 

trajectory is discussed in this chapter. 

3.1 The ponderomotive potential 

Spatial variations of the field influence electron behavior in a laser focus 

through an effective potential known as the ponderomotive potential. This potential 

produces a field-gradient force that pushes electrons from higher to lower intensity 

regions. Its effects are well documented. "I6 

In chapter 2, the Hamilton-Jacobi formalism was used to determine an 

electron's trajectory in a plane wave. This formalism was used due to the extreme 

simplification of equation (2.1.5) for a plane wave and an obvious form for the action. 

In a spatially varying field @,t) t ~ ( q ) ,  i.e., space and time no longer occur in the 

combination q = cot - i explicitly. Without this dependence, the Hamilton-Jacobi 
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formalism becomes unnecessarily cumbersome. We therefore use a different technique 

to examine the effects of spatial field variations. 

The traditional and arguably simplest derivation of the ponderomotive potential 

determines the time-averaged force exerted on the electron directly fiom the 

nonrelativistic Lorentz force equation. In terms of the vector potential this force 

equation is given by 

This derivation and all derivations of the ponderomotive potential known to this 

author make the nonrelativistic assumption that the electron mass is constant or 

equivalently, ( vo,/c )2<< 1. l7  As we shall see, this assumption is unimportant since 

the stricter condition of vo,/c << 1 is also required in the derivation. 

Our interest is in electromagnetic fields with a temporal envelope or pulse 

length much larger than the period of the field (oz>>l where z is the pulse length). 

This field can be written as 

n(i, t) = l ( g ( i ,  tk1" + A;(?, tpW),  (3.1.2) 
2 

where &(7, t) defines the slowly varying portion of the field with the rapid variations 

at frequency o extracted and * denotes the complex conjugate. The spatial carrier, 

e'.', is included in the slowly varying &tion &(i,t). For e'.' to be slowly 



varying, e"' must remain approximately constant over a cycle of the field or, 

equivalently, kz,, cc 1, where k is assumed in the z-direction and G, is the spatial 

extent of the oscillations in z. The maximum value of bsc over a cycle is kv,,/o. 

This gives the requirement v,,/c cc 1 . 

As was shown in section (2.3), the oscillations in the z-direction are caused by 

the absorption of momentum from the field. By neglecting the z-oscillations of the 

electron, we are therefore assuming that electron recoil due to high-intensity Compton 

s c a t t e ~ g  is insignificant. 

An electron submitted to the vector potential in equation (3.1.2) with 

v,,/c cc 1 oscillates rapidly at the field frequency about an average position. The net 

motion of the average position of the electron is of interest, so we begin by expanding 

the electron's oscillatory motion about its average position. This expansion requires 

that the transverse spatial extent of the electron's oscillations be much less than the 

transverse spatial variation of the field. The zeroeth order solution in i: to equation 

(3.1.1) is then 

?(% t) = (%=eimt + %:,ei*) where x,, - =I e&(R t) , 
mco 

and 

1 "( t) = (cOxeimt + ?:=elm) where v,, - - - e&(R t) 
7 

mc 
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and is the electron's average position vector. poscl is the spatial amplitude of the 

electron's transverse oscillations at the field frequency. The requirement that the 

spatial oscillation amplitude be much less than the transverse spatial variation of the 

field can be written as 

where wo is the characteristic extent of spatial variations of the field transverse to the 

propagation direction, such as the spot size of a laser focus. This requirement is 

already specified by the condition voJc<<l, since wo is at least as large as h, and 

therefore kwo > 1. 

We now expand equation (3.1.1) in a Taylor series to first order in i: about the 

average position vector E, 

The partial time derivative of the vector potential is approximately 

where terms from the derivative of the slowly varying envelope of order llz have been 

dropped since oz>>l. After substituting equations (3.1.2)-(3.1.4) and (3.1.6) into 

equation (3.1.9, we find 



Only the terms in which the elmt dependence has exactly canceled have been written. 

This is because the intention is to find the time-average of the electron's motion. All 

terms that retain any eimt dependence will be of order l l m  after time-averaging. Since 

we are considering a slowly varying envelope (COT >> 1) these terms are small and will 

be discarded. The time-average of equation (3.1.7) is 

where a vector identity1' has been used to simph@ the equation. This is the equation 

of motion of a particle in a potential of the form 

where is the ponderomotive potential. It is equal to the electron's quiver energy in 

the field (see equation (2.1)). It was first predicted theoretically by Boot and Harvie in 

the 1950's. l 3  The above derivation is fiom a review article by Eberly et ol, lg An 

interesting aspect of this result is that the ponderomotive potential is independent of 

the field's polarization. 

Figure 3.1.1 shows a simple example of the effects of this potential at the focus 

of a time-independent (continuous-wave or cw) laser beam. A beam of electrons 



Figure 3.1.1 : An example of the effects of the ponderomotive potential. Darker 
regions represent higher intensities. A beam of electrons (arrows) is scattered by the 
high-intensity light at the center of the focus of a high-power laser beam. 

travels toward a laser focus with a peak ponderomotive potential greater than the 

energy of the electrons. As with any potential, energy must be conserved. This results 

in a deflection of the electrons away from the high intensities at the center of the focus. 

A very elegant experiment that investigated this simple scattering picture and the 

effects of a time-dependent pulse on this picture was performed by Bucksbaum et al, 

Two assumptions were made in the derivation of the ponderomotive potential: 

07 >> 1, 

and 

vosc/c << 1. 

With respect to the experiments described in this thesis, the first assumption is very 

accurate since the laser used had over 1000 cycles in a pulse. The second is not. The 
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consequences of high-intensities, i.e., q-1 or v,Jc-1, are the subject of this thesis. 

The question therefore arises, how severely does the breakdown of this assumption 

Sect  the validity of the ponderomotive potential? In Chapter 4, this question will be 

answered by comparing numerical solutions of the electron's filly relativistic equation 

of motion to the trajectory expected fiom the ponderomotive potential. These results 

will show that the ponderomotive potential remains valid for q - 1 and greater, as 

long as the forward drift due to high-intensity Compton scattering (see section 2.3) is 

included in the trajectory. The combination of these two processes will be considered 

in section 3.3. 

3.2 Electron ejection from a low-intensity l a w  focus 

The paraxial approximation for the intensity distribution of a Gaussian TE& 

mode laser focus is given by, 20 

where is the peak intensity, wo is the l/e2 radius of the intensity at the beam waist 

(z=O), and a is the Rayleigh range (z position where intensity on laser axis drops by a 

factor of 2). The difiaction limited values of wo and for a Gaussian TE& mode 

laser beam are, 



where fY is the f-number of the focusing system, and is defined as the focal length of 

the lens divided by the diameter of the beam at the lens. The diameter of the beam is 

defined as the diameter at which the intensity drops to l/e2 its peak intensity. 

The spatial characteristics of the ponderomotive force are given by, 

Three important features of this force should be noted. The first is the cylindrical 

symmetry of the force. The second is the symmetry of the force in the axial direction, 

F,(z) = -F,(-Z) . (3.2.3) 

The third is the relative size of the forces in the radial and axial directions. The ratio 

of the force in the axial direction to the force in the radial direction is approximately, 

For the laser focus used in these experiments, fW = 5 so that the force in the axial 

direction is about 20 times smaller than in the radial direction. Electrons are therefore 

ejected radially at 0=90° fiom with a symmetric spread of A0 = k3O. 

In circular polarization, the ejected electron energy will also be affected by the 

conservation of canonical momentum described in section 2.1. The momentum of the 
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electron in a circularly polarized plane wave was shown in equation (2.3.12) to be 

given by 

The electron has a time-averaged drift in the y-direction, 

- qmc 
( P Y )  =+x 

The y-dependence of this drift is a result of the phase (q=O) chosen for release of the 

electron. In circular polarization, an electron is equally likely to be released at  an^ 

phase of the field (see section 2.3). This allows the electron to be released when the 

vector potential is rotated in any direction. Since the initial direction of the vector 

potential defines the direction of the initial canonical momentum, the electron is 

equally likely to drift in any direction in the plane of polarization. 

The energy associated with the canonical momentum drift in circular 

polarization (see equation (2.1.20)) is equal to the electron's ponderomotive energy, 

The energy of electrons ejected from a circularly polarized cw laser focus will 

therefore be 20 , :  one factor of 0, from the ponderomotive acceleration of the 

electrons, and one factor of 0, from the conservation of canonical momentum. The 



existence of the drift due to the conservation of canonical momentum in circular 

polarization has been experimentally verified. 

The motion of the electrons 

due to the conservation of canonical 

momentum drift is not purely radial 

near the focus as is the case for the 

cylindrically symmetric 

ponderomotive acceleration. For 

example, consider an electron 

released at the beam waist (z=O), wo 

away from the beam axis in the x- 

direction, with a canonical 

momentum drift in the +y direction 

(see Figure 3.2.1). This electron's 

Figure 3.2.1: The canonical drift is 
approximately radial far from the laser focus. 
The difference between the radial and actual 
trajectory is greatly exaggerated in this 
picture. 

trajectory is described by i = wok + vd@ . The electron is not traveling purely radially. 

The experiments described in this thesis have examined the electron distributions 6 cm 

from a focus with wo = 5 pm. This means that the electron has traveled from 

- 
r = wok to i = wok+ rob$, where robs is the observation distance of 6 cm. If we 

assume that the electron is traveling purely radially throughout its trajectory, it would 

travel from i = 0 to i = rob$. The angular difference between these two vectors is 
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0.005" due to the large distance of observation compared to the electron's relatively 

small offset from the center of the focus. We therefore introduce very little error if the 

electron's motion is approximated as radial. 

Circular polarization is used in our experiments to assure a cylindrically 

symmetric distribution of ejected electrons. The experiments involve the ionization of 

many atoms ( n- 1 05- 1 o7 ) randomly distributed throughout a circularly polarized laser 

focus. Each ionized electron experiences a drift due to the conservation of canonical 

momentum and an acceleration from the ponderomotive potential. The drift depends 

on the phase of the field at which the electron is ionized. This phase will be different 

for each electron, and the net result will be an isotropic distribution in the plane of 

polarization for circular polarization. The direction of the ponderomotive acceleration 

depends on the initial position of the electron. The random distribution of electrons 

causes the distribution from the ponderomotive acceleration to be isotropic in the 

plane of polarization. Therefore, the combined effects of the ponderomotive 

acceleration and the conservation of canonical momentum drift for circular 

polarization at low intensities gives a uniform distribution of electrons in the plane of 

polarization, i.e., at 90" to the laser axis. These electrons travel approximately radially 

with twice the ponderomotive energy of the intensity at which they were born. 



3.3 Electron ejection from a high-intensity laser focus 

The analysis of the ponderomotive potential for a low-intensity Gaussian focus 

shows that electrons are emitted isotropically in the plane of polarization. At high 

intensities, the absorption of momentum fiom the field (see section 2.3) "pushes" the 

electron distribution forward so that electrons are emitted in a cone centered on it 

The angle fiom is given by the relationship between the forward component and the 

total momentum of the electron. 

We begin calculating this angle by assuming that an electron is ejected fiom the 

laser focus with arbitrary energy E (including rest mass energy). As was previously 

shown in section 2.3, this energy must come from the laser field, which means the 

electron must also absorb momentum fiom the field," 

where 

The electron's total momentum is 

From these we can determine the angle of ejection of the electron, 



This angle (see Figure 3.3.1) 

is a hnction of the final 

energy of the electron only. 

The only assumptions made 

were that all available momentum in the field was in the z direction, and only the 

electromagnetic field accelerates the electron. 

Figure 3.3.1 : The definition of the angle 0. 

3.4 The eflects of a time-dependent pulse 

An electron's ejection energy following ionization in a laser focus is dependent 

on the intensity at which it was ionized and the polarization of the field. An electron 

born at the peak of the field in a linearly polarized cw beam has zero initid canonical 

momentum and a potential energy given by the ponderomotive potential of the 

ionization threshold intensity. Subsequent acceleration by the ponderomotive potential 

converts the electron's ponderomotive quiver energy to kinetic translational energy. 

The electron is therefore ejected with the ponderomotive energy of the ionization 

threshold intensity. In a circularly polarized cw beam, an electron is released into the 

field with non-zero initial canonical momentum and a potential energy given by the 

ponderomotive potential of the ionization threshold intensity. Conservation of 

canonical momentum causes the electron to drift in the direction of the initial canonical 
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momentum. The energy contributed by this drift is exactly equal to the ponderomotive 

energy. In addition, the conversion of the ponderomotive quiver energy to 

translational energy gives the electron another factor of the ponderomotive energy. 

An electron born in circular polarization therefore acquires an energy of twice the 

ponderomotive potential of the ionization intensity. 

In a pulsed laser, the intensity is time-dependent, and the corresponding 

ponderomotive potential is a time-dependent potential. Conservation of energy 

(required for a time-independent potential) no longer applies. The energy of an 

electron ejected from a laser focus by a time-dependent pulse is1' 

where to is the time at which the electron is ionized, K is defined as one in linear 

polarization and two in circular polarization, and the ponderomotive potential is 

assumed to be zero at infinite time. The integral in equation (3.4.1) is the change in the 

electron's energy due to the time-dependent ponderomotive potential. 

In the limit of long pulses, the partial differential in equation (3.4.1) will be 

approximately zero since the electron will leave the intense regions of the field before 

the slowly-varying temporal aspect of the pulse contributes to the differential. This 

will cause the contribution of the integral in equation (3.4.1) to be small or, 
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E - flp(i(to),to) . (3.4.2) 

The electron will therefore gain the 1 1 1  ponderomotive energy, and the pulse can be 

closely approximated as cw. 

For extremely short laser pulses, the electron will not move before the pulse 

has passed. i(t) can therefore be approximated as constant, and the partial 

differential in equation (3.4.1) can be approximated by a total differential or, 

E - (K - l)@,(?(tO),tO). (3.4.3) 

In very short pulses, the electrons will therefore gain no energy fiom the field in linear 

polarization, and only the energy fiom the conservation of canonical momentum in 

circular polarization, i.e., OF, not 2Qp as in the cw case. 

We are interested in discovering the pulse width necessary to enter the long 

pulse limit, i.e., the pulse width that allows full acquisition of the ponderomotive 

energy. For a Gaussian temporal and spatial profile laser pulse, 

and 



where z is the FWHM pulse width. Equation (3.4.1) can now be approximated as 

where At is the interaction time of the electron with the field. The interaction time can 

be approximated by the time the electron takes to travel wo, or At = w0/V where V is 

the average velocity of the electron. Therefore equation (3.4.6) becomes 

For pulse duration effects to be small, we must have, 

The condition imposed on the pulse width for linear polarization is then 

0 2 >> 81n2-, (3.4.9) 
v 

and for circular polarization, 

0 z >> 41n2:. 
v 

The laser conditions used in these experiments were a circularly polarized 

1.053-pm wavelength laser with a 1.5-ps FWHM pulse width and a 5-pm beam waist. 

The maximum value of the right side of equation (3.4.10) is obtained for the lowest 

energy electrons studied since these have the smallest average velocity. The lowest 



energy electrons studied had an energy of 3 keV. These have an approximate average 

velocity of 0.09c, which gives the requirement, 

z >> 0.5 ps . (3.4.1 1) 

This is only weakly satisfied by the 1.5-ps pulse width of the laser used. However, the 

numerical integration of the electron trajectories in Chapter 4 will show that this is 

sufficient for pulse effects to be minimal in the experiment. 

The effects described so far have assumed that the relativistic, pulse envelope 

and spatial effects can be considered independently and combined later. The next 

chapter will test the validity of these assumptions by numerically integrating the 

electron's relativistic equation of motion in a Gaussian focus, and comparing these 

results with those expected from the independent analytic treatment of spatial, 

temporal, and relativistic effects. 

' H.A.H. Boot and R.B. R.-S.-Harvie, 'Charged particles in a non-uniform radio- 
frequency field," Nature 180, 1 1 87 (1 957). 

H.A.H. Boot, S.A. Self, and R.B. R.-Shersby-Harvie, 'Containment of a fully- 
ionized plasma by radio-frequency field," J. Electr. Control 4,434(1958). 

' A V. Gaponov and M. A Miller, "Potential wells for charged particles in a high- 
frequency electromagnetic field," J. Exptl. lheoret. Phys. (U. S. S.R.) 34, 242 (1 958) 
[Soviet Phys. JEW 7, 168 (1 958)]. 

G.A. Askar'yan, "Effects of the gradient of a strong electromagnetic beam on 
electrons and atoms," J. Exptl. lheoret. Phys. (U.S.S.R.) 42, 1567 (1962) [Soviet 
Phys. JETP l5, 1088 (1962)l. 



T.W.B. Kibble, "Refraction of electron beams by intense electromagnetic waves," 
Phys. Rev. Lett. l6, 1054 (1966). 

T.W.B. Kibble, "Mutual refraction of electrons and photons," Phys. Rev. 150, 1060 
(1 966). 

1 W.B. Mori and T. Katsouleas, 'Tonderomotive force of a uniform electromagnetic 
wave in a time varying dielectric medium," Phys. Rev. Lett. 69, 3495 (1992). 

M.J. Hollis, "Multiphoton ionization and EM field gradient forces," Optics 
Communications 25,395 (1 978). 

M.T. Bachelor and R. J. Stening, Laser Part. B e r n  189 (1985). 

lo R.R. Freeman, T.J. McIlrath, P.H. Bucksbaum, and M. Bashkansky, 
"Ponderomotive effects on angular distributions of photoelectrons," Phys. Rev. Lett. 
57, 3156 (1986). - 

l 1  P.H. Bucksbaum, M. Bashkansky, and T.J. McIlrath, "Scattering of electrons by 
intense coherent light," Phys. Rev. Lett. 58, 349 (1 987). 

l2 R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and 
M.E. Geusic, "Above-Threshold Ionization with subpicosecond laser pulses," Phys. 
Rev. Lett. 59,  1092 (1987). 

13 T.F. Gallagher, "Above-Threshold Ionization in low-frequency limit," Phys. Rev. 
Lett. 6l, 2304 (1988). 

l4 M.D. Perry, O.L. Landen, and A. SzOke, 'Measurement of the local l a m  intensity 
by photoelectron energy shifts in multiphoton ionization," J .  Opt. Soc. Am. B 6, 344 
(1 989). 

l 5  P. Monot, T. Auguste, L.A. Lomprk, G. Mainfiay, and C. Manus, "Energy 
measurements of electrons submitted to an ultrastrong laser field," Phys. Rev. Lett. 70, 
1232 (1993). 

l6 U. Mohideen, M.H. Sher, H.W.K. Tom, G.D. Aumiller, O.R. Wood 11, R.R. 
Freeman, J. Bokor, and P.H. Bucksbaum, "High intensity Above-Threshold Ionization 
of He," Phys. Rev. Lett. 71,509 (1993). 



l7 It should be noted that the ponderomotive potential derivation performed in ref 6 
uses relativistic four-vector notation. However, this derivation is also nonrelativistic 
since the requirement $<<I stated in the paper is equivalent to (V,/C)~<<~. 

l 8  J.D. Jackson, Classical Electro&namics 2nd ed., (Wiley, New York, 1975). 

19 J.H. Eberly, J. Javanainen, K. Rzazewski, "Above-Threshold Ionization," Phys. 
Reports 204.33 1 (1991). 

20 Peter W. Milonni and Joseph H. Eberly, Lasers (Wiley, New York, 1988), p.484- 
490. 

21 P.B. Corkum, N.H. Burnett, and F. Brunel, "Above-threshold ionization in the long- 
wavelength limit," Phys. Rev. Lett. 62, 1259 (1989). 

22 P.B. Corkum, N.H. Burnett and F. Brunel, bMultiphoton ionization in large 
ponderomotive potentials," Atoms in Intense Laser Field! edited by M .  Gavrila, 
(Academic, New York, 1992), p. 109. 



Chapter 4 
Numerical simulation of electron dvnamics in a focused laser field 

The previous chapters have treated spatial, temporal, and relativistic effects 

independently. The validity of independent treatment of these effects is tested in this 

chapter by numerically integrating the covariant Lorentz force equation for an electron 

in a spatially and temporally varying field,' 

where F~~ is the electromagnetic field-strength tensor, 

ua is the four-velocity, 

and £ and B give the complete temporal and spatial description of the focused laser 

field, including the dependence on elat and 



4.1 The paraxial approximation for a Gaussian laser focus 

Accurate descriptions of the electric and magnetic fields are required to 

numerically integrate equation (4.1). The paraxial approximation for the electric field 

of a Gaussian continuous wave (cw) laser focus with in the z-direction is2 

where 

W(Z) wo,/l+ (J%Y (beam radius at z), 

R(Z) E z + d /z  (radius of curvature at z), 

kr2 
q r , z )  = lcz - tan-'[:) + - (time-independent phase), 

2R(z) 

6 is a complex unit vector in the plane perpendicular to the propagation direction that 

specifies the polarization, and So is the peak amplitude of the field. The electric field 

for a pulsed laser with a Gaussian temporal profile is described by multiplying by 

another Gaussian, 

where r is the FWHM of the pulse in intensity and gt is a transverse electric field. 

Use of O(r,z) in equation (4.1.2) causes the propagation of the pulse in the proper 
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direction, i.e., perpendicular to the phase fronts. The corresponding magnetic field can 

be found using Faraday's law, 

The standard approximations of long pulse width (ox >> 1) and transverse electric 

and magnetic fields gives 

& - 2 x g t  (I; assumed in z direction). (4.1.4) 

The electron trajectories calculated with these transverse electric (equation (4.1.2)) 

and magnetic (equation (4.1.4)) fields have a polarization dependence in contradiction 

with the ponderomotive potential (see section 3.2). 

To demonstrate, consider a linearly polarized electromagnetic field ( t  = ji), 

£(?, t) = F(?, t] ji 

and (4.1.5) 

q f ,  t) = F ( f ,  t] 9 . 

We can write the equation of motion for the electron, equation 4.1, to the same order 

of the ponderomotive potential as 

There is no component of acceleration in the y-direction. This results in a polarization 

dependence in contradiction to the ponderomotive potential. 



4.2 The LongitudinalJieM of a Gaussian focus 

The polarization dependence is caused by the failure of the standard paraxial 

approximation for the electric and magnetic fields (correct to zeroeth order in l/fY) to 

obey Maxwell's equations to the same order as assumed in the derivation of the 

ponderomotive potential (first order in l/fY) We must therefore find first order 

corrections to the paraxial electric and magnetic fields. 

The first order correction to the paraxial electric field is found from the 

requirement that v. & = 0 The divergence of the electric field in equation (4.1.2) is 

not equal to zero as required by Maxwell's equation. The first order correction is 

found by substituting the transverse electric field in equation (4.1.2) into v-  & = 0 and 

solving for a longitudinal field (z component of k ) that satisfies v. & = 0 ,  

4 

where V, = a/& k + a/dyf . We now make the approximation 

which is valid to first order in l/fY This approximation and the paraxial approximation 

for the electric field in equation (4.1.2) give the solution to equation (4.2.1) as, 
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This equation for the longitudinal electric field, along with the transverse electric field 

in equation (4.1.2), satisfies e. b = 0 to first order in l/f#. The first-order solution to 

the electric field is used in Faraday's law (equation (4.1.3)) to find the magnetic field. 

With the assumption that or >> 1, the magnetic field to first order in l / t  is 

and 

These expressions for the electric and magnetic fields give the expected results of 

polarization independence for the electron trajectories. This first order approximation 

in l/? is sufficient for the £75 optics used in our experiments. 

4.3 Monte Carlo simulation of electron ejection from a high-intensity, 
Gaussian laser focus 

A Monte Carlo simulation computer program of the laser ionization and 

subsequent acceleration of electrons under the relativistic equations of motion has 

been written (see appendix A). The program models the propagation of a laser with a 

Gaussian spatial and temporal profile through a focus containing randomly distributed 

noble gas atoms. 
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The simulation begins by reading various experimental parameters fiom a data 

file. The experimental parameters used in the program include: the peak intensity, 

pulse width, focal spot characteristics, and polarization of the laser pulse; the noble gas 

to be studied; the noble gas pressure; and the initial charge state and number of atoms 

of the noble gas to be examined. 

The program calculates the critical electric field necessary to ionize the initial 

charge state using B S ~  (see section 2.3), 

where $, is the ionization potential of the charge state and Z is the ionic charge. 

Ionization occurs in the BSI approximation when the electric field reaches the critical 

electric field defined in equation (4.3.1). The peak electric field in linear polarization is 

larger than the peak electric field in circular polarkation at the same intensity. 

This causes ionization to occur with linear polarization at half the intensity required 

with circular polarization. The threshold intensities are, 

1*(w/cm2) = 4x1 0 for linear polarization 
z2 

and 

1*(w/crn2) = 8x1 o9 E'n(ev) for circular polarization . 
z2 
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The threshold intensity is used to calculate the volume within the focus (focal 

volume) where ionization will occur.' An atom is then placed at a random position 

within the focal volume. The Gaussian temporal envelope, ignoring the phase, is used 

to solve for the time at which the electron experiences an intensity equal to the BSI 

threshold intensity. In circular polarization, this time was used as the starting point for 

when the electron was considered fiee of the atom. In linear polarization, it is 

assumed that the electron will be released at the peak of the electric field. Therefore, 

the program waits from the time determined by the Gaussian temporal envelope to a 

time within a half cycle when the field is peaked. 

In both circular and linear polarization, the electron is assumed born at rest6 

The electron then experiences the electromagnetic field found above, and its trajectory 

is calculated using a 5th order Cash-Harp Runge-Kutta method to integrate equation 

(4. I ) . ~  The electron trajectory is calculated until the intensity drops six orders of 

magnitude below the ionization threshold intensity. 

The electron's position and velocity vectors are then stored in a data file, and a 

new atom is placed within the focus at another random position. This process 

continues until the specified number of atoms to be studied is reached. At this point, 

the program calculates the intensity necessary for ionization of the next higher charge 

state using BSI. If the threshold intensity is below the peak laser field intensity, the 

above process is repeated. This continues until the atom is completely ionized, or until 



the peak laser intensity 

specified in the input file is 

below the intensity 

necessary for ionization of 

the next charge state. When 

this occurs, the program has 

calculated all electron 

trajectories and ends. 

The dynamics of the electrons freed in creating Ne" to Ne8+ were calculated 

ntensities, Ia in lin., and ejection energies, Eh, for 

for a variety of experimental conditions. The ionization potentials, BSI threshold 

intensities, expected ejection energies, and interaction times (see section 3.4) of 

electrons from Nel+ to Nest are shown for linear polarization in Table 1, and for 

circular polarization in 

Table 2. The ejection 

energies are the energies 

expected for laser pulse 

lengths much longer than 

the interaction time of the 

electron with the field. 
e 2: Iomzation potentials, Eim, BSI threshold 

intensities, Ia in circ., and ejection energies, &kc, in 
ser pulses much longer than k c  in circular 
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In the discussion that follows, all calculations use a 1.053-pm wavelength 

Gaussian profile laser focused to a diffraction-limited 5-pm spot size and a peak 

intensity of 1018 w/cm2. 

Electrons ionized in a long-pulse, linearly polarized laser are expected to 

acquire an energy equal to the ponderomotive potential of their BSI threshold 

intensity. Figure 4.3. l a  shows the electron energy spectrum of Ne3+ to Ne8+ ionized 

with a 1-ns pulse length (zl&> zlh) linearly polarized laser. The electron energy 

spectrum exhibits peaks at the ponderomotive energies corresponding to the different 

threshold intensities of the neon charge states. This is expected since the long pulse 

length allows the ponderomotive potential to behave as a time-independent potential, 

and energy is conserved. 

Figure 4.3. lb  shows the energy spectrum for a 50 fs, linearly polarized laser 

pulse. In this case, the pulse length is much shorter than zli, and the ponderomotive 

potential is no longer a conservative potential. The time-dependence of the pulse 

causes a wide range of ejected electron energies and no individual peaks are 

discernible. 

In long-pulse circularly polarized laser fields, electrons with energies of four 

times those found for the same charge states in linear polarization are expected. This 



long pulse 
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Electron energy (in keV) 

short pulse 

Electron energy (in keV) 

Figure 4.3.1: The Monte Carlo simulation of the ionization of neon with a linearly 
polarized laser of peak intensity 1=1018 w/cm2. (a) The energy spectrum for a long 
pulse (I-ns FWHM). (b) The energy spectrum for a short pulse (50-fs FWHM). 
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occurs due to two factors. The first is because the ponderomotive potential is twice as 

high for the same charge state in circular polarization as in linear polarization due to 

the doubling of the BSI threshold intensity. The second is due to the conservation of 

canonical momentum described in section 2.2. This contributes a second factor of the 

ponderomotive potential. 

Figure 4.3.2a shows the electron energy spectrum for ~ e ~ +  to ~ e "  ionized 

with a 1-ns pulse length (TI,,>> rc,) circularly polarized laser. The electrons gain 

twice the ponderomotive energy of the circular polarization BSI threshold intensities 

of the neon charge states. This shows that the ponderomotive potential predicts the 

correct energy, even for relativistic electrons. y -- 1.2 for the 80-keV electrons. The 

electrons are experiencing a slight mass increase due to the deviation of y from 1, but 

the ponderomotive potential predictions are unaffected and still give the correct 

results Monte Carlo simulations of electrons ionized at intensities up to I = lo2' 

w/cm2 (Op - 10 MeV; y - 20) confirm that this agreement continues into the highly 

relativistic regime. 

Figure 4.3.2b shows the energy spectrum of a 50-fs pulse length circularly 

polarized laser. The pulse length is now shorter than the interaction time, and the 

lower charge state electrons exhibit half the energy of the long pulse case. This occurs 
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Figure 4.3.2: The Monte Carlo simulation of the ionization of neon with a circularly 
polarized laser of peak intensity lo1* w/cm2 (a) The energy spectrum for a long 
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because energy is only acquired due to the conservation of canonical momentum, 

which is gained immediately following ionization. The pulse length is too short for 

electrons to gain the slowly developing ponderomotive energy. The higher charge 

state electrons are in the intermediate region between the long pulse case and the short 

pulse case. These electrons' interaction times are approximately twice the pulse width. 

This results in the acquisition of a range of energies depending on their initial 

placement within the laser focus. The electrons with 100-keV energies are "s~rling''~ 

on the leading temporal edge of the laser pulse and gaining energies greater than 2Qp. 

Other electrons experience very little acceleration beyond the canonical momentum 

drift, or possibly even decelerate due to surfing on the trailing edge of the laser pulse. 

The net effect of the wide range of possible energies for the same charge state is to 

"wash-out" the peaks of the high charge states. 

The pulse length of the laser used in the experiments reported here is 

approximately 1.5 psec. The expected spectrum of ~ e ~ '  and higher charge states for 

linear polarization is shown in Figure 4.3.3a. The electrons here behave much as they 

did in the linearly polarized 50-fs pulse (see Figure 4.3.1 b). The electron peaks that 

were visible in the long-pulse case are not present because the interaction time (from 

700 fs for the highest energy electrons, to 3.5 ps for the lowest energy electrons) is 

similar to the pulse length. The energy spectrum of linear polarization has not been 

measured experimentally. 



The case of circular polarization in Figure 4.3.3b exhibits electron peaks similar 

to those seen for the long-pulse case in circular polarization shown in Figure 4.3.2a. 

The interaction time for circular polarization is approximately 100 fs for the highest 

energy electrons, and 500 fs for the lowest energy electrons shown. This allows 

complete conversion of the slowly developing ponderomotive energy into kinetic 

energy. The energy spectrum in circular polarization has been measured 

experimentally and agrees well with this expectation. These observations will be 

discussed in detail in chapter 6. 

The neglect of field momentum effects in the derivation of the ponderomotive 

potential manifests itself in the angular distributions of the ejected electrons at high- 

intensities. As was discussed in sections 3.2 and 3.3, the ponderomotive potential. 

predicts electron ejection at 900 from c ,  but high-intensity Compton scattering 

"pushes" the electrons forward of this predicted ejection angle 

Figure 4.3.4 shows the Monte Carlo prediction (solid line) of the angular 

2 distribution of  el' electrons ionized at 1 . 7 ~ 1 0 ~ ~  Wlcm in a 1.5-ps circularly 

polarized laser pulse. The angular distribution is peaked at 89.1' from c .  The ejection 

energy of these electrons in the Monte Carlo simulation is approximately 186 eV. The 

prediction of equation (3.3.3), which determines the angle of ejection based on 
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Figure 4.3.3: The Monte Carlo simulation of the ionization of neon with a laser of 
peak intensity 1 018 w/cm2 and a pulse width of 1.5 psec. (a) The energy spectrum for 
linear polarization. (b) The energy spectrum for circular polarization. 
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Figure 4.3.4: The angular distribution of  el+ electrons ejected with 186 eV of 
energy. The solid line is the Monte Carlo simulation prediction for the angular 
distribution. The dashed line is the angle of ejection calculated with equation (3.3.3) 
using an energy of 1 86 eV ( y = 1.000364 ). 

conservation of energy and momentum between the electron and the field, is 89.2" for 

186-eV electrons (position shown by dashed line in Figure 4.3.4). y - 1 for these 

electrons, resulting in ejection approximately perpendicular to the laser axis, which is 

expected at low ionization threshold intensities since q<<l and high-intensity Compton 

effects are minimal. 

Figure 4.3.5 shows the Monte Carlo prediction of the angular distribution of 

~ e "  electrons ionized at 4 . 0 ~ 1 0 ' ~  w/cm2 in a 1.5-ps circularly polarized laser pulse. 

The angular distribution is peaked at approximately 74. lo. These electrons are ejected 

with energies of 84.2 keV in the simulation, which corresponds to an angle of 74.0" 

using equation (3.3.3) (position of dashed line in Figure 4.3.5). The high ionization 

threshold intensity of these electrons causes interaction with a field strength of q-1. 



High-intensity Compton scattering causes electron recoil and a ;component of 

momentum in agreement with the conservation of energy and momentum argument 

described by equation (3.3.3). 

Many other numerical calculations of the relativistic electron trajectories have 

been performed. All are in excellent agreement with the predictions of the previous 

chapters. It is therefore clear that the predictions of the electron trajectories based on 

the separation of relativistic effects, pulse envelope, and spatial effects are valid when 

compared to a hlly relativistic calculation of the electron trajectories. The next step is 

to compare these predictions to the actual observations. This will be done following a 

discussion of the apparatus used in the experiment. 
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Figure 4.3.5: The angular distribution of ~ e ~ '  electrons ejected with 84.2 keV of 
energy. The solid line is the Monte Carlo prediction of the ejected electron 
distribution. The dashed line is the angle of ejection calculated using equation 
(3.3.3) and the ejected energy of 84.2 keV ( y  = 1.165). 



J.D. Jackson, Clarrcal Electrodyllclmics 2nd ed., (Wiley, New York, 1975). 

Peter W. Milonni and Joseph H. Eberly, Lasers (Wiley, New York, 1988), p. 484- 
490. 

M. Lax, W.H. Louisell, and W.B. Knight, "From Maxwell to paraxial wave optics," 
Phys. Rev. A 11, 1365 (1975). 

S Augst, D.D. Meyerhofer, D. Strickland, and S.L. Chin, ''Laser ionization of noble 
gases by Coulomb-barrier suppression," J Opt. Soc. Am. B 8, 858 (1 991). 

S. Augst, "Tunneling ionization of noble gas atoms using a high intensity laser at 
1 pm wavelength," Ph. D. thesis, University of Rochester, 1991. 

P.B. Corkum, N.H. Burnett, and F Brunel, "Above-threshold ionization in the long- 
wavelength limit," Phys. Rev. Lett. 62, 1259 (1 989). 
7 William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, 
Numerical recips in FORTRAN: the art of scientific computing 2nd ed. (Cambridge 
University press, Cambridge, 1992) p. 70 1-7 16. 

P.H. Bucksbaum, M Bashkansky, and T.J. Mcllrath, 'Scattering of electrons by 
intense coherent light," Phys. Rev. Lett. 58, 349 (1 987). 



Chapter 5 
Experimental Setup 

In the experiments, a circularly-polarized, high-power (- 1 TW) laser pulse is 

focused into a vacuum chamber backfilled with neon gas (see Figure 5.0.1). The laser 

pulse ionizes the gas at the focus, and freed electrons are ponderomotively accelerated 

from the focus. A magnetic 

spectrometer placed above the laser 

focus measures the energy and angular 

distributions of the electrons. This 

chapter describes the experimental setup 

and, in particular, the magnetic 

spectrometer. 

5.1 Laser system 

The high-power laser pulse used in the experiments is generated with a 

Nd:YLF/Glass Chirped-Pulse-Amplification (CPA) laser system (see Figure 5.1.1). l 2  

The pulse begins in a Nd:YLF oscillator where a 100-MHz pulse train with 1 nJ of 

energy per 50-ps pulse is created. The pulse train undergoes dispersion and self-phase- 

modulation (SPM) in a 1-km long optical fiber. The dispersion produces a linear 

dependence of frequency on time (linear temporal chirp) and a pulse width of 100 ps. 
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Figure 5.1.1: The Nd:YLF/Glass CPA laser system used for generation of 
approximately 1 TW pulses. 

The SPM increases the bandwidth fiom 0.3 to 25 A. Diffraction gratings fbrther expand 

the pulse width to approximately 500 ps. 

A single pulse of this train is switched into a Nd phosphate glass regenerative 

amplifier, where approximately 100 passes through the amplifier increase the pulse 

energy to 500 pJ. The many passes also decrease the bandwidth of the pulse to 

approximately 12 A due to gain narrowing in the amplifier rod. The pulse is fbrther 

amplified to 40 mJ by 3 passes through a 9-mm Nd phosphate glass amplifier. The final 

amplification stage is a 30-mm Nd phosphate glass amplifier that increases the energy to 

1 J or higher. The effects of thermal lensing in this amplifier limit the repetition rate of 

the laser to one pulse every 3 minutes. A pair of gold coated, holographic diffraction 



gratings compress this high- 

energy pulse to 

approximately the Fourier 

transform limited pulse width 

(AtAv = 0.44), or 

approximately 1.5 ps. 

The pulse width and 

I to diagnostics I 

vacuum 
tank 

glass wedge 

Figure 5.1.2: A glass wedge extracts 2% of the incident 
laser for energy and pulse width measurements. 

energy are measured for each laser shot during the experiment by deflecting 2% of the 

laser pulse to a pair of diagnostics 

(see Figure 5.1.2). The pulse 

width is measured using 2nd- 

order auto-correlation which has 

a relative uncertainty of +15% 

and an absolute uncertainty of 

+30%. An example of an auto- 

correlation trace of the pulse is 

shown in Figure 5.1.3. The solid 

curve is a Gaussian curve fit to the data. In this case, the measured pulse was 

approximately 2 ps long, which is longer than the typical pulse width of 1.5 ps. 

The energy is measured with a photo-diode and a 224% analog-to-digital 

converter (ADC). The photo-diode produces a pulse of current that is integrated by the 
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ADC. The total charge integrated by the ADC is linearly related to the incident laser 

energy. By calibrating this signal using an energy monitor placed directly before the 

vacuum tank, the energy is determined to an absolute uncertainty of * 10% and a relative 

uncertainty of *5%. 

Figure 5.1.4 shows the near-field intensity distribution of the laser at the lens. 

This intensity distribution is without the 30-mm amplifier firing. Previous measurements 

have shown that the 9-mm amplifier governs the intensity distribution, and the 30-mm 

amplifier is unnecessary for these measurements. The flat-top nature of the distribution 

shown is due to higher gain in the outer edges of the 9-mm amplifier rod. This is caused 

by higher absorption of the pump radiation in the edges of the rod. The higher gain in 

the edges of the rod amplifies the wings more than the center of the spatially Gaussian 

input pulse and results in a flat-top beam profile. 

0 50 100 150 200 250 

x (arbitrary units) 

ution. On the right is the intensity distribution along 



A 20-cm focal length lens focuses the pulse to a spot size of 37 f 3 pm2 in the 

vacuum chamber. The area of the spot size is defined as, 

Area = - J I C ~ W ?  
Ipeak 

where I@ is the peak intensity and the integral is over the plane perpendicular to the 

laser propagation direction at the beam waist (position where spot size is minimum). 

The spot size was determined by placing a short focal length imaging lens after 

the focus of the 20-cm lens used for the experiments. The 30-mm amplifier was not 

used in these measurements. The imaging lens magnified the focal spot, allowing a 

picture of the focus to be taken with a charge-coupled-device (CCD) (see Figure 5.1.5). 

The magnification was found to be 34+ 1 by measuring the image distance (distance 

from the imaging lens to the imaged focus) and the object distance (distance from the 

20-cm lens focus to the imaging lens) and taking their ratio. The area of the central 



peak of the imaged focal spot shown in Figure 5.1.5 was 85,400 pm2. The true focal 

spot size of the 20-cm focal length lens was determined to be approximately 37 pm2 by 

dividing the magnified focal spot area by the square of the magnification. The focal spot 

size was found not to fluctuate on a shot-to-shot basis. The spot size was therefore not 

measured for each laser shot during the experiments since a one-time measurement was 

sufficient. 

The combined uncertainties of the energy, pulse width, and spot size result in a 

relative uncertainty in the intensity of *20% and an absolute uncertainty of 

approximately *35%. 

The calculations in the previous chapters assumed a Gaussian TEM& mode laser 

profile. The actual distributions are a super-Gaussian at the lens (see Figure 5.1.4) and 

a Gaussian central peak with rings at the focus (see Figure 5.1.5). The rings at the 

focus occur due to a combination of two difiaction effects. The approximately flat-top 

incident beam produces an Airy disc pattern,3 and a 5-mm hole in the center of the 

focusing lens results in diffraction rings. The effects of the experimental focal 

distribution are minimal in connection with high-intensity Compton scattering. This is 

because the focus is still axially symmetric, resulting in a symmetric ponderomotive 

force (see section 3.2), 

F, (z) = -F, (-z) . 

An increase in the angular spread of the electron distribution is possible due to larger 

variations in the radial vs. axial components of momentum, but the peak of the angular 

distribution will be unaffected. 



5.2 Magnetic electron spectrometer 

A magnetic spectrometer was constructed to measure the energy and angular 

distributions of the electrons ejected fiom the laser focus. Figure 5.2.1 shows the 

layout of the spectrometer. Detailed schematics of the spectrometer are presented in 

Appendix B. Ejected electron trajectories are curved in a magnetic field in the gap of 

4 a "c-shaped" electromagnet and travel toward an organic plastic scintillator. 

Electrons striking the scintillator release photons that are detected by a photo- 

multiplier tube (PMT). 

The electrons are detected if they are curved the proper amount in the 

magnetic field to allow propagation to the scintillator. Electrons traveling 

perpendicular to a constant magnetic field travel in a circle with a radius known as the 

gyration radius. This radius is found fiom the electron's equations of motion in a 

constant magnetic field, 

Since y is constant in time, equation (5.2.1) reduces to 

dC - e - - -- D X B .  
dt ymc 



Figure 5.2.1: The magnetic spectrometer layout. A few electrons ejected fiom the 
laser focus enter the gap of the magnet in the spectrometer. The electrons are curved 
by the magnet field in the gap of the magnet. If the radius of curvature allows 
propagation of the electrons to the scintillator, the electrons create scintillation 
photons. The scintillation photons are detected by a PMT that gives a signal level 
proportional to the energy and number of electrons striking the scintillator. The inset 
shows the coil of wire wrapped around one arm of the magnet and the gap cut in the 



This equation describes circular motion with a frequency of 

and a radius of 

(the gyration frequency), 

M - J E G V  
P=~-T 

(the gyration radius). 

where Go is the initial velocity of the electron. The geometry of the spectrometer 

determines the gyration radius necessary for detection (see Figure 5.2.2). This causes 

p to be fixed and the relation between the electron energy and magnetic field is, 

By varying the strength of the magnetic field, the energy window of the spectrometer 

is changed according to equation (5.2.6). 

to scintillator 

from laser focus 

Figure 5.2.2: Trajectory of the electron through the magnet gap for a constant 
magnetic field within the gap. The direction of @,w and pfinal required for 
propagation from the focus to the scintillator are fixed by the geometry of the 
spectrometer and its position relative to the focus. The radius of curvature required 
for detection, pd, is therefore fixed and the relation of E vs. B is determined by 
Equation (5.2.6). 
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The magnetic field in the gap of the magnet is generated by sending current 

through the coil wrapped around one arm of the c-shaped iron core. The coil is a 

solenoid that generates a magnetic field within the iron core. The high permeability of 

the iron core ( p  - 1000pO) confines the magnetic field lines in the iron and the 

magnetic field travels around the core and through the gap creating a closed magnetic 

circuit (see Figure 5.2.3). The small width of the gap (2 mrn) allows approximately 

97% of the magnetic field generated by the coil to travel around the core and through 

the gap. Approximately 3% of the magnetic field from the coil "leaks" from the iron 

core. 

Figure 5.2.3: The magnetic flux lines of the c-shaped magnet in the spectrometer. 
The dark region is the iron core of the magnet. The high permeability (p-1000~) of 
the iron confines 97% of the magnetic field to the magnetic circuit created by the iron 
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The current through the coil is a 100-ms square-topped pulse. The coil can be 

viewed as an inductor and resistor in series, where the resistance is the resistance of 

the wire in the coil. A circuit of this type arrives in a steady state in a time given 

approximately by L R  where L is the inductance and R is the resi~tance.~ The coil has 

an inductance of approximately 1 millihenry and a resistance of 0.3 R. This circuit 

therefore arrives in a steady state in approximately 3 ms. The electrons enter the gap 

of the magnet 80 ms after the beginning of the current pulse and therefore experience a 

constant magnetic field. 

The strength of the magnetic field in the gap of the magnet was measured using 

a Hall probe6 to an accuracy better than f5% Initial measurements of the field 

measured the "hysteresis" loop of the magnet (see Figure 5.2.4). A 100-ms flat-top 

pulse of current was fired through the coil and the steady state field in the gap was 

measured. The magnitude of the current pulse was then decreased in constant 

increments until the negative of the initial current pulse was reached. The opposite 

arm of the hysteresis loop was generated by reversing the above process until the 

initial current pulse was reached. 

Accurate determination of the magnetic field is required for measurement of 

the electron energy through equation (5.2.6). The significant hysteresis effects evident 

in Figure 5.2.4 make a determination fiom the current alone insufficient since the 

history of the iron core plays a crucial role in the amplitude of the magnetic field. Only 



normal operation of the spectrometer. 

8 8 

The problem was solved by degaussing the iron core after each flat-top pulse 

of current through the coil. The hysteresis effects were related to residual fields left in 

during 
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strong residual field of approximately 600 Gauss in the gap, which affected subsequent 
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Figure 5.2.4: The "hysteresis" loop of the magnet in the spectrometer 
before degaussing the iron core. The arrows represent the direction the loop 
was generated. 

direct measurement of the field would be sufficient and this was impractical 

firing of the magnet. 

The degaussing of the core significantly reduces the magnet's residual field. 

One second after the end of the 100 ms DC pulse, a slowly diminishing sinusoidal 

current is applied to the magnet. This has the effect of sending the magnet through a 

hysteresis loop for each cycle of the current. The slowly decreasing amplitude of the 
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AC current causes each subsequent hysteresis loop to become smaller and smaller. 

After many cycles the current approaches zero and the hysteresis loop collapses about 

the origin, i.e., zero current and field. This degaussing concept is shown pictorially in 

Figure 5.2.5. This figure is only a demonstration of principle and is not an actual 

measurement. 

Current in coil (in Amperes) 

Figure 5.2.5: Effect of a slowly decaying sinusoidal current on the magnetic field of a 
solenoid with a ferromagnetic core. The time dependence of the current is shown in 

The schematic of a circuit to degauss a magnetic material is shown in Figure 

5.2.6. When the switch is closed, 10 VAC is applied across a pair of positive- 

temperature-coefficient (PTC) thermistors and the magnet coil. A PTC thermistor is a 

device whose resistance increases as its temperature increases (see Figure 5.2.7). 

Thermistors with 1 f2 resistance at room temperature are used in the degaussing 
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circuit for the electromagnet in the 

spectrometer. The coil has a 

resistance of 0.3 Q giving a total 

resistance for the circuit of 0.8 Q. 

This results in an initial current of 

12.5 A through the circuit. Each thermistor initially conducts 6.25 A and therefore 

absorbs 78 W of power. The thermistors are only able to dissipate approximately 14 

mW of power per "C above the ambient temperature and are therefore resistively 

heated. As the thermistors heat up, their resistance increases and this decreases the 

current flowing through the coil. As the current decreases, the power absorbed by the 

thermistors also decreases. When each thermistor's resistance reaches approximately 

90 Q, the power absorbed is equal to the power dissipated by the thermistor and the 

circuit arrives in a steady state. The residual current is approximately 280 rnA and the 

corresponding magnetic field of 

approximately 20 Gauss 

represents the limit of the 

degaussing of the magnet with 

this setup. 

The residual current can 

be made smaller by increasing 

the voltage across the 
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Figure 5.2.7: Temperature versus resistance curve 
for a typical PTC thermistor. 
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Figure 5.2.6: A circuit for degaussing magnetic 
materials. 
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thermistors and coil. However, an increase in voltage causes the thermistor to heat up 

faster and therefore "turn off' faster. The current must diminish slowly to allow the 

hysteresis cycles to spiral inward to zero field. The above combination of 1 l2 

thermistors and 10 V of applied voltage represents the optimal arrangement (found 

empirically) for minimum residual field. 

The circuit for firing and degaussing the magnet is shown in Figure 5.2.8. A 

variac adjusts the voltage from a DC power supply between 0 and 24 V. A trigger 

from the laser system closes the "DC Relay" in the figure 80 ms before the laser pulse 

arrives in the vacuum tank. This relay remains closed for 100 ms and allows the 0 to 

24 V from the DC power supply through the magnet coil. A "reverse field switch 

selects the polarity of the voltage and therefore, the direction of the magnetic field in 

the magnet. One second after the DC relay opens, another relay (AC relay) closes 

AC Relay 

Figure 5.2.8: Circuit diagram of the power supply to fire and degauss the magnet in 
the electron spectrometer. 



92 

allowing 10 VAC through the coil of the magnet. This current flows through two 

thermistors that begin to heat and suppress the current flowing through the coil. The 

AC relay closes for approximately 10 seconds to allow the current to amve in a steady 

state. After the AC relay opens, the thermistors require approximately 20 seconds to 

cool before the magnet can be fired again. This technique assures that the magnet is 

degaussed every time the DC voltage is fired. 

The magnetic field as a fbnction of current after degaussing is shown in Figure 

5.2.9. The magnetic field generated in the gap was measured for a series of current 
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Figure 5.2.9: The magnetic field generated in the gap of the magnet as a fbnction of 
current through the coil after degaussing. Six measurements were taken at a series 
of current settings. The measurements were taken in random order so that any 
significant hysteresis effects should cause large fluctuations in the field. The 
average standard deviation of the magnetic field was <3% for fields above 80 gauss. 
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settings. The current was randomly changed between current settings until 6 points at 

each current were measured. The average values and the standard deviation (error 

bars) of these 6 points at each current are shown in the figure. The error bars show 

only small fluctuations in the magnetic field above 80 Gauss. The dependence of the 

field on the history of the magnet has therefore been eliminated and the field strength 

can now be accurately determined from the current alone. Below 80 Gauss, the 

residual field still significantly affects the field produced, resulting in large relative 

fluctuations. The spectrometer is therefore only accurate at magnetic field strengths 

above 80 gauss or a corresponding electron energy of 2 keV. 

The path of the electrons through the spectrometer is approximately 30 cm. 

The operation of the spectrometer requires the propagation of electrons without 

interaction with other particles at the pressure of neon gas used in the experiment, 

lo-' Torr. Two interactions are possible; the electrons can interact with the 

background atoms in the vacuum tank or the electrons can interact with other charged 

particles. 

The electron range of 0.3 keV to 20 MeV electrons in a neutral material is to a 

good approximation, 7 
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where E is the electron energy and p is the material's density. The experiments 

performed measured electron energies greater than 1 keV in neon. The range of 

1 keV electrons in 1 o - ~  Torr of neon gas ( l2 x 1 0-g g,/cm3 ) is 10 meters. Higher 

energy electrons will propagate hrther and interactions with neutral atoms are 

therefore insignificant in the experiment. 

The effects of interactions with other charged particles were determined 

experimentally. The signal level from the detection of low-energy (3 keV) electrons at 

1 o - ~  Torr was compared to signal levels at 5 x 1 0 ~  Torr. The signal level at loJ Torr 

was twice the signal level at 5x10~.  Collective plasma interactions would result in a 

nonlinear dependence of the signal level on the pressure that was not observed. These 

effects are therefore unimportant at Torr and can be ignored. 

The range of electrons is also important in determining the minimum thickness 

of the scintillator and shielding needed for complete absorption of electrons. The 

highest energy or deepest penetrating electrons in the experiments had an energy of 

80 keV. These electrons have a range of 90 pm in the plastic scintillator and 30 pm in 

the aluminum shielding. The electrons are therefore completely absorbed in a very thin 

layer on the inside surface of the scintillator and minimal thickness shielding is required 

to block the electrons completely. 

The shielding is necessary in two places within the spectrometer. One is the 

bottom disk of the spectrometer which holds the magnet. This must stop electrons 
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from traveling to the scintillator without going through the magnet gap. The disk is 

1.27 cm thick which easily stops all electrons of interest. The second is a 3 mrn thick 

aluminum mask placed over the scintillator which is discussed below. This mask 

completely blocks electrons from striking the outer portions of the scintillator. 

The radius of curvature necessary for detection can be estimated analytically 

using a square topped magnetic field within the gap of the magnet and zero magnetic 

field elsewhere, i.e., by assuming that fringe fields and leakage from the magnet core 

can be ignored. These estimates give the required gyration radius as 1.1 cm and do 

not agree well with the radius found in the experimental calibration, 1.54 cm (see 

section 5.3). This discrepancy occurs because the contribution of fringe and leakage 

fields can be substantial. 

The electron's equation of motion in a constant magnetic field is given by 

equation (5.2.3), 

where & is the differential path length of the electron's trajectory. Therefore, B & 

gives the magnitude of the curvature. Since the fringe and leakage fields act over 

larger distances than the field within the gap, small values of the magnetic field outside 
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the gap can be offset by large propagation distances and play a substantial role in the 

electron trajectories. 

The magnetic field profiles in and around the gap in the magnet were measured 

using a Hall probe. The measured profiles (see Figure 5.2.10) showed large fiinge 

fields fiom the gap and a background leakage field of approximately 3% the peak 

magnetic field in the gap. 

The fiinge fields are due to the finite dimensions of the faces of the gap. The 

background field is due to the leakage of magnetic flux between the arms of the 

magnet caused by the finite magnetic permeability of the iron core. To model the 

magnet's field profile analytically, the measured values are curve-fit to a field of the 

form, 

where Bpeak is the peak magnetic field in the gap, E, is the x or z coordinate as shown 

in the inset of Figure 5.2.10, and w is the width of the distribution. This hnction fits 

the curves well except for a slight deviation near the center of the magnet (at ~ = 4  cm 

in the profile in the x direction). The slight deviation is due to the leakage flux fiom 

the iron and is accounted for by a separable field which drops off as llrL for large 
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Figure 5.2.10: The measured relative strength of the magnetic field as a hnction of 
position. The two scans are through the center of the gap along perpendicular axis as 
shown in the inset of the top figure The dashed lines represent the positions of the 
faces of the gap. The solid lines are the least squares curve fits of equation (5.2.9) to 
the data. The leakage flux near the center of the magnet (top figure; ~ = 4  cm) is not fit 
well by this equation. The addition of equation (5.2.10) to the magnetic field is 
necessary to correctly - model the magnetic field profile. 



distances from the magnet, in analogy to the expected fall off of a field from a "hole" 

in a conductor.' This field is assumed to be of the form, 

where Bleak is the field at the center of the magnet, y is along the central axis of the 

spectrometer (see Figure 5.2.10 inset), and r, is the effective radius of the hole in the 

magnet (the radius of a circle with the same area as the opening in the center of the 

magnet, 3.4 cm). The contributions from the fringe fields and the leakage flux are 

added to give the total distribution of the magnetic field. 

A Monte Carlo simulation of the electron's propagation through the 

spectrometer has been performed. The computer code is presented in appendix C. 

The simulation modeled the magnetic field in the gap based on the measurements of 

the fields described above. The gyration radius found in the simulation, 1.52 cm, was 

in excellent agreement with the gyration radius found from the experimental 

calibration, 1.54 cm (see section 5.3). 

The number of electrons striking the scintillator can be approximated from the 

measured signal levels. The light output of the scintillator is linear with electron 

energy for electron energies greater than 125 kev: 

N, = E.N, 
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where Ne is the electron number, Np is the number of photons created, and E is the 

electron energy. For energies below 125 keV, surface quenching effect* cause the 

light output to drop below the linear approximation of equation (5.2.11). The exact 

energy dependence of surface quenching effects requires an experimental calibration of 

the light output versus electron energy. This calibration has not been performed. 

However, the maximum effect of surface quenching for the electron energies observed 

in the experiments is a 10% deviation fiom the linear approximation of equation 

(5.2.1 I ) . ~  The use of a linear approximation for the scintillator's energy response 

therefore introduces little error. 

The light output of the scintillator in the linear regime is approximately 10 

photons per keV of incident electron energy or, 7 

The 2.5-cm diameter photo-cathode of the PMT is 2.5 cm fiom the inside surface of 

the scintillator. If we assume photons are generated directly below the PMT on the 

inside surface of the scintillator, the photo-cathode subtends a solid angle of 1.26 sr or 

collects 10% of the photons produced in the scintillator. The quantum efficiency of 

the photo-cathode is 25% for the 420-nm scintillation photons. The gain of the PMT 

at the voltage used in the experiments, 1500 V, is 5x1o5f5O%. The total charge 

produced by the PMT for Ne electrons of energy E striking the scintillator is therefore, 



q - e E(keV) ~,(10)(0.10)(029(5~1 d) 
= 0.02 E(keV)N, picocoulombs 

A 2249w Analog-to-Digital Converter (ADC) is used to integrate the total charge 

produced. The ADC produces 1 count of signal for each 0.25 pC of input charge. 

The number of counts from the 224% is therefore given by, 

N, = (0.08) E(kev) N, . (5.2.14) 

This allows determination of the number of electrons striking the scintillator from the 

measured signal of the ADC, 

This derivation is intended as an order of magnitude calculation of the number 

of electrons only. The uncertainty in the gain of the PMT and variations in the solid 

angle subtended by the PMT (due to electrons not striking directly below the PMT) 

may cause significant differences between the number calculated in equation (5.2.15) 

and the actual number of electrons. 

An error in the absolute number of electrons is unimportant to the experiments 

described in this thesis. Only the relative number of electrons is required for an 

accurate determination of the energy and angular distributions. The relative error is 

known to within +lo% since this only depends on the linearity of the scintillator and 

PMT. The response of the PMT is highly linear in the absence of saturation, which 

was avoided during these experiments. 



5.3 The energy calibration of the spectrometer 

An electron gun was constructed to calibrate the energy versus magnetic field 

response of the spectrometer. Two parallel copper plates were placed on either side of 

the laser focus (see Figure 5.3.1). The plates were aligned so that the perpendicular to 

the surface of the plates passed through the gap in the magnet. A hole was cut in the 

plate between the laser focus and the gap in the magnet, and copper screening was 

placed over the hole. 

An electrostatic field was applied across the plates and the vacuum chamber 

was backfilled with helium. A low-energy laser pulse (approximately 15 mJ) focused 

between the plates ionized the helium resulting in a low-density plasma. The ions were 

accelerated by the electrostatic field away from the gap in the magnet toward the 

cathode. The ions struck the cathode and released many low-energy (E,tid < 50 eV) 

secondary  electron^.^ These electrons were accelerated by the electrostatic field 

toward the anode and the gap in the magnet. As the electrons reached the anode and 

passed through the copper grid, acceleration ceased and the electrons traveled at a 

constant energy corresponding to the full potential of the applied electrostatic field 

(2.5 to 20 kV). The small initial energies (Elnitid < 50 eV) compared to the final 

energies (Efd=2.5 to 20 keV) of the electrons resulted in a nearly monoenergetic 

distribution. The electrons then traveled to the gap and entered the spectrometer. 



Figure 5.3.1 Calibration of the magnetic electron spectrometer. The electron gun is 
centered on the laser focus and aimed toward the gap in the magnet of the 

The electrons were determined to be secondary electrons fiom ions striking the 

cathode by the observation of a significant time delay between the laser ionization of 

the gas and subsequent detection of the electrons. The time-of-flight (TOF) of 



electrons from the center 

of the electron gun to the 

scintillator is on the order 

of 10 ns for all applied 

voltages. Multiple peaks in 

time detected on the order 

of a 100 ns alter ionization 

were observed. The delay 

was due to the TOF of the ions in the electron gun as they traveled to the cathode. 

The multiple peaks were due to multiple charge states of the ionizing gas. 

Examination of helium, neon and xenon showed peaks at times in excellent agreement 

with the TOF of the ions in the electron gun. No significant signal from the primary 

electrons was observed. 

Figure 5.3.2: A scan of the spectrometer magnetic field 
to determine the window of field strengths that allow 

15 keV electrons from the electron gun 

The electrons were detected if the magnetic field was of the proper strength to 

cause the gyration radius necessary for propagation to the scintillator. Since the 

electron energy was known from the applied potential to the plates, the magnetic field 

could be adjusted until electrons were visible on the scintillator, and the magnetic field 

corresponding to that electron energy was determined (see Figure 5.3.2). 

A series of the required magnetic fields for the applied potentials to the 

electron gun was measured using this technique (see Figure 5.3.3). These points were 

least-squares fit using equation (5.2.6) with the gyration radius as the curve-fit 



parameter. This determined the gyration radius as 1.54 cm, in excellent agreement 

with the theoretical prediction of 1.52 cm. 
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Figure 5.3.3 Plots of the kinetic energy of electrons observed versus the magnetic 
field within the gap of the magnet of the magnetic spectrometer. The open circles are 
the experimental calibration, the open squares are the Monte Carlo simulation 
predictions, and the dashed curve is the prediction of the simple geometrical 

I calculation assuming a flat-top magnetic field within the gap. 

The magnetic field in the gap of the magnet causes electrons entering the gap 

to be projected on the scintillator. The Monte Carlo simulation predicts 

monoenergetic electrons are projected onto a strip approximately 3 cm long. An 

aluminum mask blocking all but a 3-cm wide strip is therefore placed over the 

scintillator to maximize the energy resolution of the spectrometer. With this mask in 

place, the resolution of the spectrometer is found experimentally as AE/E = 30% 

FWHM, i.e., the FWHM of a monoenergetic electron peak is 30% of the energy of the 

peak (see Figure 5.3.4). 



Electron energy (in keV) 

Figure 5.3.4: A scan of the scintillation photon signal as a function of energy for 

5.4 Measurement of the angular distribution of the electrons 

The center of the scintillator disk, the center of the magnet, and the laser focus 

lie on a single line. This is the central axis of the spectrometer. The alignment of the 

focus to the central axis of the spectrometer is accomplished by viewing a laser 

induced discharge in air through a 0.5-mrn hole in the bottom disk of the spectrometer. 

A PMT was placed above the output window of the spectrometer looking 

through the hole. A low-energy laser pulse (approximately 1 mJ) was fired through 

the lens into the vacuum chamber, which was open to air. The position of the focus 

was moved by adjusting the focusing lens. The position of the lens was set so that the 

signal observed by the PMT from the discharge in the focus was maximized. The hole 

is blocked for standard operation of the spectrometer. 
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The plane of the gap in the magnet passes through the central axis which 

assures that a line of sight can always be traced from the laser focus through the gap. 

This is an important aspect of the magnet and spectrometer because rotation of the 

magnet and entire spectrometer around the central axis maintains the ability to trace a 

clear line of sight from the laser focus through the gap, regardless of the rotation angle 

of the spectrometer. This allows measurement of the angular distributions of the 

electrons relative to the laser axis. The 2-mrn width of the gap in the magnet 

corresponds to a 2' angle over which electrons are accepted to the spectrometer. 

Figure 5.4.1 shows the detection angle of the spectrometer as it is rotated. 

Since the magnet rotates in a plane above the laser axis, the angle of rotation of the 

spectrometer, 4, is different from the angle between an electron trajectory fiom the 

laser focus to the gap and the laser axis, 8. These angles are related by, 

cose = co~45~.cos$ (5.4.1) 

Ionization and subsequent acceleration of electrons from a circularly polarized 

Gaussian laser focus must cause a cylindrically symmetric distribution of ejected 

electrons about the beam axis due to the symmetry of the laser. A measurement of the 

angular distributions of 4 keV electrons ejected from fl in a circularly polarized 

focus showed an asymmetry in the spectrometer. These electrons were observed at 

4=81.9' on one side of the focus and at 4=93.2" on the opposite side of the focus, i.e., 

with the spectrometer rotated approximately 180" (see Figure 5.4.2). 



The asymmetry is believed to be due to a 2' tilt in the magnetic field of the 

spectrometer that curves the electrons in the z-direction as defined in Figure 5.2.10. 

In circular polarization, the focus is symmetric and the only explanation for this 

asymmetry is in the spectrometer. The shift can therefore be taken into account by 

simply rotating the observed angular distributions by a 4 of 5.7Ok0.5" (see Figure 

5.4.3). Measurement of high-energy electrons (80 keV) from neon confirm that a 

rotation by 4=5.7' corrects this asymmetry. The asymmetry causes an increase in the 

uncertainty of the measured angles from 2100 due to the geometrical acceptance angle 

of the magnet gap to f 13' due to the added uncertainty from the asymmetry. 



Figure 5.4.3: The asymmetry in the angular distribution of electrons due to the 
response of the spectrometer. The spectrometer rotates electrons 5.7" in t$ from their 
original angle and the electrons can be considered released relative to an effective 

5.5 Energy spectrum of helium 

An examination of the energy distribution of electrons ejected fiom helium at 

85.0" fiom k using circular polarization was conducted. This scan is used to verifl 
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the expectation that the energy of the ejected electrons is approximately twice the 

ponderomotive potential as predicted in chapter 3. Confirmation that the electrons are 

ejected with 2Qp of energy allows the categorization of the different peaks to the 

different charge states in the more complicated energy spectrums of neon. It is also 

usefbl in testing the accuracy of the Monte Carlo simulation. 

The BSI threshold intensity in circular polarization for the creation of ~ e ~ +  is 

1 .76x1016 w/cm2. This corresponds to a ponderomotive energy of 1.82 keV or an 

expected ejection energy of 3.64 keV. The Monte Carlo prediction of the energy of 

the ejected electrons is 3.4 keV. The slightly lower energy of the simulation is due to 

the 500-fs interaction time (see section 3.4) of these low-energy electrons. This is 

only a factor of 3 less than the pulse width of the laser, 1.5 ps, so the electrons acquire 

only 87% of the ponderomotive energy. 

The measured energy spectrum and the Monte Carlo simulation prediction are 

shown in Figure 5.5.1. A single peak in the data is evident at 3.0 keV. This is the 

highest energy peak visible from the ionization of helium (see Figure 5.5.1 inset). 

These electrons must therefore be generated in the creation of ~ e ~ + ,  or fblly stripped 

helium. The energy is within 12% of the prediction of the Monte Carlo simulation. 
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Figure 5.5.1 : The energy spectrum of helium at 85.0" from the beam axis. The inset 
shows the measured spectrum out to 40 keV. The only peak is at 3.0 keV. These are 
from electrons freed in creating ~ e ~ + .  The observed energy is slightly lower than the 
Monte Carlo simulation prediction of 3.4 keV (the dashed curve). 

The slight difference in the Monte Carlo prediction and the observed energy is 

unimportant for the main goal of the helium experiment. The main goal is to 

determine the validity of our predictions for the electron energy. The energies agree 

well enough (within 12%) to allow the categorization of the peaks in the energy 

spectrum of neon to their particular charge states. The absence of high-energy 

electrons also confirms that no plasma physics mechanisms are generating energetic 

electrons. Only single particle interactions with the field are significant. 
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Chapter 6 
Experimental observations of the electron distributions 

Observations of the forward drift of electrons due to high-intensity Compton 

scattering in an optical laser focus are presented in this chapter. The first section 

discusses the steps involved in acquiring the electrons' energy spectra at a variety of 

angles. The analysis of the energy spectra and their conversion to the angular 

distributions for each charge state are addressed in section 6.2. The final section 

presents the angular distributions and their confirmation of the forward drift due to 

high-intensity Compton scattering. 

6.1 Acquisition 

The energy and angular distribution of the electrons is measured with the 

magnetic spectrometer by varying the spectrometer's magnetic field and rotation 

angle. Measurement of the electron energy spectra from 2 keV to 100 keV at nine 

angles is accomplished using the following methods. 

The spectrometer is placed above the laser focus with the gap at one specific 

angle from I;. The vacuum tank is filled with neon at lo5 Torr of pressure. An 

energy spectrum is generated by varying the magnetic field in the spectrometer to map 
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out the electrons' energy distribution. The energy scan begins at a magnetic field 

corresponding to an electron energy of approximately 2 keV. Five circularly polarized 

laser shots with a peak intensity of approximately 1018 w/cm2 are taken. The electron 

signal fiom the spectrometer is digitized with a 224% Analog-to-Digital converter 

(ADC), and the number of counts is recorded for each shot. The energy and pulse 

width of the laser are also recorded to allow determination of the laser's intensity. The 

vacuum tank is then pumped out to minimize contamination in the tank. The magnetic 

field is increased by an amount corresponding to an energy increase of one-quarter the 

resolution limit of the spectrometer, or (0.075)E. This insures that even a 

monoenergetic electron peak is not "skipped over" in the scan. The tank is refilled, 

five more shots are taken and the signals recorded. The tank is pumped out and the 

magnetic field increased, etc. 

The energy scan results in measurements of the electron signal for energies 

fiom 2 keV to 100 keV at the angle of observation of the spectrometer. The 

spectrometer is then rotated to a different angle with respect to c and the energy scan 

is repeated. This process is used to measure the electrons' energy spectra at nine 

different angles, 69.9' to 92.5' with respect to c . 

6.2 Analysis 

The number of electrons striking the scintillator (N,) for each laser shot is 

calculated using equation (5.2.1 5), 



where Nc is the number of counts from the ADC and E is the energy setting of the 

spectrometer. 

The laser fluctuates in intensity fiom shot-to-shot by as much as 50%. The 

number of electrons varies as a hnction of the intensity because of the change in the 

number of ionized atoms. As a result, the spectrometer's signal level must be 

normalized to eliminate these fluctuations and allow averaging of the five signal levels 

at each magnetic field setting. 

The normalization is accomplished by examining the signal level as a hnction 
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Figure 6.2.1: Intensity scan of 3 keV electrons ejected fiom neon. The signal as a 
hnction of intensity behaves  as^'^*^^. This is used to normalize the signal levels for 
the 5 shots taken at each energy to the corresponding signal at a single intensity 

w/cm2). 
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of intensity and normalizing the signal level to a single intensity (1018 w/crn2 was used 

for all of the data). An example of an intensity scan of 3 keV electrons ejected from 

18f 02 
neon is shown in Figure 6.2.1. The signal varies as N, = b , where 10 is the peak 

intensity of the laser pulse. This relation is due to the intensity dependence of the size 

of the focal volume. 

The focal volume is the volume within the laser focus where the intensity 

exceeds the threshold intensity (intensity required for ionization) of the atom or ion at 

the peak of the laser pulse.1 The intensity distribution of a Gaussian laser focus is 

given by 

where 

and f(t) describes the temporal envelope and is always < 1. The peak intensity 

reached at any position is given by equation (6.2.1) with f(z, t) replaced by 1, 



The maximum radius at which ionization can occur (the radius where the maximum 

intensity reached is the threshold intensity) is 

where 1, is the threshold intensity. The maximum axial position at which ionization 

can occur is 

The volume enclosed by r, and z, is the focal volume, 

The focal volume as a function of I,/lo is shown in Figure 6.2.2. Also plotted is the 

limit of equation (6.2.6) for I,<<Io, 



For Ifi<0.410, equation (6.2.7) agrees well with equation (6.2.6). Ifi<0.410 is valid for 

all of the electrons observed in these experiments. The number of electrons ionized 

from each charge state can 

then be approximated by, 

where p is the neon density. 

This I'.' intensity dependence 

of the number of electrons 

ionized in the focus is in rough 

agreement with the measured 

I ~ * ~ ~  intensity dependence. 

The slight discrepancy is possibly the result of the non-Gaussian nature of the laser 

profile described in section 5.1, or an intensity dependence of the collection efficiency 

of the spectrometer. 

Intensity scans at a large variety of electron energies (3, 7, 15, and 80 keV) 
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Figure 6.2.2: The size of the focal volume of a 
Gaussian laser profile as a hnction of the ratio of 
the threshold intensity to the peak intensity of the 
laser pulse. For Ifi<0.410, the hnctional 
dependence of the focal volume is closely 
approximated by 

L8f 02 
have been performed, and all show this b intensity dependence. By multiplying 

the number of electrons for each shot by ( I ~ ~ ~ J I ~ ~ ~ ~  , the number is normalized to 

the intensity Inom (1018 w/cm2 was used in the analysis). This eliminates the intensity 

fluctuations of the laser and allows the averaging of the five shots taken at each energy 



setting. The uncertainty in the normalization exponent of H 2  introduces a maximum 

error of +30% in the normalized electron numbers. 

Ejection energies of approximately 2 a p  are expected, where the 

ponderomotive potential is calculated at the threshold intensity of each charge state. 

This energy is expected from the conservation of canonical momentum in a circularly 

polarized field and the acceleration from the ponderomotive potential (see section 3.2). 

The BSI threshold intensities and corresponding ejection energies from the neon 

charge states studied in these experiments are shown in Table 3. 

The energy spectrum of neon 

taken at 87.3" with respect to 1; is 

shown in Figure 6.2.3. This figure 

shows the expected behavior of the 

energy spectrum. Peaks in the spectrum 

corresponding to different charge states 

me3+ to Ne5+) are observed with energies of approximately twice the ponderomotive 

energy of each charge state's BSI threshold intensity. The electron energy spectra at 

all measured angles are shown in Appendix D. These spectra show electrons from 

Ne3+ up to Nesf and continued agreement with the predicted energies. 
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Figure 6.2.3: The electron energy s ectrum of neon at 87.3" from g .  Three distinct 
4P peaks corresponding to Ne3+, Ne , and Ne" are shown by the positions of the 

arrows. The cross hatched area below 2 keV is not measurable with the 
I spectrometer. 

The energy distribution measured at 75.8" is shown in Figure 6.2.4. This 

spectrum illustrates the difficulties in extracting an angular distribution for each charge 

state. The peak at approximately 65 keV is a combination of electrons from Ne7+ and 

Nest. The two peaks are not resolvable. 

The following paragraph demonstrates the method used to determine the 

individual charge state's contributions. Figure 6.2.5 shows the electron energy 

distribution of neon at 78.g0, and Figure 6.2.6 shows the energy distribution at 69.90. 

These spectra show a peak at 60 keV for 78.8" and a peak at 85 keV for 69.90. In 

these spectra, the individual peaks of the 7' (60 keV) and the 8' (85 keV) charge 

states are visible. A Gaussian curve fit to these resolvable peaks is used to determine 

the energies and widths of each charge state's electron peak. The centroids and 
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Figure 6.2.4: The energy spectrum of neon at 75.8" from t .  The peak at 
approximately 67 keV is a sum of the contributions from the electrons of ~ e "  and 
~ e ~ + .  
widths of two Gaussians are then fixed at these energies and widths. The sum of the 

two Gaussians is then least-squares fit to the electron spectra at 75.8" with only the 

two peak heights as the fit parameters. The two peak heights give the contributions of 

the individual charge states. 

This method is generalized to find the number of electrons contributed by all of 

the observed charge states at all angles. The width and energy of each charge state is 

determined from all clearly resolvable electron peaks. The same charge states are 

resolvable at a few different angles, allowing a few different values of each charge 

state's energies and widths to be determined. These are then averaged. The 
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Figure 6.2.5: The energy spectrum of neon at 78,8' from c .  The peak at 
approximately 60 keV is almost entirely electrons from Ne7+ This allows 
determination of the energy and width of the peak from the Ne7+ electrons. 
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Figure 6.2.6: The energy spectrum of neon at 69.9' from c .  The peak at 
approximately 85 keV is almost entirely electrons from Nest. This allows 
determination of the energy and width of the peak from the Nest electrons. 
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Table 4: A table of the expected and observed energies and widths of the electron 
peaks for neon: Ithresh is the BSI prediction of the threshold intensity in circular 
polarization, 2Qp is twice the ponderomotive energy of the threshold intensity, and 
EM,c, is the predicted ejection energy from the Monte Carlo simulation. En and Ti,, 
are the energies and widths of the ejected electrons found from averaging the 
resolvable peaks in the experimental energy spectra. The positions with dashes 
remesent auantities not measurable due to the limits of the mectrometer or laser. 

parameters calculated with this method are shown in Table 4. The standard deviations 

of the energies and widths are typically f 100h and f 30% respectively. 

The average AE/E FWHM of the peaks is 05 + 0.1 . The width of these peaks is 

therefore not entirely due to the resolution of the spectrometer of AE/E= 03. The 

increased width is most likely due to the ionization process. The BSI approximation 

assumes ionization occurs at a single intensity which results in monoenergetic 

electrons due to the dependence of ejected electron energy on the ionization threshold 

intensity. However, ionization is actually occurring over a range of intensities due to 

tunneling through the Coulomb barrier (see section 2.2). This range of ionization 
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intensities maps into a range of electron energies and increases the width of the 

electron peaks. 

The average energies and widths are used in a sum of six Gaussian 

distributions, 

where ~ ~ ( 8 )  is the number of electrons t o m  Nen+ at each angle, and % and Kin are 

the average energies and widths of the electrons from Nen+ shown in Table 4. For 

each angle 8, the coefficients ~ ~ ( 8 )  are found by a least-squares fit to 

equation (6.2.9). The ~ ~ ( 8 )  give the number of electrons for each charge state and 

allow generation of the angular distributions, which are discussed in the next section. 

6.3 The observed angular distributions of electrons ejected from neon 

The angular distributions ~ ~ ( 8 )  of all observed electron peaks (from Ne3+ to 

Ne8+) are shown in appendix E. The angular distributions show the effects of electron 

recoil due to high-intensity Compton scattering. As discussed in chapter 3, electron 

ejection t o m  a low-intensity laser focus is described by the ponderomotive potential. 

Electron acceleration via the ponderomotive potential results in electron ejection at 90' 

to g. The derivation of the ponderomotive potential, however, assumes Thomson 

scattering describes the electron' s interaction with the field. At high intensities, 
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significant electron recoil due to high-intensity Compton scattering causes an 

additional forward component of electron momentum. The forward momentum 

causes the ejected electron distribution to be "pushed" forward into a cone centered 

on i; at high intensities. The angle of this cone is given by (see section 3.3) 

The angular distribution of electrons ejected at 3.1 keV following the creation 

of Ne3+ is shown in Figure 6.31 A peak is evident at 88" from 1;. The solid line is a 

Gaussian curve fit to the data, and the dashed line is the angle predicted using 

equation (6.3.1) for 3.1 keV electrons. 

The Ne3+ electrons show only a small forward shift in the angular distribution. 
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Figure 6.3.1 : The angular distribution of the 3.1 keV electrons from Ne3+. The solid 
curve is a Gaussian curve fit to the experimental data. The dashed line is the angle 
predicted using equation (6.3.1) and y = ~ / m c ~ +  1 = 1.0059. 



This is because the low energy and corresponding low intensity at which they are 

ionized results in minimal electron recoil and a correspondingly small forward 

momentum component. The predicted ejection angle of these electrons using 

equation (6.3.1) is 87". This is within the 1.5" uncertainty of the observed ejection 

angle of 88". 

Figure 6.3.2 shows the angular distribution of electrons ejected at 84 keV 

following the creation of ~ e ~ ' .  A peak is evident at 75" from c .  These electrons are 

acquiring a large forward momentum component (approximately 25% of their total 

momentum). The forward momentum is caused by electron recoil due to absorption 

of momentum from the field or, equivalently, high-intensity Compton scattering. 

Equation (6.3.1) gives 74' fiom as the ejection angle of these electrons. This is in 

Figure 6.3.2: The angular distribution of the 84 keV electrons from ~ e " .  The solid 



good agreement with the observed angle of 75". 

Figure 6.3.3 shows the observed angle of the electron peaks associated with 

the ionization of the various charge states of neon versus electron energy (open 

circles). The solid curve shows the conservation of energy and momentum prediction 

of equation (6.3. I), and the solid circles represent the predicted positions of the peaks 

from the fully relativistic Monte Carlo simulation. The observed ejection angles are in 

excellent agreement with both predictions of electron recoil due to high-intensity 

Compton scattering (equation (6.3.1)) and the Monte Carlo simulation. 

Monte Carlo simulation 

Kinetic energy of electrons (in keV) 

' S. Augst, "Tunneling ionization of noble gas atoms using a high intensity laser at 
1 pm wavelength," Ph. D. thesis, University of Rochester, 199 1. 



Chapter 7 
Conclusions 

Electrons produced from the ionization of neon and subsequently ejected from 

a high-intensity optical laser focus (I = 1 d w/cm2) have been investigated using an 

energy- and angular-resolving magnetic spectrometer. Electrons with a significant 

longitudinal momentum component were observed. These results were consistent 

with the predictions of high-intensity Compton scattering. 

Electrons ionized in a laser focus are ejected from the focus with energies 

characteristic of their ionization threshold intensities. The 1.5-ps laser pulse duration 

allows complete conversion of the ponderomotive (quiver) energy of an electron to 

translational kinetic energy. Ionization with circular polarization also results in a 

nonzero initial canonical momentum, which gives the electron momentum in the plane 

of polarization of the laser. The combination of ponderomotive energy and 

conservation of canonical momentum results in electron ejection at twice the 

ponderomotive energy. 

Electrons freed in the creation of Ne3+ to Ne8+ were observed in the 

experiments. The ejected energies were in good agreement with twice the 



ponderomotive energy of the Barrier-Suppression-Ionization (BSI) threshold 

intensities of the various charge states 

(see Figure 7.1). 

The ejected electron 

trajectories displayed a transition fiom 

the Thomson scattering regime to the 

high-intensity Compton scattering 

regime. The electrons ejected from 

the lowest charge states of neon 

(Ne3+) interacted with relatively low 

laser intensities and displayed a small component of longitudinal momentum 

(approximately 3% of their total momentum). The highest charge state electrons 

observed (Ne8+) showed a much larger component of momentum in the 6 direction 

(approximately 25% of their total momentum). The higher charge state electrons' 

increased longitudinal momentum was due to field momentum or high-intensity 

Compton scattering effects. 
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Figure 7.1: The energies of electrons from 
Ne3+ to Nest in circular polarization. The 
open circles are the predicted energies (twice 
the ponderomotive potential of the BSI 
threshold intensities) and the solid circles are 
the observed energies. 



Future work 

The continuation of the 

experiments described in this thesis for 

higher electron energies has begun 

using krypton. As shown in Table 5, 

electrons ionized fiom Kr* to Kr18+ 

2.8x1018 
are predicted to gain energies from 5 8  3.4x1018 700 50.4" 

keV to 870 keV based on the BSI 4 . 2 ~ 1 0 ' ~  I IT::: I: Predicted BSI t Leshold intensities 
threshold intensity. Observation of 1 in circular polanration, Ithresh(Circ.), I 

electron ejection - energies, 2Qp, and ejection 

these electron energies will allow the 

in the regime where relativistic mass effects become important. Preliminary 

angle from k ,  eejst, of a feG charge states 
of Krypton. Shown are charge states for 

testing of the predictions of this thesis 

experiments in krypton have observed ejection energies and angles in good agreement 

~ - 

which the predicted ejection energies are 
near the electron rest mass, 5 11 keV. 

with the previous predictions for up to Kr"+. Intensities achievable with the current 

laser system should allow measurement of electrons from Kr18+ or electrons with 

energies of approximately 870 keV ( y = 2.7 ). 

Other experiments will focus on the energy spectra of the ejected electrons. 

These contain information about the physics of the ionization process. Tunneling 

ionization and multiphoton ionization predict ionization to occur over a range of 

intensities with, a higher probability as the intensity increases. The spread in intensity 
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maps into a spread in the electron energy distribution due to the intensity dependence 

of the ponderomotive potential. Comparisons can be made between the 

experimentally observed widths of the electron peaks and the various theoretical 

predictions. 

Finally, the experiments in this thesis have been performed with circular 

polarization exclusively. Studies using linear polarization should also be performed. 



Appendix A 
Monte Carlo simulation Dropram of electron traiectories in a laser focus 

The source code to solve for the electron trajectories following ionization in a 
laser focus is presented here. The program was written for Microsoft FORTRAN 
Powerstation, version 1.0 for MS-DOS and Windows operating systems. To 
maximize portability, FORTRAN 77 with DEC VAX FORTRAN extensions have 
been adhered to whenever possible. Only file access and random number generation 
statements need alteration for compilation with DEC VAX extensions. 

$DECLARE 
PROGRAM FOCAL-EXPLOSION-SIMULATION 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS PROGRAM USES A MONTE CARLO SIMULATION TO CALCULATE 
THE ELECTRONS EJECTED EROM A CIRCULARLY POLARIZED LASER FWUSED INTO * 
A LOW DENSITY GAS. ATOMS ARE PLACED AT A RANDOM POSITION WITHIN 
THE FOCAL VOLUME. THE TIME AT WHICH THE INTENSITY EXCEEDS THE THRESHOLD * 
INTENSITY OF THE CHARGE STATE BEING IONIZED IS CALCULATED AND THE 
EZECTRON IS RELEASED INTO THE FIELD WITH ZERO INITIAL VELOCITY. THE 
THE ELECTRON TRAJECTORY IS THEN CALCULATED USING THE LORENTZ EDRCE OF 
THE LASER FIELD. VELOCITIES ARE CALCULATED 
IN UNITS OF OMEGA SO THAT POSITION AND VELOCITY ARE OF THE SAME 
RELATIVE MAGNITUDE TO AVOID ROUND OFF ERROR. AFTER THE ELECTRON 
ESCAPES THE LASER FOCUS, ITS POSITION, VELOCITY AND ENERGY ARE STORED 
SO THAT OTHER PROGRAMS CAN CALCULATE ENERGY AND ANGULAR DISTRIBUTIONS * 
FROM THESE TRAJECTORIES. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VARIABLE DECLERATIONS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

INTEGER NEQ,ARRTEST, NUMINT, I, J, N, INITCHSTATE, IOCHECK 
PARAMETER (NEQ=6,ARRTEST=10000) 
W ' 8  C, RO,MO, PI, ECOUL,EPSO 
PARAMETER(C=2. 9979245RDB,RO=2.81793BOD-15,EPSO=8.85418782D-12, 

+ MO=511.0034DO,PI=3.14159265359D0,ECOUL=1.6021892D-19) 
CHARACTER*14 FNAME, POLAR1 Z 
CHARACTER'2 GAS - -~ 

INTEGER NGAS,CHSTATE,NOK,NBAD,INDMIN,INDMAX,INDCURR 
LOGICAL LINPOL,ERRFLAG 
M X U * 8  T,TEND,TOL,Y (NEQ) ,WZ, VSQR 
r n * B  INCREM, PHASE, INTENO, HMIN 
REAL*8 COEFl,WO, ZO,K,OMEGA, GAMMA,H 
REAL*8 ITHRESH,VX,VY, VZ 
REAL*B INTENSITY,R2,IRZ,TINDINT,SIGMAT 
REAL'B TINDPHASE 
REAL*B RMAX,VMAX,RQMAX,ZMAX,ZINIT,ARGRMAX 
REAL*8 EPINIT 
REAL*B NDENSE 
REAL*R PRESSURE,EPOND,ENERGY,THETAINIT,RINIT 
REAL*8 IPEAK, PHIFREE, FOCALVOL 
REAL*B SCYC,EION(lO, 40) 
REAL SLITRES, PZ (1025) ,PTEMP,P 
REAL VOUT ( 3 ,ARRTEST) , POSOUT ( 3, ARRTEST) 
INTEGER NUMTEST, FILENUM 

EXTERNAL DERIVS, RKQS 

C HELIUM IONIZATION POTENTIALS(eV) 
DATA (EION(l,I), I=1,40) /24.59,54.42,38*0.0/ 

C NEON IONIZATION POTENTIALS 
DATA (EION(Z,I), I=1,40) /21.6,41.0,63.5,97.1,126.2,158.0,207.0, 

+ 239.0,1196.0,1362.0,30*0.0/ 



C ARGON IONIZATION POTENTIALS 
DATA (EION(3.11, I=1,40) /15.8,27.6,40.7,59.8,75.0,91.0,124.0, 

t 143.0,422.0,479.0,539.0,618.0,686.0,756.0,B55,0,91B.0,4121.0,  
+ 4426.0,22*0.0/ 

C KRYPTON IONIZATION POTENTIALS 
DATA (EION(4,1), I=1,40) /14.0,24.4,37.0,52.5,64.7,78.5,111.0, 

+ 126.0,230.0,275.0,316.0,358.0,403.0,451.0,497.0,545.0,593.0, 
t 642.0,794.0,833.0,878.0,939.0,989.0,1039.0,1151.0,1206.0,2953.0, 
t 3056.0,3203.0,3381.0,3551.0,3712.0,3912.0,4105.0,17292.0, 
+ 17931.0,4*0.0/ 

C XENON IONIZATION POTENTIALS 
DATA (EION (5, I), 1=1,40) /12.1,21.2,32.1,47.6,59.0,72.0,98.0, 

+ 112.0,171.0,202.0,233.0,264.0,294.0,325.0,358.0,390.0,421.0, 
+ 452.0,573.0,608.0,643.0,678.0,726.0,762.0,~53.0,B91.0,1394.0,  
t 1491.0,1587.0,1684.0,1781.0,1877.0,1987.0,20B5.0,21B3.0,2291.0, 
+ 2548.0,2637.0,2726.0,2814.0/ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* BEGIN PROGRAM 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* *****  PREPARE RANDOM $ GENERATOR FOR LATER USE: 
CALL SEED(-1) 

******  THIS OPENS THE FILE FOR INPUT WHERE ALL THE LASER AND GAS PARAMETERS 
* * * * * *  ARE GIVEN: 

OPEN(64,FILE='D:\FORTRAN\INPFILES\INPUT.DAT',IOSTAT=ICCHECK, 
+ ERR=15,STATUS='OLD') 

15 CONTINUE 
***********IF REACH HERE THEN AN ERROR HAS CCCURED IN OPENING INPUT FILE************ 

IF (IOCHECK.EQ.6416) THEN 
STOP 'FILE 1NPUT.DAT DOES NOT EXIST!!! ABORTING' 

ELSE 
WRITE(*, * )  'UNKNOWN ERROR $ ', ICCHECK, ' CCCURED, ABORTING. ' 

ENDIF 

lB CONTINUE 
* * * * * *  THESE READ STATEMENTS READ THE INPUT PARAMETERS TO BE USED IN THE PROGRAM. 
* * * * * *  INTENO = PEAK LASER INTENSITY(AT X=Y=Z=O AND TIME=O) 
* * * * * *  GAS = CHARACTER VARIABLE CONTAINING GAS TO BE TESTED 
******  CHSTATE = LOWEST CHARGE STATE TO BE CONSIDERED IN SIMULATION 
******  WO = l/eA2 RADIUS OF LASER ECUS AT BEAM WAIST 
******  SIGMAT = FWHM OF LASER IN TIME 
******  PRESSURE = PRESSURE IN TORR 
******  TOL = THE RELATIVE ERROR TOLERANCE MAINTAINED IN ODEINT(D1FF EQN SOLVER) 
******  NUMTEST=NUMBER OF ATOMS RANDOMLY PLACED WITHIN FOCUS 
******  POLARIZ = CHARACTER VARIABLE SPECIFYING POLARIZATION OF LASER PULSE(C1RC OR LIN) 

READ(64, * )  INTENO,GAS,CHSTATE,WO,SIGMAT, 
+ PRESSURE, TOL, NUMTEST, POLARIZ 
CLOSE(64) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* *****  THE FOLLOWING LINES INITIALIZE MANY PARAMETERS NEEDED LATER IN THE PROGRAM: ******  
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *++* * *++++*++** * * * * * * * * * * * * * * * * * * * * * * * *  

IF (NUMTEST.GT.ARRTEST) THEN 
WRITE(*,*) 'WITH THIS MANY ELECTRONS TESTED,' 
WRITE(*,*) 'THERE WILL BE PROBLEMS WITH ARRAY DIMENSIONS!! ! '  
STOP 'ABORTING' 

ENDIF 

******  CONVERT GAS TO ARRAY # 
IF ((GAS.EQ.'HE1).OR.(GAS.EQ.'He')) NGAS=l 
IF ((GAS.EQ.'NE').OR.(GAS.EQ.'Ne')) NGAS=2 
IF ((GAS.EQ.'AR1).OR. (GAS.EQ.'Arl)) NGAS=3 
IF ((GAS.EQ.'KR').OR.(GAS.EQ.'Krt)) NGAS=4 
IF ( (GAS.EQ. 'XE') .OR. (GAS.EQ. 'Xe')) NGAS=5 

* * * * * *  THESE LINES DEFINE EO (CALLED COEFl HERE) FOR CIRC OR LINEAR POL. 
* * * * * *  EO IS THE PEAK ELECTRIC FIELD. 

IF ([POLARIZ[:l).EQ.'L').OR.(POLARIZ(:l).EQ.'1')) THEN 
LINPOL=. TRUE. 



C FOR LINEAR POLARIZATION USE: 
COEFl=DSQRT(2.ODO*INTENO*l.D4/(C*EPSO)) 

ELSE 
IF ((POLARIZ(:l).NE.'C').AND.(POLARIZ(:l).NE.'c')) THEN 
STOP 'Polarization not specified, aborting . . . '  

ENDI F 
LINPOL=. FALSE. 

C FOR CIRCULAR POLARIZATION USE: 
COEF~=DSQRT(INTENO*~.E~/(C*EPSO)) 

ENDIF 

******  MINIMUM STEPSIZE ALLOWED 
HMIN = TOL/lOO.DO 

******  SCYC = STEPS PER LASER CYCLE USED IN SOLVING DIFF EQN FOR LORENTZ FORCE 
SCYC=l . OD0 

******  ZO = CONFXAL PARAMETER 
ZO=PI*WO**2/ (1.053D-6) 

* t t t f *  K = WAVE NUMBER 
K=2.ODO*PI/l.O53D-6 

******  OMEGA = OMEGA 
OMEGA=K*C 

* * * f * *  INCREM = TIME INCREMENT USED IN SOLVING DIFFERENTIAL EQUATION 
1~~~~~=0~~~~*0.6191582391034DO/(SCYC*C/1.053D-6) 

* * * * * *  OUTPUT TO LOG FILE: 
IF (LINPOL) THEN 
WRITE ( * ,  * )  'LINEAR POLARIZATION: ' 

ELSE 
WRITE(*,*)'CIRCULAR POLARIZATION:' 

ENDI F 
WRITE(*,464~INTENO,GAS,CHSTATE,WO*1E6,SIGMAT*1E12, 

t PRESSURE,TOLflE2 
464 FORMAT(/' Peak intensity =',E13.6, ' W/cmA2, ', 

t / '  Gas tested:',A2,I1 Lowest charge state:',I3 
t / '  Beam waist =', F8.2, ' microns, ', / '  Pulse width =',  
t F10.4, ' psec, ', / ' Pressure =',E13.6, 
t ' torr,',/' Accurate to approximately',Fl0.4,' percent.'/) 

449 CONTINUE 
******  OPEN OUTPUT FILENAME. 

OPEN(~~,FILE='D:\FORTRRN\OUTFILES\ '//E'NAME,ERR=451, 
t IOSTAT=IKHECK,STATUS='NEW') 
GOT0 453 

451 CONTINUE 
*********IF REACH HERE THEN AN ERROR HAS KCURED OPENING OUTPUT FILE*********** 

IF ((IOCHECK.EQ.6415).AND.(FILENUM.LT.57)) THEN 
FILENUM= FILENUMtl 
E'NAME=GAS//POLARIZ(1:3)//CHAR(FILENm)//'.DAT' 
GOT0 449 

ELSE 
WRITE(*,*) 'UNABLE TO OPEN OUTPUT FILE, INPUT NEW NAME:' 
READ(*,*(A\)') ~ A M E  
GOTO 449 

ENDIF 

453 CONTINUE 
******  THIS SECTION SENDS THE HEADER TO OUTPUT FILE. 

IF (LINPOL) THEN 
WRITE(65,*)'LINEAR POLARIZATION:' 

ELSE 
WRITE(65,*)'CIRCULAR POLARIZATION:' 

ENDI F 
WRITE(65,463)INTENO,GAS,INITCHSTATE,WO*1E6,SIGMAT*1E12, 

t PRESSURE, TOLf1E2 ,NUMTEST 
463 FORMAT(/'Peakintensity=',E13.6,'W/cmA2,', 

t / '  Gas tested:',A2,I1 Lowest charge state:',I3 
t / '  Beam waist =',F8.2, ' microns, ' , / I  Pulse width =', 



t F10.4, ' psec, ', / '  Pressure =',  E13.6, 
t ' torr,',/' Accurate to approximately',Fl0.4,' percent.'/, 
t ' Number tested =',15//) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * * * * * * * * * * * * * * * * I N I T I ~ I z A T I O N  DONE : : :  BEGIN MAIN LOOP***********f****ff*************** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
****** THIS CONTINUE IS THE BEGINNING OF THE LOOP FOR EACH CHARGE STATE. FOLLOWING **** 
******  THE COMPLETION OF THE IONIZATION OF NUMTEST ATOMS, THE PROGRAM RETURNS HERE **** 
******  TO EXAMINE THE NEXT HIGHER CHARGE STATE,***************************************** 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
50 CONTINUE 

* * * * * *  THESE LINES DETERMINE THE BSI THRESHOLD INTENSITY FOR THE CURRENT CHARGE STATE AND GAS 
IF ILINPOL) THEN - - . - - ~  - . 

ITHRESH=4.0E9*EION(NGAS,CHSTATE)**4/CHSTATE**2 
ELSE 

ITHRESH=8.0E9*EION(NGAS,CHSTATE)**4/CHSTATEff2 
ENDIF 

C WRITE (* ,  * )  'THRESHOLD INTENSITY =', ITHRESH 

if ((ITHRESH.ge.intenO).OR.(ITHRESH.EQ.O.ODO)l then 
IF (CHSTATE.EQ.INITCHSTATE) THEN 
write(*,*) 'el problemo, NO CHARGE STATES IONIZED!' 
got0 998 

ENDIF 
GOT0 950 

endif 

******  H = STEPSIZE TO BE USED BY ODEINT 
H= INCREM 

****** ZWAX = MAXIMUM Z VALUE WHERE ELECTRONS CAN POSSIBLY ESCAPE 
ZMAX=ZO*DSQRT(INTENO/ITHRESH-l.ODO)*.999999 

******  THESE LINES CALCULATE THE FOCAL VOLUME FOR NOP.MALIZATION OF THE NUMBER OF 
* * * * * *  ELECTRONS TO THE PRESSURE SINCE NUMTEST IS ALWRYS THE NUMBER IONIZED IN THE 
******  PROGRAM BUT THE ACTUAL NUMBER DEPENDS ON FOCAL VOLUME AND GAS PRESSURE. 

PTEMP=O . 0 
DO 25 1=1,1025 
WZ=W0*DSQRT(1.0D0+(ZMAX*(1-513.)/(512.*Z0))**2) 
ARGRMAX=.5DO*DLOG(INTENO/ITHRESH*(WO/WZ)**Z) 
RMAX=WZ*DSQRT (ARGRMAX ) 
PZ(I)=PI*RMAX**2*(ZMAX/512.)+PTEMP 
PTEMP=PZ (I) 

2 5  CONTINUE 

FOCALVOL=PZ (1025) 
C WRITE(*,*)'FOCAL VOL =',FOCALVOL 

DO 26 1=1,1025 
PZ(I)=PZ(I)/FOCALVOL 

26 CONTINUE 

******  RMAX IS THE MAXIMUM RADIUS AT WHICH ATOMS CAN IONIZE 
ARGRMAX=.5DO*DLOG(INTENO/ITHRESH) 
RMAX=WO*DSQRT (ARGRMAX) 

WRITE(*,*)' ' 
WRITE(*,*)' ' 
WRITE(*,*)'STARTING NEXT CHARGE STATE:',CHSTATE 
WRITE(*,*)' ' 
WRITE(*,*)'Threshold intensity =',ITHRESH 
WRITE(*,280)ZMAX/ZO,RMAX/WO,NUMTEST 

280 fORMAT(/' Threshold focal volume tot,F5.2,' times the ', 
t 'confocal parameter1/,' and to',F5.2,' times the ', 
t 'l/eA2 point at the beam waist.'/,' Calculating for1,16, 
t 'electrons.'//) 

* * * * * *  THE MAIN LOOP WHERE NUMTEST ELECTRONS ARE PLACED AT R4NWM POSITIONS WITHIN THE 



******  LASER FOCUS,IONIZED, AND PROPAGATED FROM THE FOCUS. 
DO 70 N=l,NUMTEST 

******  P DETERMINES THE PLACEMENT OF THE ELECTRON IN Z. SINCE THE RMAX CHANGES AS A 
* * * * * *  EWNCTION OF Z, A WEIGHT IS APPLIED TO GIVE A HIGHER PROBABILITY OF PLACEMENT 
* * * * * *  WHERE RMAX IS LARGER. 

CALL RANDOMIPI 
INDMIN=l 
INDMAX=1025 
INDCURR=513 

291 CONTINUE 
IF (PZ (INDCURR) .EQ. P) THEN 

ZINIT=ZMAXf(INDCURR-513.)/512. 
GOT0 292 

ENDIF 
IF ( (INDMAX-INDMIN) . LE. 1) THEN 

ZINIT=ZMAX*((INDMAXtINDMIN)/2.-513.)/512. 
GOT0 2 92 

ENDIF 
IF (PZ (INDCURR) .LT.P) THEN 
INDMIN=INDCURR 

ELSE 
INDMAX=INDCURR 

ENDIF 
INDCURR=(INDMAX-INDMIN)/ZtINDMIN 
GOT0 291 

292 CONTINUE 

******  THESE LINES PLACE THE ELECTRON AT A RANDOM RADIUS WITH A QUADRATIC WEIGHT. 
WZ=WO*DSQRT(1.ODOt(ZINIT/ZO)**2) 
ARGRMAX=.5DO*DLOG(INTENO/ITHRESH*(WO/WZ)**2) 
RMAX=WZ*DSQRT(ARGRNAX) 

CALL RANDOM(P) 
RINIT=RMAX*SQRT (P) 

CALL RANDOM(P) 
THETAINIT=Z.*PI*P 

******  THE INITIAL POSITIONS (X=Y(l),Y=Y(3).Z=Y(5)) AND VELOCITIES (VX=Y(2),VY=Y(4),VZ=Y(6)) 
Y (1) =RINIT*COS (THETAINIT) 
Y(2)=O.ODO 
Y (3)=RINIT*SIN (THETAINIT) 
Y (4)=0.ODO 
Y (5)=ZINIT 
Y(6)=0.ODO 

* * * * * * * * * * * *  R2 = RADIUS FROM BEAM AXIS 
R?=(Y(l)**2+Y(3)**2) 

* * * * * * * * * * * *  WZ = l/eA2 POINT OF INTENSITY IN RADIAL DIRECTION AT Y(5) 
WZ=WO*DSQRT(~.ODO~(Y (5)/Z0)**2) 

************  IRZ = INVERSE OF RADIUS OF CURVATURE OF LASER BEAM AT Y(5) i.e. AT Z 
IRZ=Y(5)/(Y(5)**2+ZO**2) 

************  TINDINT = PART OF INTENSITY EQN WHICH IS INDEPENDENT OF TIME 
TINDINT=INTENOf(WO/WZ)**2*DEXP(-2.0DO*(R/WZ**2)) 

************  TINDPHASE = TIME INDEPENDENT PORTION OF PHASE(ARGUMENT IN COSINE) 
TINDPHASE=K*Y (5) -DATAN(Y (5) /ZOl +K*W*IRZ/2.ODO 

* * * * * * * * * * * *  IPEAK = THE PEAK INTENSITY THAT THE ATOM WILL EXPERIENCE AT A Z POSITION OF Y(5) 
IPEAK-TINDINT 

IF (LINPOL) THEN 
C THESE STATEMENTS ARE FOR RELEASE AT I=ITHRESH AND PEAK OF COS() OF PULSE FOR LINEAR 
C POLARIZATION: 

PHIFREE=PI*DINT(SIGN(OMEGA*SIGMAT/2.ODO*DSQRT(DLOG 
t (IPEAK/ITHRESH)/DLOG(2.ODO))/PI-1,Y(5))) 

EZSE - 
C THESE STATEMENTS ARE FOR RELEASE AT I=ITHRESH OF PULSE FOR CIRCULAR POLARIZATION: 

PHIFREE=DSIGN(OMEGA*SIGMAT/~.ODO*DSQRT(DLOG(IPEAK/ 
+ ITHRESH)/DLOG(2.ODO)),Y(5)) 

ENDIF 

***********  T = THE TIME IN UNITS OF PHASE WHEN THE ATOM IS IONIZED 



* * * * * * * * * * * *  TEND IS THETIMEATWHICHTHEDIFF 
* * * * * * * * * * * *  EQUATION IS TO BE SOLVED GIVEN THE SOLUTION AT T. 

TEND=TtINCREM 

* * * * * * * * * * * *  EPINIT IS THE PONDERMOTIVE POTENTIAL AT THE INTENSITY WHERE THE ELECTRON 
************  IS IONIZED. IT IS USED FUR CHECKING TO SEE IF LASER PULSE INTENSITY 
************  HAS SUFFICIENTLY DIMINISHBD TO STOP AND ALSO FOR ERROR CHECKING. 

EPINIT=l,0345D-16*INTENSITY 
C WRITE(*, * I  INTENSITY,EPINIT 

************  VMAX AND RMAX ARE USED BY THE DIFF EQN SOLVER POR MAINTAINING SOLUTION WITHIN 
TOLERANCES (TOL ) : 

VMAX=DSQRT (2.ODO*EPINIT/MO) /K 
RQMAX=VMAX 

C WRITE(*,*) 'BEPORE' 
* * * * * * * * * * * *  THIS IS THE BEGINNING OF THE LOOP TO CALCULATE ELECTRON TRAJECTORY 
* * * * * * * * * * * *  BASED ON LORENTZ FORCE. 
810 CONTINUE 

* * * * * * * * * * * *  ODEINTD IS A NUM. RECIPES ROUTINE TO CALCULATE THE SOLUTION TO A DIFF EQN 
* * * * * * * * * * * *  DERIVS IS THE SUBROUTINE WHICH CONTAINS THE LORENTZ FORCE EQN 
C CALL DIVPRK (IDO,NEQ,SUBONE,T,TEND,TOL, PARRM,Y) 

CALL ODEINTD(Y, 6 ,  T, TEND, TOL,H, HMIN, nok, nbad, DERIVS, 
+ RKQS,RQMAX,VMAX) 

* * * * * * * * * * * *  ENERGY = ENERGY OF THE ELECTRON AT THE CURRENT TIME 
VSQR= (VX**2+VY**2+VZ**2) /C**2 
ENERGY=(l. ODO/DSQRT (1. ODO-VSQR) -1. ODO) 511. DO 

************  R2 = DISTANCE OF ELECTRON FROM BEAM AXIS SQUARED 
R2=Y(1)**2tY(3)**2 

************  IRZ = INVERSE OF RADIUS OF CURVATURE OF LASER BEAM 
IRZ=Y(5)/IY(5)**2tZO**2) 

* * * * * * * * * * * *  WZ = l/eA2 RADIUS OF LASER AT Y(5) 
WZ=KO*SQRT(~.ODO+(Y(~)/ZO)**~) 

* * * * * * * * * * * *  INTENSITY = TIME DEPENDENT INTENSITY NOT INCLUDING OSCILLITORY TERM. 
INTENSITY=INTENO*(WO/WZ)**2*DEXP(-2.ODO*(R2/WZ**2)- 

t DLOG(2.ODO)*((Y(5)*K-T-DATAN(Y(S)/ZO)+ 
t R2*IRZ*K/2.ODO)/(OMEGA*SIGMAT/2.ODO))**2) 

************  EPOND = PONDEROMOTIVE POTENTIAL OF LASER AT CURRENT ELECTRON POSITION 
EPOND=1.0345D-16*INTENSITY 

C WRITE(*, * )  EPINIT, EPOND, ENERGY 

IF PONDEROMOTIVE POTENTIAL OF LASER AT CURRENT ELECTRON POSITION IS 
MUCH LESS THAN PONDEROMOTIVE POTENTIAL AT IONIZATION INTENSITY THEN 
ANY FURTHER CALCULATION OF ELECTRON TRAJECTORY WILL HAVE MINIMAL 
CONSEQUENCES AND WE CAN STORE TRAJECTORIES AND EXIT CALCULATION. 
!!!!!THIS COMPARISON BASED ON NON-RELATIVISTIC CALC 
( i . e .  EPOND=.5MV**2)!!!!!!!!! 

:EPOND.LT. (TOL**2*EPINIT)) THEN 

* * * * * * * * * * * *  IF THE INTENSITY IS STILL OF SUFFICIENT MAGNITUDE, THEN CONTINUE 
************  CALCULATING ITS TRAJECTORY. 

ELSE 
T-TEND 
TEND=TENDtINCm 



W T O  810 
ENDIF 

********  THESE LINES OUTPUT INFO TO THE LOG FILE TO KEEP UPDATED 
IF ((l.*N).EQ.(lO.*INT(N/lO.))) THEN 
WRITE(*, 66)N 

66 FORMAT(I4,1X\) 
ENDI F 

70 CONTINUE 

*****  OUTPUT I N m  m R  PREVIOUS CHARGE STATE TO OUTPUT FILE ****'*** 
DO 77 I=l,NUMTEST 
WRITE(65,76)CHSTATE, (POSOUT(J,I),J=l,3), (VOUT(J,I),J=l,3), 

+ (1.0DO/DSQRT(1.0DO-(VOUT(1,1) **2+VOUT(2,1) **2+VOUT(3,1) **2)/Ct*2) 
+ -1.ODO)*511.DO 

7 6 mRMAT(I2,6(2X,E10.3),F8.2) 
77 CONTINUE 

* * * f f  DONE WITH THIS CHARGE STATE SO CONTINUE ON TO THE NEXT HIGHER ONE 
CHSTATE=CHSTATE+l 

* * * * *  START ALL OVER AGAIN WITH NEW CHARGE STATE AND THUS HIGHER ITHRESH 
GOT0 50 

950 CONTINUE 

998 CONTINUE 

END 

SUBROUTINE DERIVS (T,Y,YPRIME) 

****** THIS SUBROUTINE IS THE RELATIVISTIC EQUATION OF MOTION OF AN ELECTRON 
******  IN A LASER FIELD. IT IS USED BY ODEINTD TO CALCULATE ELECTRON TRAJ. 

INTEGER NEQ 
PAWETER(NEQ=6 ) 
LOGICAL LINPOL, ERRFLAG 
REALt8 C,MO,T,Y(NEQ),YPRIME(NEQ),GAMMA,ZCOEFl,ZCOEF2 
RFAL* 8 PI, EO, EPSO, K, OMEGA,WO, ZO,WZ, PHASE, IRZ 
REALf8 EXO, EX, EY, EZ, BX, BY, BZ, BETADOTE, PHASEC, PHASES 
REALf8 BETAX,BETAY,BETAZ,R2,VSQR 
REAL*8 COEFl,SIGMAT,COEFF 

COMMON /GLOB/ LINPOL,COEFl,WO, ZO,K,OMEGA,SIGMAT,GAMMA,ERRFLAG 

WZ=WO*DSQRT(l.ODO+(Y(5)/ZO)**2) 
IRZ=Y(5)/(Y(5)**2+ZOt*2) 
BETAX=Y (2 ) *K 
BETAY=Y (4 ) *K 
BETAZ=Y ( 6 ) *K 
R2=Y (1) **2+Y (3) "2 
VSQR=BETAX**2+BETAY**2+BETAZt*2 

C GAMMA=l. OD0 
IF (VSQR.LT.1.ODO) THEN 
GAMMA=l.ODO/DSQRT(l.ODO-VSQR) 

ELSE 
C WRITE(*,*)'GAMMA AT D M  SETTING' 

GAMMA=9.99999D37 
ERRFLAG. TRUE. 

ENDI F 
COEFF=- (EO/ (MO*OMEGA**2) )/GAMMA 
PHASE=KfY (5) -T-DATAN (Y (5) /ZO) +K*R2*IRZ/2.ODO 
PHASEC=DCOS (PHASE) 
PHASES=DSIN(PHASE) 
EXO=COEF1*(WO/WZ)tDEXP(-(R2/WZ**2)-DLOG(2.OD0)/2.ODO* 

+ ((PHASE/(OMEGA*SIGMAT/2.ODO))**Z)) 



IF (LINPOL) THEN 
EX=EXO*PHRSEC 
EY=O. OD0 
EZ=(ZCOEFZ*PHASES-ZCOEFl*PHASEC)*Y(l) 
BX=O . OD0 
BY=EX 
BZ=(ZCOEFZ*PHASES-ZCOEFl*PHASEC)*Y(3) 

ELSE 
EX=ExO*PHASEC 
EY=-ExO*PHASES 
EZ=ZCOEFl*(-Y(l)*PHASECtY(3)*PHASES)tZCOEF2* 

t (Y(l)*PHASES+Y(3) *PHASEC) 
BX=-EY 
BY=EX 
BZ=ZCOEF1*(-Y(l)*PHASES-Y(3)tPHASEC)tZCOEF2* 

t (-Y (1) *PHASECtY (3) *PHASES) 
ENDIF 

RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* *****  THE FOLLOWING SUBROUTINES MAKE UP A DIFFERENTIAL EQUATION SOLVER AND ARE * * * * * *  
******  FROM: t *****  

****** WILLIAM H. PRESS, SAUL A. TEUKOLSKY, WILLIAM T. VETTERLING, AND BRIAN P. ***"* 
******  FLANNERY, N W R I C A L  RECIPES I N  FORTRAN 2ND ED(CAMBRIDGE, NEW YO=, 1992). ******  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE odeintd(ystart,nvar,xl,x2,eps,hl,hmin,nok,nbad,derivs, 
*rkqs,RQMAX,VMAX) 
INTEGER nbad, nok, nvar, IQ.W(X,MAXSTP, NMAX 
REAL*8 eps,hl,hrnin,xl,x2,TINY,VMAX,RQMAX 
EXTERNAL derivs,rkqs 
PARAMETER (MAXSTP=10000,NMAX=6,IQ.W(X~200,TINY=1.D-30) 
INTEGER i, kmax, kount,nstp 
RERL*8 dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),ystart(NMAX), 
t xp(IQ.W(X),y(NMAX) ,Yp(NMAX,IQ.W(X) .yscal(NMAX),XPREV 
COMMON /path/ kmax,kount,dxsav,xp,yp 

IQ.W(=o 
x=xl 
XPREV=Xl 
h=dsign (hl,x2-xl) 
nok=O 
nbad=O 
kount=O 
do 11 i=l,nvar 
y(i)=ystart (i) 

11 continue 
if (kmax.gt.0) xsav=x-Z.DO*dxsav 
do 16 nstp-1,MAXSTP 
call derivs (x, y, dydx) 
do 12 i=l,nvac/2 

c YSCAL(I)=DABS(Y(I))tDABS(H*DYDX(I) )+TINY 
yscal(Zii)=VMAX 
yscal(Z*i-l)=RQMAX 

12 continue 
if(kmax.gt.O)then 

if(DABS(x-xsav).gt.DABS(dxsav)) then 
if(kount.lt.kmax-1)then 
kount=kounttl 
xp (kount ) =x 
do 13 i=l,nvar 
yp(i,kount)=y(i) 

continue 
xsav=x 



endif 
endif 

endif 
if((x+h-x2)*(x+h-xl).gt.O.DO) h=x2-x 
call rkqs (y,dydx, nvar, x, h, eps, yscal,hdid,hnext,derivs) 
if(hdid.eq.h)then 
nok=nok+l 

else 
nbad=nbad+l 

C WRITE(*,*) 'NBAD =',NBAD 
endif 
if((x-x2)*(x2-xl).ge.O.DO)then 
do 14 i=l,nvar 
ystart (i)=y (i) 

continue 
if (kmax . ne . 0) then 
kount=kount+l 
xp (kount) =x 
do 15 i=l,nvar 
yp(i, kount)=y(i) 

continue 
endif 
return 

endif 
if (dABS (hnext) .lt.hmin) pause 

*'stepsize smaller than minimum in odeint' 
h=hnext 

16 continue 
pause 'too many steps in odeint' 
return 
END 

C (C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-llj. 

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs) 
INTEGER n,NMAX 
DOUBLE PRECISION eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n) 
EXTERNAL derivs 
PARAMETER (NMAX=6) 

CU USES derivs, rkck 
INTEGER i 
LOGICAL LINPOL, ERRFLAG 
DOUBLE PRECISION errmax,h,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW 

*, PSHRNK, ERRCON 
PARAMETER (SAFETY=O. 9d0, PGROW=- .2dO, PSHRNK=- .25dO, ERRCON=l. 894-4) 
REALt8 COEFl,WO,ZO,K,OMEGA,SIGMAT,GAMMA 
COMMON /GLOB/ LINPOL, COEF1, WO, ZO, K, OMEGA, SIGNAT, GAMMA, ERRFLAG 
h=htry 

1 ERRrnG=. FALSE. 
call rkck (y,dydx,n,x, h,ytemp,yerr, derivs) 
errmax=O . d0 
do 11 i=l,n 

errmax=max(errmax,DABS(GAMMA*yerr(i)/yscal(i))) 
11 continue 

errmax=errmax/eps 
if(errmax.gt.l,dO)then 
IF (ERRFLAG) THEN 

C WRITE(*,*) 'ESCAPED ERROR TRAP! ! '  
H=.l*H 

ELSE 
h=SAFETY*h* (errmaxt*PSHRNK) 

ENDIF 
xnew=x+h 
if(xnew.eq.x)pause 'stepsize underflow in rkqs' 
got0 1 

else 
IF (ERRFLAG) THEN 
STOP 'EXITTED WITH GAMMA SET TO DUMMY SETTING!!!' 

ENDIF 
if(errmax.gt.ERRCON)then 

hnext=SAFETYth*(errmaxftPGROW) 
else 
hnext=5.dOfh 

endif 
hdid=h 
x=x+h 



do 12 i=l,n 
Y (i)=ytemp(i) 

12 continue 
return 

endif 
END 

C (C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-llj. 

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs) 
INTEGER n, NMAX 
DOUBLE PRECISION h,x,dydx(n),y(n),yerr(n).yout(n) 
EXTERNAL derivs 
PARAMETER (NMAX=6) 

CU USES derivs 
INTEGER i 
DOUBLE PRECISION ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX) 

*ytemp(NMAX) ,A2,A3,A4,A5,A6,B21,831,B32,B41,842,B43,B51, B52,B53, 
*B54,B61,B62,B63,B64, B65,Cl,C3,C4,C6,DCl,DC3,DC4,iX5, iX6 
PARAMETER (A2=.2dO,A3=.3dO,A4=.6dO,A5=1.dO,A6=.875dO,B21=.2dO,B31 
*=3.d0/40.d0, 
*~32=9.d0/40.dO,B41=.3dO,B42=-.9dO,B43=1.2dO,B5l=-ll.dO/54.dO,B52 
*=2.5dO, 
*B53=-70.d0/27.d0,B54=35.d0/27.dO,B61=163l.dO/55296.dO,B62=175.d0 
*/512 .do, 
*B63=575.d0/13824.d0,B64=44275.d0/110592.dO,B65=253.dO/4096.dO,Cl 
*=37. d0/378 .do, 
*C3=250.d0/621.dO,C4=125.d0/594.dO,C6=512.d0/1771.dO,iX1=C1-2825.dO 
*/27648.dO, 
tiX3=C3-18575.d0/48384.dO,DC4=C4-13525.d0/55296.dO,iX5=-277.dO 
*/14336.d0, 
*iX6=C6-.25d0) 

do 11 i=l,n 
ytemp(i)=y(i) +B21fh*dydx (i) 

continue 
call derivs(xtA2*h,ytemp,ak2) 
do 12 i=l, n 

ytemp(i)=y(i)th*(B31*dydx(i) +B32*ak2 (i)) 
continue 
call derivs (xtA3*h, ytemp, ak3) 
do 13 i=l,n 
ytemp(i)=y(i)ihf(B41*dydx(i)tB42*ak2(i)+B43*ak3(i)) 

continue 
call derivs(x+A4*h,ytemp,ak4) 
do 14 i=l,n 

ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)tB53*ak3(i)+B54*ak4(i)) 
continue 
call derivs (xtA5*h,ytemp,ak5) 
do 15 i=l,n 

ytemp(i)=y(i)th*(B61*dydx(i)tB62*akZ(i)+B63*ak3(i)+B64*ak4(i)i 
*B65*ak5(i) ) 
continue 
call derivs(xtA6*h,ytemp,ak6) 
do 16 i=l,n 
yout (i)=y (i) th*(Cl*dydx(i) tc3*ak3 (i) +C4*ak4 (i)tC6*ak6 (i) ) 

continue 
do 17 i=l,n 
yerr (i)=h* (iXl*dydx(i) tiX3*ak3 (i) tiX4*ak4 (il tiX5*ak5 (i) tiX6* 

*ak6 (i) ) 
continue 
return 
END 

(C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-llj. 



Appendix B 
Schematics of the mametic electron s~ectrometer 

All materials are aluminum except the iron core of the magnet, screws which are non- 
magnetic stainless steel or brass, the quartz output window, and the plastic scintillator. 

400"- 

--- 

Scale= 1 : 2 central Axis 



Bottom View of Magnet Disk: 



Shielding Disk: 



Bottom View of Output Flange: 

8 6.00 in _I 

(View cut off by 6 inch port; Actual flange diameter is 8 inches) 



Appendix C 
Computer code for ~ropaeation of electrons through the seectrometer 

The source code to propagate the electrons through the spectrometer is 
presented here. The program was written for Microsoft FORTRAN Powerstation, 
version 1.0 for MS-DOS and Windows operating systems. To maximize portability, 
FORTRAN 77 with DEC VAX FORTRAN extensions have been adhered to 
whenever possible. Only file access statements need alteration for compilation with 
DEC VAX extensions. 

$DECLARE 
PROGRAM ENERGY-DISTRIBUTION 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

******  THIS PROGRAM USES THE EJECTED ELECTRON TRAJECTORIES FOUND IN THE MONTE CARL0 *******  
* * * * * *  SIMULATION PROGRAM GIVEN IN APPENDIX A AND PROPAGATES THEM THROUGH THE tii***** 

******  SPECTROMETER TO GIVE PREDICTIONS OF THE ELECTRON ENERGY DISTRIBUTIONS *******  
****** AT A FIXED ANGLE. THE SAME PROGRAM IS USED TO CALCULATE PREDICTED ANGULAR *******  
******  DISTRIBUTIONS AT A FIXED ENERGY BY SIMPLY CHANGING A FEW LINES TO SCAN **** t**  

******  THROUGH ANGLE INSTEAD OF ENERGY. * * * * * * *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CHARACTER* 12 FNAME 
CHARACTER* 16 HEAD2 
CHARACTER*60 HEADER 
INTEGER IOCHECK, NIJMTEST, CHSTATE, CHDIJM,MAXCHAR 
INTEGER I, J, K, NOK,NBAD 
REAL PI,POSIT(10,3,10000),VEL(10,3,10000),PNORM(10),C 
PARAMETER (PI=3.14159265359EO,C=Z.99792458E8) 
REAL ANGLE,ANGSPEC,MAXXSCINT,MAXZSCINT,SCINTPOS,MINYMASK,MAXYMASK 
REAL MINYMAG, MAXYMAG, MIDMAG, MAXXl,MINXMASK, MAXXMASK, MAXZ 
REAL MINXSHIELD,MAXXSHIELD,MINYSHIELD,MAXYSHIELD,MAXX2,BMAX 
REAL Y(6),VTOT,T,TSTEP,ENIJM,GAMMA,W,RMAX,TEND,H 
REAL HMIN,TOL,ENERGY,XP,YP, ZP,VX, W,VZ,MINXMAG,MINPROP,VXY 
REAL MINTPROP, ZATMAG, ENOBS, ENMAX 

EXTERNAL DERIVS, RKQS 

COMMON /GLOB/ GAMMA,BMAX 

* * * * * *  OPEN THE FILE CONTAINING THE ELECTRON TRAJECTORIES CALCULATED BY MONTE CARL0 * * * * * *  
* * * * * *  SIMULATION PROGRAM OF APPENDIX A: 
10 CONTINUE 

WRITE(*,*) 'INPUT FILENAME CONTAINING ELECTRON TRAJECTORIES:' 
READ(*, '(A) ')FNAME 

15 CONTINUE 
WRITE(*, * )  'THERE WAS AN ERROR OPENING ', FNAME 
WRITE(*,*) 'MAKE SURE DATAFILE EXISTS AND IS IN DAT DIR' 
WRITE(*,*)' ' 
W T O  10 

20 CONTINUE 

* * * * * *  OPEN FILE TO SAVE ENERGY DISTRIBUTIONS: 
WRITE(*,*)'INPUT FILENAME FOR OUTPUT:' 
READ(*,'(A)')E-NAME 
OPEN(65,FILE='D:\M)RTRAN\OUTFILES\'//FNAME,IOSTAT=IOCHECK, 

+ ERR=25,STATUS='NEW' ) 



M T O  30 

25 CONTINUE 
WRITE(*,*)'THERE WAS AN ERROR OPENING ',FNAME 
WRITE (* ,  * )  'THAT FILENAME PROBABLY ALREADY EXISTS' 
WRITE(*,*)' ' 
W T O  20 

30 CONTINUE 

******  COPY THE HEADER INFORMATION CONTAINING EXPERIMENTAL CONDITIONS FROM THE ELECTRON 
******  TRAJECTORY FILE TO THE FILE FOR OUTPUT IN THIS PROGRAM. 

DO 40 I=1,9 
READ(64, ' (A60) ')HEADER 
WRITE(65,*)HEADER 

40 CONTINUE 

READ(64, '(A16\) ')HEAD2 
READ( 64, * )  NUMTEST 
CHSTATE=O 
ENMAx=O. 0 

THIS LOOP 
CONTINUE 

READS THE INITIAL TRAJECTORIES. 

CHSTATE=CHSTATE+l 
READ(64,*,END=6O)PNOFW(CHSTATE) 
DO 50 I=l,NUMTEST 
READ(64, *)CHDUM, (POSIT (CHSTATE, J, I), J=l, 3), 

+ (VEL (CHSTATE, J, I), J=1,3 1 ,  ENERGY 
IF (ENERGY.GT.ENMAX) THEN 
-=ENERGY 

ENDIF 
5 0 CONTINUE 

W T O  45 

60 CONTINUE 
CLOSE L 64 ) 

'**" INPUT ANGLE FROM BEAM AXIS WHERE ELECTRON DISTRIBUTION TO BE FOUND. 
WRITE(*,') 'ENTER ANGLE TO OBSERVE' 
READ(*,*)ANGLE 
ANGLE=PI/lBO. 'ANGLE 

*"" CONVERT THE ANGLE EROM BEAM AXIS TO THE ROTATION ANGLE OF THE SPECTROMETER. 
ANGSPEC=ACOS (COS (ANGLE) /COS (PI/4. ) ) 

+t**' THESE PARAMETERS DEFINE THE GEOMETRY OF THE SPECTROMETER AND ITS DISTANCE FROM 
**"* THE LASER FOCUS. 

MAXXSCINT=1.5E-2 
MAXZSCINT=3.7E-2 
SCINTPOS=28.19E-2 
MINYMASK=3.968E-2 
MAXYMASK=4. 128E-2 
MINYMAGMAXYMASK 
MAXYMAG5.081E-2 
MIDMAG4.604E-2 
MAXX1=15.OE-2 
MINXMASK=3.454E-2 
MAXXMASK=4. 454E-2 
MAXZ=.llE-2 
MINXSHIELB2.00E-2 
MAXXSHIELD=5,174E-2 
MINYSHIELB3.175E-2 
MAXYSHIELB3.968E-2 
MAXX2=6.668E-2 
MINXMAG=3.9544E-2 

**"** PARAMETERS USED FOR ACCURACY OF DIFFERENTIAL EQUATION SOLVER. 
TOL=2.5E-3 
HMIN=TOL/I.EIO 

*'**" ENOBS IS THE CENTRAL ENERGY OF OBSERVATION OF THE SPECTROMETER. THE ENERGY SCAN 



******  BEGINS AT AN ENERGY OF 2 KEV. 
ENOBS=Z.O 

* * * * * *  THIS LOOP IS THE MAIN LOOP WHICH SCANS IN ENERGY FROM 2 KEV TO 30% ABOVE THE MAXIMUM 
* *****  ENERGY ELECTRON. 
175 CONTINUE 

******  BMAX IS THE PEAK FIELD IN THE GAP OF THE MAGNET. THIS LINE CONVERTS ENERGY TO 
* * * * * *  CORRESPONDING MAGNETIC FIELD. THE CONVERSION WAS FOUND BY "CALIBRATING" THE CODE. 
* * * * * *  THE TRAJECTORIES OF ELECTRONS THROUGH THE SPECTROMETER WERE CALCULATED AND THE 
* * * * * *  ENERGIES OF THE ELECTRONS VERSUS THE REQUIRED MAGNETIC FIELD FOR PROPAGATION TO THE 
* * * * * *  SCINTILLATOR WAS FOUND. 

BMAx=lE-4*SQRT(ENOBSf(ENOBS/511.+1)/3.36E-4) 

******  THIS LOOP SCANS THROUGH THE CHARGE STATES 
W 200 J=l,MAxCHAR 

******  THIS LOOP SCANS THROUGH ALL ELECTRONS IN ONE CHARGE STATE 
DO 100 K=l,NUMTEST 
VTOT=SQRT(VEL(J,1,K)**2+VEL(J,2,K)**2+VEL(Jr3,K)**2) 
GAMMA-SQRT (1. / (1. - (VTOT/C) * *2 ) ) 
ENERGY=511.*(GAMMA-1.) 

* * * * * *  TO INCREASE THE SPEED OF THE CODE, IF AN ELECTRON'S ENERGY IS >50% OUTSIDE THE 
* * * * * *  OBSERVATION ENERGY OF THE SPECTROMETER, IT IS SKIPPED. 

IF (ABS(ENERGY-ENOBS).GT.(.5*ENOBS)) GOT0 888 

******  THESE TWO IF-THEN-ELSES INCREASE THE STATISTICAL ACCURACY OF THE CODE. 
******  ELECTRONS WHICH ARE NOT EJECTED IN THE FIRST QUADRANT, [+X,+Yl (WHERE THE 
******  GAP IN THE SPECTROMETER WILL BE PLACED), WILL NEVER ENTER THE GAP. TO INCREASE THE 
****** NUMBER OF ELECTRONS DETECTED TO BETTER THE STATISTICS, THE II-IV QUADRANTS ARE 
*'*'** MAPPED INTO THE FIRST QUADRANT. THIS REQUIRES THE NUMBER OF ELECTRONS DETECTED 
** '***  LATER BE DIVIDED BY 4 SINCE 4 TIMES AS MANY ELECTRONS WILL BE COLLECTED AS SHOULD 
******  BE. THESE IF-THEN-ELSES ARE ONLY VALID FOR CIRCULAR POLARIZATION SINCE LINEAR 
* * * * * *  POLARIZATION WILL BREAK THE SYMMETRY REQUIRED TO W THIS. 

IF (POSIT(J,l,K) .LT.O.O) THEN 
XP=-POSIT (J, 1, K) 
VX=-VEL (J, 1, K) 

ELSE 
XP=POSIT (J, 1,K) 
VX=VEL (J, 1, K) 

END1 F 

IF (POSIT(J,2,K) .LT.O.O) THEN 
YP=-POSIT( J,2, K) 
m=-VEL (J, 2, K) 

ELSE 
YP=POSIT (J, 2, K) 
VY=VEL (J, 2, K) 

ENDIF 

ZP=POSIT (J, 3, K) 
VZ=VEL (J, 3, K) 

******  THESE LINES CONVERT THE ELECTRON TRAJECTORIES TO THE REFERENCE FRAME OF THE 
******  SPECTROMETER. THE ROTATION OF THE SPECTROMETER CAN BE INVERSELY VIEWED AS A 
****** ROTATION OF THE REST OF THE UNIVERSE RELATIVE TO THE SPECTROHETER. THESE LINES 
******  PRODUCE THIS ROTATION AT AN ANGLE OF ANGSPEC WHICH WAS THE PREVIOUSLY CALCULATED 
******  ANGLE OF ROTATION OF THE SPECTROMETER BASED ON THE USERS INPUT ANGLE FROM K. 

Y(l)=SIN(ANGSPEC)*XP+COS(ANGSPEC)*ZP 
Y(3)=YP 
Y(5)--COS(ANGSPEC)*XP+SIN(ANGSPEC)*ZP 
Y (2)=SIN(ANGSPEC) *VX+COS(ANGSPEC) *VZ 
Y(4)=vY 
Y(6)=-COS(ANGSPEC)*VX+SIN(ANGSPEC)*VZ 

******  AN ANALYSIS OF THE REQUIRED PROPAGATION DIRECTION OF THE ELECTRONS SHOWED THAT IF 
******  THE ELECTRONS DID NOT TRAVEL AT 45'+/-5' FROM THE X AXIS, THERE WAS NO CHANCE OF ******  
DETECTION. THE CURRENT ELECTRON IS THEREFORE SKIPPED IF ITS EJECTION ANGLE DOES NOT ***** '  LIE 
WITHIN THIS RANGE. 

IF (ABS(ATAN(Y(4)/Y(2))-.7854).GT.8.7266E-2) GOT0 888 

******  MINPROP IS THE DISTANCE FROM THE FOCUS TO THE GAP. VXY IS THE ELECTRONS VELOCITY 
* '**** IN THE X-Y PLANE. MINTPROP IS THE MINIMUM TIME IT TAKES THE ELECTRON TO PROPAGATE 
*tt*** TO THE GAP. NO Z COMPONENTS OF MAGNETIC FIELD ARE CONSIDERED IN THIS PROGRAM SO 
******  WE CAN PROPAGATE THE ELECTRON FREELY IN THE Z DIRECTION (ZATMAG IS Z POSITION AT THE 
******  MAGNET) AND DETERMINE IF IT STRIKES THE SPECTROMETER WITHOUT PROPAGATING THROUGH. 

MINPROP=SQRT(MINYMAG**2tMINXMAGf*2) 



******  TSTEP IS THE TIME STEP SIZE USED BY THE DIFFERENTIAL EQUATION SOLVER IN CALCULATED 
* * * * * *  THE ELECTRON TRAJECTORY. THE SMALLEST STRUCTURE OF THE MAGNET IS THE MASK BLOCKING 
******  THE OUTSIDE PORTIONS OF THE C-MAGNET. THE TIME STEP MUST THEREFORE BE NO GREATER 
* * * * * *  THAN THE TIME IT TAKES THE ELECTRON TO PROPAGATE THROUGH THIS MASK OR THE CHECK 
******  R3R SEEING IF THE ELECTRON STRUCK THE MASK WOULD BE IN ERROR. 

TSTEP= (MAXYMASK-MINYMASK) /VTOT 
H=TSTEP 
T=O 

* * * * * *  RMAX AND VMAX ARE SCALE LENGTHS USED IN THE DIFFERENTIAL EQUATION SOLVER TO 
* * * * * *  DETERMINE THE ACCURRCY OF THE SOLUTION REQUIRED. 

VMAX=VTOT 
RMAX=VMAX*TSTEP 

* * * * * *  THIS IS THE LOOP WHICH PROPAGATES THE ELECTRON FROM THE FOCUS USING THE 
******  MAGNETIC FIELD DETERMINED FROM MEASUMENTS WITH A HALL PROBE AND CURVE FITS 
* * * * * *  TO THE MEASURED FIELDS. 
150 CONTINUE 

TEND=T+TSTEP 
CALL ODEINT(Y,6,T,TEND,TOL,H,HMIN,nok,nbad,DERIVS, 

+ RKQS,RMAX,VMAX) 
T=TEND 

******  THESE IF-THENS CHECK TO SEE IF THE ELECTRON IS BLOCKED BY ANY PART OF THE 
******  SPECTROMETER,GETS TURNED AROUND BY THE FIELD,OR MAKES IT THROUGH TO THE 
**** ' *  SCINTILLATOR. 

IF (Y(3) .GE.SCINTPOS) GOT0 500 
IF (Y(41.LT.O.O) GOT0 888 
IF ((Y(3).LT.MINYSHIELD).AND. ([ABS(Y(l)).GT.MAXXl).OR. 

+ (Y(2) .LT.O.O))) GOT0 888 
IF I ((Y (3) .LT.MAXYSHIELD) .AND. (Y (3) .GE.MINYSHIELD)) .AND. 

+ ((Y(l).LE.MINXSHIELD).OR. (Y(l).GE.MAXXSHIELDI)) GOT0 888 
IF (((Y(3).LT.MAXYMASK).AND.(Y(3).GE.MINYMASK)).AND. 

t ((Y(l).LE.MINXMASK).OR.(Y(l).GE.MAXXMASK))) GOT0 888 
IF ( (  (Y (3) .LT.MAXYMAG) .AND. (Y (3) .GE.MINYMAG) ) .AND. 

t (ABS(Y(5)) .GE.MAXZ)) THEN 
GOT0 888 
ENDIF 
IF ((Y(3) .GE.MAXYMAG) .AND. (ABS(Y(1)) .GE.MAXXZ)) GOT0 888 

GOT0 150 

******  IF THE CODE REACHES THIS POINT THEN THE ELECTRON HAS MADE IT THROUGH THE GAP TO 
* * * * * *  THE PLANE CONTAINING THE SCINTILLATOR. THE IF-THEN DETERVINES IF THE ELECTRON 
* * * * * *  STRIKES THE ACTIVE AREA OF THE SCINTILLATOR. 
500 CONTINUE 

IF ((ABS(Y(l)).LE.MAXXSCINT).AND.(ABS(Y(5)).LE.MAXZSCINT)) 
t THEN 

* * * * * *  THIS ADDS A DETECTION TO THE NUMBER OF ELECTRONS DETECTED. PNORM(J)/4 IS 
* * * * * *  THE NORMALIZATION FACTOR TO THE PRESSURE AND THE SINGLE QUADRANT OF INTEREST. 
* * * * * *  ENERGY/ENOBS CORRECTS FOR ERROR INTRODUCED BECAUSE THE EXPERIMENTAL DATA DETERMINES 
******  THE NUMBER OF ELECTRONS FROM THE NUMBER OF PHOTONS. IF THE ENERGY OF THE ELECTRON 
* * * * * *  IS LESS THAN THE ENERGY OF OBSERVATION THEN FEWER PHOTONS WILL BE CREATED WHICH 
* * * * ' *  WILL APPEAR AS FEWER ELECTRONS. 

ENUM=ENUM+PNORM(J)/4.*ENERGY/ENOBS 
ENDIF 

888 CONTINUE 

100 CONTINUE 
200 CONTINUE 

*'**** OUTPUT TO DATA FILE AND LOG FILE 
WRITE(65, *)ENOBS,ENUM 
WRITE(*,*)'ENOBS-',ENOBS,'ENLIM=',ENUM 

**"** INCREASE THE ENERGY BY 5% 
ENOBS=ENOBS+.O5*ENOBS 
ENUM=o . 0 

****** CHECK TO SEE IF ENOBS IS >30% ABOVE MAXIMUM ENERGY ELECTRONS AND IF IS THEN 
* * * * * *  ALL DONE. 

IF (ENOBS.LE. (ENMAX*1.3)) THEN 
GOT0 175 



999 CONTINUE 

CLOSE ( 65) 

END 

SUBROUTINE DERIVS (T,Y,YPRIME) 

******  THIS SUBROUTINE IS THE RELATIVISTIC EQUATION OF MOTION OF AN ELECTRON 
* * * * * *  IN A SPATIALLY VARYING, TIME INDEPENDENT MAGNETIC FIELD. IT IS USED BY ODEINTD 
******  TO CALCULATE ELECTRON TRAJ. 

INTEGER NEQ 
PARAMETER (NEQ= 6) 
REAZ MO,Y(NEQ),YPRIME(NEQ),GAMMA 
REAZ PI,EPSO,EO,C 
REAL BMAX , DUMMY, B Z 
REAZ COEFF, BFIELD 

COMMON /GLOB/ GAMMA, BMAX 

******  THIS FUNCTIONAL CALL DETERMINES THE MAGNETIC FIELD AT THE ELECTRONS CURRENT 
******  POSITION. 

BZ=BFIELD(Y(l),Y(3),BMAX) 
YPRIME(l)=Y(Z) 
YPRIME(?j=COEFF* (Y (4) *BZ) 
YPRIME(3)=Y(4) 
YPRIME(4)=COEFF*(-Y (21 *BZ) 
YPRIME(5)=Y(6) 
YPRIME(6)=O.O 

RETURN 
END 

REAZ FUNCTION BFIELD(X,Y,BMAX) 

******  THIS FVNCTION DETERMINES THE FIELD AT THE ELECTRONS CURRENT POSITION. THE FIELD 
****** IS GIVEN BY MEASUREMENTS WITH A HALL PROBE AND CURVE FITS TO THESE MEASUREMENTS. 

REAL X,Y,BMAX 

RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
******  THE FOLLOWING SUBROUTINES MAKE UP A DIFFERENTIAL EQUATION SOLVER FROM: * * f t * *  

******  WILLIAM H. PRESS, SAUL A. TEUKOLSKY, WILLIAM T. VETTEUING, AND BRIAN P. * * * * * *  
* * * * * *  FLANNERY, NUHERICAL RECIPES IN  FORTRAN 2ND ED(CAMBRIDGE, NEW YORK, 1992). * * * * * *  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE odeint(ystart,nvar,xl,x2,eps,hl,hmin,nok,nbad,derivs, 
*rkqs, RMAX,VMAX) 
INTEGER nbad, nok, nvar, KMAXX,MAXSTP, NMAX 
R E X  eps,hl,hmin,xl,x2, ystart (nvar) , TINY,RMAX,VMAX 
EXTERNAL derivs, rkqs 
PARAMETER ~MAXSTP=10000,NMAX=50,KM?.XX=200,TINY=1.e-30) 
INTEGER i, kmax, kount, nstp 
REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX), 



*yp (NMAX, KMAXX) , yscal (NMAX) 
COMMON /path/ kmax, kount,dxsav,xp,yp 
x=xl 
h=sign (hl,x2-xl) 
nok=O 
nbad=O 
kount=O 
do 11 i=l,nvar 
y(i)=ystart (i) 

11 continue 
if (kmax.gt.O) xsav-x-2.*dxsav 
do 16 nstp=l,MAXSTP 

call derivs(x,y,dydx) 
do 12 i=l,nvar/2 

c YSCAL (I) =DABS (Y (I) ) +DABS (HiDYDX (I) ) +TINY 
yscal (2*i)=VMAX 
yscal(2'i-1 )=RMAX 

12 continue 
if (kmax. gt. 0) then 

iflabsix-xsav).gt.abs(dxsav)) then 
if(kount.lt.kmax-1)then 

kount=kounttl 
xp(kount)=x 
do 13 i=l,nvar 
yp(i, kount)=y(i) 

continue 
xsav=x 

endif 
endif 

endif 
if((xth-x2)*(xth-xl).gt.O.) h=x2-x 
call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs) 
if (hdid.eq.h)then 
nok=noktl 

else 
nbad-nbadtl 

endif 
if((x-x2)*(x2-xl).ge.O.)then 
do 14 i=l,nvar 
ystart (i)=y (i) 

continue 
if(kmax.ne.0)then 

kount=kounttl 
xp (kount ) =x 
do 15 i=l,nvar 
yp(i, kount)=y(i) 

continue 
endif 
return 

endif 
if(abs(hnext).lt.hmin) pause 

"stepsize smaller than minimum in odeint' 
h=hnext 

16 continue 
pause 'too many steps in odeint' 
return 
END 

C (C) Copr . 1986-92 Numerical Recipes Software # (kslOR2-11 j . 

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs) 
INTEGER n,NMAX 
REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n) 
EXTERNAL derivs 
PARAMETER (NMAX-50) 

CU USES deriv5,rkck 
INTEGER i 
RERL errmax,h,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,PSHRNK, 
*ERRCON 
PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4) 
h-htry 

1 call rkck (y,dydx, n,x, h, ytemp, yerr, derivs) 
errmax=O. 
do 11 i=l,n 

errmax=max(errmax,abs(yerr(i)/y3cal(ii 1 )  
11 continue 

errrnax=errmax/eps 
if(errmax.gt.l.)then 



h=SAFETY * h * (errmax* *PSHRNK) 
if (h.lt.O. l*h) then 
h=. l*h 

endif 
xnewxth 
if(xnew.eq.x)pause 'stepsize underflow in rkqs' 
got0 1 

else 
if(errmax.gt.ERRC0N)then 
hnext=SAEXTY*h*(errmax**PGROWj 

else 
hnext=5.*h 

endif 
hdid=h 
x=xth 
do 12 i=l,n 
~(iI=ytemp(il 

12 continue 
return 

endif 
END 

C (C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-llj. 

SUBROUTINE rkck (y,dydx,n,x,h,yout,yerr,derivs) 
INTEGER n. NMAX 
RFX h,x,dydx(n) ,y(n) ,ye11 in) ,yout(n) 
EXTERNAL derivs 
PARAMETER (NMAX=50) 
USES derivs 
INTEGER i 
REAL ak2 (NMAX) ,ak3(NMAX) ,ak4 (NMAX) ,ak5(NMAXl ,ak6(NMAX), 
*ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,B52,B53, 
*B54,B61,B62,B63,B64,B65,Cl,C3,C4,C6, DCl,DC3,DC4,DC5,DC6 
PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40., 

*B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5, 
*B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512., 
*B63=575./13824.,B64=44275./110592.,B65=253./4096,,C1=37,/378,, 
*C3=250./621.,C4=125./594.,C6=512./1771.,DCl=C1-2825./27648., 
*DC3=C3-18575./48384.,DC4=C4-13525./55296.,DC5=-277./14336., 
*DC6=C6-. 25) 
do 11 i=l,n 

ytemp(i)=y(i)+B21*h*dydx(i) 
continue 
call derivs (x+A2*h, ytemp, ak2) 
do 12 i=l,n 
ytemp(i)=y(i)+h* (B31*dydx(i) tB32*ak2 (i) ) 

continue 
call derivs (x+A3*h, ytemp,ak3) 
do 13 i=l,n 
ytemp(i)=y(i) th* (B41*dydx(ij tB42*ak2 (i) tB43*ak3(i) ) 

continue 
call derivs(xtA4*h,ytemp,ak4) 
do 14 i=l,n 

ytemp(i)=y(i)th*(B51*dydx(i)tB52*ak2(ijtB53*ak3(i)+B54*ak4(i)j 
continue 
call derivs(x+A5*h,ytemp,ak5) 
do 15 i=l,n 

ytemp(i)=y(i)+h*(B61*dydx(i)tB62*ak2(ii+B63+ak3(i)tB64*ak4(i)i 
*B65*ak5(i) ) 
continue 
call derivs (x+A6*h, ytemp, ak6 ) 
do 16 i=l,n 

yout(i)=y(i)+h*(Cl*dydx(i)+C3*ak3(i)tC4*ak4(i)tC6*ak6(i)) 
continue 
do 17 i=l,n 

yerr(i)=h*(DCl*dydx(i)+DC3*ak3(i)+DC4*ak4(ij+DC5*akS(i)+DC6* 
*ak6 (i) ) 
continue 
return 
END 

(C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-llj. 



Appendix D 
E n e m  s~ectra of Neon as a function of the a n ~ l e  from k 

These spectra were generated via the methods described in section 6.2. Each 
point is an average of five shots after the electron number has been calculated fiom 

equation (5.2.8) and normalized by multiplying by (I,, /IO) where Inom=l 0 18 

w/cm2 and b was the peak intensity of the laser shot. 
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Appendix E 
Angular distributions of electrons from Neon relative to the laser beam axis 

These angular distributions were generated through the techniques of curve fitting 
to the energy spectra described in section 6.2. The solid lines on each plot are Gaussian 
curve fits to the experimental data points and the dashed lines are the expected ejection 
angle calculated with equation (3.3.3). 

Neon 3' 

- Best fit Gaussian 

0 
95 90 85 80 75 70 65 

Angle fiom k 

95 90 8 5 80 75 70 65 
Angle fiom k 



95 90 8 5 80 75 70 65 
Angle from k 

Neon 6' 

95 90 85 80 7 5 70 65 
Angle from k 



95 80 75 70 65 
Angle from k 

Neon 8' 


