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ABSTRACT

The energy and angular distribution of electrons ionized from neon and
subsequently ejected from a high-intensity optical-frequency laser focus has been
measured. The effects of the ionized electrons’ interaction with high-intensity optical-
frequency radiation are the focus of these studies.

An electron in a relatively low-intensity optical-frequency (/4w ~ 1eV) plane
wave oscillates at the field frequency about a constant average position. The
acceleration of the electron during the oscillations causes the electron to radiate at the

“field frequency in a dipole radiation pattern. This scattering process, known as

2

Thomson scattering in low-frequency fields (A << mc?, where mc? is the electron’s

rest energy of 511 keV), becomes Compton scattering as electron recoil becomes
important at higher frequencies (2w ~ mc? or greater).

If spatial variations are present in the incident field, the average position of the
electron migrates from high- to low-intensity regions. The motion of the electron’s
average position is the same as the motion of a particle in an effective
“ponderomotive™ potential. Following ionization in a Gaussian laser focus, the force

resulting from the ponderomotive potential causes electron ejection at 90° with respect

to the laser k if the intensity is relatively low.



At high field intensities, the standard description of Thomson scattering in an
optical-frequency field breaks down. As an electron’s motion becomes relativistic,
Compton-like effects cause the electron to drift in the k -direction or recoil. This
“high-intensity Compton scattering” results in electron ejection at an angle less than
90° from k .

The experiments described in this thesis show a transition from the Thomson
regime to the high-intensity Compton scattering regime at high laser intensities.
Electrons interacting with relatively low laser intensities are observed at approximately
90° from k, as expected. Electrons interacting with high laser intensities are ejected
with a signiﬁcant component of momentum in the k -direction (25% of total
momentum or 75° from k). The observed ejection angles are in excellent agreement

with the predictions of high-intensity Compton scattering.
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Chapter 1
Introduction

The scattering of electromagnetic radiation from electrons has historically been
divided into the low-frequency (A << mc? ) Thomson scattering and the high-

frequency ( hw >> mc? ) Compton scattering regimes.
In Thomson scattering, a classical electric field accelerates an electron via the

nonrelativistic Lorentz force equation,
m\7=—eE(f,t)=—eéinE0cos(E-f—wt), (1.1)
where m and e are the electron’s charge and mass respectively, €;, is the polarization

state of the scattered radiation, and the dot represents differentiation with respect to

time. The radiation distribution from this charged particle acceleration is described by

the Thomson scattering cross-section,’

d 2 Y 2

10) € % A

L L B 1.2

to [ o] ficied 02
where €, is the polarization state of the scattered radiation and * denotes the

complex conjugate. The absence of the VvxB magnetic field term from (1.1) means

the electron suffers no recoil in the k direction.
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Figure 1.1. A high-frequency photon (Aw ~ mc? or greater) scatters from an

electron via Compton scattering. The photon’s high frequency and corresponding
large momentum requires the electron recoil to conserve energy and momentum
following the scattering.

Compton scattering is said to take place when the frequency of the radiation
field is high enough to make the electron velocity near-relativistic. Then the vxB
term must be included in (1.1) and the electron does experience recoil in the k
direction. It is more common to adopt a particle picture for the high-frequency

Compton photon (see Figure 1.1) and to use quantum field theory to describe the

interaction. The scattering cross-section is given by the Klein-Nishina formula,'

2 2
do & ) (koy ) (b* ‘2 hw
— = | = | |22 | Bin Eoudl +—(1—cos6) |, 1.3
7o) [mcz] (kin |5m out 4mc2( cos) (1.3)
where O is the angle between the incident (Em) and scattered (fcout) photon wave

vectors and kout/Kip is given by the Compton formula

Kout _ 1

kin 14 h—mz(l —cos6) |
mc

(1.4)



The factor kout/kiy is a kinematical factor required to conserve energy and momentum

when the electron recoils. The second term on the right side of equation (1.3) results
from scattering by the electron’s magnetic moment. The Compton scattering cross

section obviously reduces to the Thomson scattering cross-section for low-energy

photons (i << mc? ).

An optical photon’s low-energy (~1 eV) compared to the electron’s rest
energy (511 keV) normally allows a Thomson scattering description of the interaction.
However, there exist at least two situations at optical frequencies where the Thomson
scattering description is insufficient and the electron’s recoil due to Compton-like
effects must be considered.

The first is the scattering of particles from a standing light wave. This is

known as the Kapitza-Dirac effect’ A standing light wave consists of two counter-

propagating traveling waves. Virtual absorption of one traveling wave’s photons by a

particle and stimulated emission into the counter-propagating wave causes a net

momentum transfer to the particle of 2n#k, where k is the wave vector of the
traveling wave and n is an integer that represents the possibility of multiple photon
scatterings. Particles incident on a standing wave therefore gain even-integer multiples
of the photon momentum and scatter from the standing wave (see Figure 1.2). Early

attempts to observe the Kapitza-Dirac effect with electrons were inconclusive. >

Reproducible observations were first obtained using atoms.>” The recent availability
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of low-energy electron beams, obtained by multiphoton ionization, has permitted a

corresponding experiment with electrons.®

The second situation in

which  electron recoil is

significant at optical frequencies

is  so-called  high-intensity

9-16

Compton scattering. High-
intensity Compton scattering
occurs when the electron’s

motion becomes relativistic and

the ¥vxB term in the Lorentz

force must be considered. The

vXx B term causes the electron

’QQ

Figure 1.2: The Kapitza-Dirac effect. A particle
with initial momentum P, is incident on a standing
light wave. Virtual absorption and stimulated
emission of photons between the counter-
propagating traveling waves of the standing wave
causes a momentum transfer to the particle in units

of 2hk .

to drift in the k direction (what will sometimes be called the longitudinal direction).

The electron’s longitudinal motion in an ultra-high-intensity optical field will be shown

to be analogous to the Compton scattering recoil of an electron by a high-frequency

photon in chapter 2.

High-intensity Compton scattering only results from single electron

interactions with the field.

Interaction of the electron with other particles in the

presence of the field obviously destroys the simple picture of a free electron oscillating
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in an electromagnetic field. The density of electrons and other particles must therefore
be low enough to ensure the electron interacts with no other particles during its
interaction with the photons. This was the case in the experiments described in this
thesis.

Brown and Kibble’ predicted that an electron’s longitudinal drift in a high-

intensity field will result in a Doppler shift or an intensity-dependent frequency shift in

the scattered radiation. Many papers were published on high-intensity Compton
scattering,g'16 and an experiment was proposed13 to observe the frequency shift. To

this author’s knowledge, the frequency shift and drift were never experimentally
observed.

The first measurements of longitudinal electron drift due to high-intensity
scattering at optical wavelengths are presented in this thesis. Observation of the drift
confirms the existence of electron recoil due to high-intensity scattering. The
frequency shift in the scattered radiation has not been observed. To understand how
this drift manifests itself in a high-intensity laser focus, we must first discuss the
ponderomotive potential.

The ponderomotive potential is an effective potential experienced by charged
particles in an electromagnetic field with a spatially varying intensity distribution.

Spatial variation of the field causes a migration of charged particles from high- to low-



6
intensity regions. The motion of a particle’s average position is described by the

equation of motion,
mf = -V, (1.5)

where ®;, is the ponderomotive potential, given by

2/52
E 2192
<I>p=qt2>= ¢ (1.6)
2m~  2rmc

Here <E2> is the time-averaged square of the electric field and I= o<f32> /41t is the

field intensity. Clearly, ®, is only dependent on the spatial distribution of the

intensity. As a result, the average motion of the charged particle is independent of
field polarization. An example of an electron scattering from the ponderomotive

potential is shown in Figure 1.3. Boot and Harvie discovered the ponderomotive

17,18

potential in 1957 when they theoretically predicted and confirmed its effects in 10-

T
T
it
it '

il
bl
| T

Figure 1.3: An electron travels towards the center of a laser beam with a Gaussian
intensity profile. The intensity distribution in a plane perpendicular to the field’s
propagation direction (the z-direction) is shown on the right. The ponderomotive
potential deflects the electron from the intense central portions of the field.
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cm radiation in a magnetron. 17" Burther theoretical developments and understanding of

the ponderomotive potential were given by Kibble and others.”” 2.

The A wavelength dependence of the ponderomotive potential causes long-

wavelength fields to exhibit stronger ponderomotive potentials than short-wavelength

fields of the same intensity. For example, the 10-cm field used by Boot and Harvie
had a ponderomotive potential 10'° times larger than a 1-micron field of the same

intensity. The recent availability of high-intensity lasers allows the observation of

ponderomotive potential effects at optical wavelengths.zg”30

Bucksbaum e7 al.®> conducted the first experiment that observed the scattering

of a low-density electron beam from the focus of an intense optical laser pulse.
Electrons were scattered away from the intense regions at the center of the laser focus
due to the effects of the ponderomotive potential. This experiment also showed the
interesting effect of electrons gaining (or losing) energy by “surfing” on the leading (or
trailing) temporal edges of the laser pulse. This confirmed a prediction by Kibble that
the ponderomotive potential can act inelastically and transfer energy between the field
and the electron in time-dependent pulses, as with any time-dependent potential.

The electrons investigated in the experiments described in this thesis were

produced by ionization of Neon in a high-intensity laser focus. In 1989, Corkum ez

alP! examined the energy distribution of electrons ionized from xenon with a 2.5 ps
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pulse length CO; laser at approximately 10" W/em? (Pysc =1keV). A large focal

spot was used to ensure that the ponderomotive potential did not accelerate the
electrons. This lack of ponderomotive acceleration was caused by the combination of
a large focal spot with a short pulse. In this case, the electron had insufficient time to
“roll down” the ponderomotive potential before the pulse was past (see section 3.4).
In both linear and circular polarization, the observed energy distributions were in good
agreement with theoretical calculations of the energy of an electron born at rest in the

field.

In our experiments, electrons are ionized from low-density Neon gas in an
optical wavelength (#w =1eV) Gaussian laser focus with a peak intensity of
1210 W/em?. The electrons are born approximately at rest’’ and the force on the
electrons, resulting from the ponderomotive potential, is proportional to the gradient
of the intensity. This force is symmetric about 90° to k for a Gaussian focus.
However, the derivation of the ponderomotive potential does not include the effects of
high-intensity Compton scattering. High-intensity Compton scattering results in a
component of the electrons’ momentum in the direction of k or the longitudinal
direction.

Our observations (see Figure 1.4) show a significant longitudinal component of

electron momentum (25% of total momentum) for electrons ejected with high kinetic

energies (84 keV) and relativistic velocities ( Vpeak = 0.66c). The observed
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longitudinal momentum agrees well with the predictions of high-intensity Compton

scattering (solid line in Figure 1.4).

- 8+
72j|*rlij‘lll1lllll‘llllIrllllllvlllvl('Ilillvllllllrr

0 10 20 30 40 50 60 70 80 90 100

Energy of electrons (in keV)

Figure 1.4: The kinetic energy of electrons versus their angle from k following
ejection from the laser focus. A forward component of the electrons’ momentum that
“pushes” the electrons toward k is evident. The observed forward component of]
momentum is in good agreement with predictions based on high-intensity Compton
scattering (solid line).

1.1 Qutline
Chapter 2 derives the relativistic trajectory of an electron in an arbitrary-

intensity plane wave. An electron is seen to develop a drift in the direction of k at
high intensities. This drift is shown to be the result of the absorption of momentum

from the laser field and is consistent with high-intensity Compton scattering.

Chapter 3 incorporates the plane-wave results derived in Chapter 2 into

predictions for a laser focus with spatial and temporal variations. The ponderomotive
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potential is derived in the non-relativistic limit. The temporal variation of our laser
pulse is shown to have little impact on the experiments presented in this thesis. The
high-intensity Compton scattering correction to the ponderomotive potential is

addressed.

Chapter 4 discusses a fully relativistic Monte Carlo simulation of electron
dynamics in the laser focus. The angular distribution is seen to deviate from the
ponderomotive potential predictions due to high-intensity Compton effects. The high-
intensity Compton scattering correction to the ponderomotive potential discussed in

Chapter 3 accurately describes the fully relativistic predictions.

Chapter 5 describes the laser and the experimental setup of the magnetic
spectrometer used for the detection of the electrons. The angular resolving

capabilities of this spectrometer allow the measurement of the angular distribution of
the electrons relative to k, and the corresponding axial component of the electron’s

momentum.

Chapter 6 discusses the electrons’ energy and angular distributions obtained in
our experiments. The theoretical predictions of the electrons’ energies and ejection

angles are in good agreement with the experimental observations.
The conclusions are presented in Chapter 7.

Appendix A is a printout of the Monte Carlo simulation computer code used to

calculate the trajectories of electrons ionized from the various charge states of noble
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gases. Appendix B shows the schematics of the magnetic spectrometer used for
detection of the electrons in the experiment. Appendix C is a printout of the computer
code used to calculate the electron trajectories through the magnetic spectrometer.
Appendix D gives the measured electron energy spectra of the electrons ionized from

Neon and subsequently ejected from the laser focus. These nine energy spectra at
different angles from the laser k were used to determine the angular distributions of

the various charge states relative to k. The angular distributions appear in

Appendix E.
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Chapter 2
Electron dynamics in an arbitrary-intensity plane wave

A free electron oscillating in an arbitrary-intensity electromagnetic field has an

average quiver energy,
&2 < Az}
@, = (Energy) = P~ 2.1

where m and e are the electron’s rest mass and charge respectively, ¢ is the speed of
light in vacuum, A is the vector potential, and the brackets denote averaging over one
cycle of the field. Another useful parameter in high-field interactions with electrons is
the quiver velocity, vosc. By this one means the electron’s peak velocity in an

electromagnetic field (ignoring relativistic effects),

= A

—2, (2.2)

0sC

where Ay is the peak vector potential of the field.

When CI>(,SC~mc2 oI Vosc~C, an electron’s trajectory must be calculated

relativistically. An exact analytic solution of the relativistic equation of motion of an

electron in an electromagnetic field is possible only in the simplest fields. This chapter



15
will find the relativistic trajectory of an electron using the simplest case of all, a plane

wave.

2.1 Electron’s equation of motion in a high-intensity plane wave

Some of the many theoretical investigations of the behavior of electrons in
intense fields are given in references 1-18. The relativistic equation of motion of an

electron born at rest in a plane wave will be found here using the Hamilton-Jacobi

technique.“’B’19

The following derivation differs from Sarachik and Schappert’s
derivation"® by the assumption of an electron born at rest in an already intense field

(Sarachik and Schappert assumed an electron at rest in the absence of any field and
subsequent interaction with a pulsed field). The Hamilton-Jacobi equation of motion

is found from the square of the four-vector momentum,

pupt = -m’c’ @2.1.1)

or

(E(’ t)J 57, 1) = 2 2.12)

where E(T,t) is the electron’s energy and P(T,t) is the electron’s momentum. In the

Hamilton-Jacobi formalism, the action or principal function S satisfies,

B0+ ﬂﬁ = §8(7,0) = By (7.1 2.13)
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and

(2.1.4)

where I-Scan is the canonical momentum. Afler substituting the above expressions for

the energy and the momentum into equation (2.1.2), we find the Hamilton-Jacobi

equation of motion,

- 2 . 2
[VS(f,t)—MJ —i[MJ +m?e? =0. (2.1.5)

C 02 at

In a plane-wave oscillatory field, A canbe represented by,
A(%,t) = A(n) (2.1.6)
where N = ot - k-T is the Lorentz invariant phase. With this dependence on T and t,

the solution of equation (2.1.5) has the form,
S(f,t)=a -7 +Pet+¥(n) (2.1.7)
where o and B are constants found from the initial conditions,

n Y, 2R 2ot
j (az “B2 + m202 _ 26(1-A(T|)+ € Aé@}n,
C

Y(n)=—2

Ja T B , (2.1.8)

and mp is the initial phase. The canonical momentum can be found by substituting

equation (2.1.7) in equation (2.1.3),
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=2 o2, 22 2e_. % & 2
~ (o -p +mc —:a-A(n)+ZA m) 15)
P =0 - % , 219
i) kbW (

and the energy can be found by substituting equation (2.1.7) in equation (2.1.4),

E(n)=ﬂ{ﬁ+%(&—f’m(n))]- (2.1.10)

The trajectory of the electron is determined by differentiating the principal function
with respect to the spatial constant ¢, and equating this with the electron’s initial
position,

n oc——A(
f(m)=T1(0) - J ﬁkg+_ﬁk_dn

(2.1.11)

k dn

M 62—+ e -Ea A('q)+ Az('q)
+L (oc-k+[3k)

o

To find the constants & and B, the initial conditions must be considered. We
are interested in electrons released via ionization into an intense field. From Chapter 1
we recall Corkum’s results”® showing that electrons are released with a very low initial
velocity which we take to be zero. This gives the initial conditions,

- A0
Pogy =~ c( ) and E(0) = mc?, 2.1.12)
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where we arbitrarily choose the temporal and spatial coordinates of ionization as t =0
and 7 =0.

The constant & can be separated into two components based on the transverse

requirement of a plane wave. 0O represents the component of G in the plane of
polarization of the field, and o represents & in the direction of k. The solution of

equation (2.1.9) with the initial conditions defined in equation (2.1.12) gives

. eA(0)
) = (2.1.13)
c
and
op =—Ptme. (2.1.19)

Equation (2.1.10) determines the correct choice of sign in equation (2.1.14),
o +p=-mec. (2.1.15)
These constants are arbitrary except in their relation to each other. We can therefore

use

&=ﬂ—) and B=-mc (2.1.16)

C

without loss of generality. The choice of 0 =0 and B =—mc defines the gauge and

simplifies the algebra considerably. In their derivation, Sarachik and Schappert used a
plane wave with a temporal envelope varying slowly compared to the period of the

field. They considered an electron at rest before the pulse passed over the electron.
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This resulted in & =0 and B =-mc. An electron released into an intense plane wave
results in & # 0 if A(0)# 0, which is always the case in circular polarization. This

result is a consequence of the electron being released into a field with non-zero initial

20-22

canonical momentum, as will be discussed in section 2.2.

Substitution of the constants in equation (2.1.16) into equations (2.1.9),

(2.1.10), and (2.1.11) gives the electron’s momentum, energy, and trajectory,

()= $(A(0)- A())+ % 2;; ((A(o) A’ ) @2.1.17)

E(n)= mcz(l + r:ic 7(A(0)- A(n))z J (2.1.18)

and

- - e o N B R A T
i(n)=7(0) + j ((A(O)—A(n )+ ———(A0)-AN)) }m. (2.1.19)
n

meZk . mcZk
The average energy of the electron is

272 &2 A2(n)
(E)=me? + 52 go)+ < > > (2.1.20)
2mc 2me

The first term is the rest energy of the electron. The second term arises as a
consequence of the electron’s release into a field with non-zero initial canonical

momentum.?>??  The third term is the average energy of the electron due to

oscillations in the field, 1.e., the quiver energy as defined in equation (2.1).



20
2.2 Electron trajectories in linear and circular polarization

To investigate the characteristic behavior of an electron in linear or circular

polarization, we now consider an explicit choice of the vector potential,
1
A(m)= Ao[ﬁSSinn+§l(l—82 )2 cosn}, 221

where the polarization is linear if §=+1lor0, or circular if §=2%1/ J2. The

electron’s momentum and energy in the vector potential described by equation (2.2.1)
are

1

q{i& sinm - 9(1 - 82)2 (1- cosﬂ)J +

2
AQ7((3 s2) o _x2 1 s
2= [(2 ) ) 2(1 ) )cosn+[2 ) )cos2n}

p(n)=me (222)

and

2
E(n)= mc? [1 +q7[[% - 82) - 2(1 - 82)cosn + [% -§? ]cosZn]] , (223)

and the electron’s trajectory is

1
1 q[iﬁ(l —cosm)- 9(1 -32 )i (n—sin n)] +
Hn) =+ . (224)

2
S o]
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where q2 is a dimensionless parameter defined by Sarachik and Schappert as

4P, / mc? .

The experiments described in this thesis use electrons released by ionization in
an intense laser field as a source of free electrons. The choice of ionization at n=0 sets
conditions on the values of & for a physically realistic model of an electron released via
ionization. This can be understood by a short description of the physics of strong field
ionization in an optical field.

Ionization of atoms with intense optical laser fields has traditionally been

divided into two regimes, multiphoton and tunneling. The two regimes are

differentiated by the Keldysh para.meter2 3

Y= _F:iOL , 2.2.5
2Py

where E;qy, is the ionization potential of the atom.

For y>1, the binding potential within the atom dominates the electron’s
motion, and the laser field can be considered as a perturbation to the atom.
Perturbation theory can then be used to calculate the transition rates from the bound

state to unbound states. This regime is known as multiphoton ionization (MPI).23'33

For y<l1, the quiver energy of the electron in the field is greater than the
binding energy to the atom, and the field can no longer be treated perturbatively. In

this case, the electron is considered trapped in the Coulomb potential well of the atom
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Bound state
Tonized
electron

L

Figure 2.2.1: A conceptual picture of tunneling ionization. The normal Coulomb
potential (left) is distorted by the addition of the electric field of the laser (right). The
electron can tunnel through the Coulomb barrier and ionize from the atom (or ion).

(or ion), and the electric field of the laser distorts the potential allowing tunneling

through the Coulomb barrier (see Figure 2.2.1). This process is known as tunneling

s e 23293342
iontzation.

The strong field limit of tunneling ionization is Coulomb barrier suppression

ionization (BSI)A42 In this case, the electron gains enough energy from the field to

Bound state Unbound state

Figure 2.2.2: Coulomb barrier suppression ionization (BSI). The left figure shows an
electron in a bound state of the Coulomb potential. The right figure shows the
distortion of the potential when an electric field is added. The barrier has been
suppressed eliminating one classical turning point allowing the electron to
escape (ionize).
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pass over the Coulomb barrier and become ionized (see Figure 2.2.2). BSI only
occurs in low-frequency fields since the field must remain in one direction long enough
for the electron to travel over the barrier before the field changes direction. The
electric field at which BSI occurs is found by superimposing the potential of a static

electric field on the Coulomb potential,

V(x) = -%-sx, 2.2.6)

where Z is the ionic charge (the charge of the ion created after ionization) and £ is the
quasi-static electric field of the laser. Only one dimension is necessary since the field is
approximated as constant during the ionization process. The local maximum value of
equation (2.2.6) equated with the electron’s ionization potential yields the critical

electric field necessary for ionization,

2
Eion ,
4Ze3

Q27

crit =

The noble gas charge states examined in the experiments described in this

thesis (He2+ and Ne’* to Ne8+) have previously been shown to ionize in agreement
with the BSI model of ionization.*> This model will therefore be used to describe the

ionization process.
The Coulomb barrier will be suppressed most when the electric field is at its
maximum. The electron is therefore most likely to be released at the peak of the

electric field. In the vector potential described by equation (2.2.1), §==1
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corresponds to linear polarization with the electric field peaked at n=0, the phase
chosen for release of the electron into the field. The other linear polarization case of
0 =0 corresponds to the electric field being zero at n=0, and is therefore not a
physically realistic model of ionization. In circular polarization, 8 =+1/V2, the
magnitude of the field is constant. Both values of & are therefore physically realistic
since there is no “preferred” phase where the field is peaked.

0 =1 specifies the vector potential as f\(n) =1XA,sin1, or polarization in
the x-direction. This is not a general requirement. The form of the vector potential in
equation (2.2.1) and choosing T =t=m=0 has resulted in this requirement. In an
actual experiment, the polarization of the field (which can be any direction) specifies
the vector potential, and the position of the atom (or ion) specifies T. The time at
which ionization occurs is then determined by the phase at which the field is peaked.

For § = %1, equations (2.2.2-2.2.4) reduce to

¢ ¢
p(n)=mc| £xqsinn+Z PR cos2n | |, (2.2.8)
q2 q2
E('r|)=mc2 l+——4 Y cos2n |, (22,9

and

- .. 21 1.
r(n) = E[i—xq(l - cosn)+ 27[(5)1] —Zsm2n]] . (2.2.10)
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The electron trajectory, T(1)), can be separated into individual components,

i%(l—cosn),

y=0,
and
Z=V t—iv—dsin21‘| (2.2.11)
d 2k c N k. 1]
where
2
VdE 4 2C.
4+q

The equation for z contains a non-oscillatory term that is also apparent in the z-
component of the momentum shown in equation (2.2.8). The electron therefore drifts
in the z-direction and in high-intensity fields (qg~1 or greater), the drift velocity is
appreciable. As will be shown in section 2.3, the drift can be explained using the
conservation laws of energy and momentum or, equivalently, the electron’s recoil due
to high-intensity Compton scattering.

It is important to note that the trajectory described by equations (2.2.11) is not
simply an oscillation at the laser frequency for x and twice the laser frequency for z,
because 7 itself depends on x and z. These are transcendental equations that contain
an infinite number of harmonics in their solution, which generate an infinite number of

harmonics in the scattered radiation.>*!>1>17
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530°

04

Figure 2.2.3: The “figure-8” motion of an electron oscillating in a high-intensity
linearly polarized field in the electron’s average rest frame. The axes are in units of the
inverse of the wave number.

The orbits of the electron can be found by eliminating n in equations (2.2.11),

(@-vgtf =i31(1¢-19‘-)2{1 —[FFI—"‘—TJ . (2.2.12)

K2 ¢ c q

Orbits for 8=1 (neglecting the drift) are plotted in Figure 2.2.3 for a variety of values
of q. The orbits shown represent only one lobe of the allowed orbits. Another lobe
will occur with all negative x values due to the possibility of ionization when the field
is reversed from that assumed above, i.¢., at § =—1. For q<<I, the electron oscillates
predominantly in the x-direction, as expected for low intensities. As q approaches and
exceeds one, the electron begins to experience significant oscillations in the z-

direction. These oscillations in the z-direction occur at twice the frequency of the x-



27

oscillations. This causes a “figure-8” motion in the electron’s average rest frame that

was shown by Sarachik and Schappert.13

An inherently relativistic effect for an electron with g=100 is shown in Figure
2.2.4. The maximum amplitude of the oscillations in z is given byk|z—vg4t|<1/2,
while the oscillations in x are unbounded and increase linearly in q for large q. This is
due to the effect of the electron’s drift velocity in z. In the lab frame, the spatial extent
of one wavelength of light sets an upper limit on the distance the electron can oscillate
in z before being “turned around” by the field. The x-direction has no such limit. The

Lorentz transformation to and from the rest frame of the electron explains this result.
In the electron’s average rest frame (the frame moving with velocity vg), the electron

experiences a much longer wavelength due to the Doppler shift. When the electron

200

1 ﬁ
150

P 100 -

50 -]

T T T T T T T T T T T T T T T T T

-1 0.5 0 0.5 1
k(z-v41)

Figure 2.2.4: A highly relativistic electron trajectory (q=100) in the electron’s
average rest frame, Both axes are in units of the inverse of the wave number. The
maximum amplitude of the oscillations in z is given by kiz—v4ti<l/2 while the
amplitude of the oscillation in x is much larger. This effect is due to the limit imposed
on the z oscillations of one wavelength. The x oscillations have no such limit.




28
motion is transformed back to the lab frame, the oscillations in z are transformed back
to a maximum amplitude of one wavelength. However, the x oscillations are
unaffected by this transformation, and therefore behave as if in the presence of a much

longer wavelength field, resulting in a larger quiver amplitude than the z oscillations.

For the case of circular polarization (§ =% 1/ V2),

p(n)= c( (xsinn-y(1- cosn)+z(———cosnD (2.2.13)

2 2
E(n) = mc? 1+q7—q7cosn , (2.2.14)
and

f(n)=i—[i%(i(l—cosn) y(n—sinn))+ z—(n smn)J (2.2.15)

Equation (2.2.15) can be separated into individual components,

and

sinm, (2.2.16)

where
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Both the y and z components now contain a drift velocity. The orbit of the electron

can again be found by eliminating n in equation (2.2.16) which results in

and

2
q
+ 9
t vt (x_ ]
2(y dyl)2+ ‘/Ek =1 2.2.17)
Q_[I_dej q
2k2 c 2k?2
q 2
2 (xii)
Eovat) \ Vo) 2.2.18)

These two equations are equations for ellipses. For q<<1, Equation (2.2.17) reduces

to the equation of a circle with radius q / V2k , which is the standard trajectory of an

electron oscillating in a non-relativistic, circularly polarized field. As q approaches and

exceeds one, the x-y orbit becomes elliptical and oscillations in z become apparent (see

Figure 2.2.5).

The drift of the electron in the y-direction is caused by the conservation of

canonical momentum.2%%> When the electron is released into the field at =0, the

canonical momentum is non-zero in circular polarization and points in the direction of

A(0) (the ty direction in the above example). As the vector potential rotates away
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Figure 2.2.5: An electron’s trajectory in its
average rest frame in circular polarization for
varying values of q. All axes are in units of
the inverse of the wave number.
(a) The oscillatory motion in the x-y plane.
For q=0.1 the electron exhibits non-
relativistic circular motion. The trajectory
becomes elliptical as q approaches and
exceeds 1.
(b) Motion in the x-z plane displays an
increase in the amplitude of the z oscillations
as the electron motion becomes relativistic,
1.e., as q approaches 1.
(c) The y-z plane shows a rotation of the
oscillations from the x-y to x-z plane as q
approaches and exceeds 1.

4
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from A(0), the total canonical momentum must be conserved, which requires that the
electron gain momentum in the A(0) direction. After the field rotates through =

radians, this process reverses and the electron loses momentum to the field. This
exchange of momentum continues throughout each laser cycle. The momentum
gained by the electron is always in the direction of the initial canonical momentum.
This causes the electron to drift in the A(0) direction.

The y-direction of this drift is caused by specifying T =t=0 as the position
and time of ionization. In circular polarization, ionization is equally probable to occur
at any phase since the probability of ionization is related to the amplitude of the field,
and the amplitude of the field is independent of the phase. lonization at an arbitrary
phase results in an arbitrary direction to the canonical momentum drift, since the
direction of the initial canonical momentum is dependent on the phase at the time of

ionization.

2.3 The longitudinal drift

The motion of the electron in the k direction is due to conservation of energy
and momentum between the electron and the field. An electron oscillates in a plane

wave with an energy (see equation (2.1.18)),

E(n) = mcz[1+ 2:;0 -(A®0)- A(n))?‘ J . (2.3.1)
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The electron was ionized with zero initial velocity (E(0)= mc’) and has therefore

gained an energy from the field of

AE = E(n) ~ E©0) = 2:12 (R0)-Am)). 232)

The absorption of energy from the field must be accompanied by an absorption of
momentum. The only available momentum is in the field propagation direction (E).
Therefore, to conserve momentum, the electron’s k momentum component must be

_ME_ ¢
Pk c 2mc

(A0~ AmY, 23.3)

pg is the same as the k momentum component of an electron oscillating in a plane

wave (see section 2.1),

5= (R0~ A+ £ (R0~ )

The motion of an electron in the k direction in a plane wave is therefore due to the
absorption of momentum from the field.

The forward drift found in linear and circular polarization in section 2.2 is
caused by the positive-definite, non-zero average of the momentum shown in equation

(2.3.3),

(pg) = 2:;3 (5*2(0)+ <1§2 (n)>)- (2.3.4)
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The vector potential used previously in section 2.2,
1
A(n)= AO[iS sinm+ 9(1 —52)2 coan ,

reduces equation (2.3.4) to

2
(p2) = mc%@—ﬁz) (2.3.5)

For linear polarization (§ = £1)

2

p; = %mc, (2.3.6)

and for circular polarization (8 = +1/2)

2
Pz =q?mc. 237

Equations (2.3.6) and (2.3.7) are the same as the non-oscillatory longitudinal

components of the momenta found in equations (2.2.8) and (2.2.13) respectively.

The concept that motion of the electron in the k direction is due to field
momentum is a powerful tool for calculating electron trajectories in more complicated
fields?? This concept allows a calculation of electron trajectories ignoring field
momentum effects, and later including these effects by requiring conservation of
energy and momentum. This technique is used in Chapter 3 to generalize predictions
for a relatively low-intensity spatially and temporally varying field to high intensities.

The validity of this technique is shown in Chapter 4 where numerical solutions to the
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electron’s equation of motion in a high-intensity laser focus are calculated and
compared to the analytical predictions.

The behavior of electrons in a low-intensity optical field is fundamentally
different than at high intensities. At low intensities, oscillation at the field frequency
dominates the electron’s motion and the drift due to high-intensity Compton scattering
is negligible. At high intensities, the longitudinal drift dominates the electron
trajectory and the oscillatory motion of the electron is negligible.

The low- and high-intensity limits can be examined by comparing the energy of
an electron traveling with a constant momentum of p, in the absence of an
electromagnetic field to an electron oscillating in a field with an average forward

momentum of (pz>. Both electrons are traveling with the same average forward

momentum. However, the one in the field has additional energy due to oscillations
within the field. The electron traveling with a constant momentum has a kinetic
energy (total energy minus the rest energy) of

1

1 4 N2
E, = ((APZ)2c2 + m204)2 —mc’ = mc? [1 +%a2] -1y, (23.8)

where
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The average kinetic energy of the corresponding electron in the field is

(B()) = om¢? q;- (2.3.9)

The ratio of the energy of the electron traveling with a constant momentum to the total

energy of the corresponding electron in the field is

1
4 Y2
1+ 02| -1
E, 4

= (2.3.10).
EM) e
2
For low intensities or q<<1
E, _oq
s (23.11)
(B() 4

and therefore E, << (E(n)) . In this case the energy due to the forward momentum is

negligible compared to the total energy of the electron oscillating in the field. This is
the regime of Thomson scattering since the oscillatory motion of the electron is
dominant and the absorption of field momentum is inconsequential.

For high intensities or g>>1

B2 21 or E, = (E()). (23.12)

(B()

Therefore, for ¢>>1, the energy due to the forward momentum gives the dominant
contribution of energy and the oscillations contain relatively little energy. This is the

ultra high-intensity limit of high-intensity Compton scattering where field momentum
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effects dominate and the quiver motion of the electron is insignificant. This is
analogous to the high-energy photon regime (#w >> mec?) of single photon Compton
scattering, in which only the particle nature of the photon and the resulting recoil of

the electron plays a role in the dynamics of the interaction.
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Chapter 3
Spatial and temporal effects in a laser focus

The experiments described in this thesis use a short pulse 1-um wavelength
laser focused to a 10-um diameter spot size. This laser field exhibits a strong spatial
and temporal dependence. The impact of the field variations on an electron’s

trajectory is discussed in this chapter.

3.1 The ponderomotive potential

Spatial variations of the field influence electron behavior in a laser focus
through an effective potential known as the ponderomotive potential. 7 This potential
produces a field-gradient force that pushes electrons from higher to lower intensity
8-16

regions. Its effects are well documented.

In chapter 2, the Hamilton-Jacobi formalism was used to determine an
electron’s trajectory in a plane wave. This formalism was used due to the extreme

simplification of equation (2.1.5) for a plane wave and an obvious form for the action.

In a spatially varying field A(7,t)# A(n), i.e., space and time no longer occur in the

combination M = ot—k-T explicitly. Without this dependence, the Hamilton-Jacobi
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formalism becomes unnecessarily cumbersome. We therefore use a different technique
to examine the effects of spatial field variations.

The traditional and arguably simplest derivation of the ponderomotive potential
determines the time-averaged force exerted on the electron directly from the
nonrelativistic Lorentz force equation. In terms of the vector potential this force

equation is given by

GW(E) _ _E[_i‘%f’_t)w(f,t)x(vxx(f,t))). G.1.1)

dt c

This derivation and all derivations of the ponderomotive potential known to this
author make the nonrelativistic assumption that the electron mass is constant or

17

equivalently, (vye/c )2<<1. As we shall see, this assumption is unimportant since

the stricter condition of v, /c << 1 is also required in the derivation.
Our interest is in electromagnetic fields with a temporal envelope or pulse
length much larger than the period of the field (wt>>1 where 7 is the pulse length).

This field can be written as

- | WSV T VN

A(F )= E(As(r,t oy KJ(E 06), (3.12)
where 7\5(?, t) defines the slowly varying portion of the field with the rapid variations

at frequency o extracted and * denotes the complex conjugate. The spatial carrier,

ik T k7

¢“", is included in the slowly varying function A(f,t). For e*T to be slowly
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varying, €¥T must remain approximately constant over a cycle of the field or,

equivalently, kz,o. <<1, where k is assumed in the z-direction and z. is the spatial

extent of the oscillations in z. The maximum value of kzog over a cycle is kv, /m.

This gives the requirement v /c << 1.

As was shown in section (2.3), the oscillations in the z-direction are caused by
the absorption of momentum from the field. By neglecting the z-oscillations of the
electron, we are therefore assuming that electron recoil due to high-intensity Compton
scattering is insignificant.

An electron submitted to the vector potential in equation (3.1.2) with

Vose/C << 1 oscillates rapidly at the field frequency about an average position. The net

motion of the average position of the electron is of interest, so we begin by expanding
the electron’s oscillatory motion about its average position. This expansion requires
that the transverse spatial extent of the electron’s oscillations be much less than the
transverse spatial variation of the field. The zeroeth order solution in T to equation

(3.1.1) is then

'r'(ﬁ, t) = %(iosce"i‘”t + i;sce“m) where X, =i el::(clz’) t) , (3.1.3)
and
R, )= -;-(vme““" + V;scei“’t) where V. = eAf:’t , (3.14)
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and R is the electron’s average position vector. [X.| is the spatial amplitude of the
electron’s transverse oscillations at the field frequency. The requirement that the
spatial oscillation amplitude be much less than the transverse spatial variation of the

field can be written as

[Kose| << Wo OF Yose << kw,
c

where wy is the characteristic extent of spatial variations of the field transverse to the
propagation direction, such as the spot size of a laser focus. This requirement is
already specified by the condition veg/c<<1, since wy is at least as large as A, and
therefore kwy > 1.

We now expand equation (3.1.1) in a Taylor series to first order in T about the

average position vector R,

v JAR S\ <\ 0A(R e
m&EY e —@—(’r’(&t)-V)ﬁatk—t)+V(R,t)xVxA(R,t)] (3.15)

dt c

The partial time derivative of the vector potential is approximately

BAE()I:, t) - %(——imf&s(li t)e‘i"Jt + i(oﬁg(ﬁ, t}ei"’t) , (3.1.6)

where terms from the derivative of the slowly varying envelope of order 1/1 have been
dropped since @t>>1. After substituting equations (3.1.2)-(3.1.4) and (3.1.6) into

equation (3.1.5), we find
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dv(T,t 2 e S\it LS et i
m V((;[ )z_4::1(:2((AS-V)AS+ASXV><AS+c.c.)+e“"’t terms. (3.1.7)

Only the terms in which the el dependence has exactly canceled have been written.
This is because the intention is to find the time-average of the electron’s motion. All
terms that retain any e dependence will be of order 1/t after time-averaging. Since

we are considering a slowly varying envelope (@t >> 1) these terms are small and will

be discarded. The time-average of equation (3.1.7) is

dvfr,t & =
mﬂdt—= = Viaf, (3.1.8)

where a vector identity18 has been used to simplify the equation. This is the equation

of motion of a particle in a potential of the form

o AL _¢)

P 4mc2 2mc2

] (3.1.9)

where @, is the ponderomotive potential. It is equal to the electron’s quiver energy in
the field (see equation (2.1)). It was first predicted theoretically by Boot and Harvie in
the 1950’s.'? The above derivation is from a review article by Eberly et al’® An
interesting aspect of this result is that the ponderomotive potential is independent of
the field’s polarization.

Figure 3.1.1 shows a simple example of the effects of this potential at the focus

of a time-independent (continuous-wave or cw) laser beam. A beam of electrons
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Figure 3.1.1: An example of the effects of the ponderomotive potential. Darker
regions represent higher intensities. A beam of electrons (arrows) is scattered by the
high-intensity light at the center of the focus of a high-power laser beam.

travels toward a laser focus with a peak ponderomotive potential greater than the
energy of the electrons. As with any potential, energy must be conserved. This results
in a deflection of the electrons away from the high intensities at the center of the focus.
A very elegant experiment that investigated this simple scattering picture and the

effects of a time-dependent pulse on this picture was performed by Bucksbaum et al. 1

Two assumptions were made in the derivation of the ponderomotive potential:
ot>>1,
and
Vose/C << 1.
With respect to the experiments described in this thesis, the first assumption is very

accurate since the laser used had over 1000 cycles in a pulse. The second is not. The



46
consequences of high-intensities, i.e., g~1 or vys/c~1, are the subject of this thesis.

The question therefore arises, how severely does the breakdown of this assumption
affect the validity of the ponderomotive potential? In Chapter 4, this question will be
answered by comparing numerical solutions of the electron’s fully relativistic equation
of motion to the trajectory expected from the ponderomotive potential. These results

will show that the ponderomotive potential remains valid for q ~1 and greater, as

long as the forward drift due to high-intensity Compton scattering (see section 2.3) is
included in the trajectory. The combination of these two processes will be considered

in section 3.3.

3.2 Electron ejection from a low-intensity laser focus
The paraxial approximation for the intensity distribution of a Gaussian TEM

. . 0
mode laser focus is given by,2

2= "{w()J ‘{ w%)J G20

w@)=\1+2/3,
where Iy is the peak intensity, wy is the 1/¢ radius of the intensity at the beam waist
(z=0), and z is the Rayleigh range (z position where intensity on laser axis drops by a
factor of 2). The diffraction limited values of wy and z; for a Gaussian TEMy, mode

laser beam are,
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where f is the f-number of the focusing system, and is defined as the focal length of
the lens divided by the diameter of the beam at the lens. The diameter of the beam is
defined as the diameter at which the intensity drops to 1/ its peak intensity.

The spatial characteristics of the ponderomotive force are given by,

’ [W(Z)]2 wz(z) Azz%,(w(z))z[ Z(W(Z)TJ "{@T - (3.2.2)

Three important features of this force should be noted. The first is the cylindrical

il

symmetry of the force. The second is the symmetry of the force in the axial direction,
Ef2)=-E(-2). (3.2.3)
The third is the relative size of the forces in the radial and axial directions. The ratio

of the force in the axial direction to the force in the radial direction is approximately,

Zo (3.2.4)

For the laser focus used in these experiments, f# =5 so that the force in the axial
direction is about 20 times smaller than in the radial direction. Electrons are therefore
ejected radially at 6=90° from k witha symmetric spread of A =13°.

In circular polarization, the ejected electron energy will also be affected by the

conservation of canonical momentum described in section 2.1. The momentum of the
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electron in a circularly polarized plane wave was shown in equation (2.3.12) to be

given by
q Q® ¢
I'j(n):mc + 5 (isinn—?(l—cosr|))+‘ 5 —7cos1‘] _

The electron has a time-averaged drift in the y-direction,

—qme

<py>=+-f. (3.2.5)

The y-dependence of this drift is a result of the phase (n=0) chosen for release of the
electron. In circular polarization, an electron is equally likely to be released at any
phase of the field (see section 2.3). This allows the electron to be released when the
vector potential is rotated in any direction. Since the initial direction of the vector
potential defines the direction of the initial canonical momentum, the electron is
equally likely to drift in any direction in the plane of polarization.

The energy associated with the canonical momentum drift in circular

polarization (see equation (2.1.20)) is equal to the electron’s ponderomotive energy,

232 2(A2
2x) _F(&%)
En = = =Q_. 326
D 2mc? 2mc? P ( )

The energy of electrons ejected from a circularly polarized cw laser focus will

therefore be 2®p: one factor of @, from the ponderomotive acceleration of the

electrons, and one factor of @, from the conservation of canonical momentum. The
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existence of the drift due to the conservation of canonical momentum in circular

polarization has been experimentally verified.?!

The motion of the electrons
due to the conservation of canonical
momentum drift is not purely radial
near the focus as is the case for the
cylindrically symmetric
ponderomotive acceleration.  For
example, consider an electron

released at the beam waist (z=0), wy

away from the beam axis in the x-
direction, with a  canonical
momentum drift in the +y direction

(see Figure 3.2.1). This electron’s

Figure 3.2.1: The canonical drift is
approximately radial far from the laser focus.
The difference between the radial and actual
trajectory is greatly exaggerated in this
picture.

trajectory is described by T = woX +v4ty . The electron is not traveling purely radially.

The experiments described in this thesis have examined the electron distributions 6 cm

from a focus with wy=5um. This means that the electron has traveled from

T=WoX to T =wpX+ I, L, where rops is the observation distance of 6 cm. If we

assume that the electron is traveling purely radially throughout its trajectory, it would

travel from T=0 to T =1, . The angular difference between these two vectors is
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0.005° due to the large distance of observation compared to the electron’s relatively
small offset from the center of the focus. We therefore introduce very little error if the
electron’s motion is approximated as radial.

Circular polarization is used in our experiments to assure a cylindrically

symmetric distribution of ejected electrons. The experiments involve the ionization of
many atoms ( n~10°-10 ) randomly distributed throughout a circularly polarized laser

focus. Each ionized electron experiences a drift due to the conservation of canonical
momentum and an acceleration from the ponderomotive potential. The drift depends
on the phase of the field at which the electron is ionized. This phase will be different
for each electron, and the net result will be an isotropic distribution in the plane of
polarization for circular polarization. The direction of the ponderomotive acceleration
depends on the initial position of the electron. The random distribution of electrons
causes the distribution from the ponderomotive acceleration to be isotropic in the
plane of polarization. Therefore, the combined effects of the ponderomotive
acceleration and the conservation of canonical momentum drift for circular
polarization at low intensities gives a uniform distribution of electrons in the plane of
polarization, i.e., at 90° to the laser axis. These electrons travel approximately radially

with twice the ponderomotive energy of the intensity at which they were born.



51
3.3 Electron ejection from a high-intensity laser focus
The analysis of the ponderomotive potential for a low-intensity Gaussian focus

shows that electrons are emitted isotropically in the plane of polarization. At high

intensities, the absorption of momentum from the field (see section 2.3) “pushes” the
electron distribution forward so that electrons are emitted in a cone centered on k.

The angle from k is given by the relationship between the forward component and the
total momentum of the electron.

We begin calculating this angle by assuming that an electron is ejected from the
laser focus with arbitrary energy E (including rest mass energy). As was previously
shown in section 2.3, this energy must come from the laser field, which means the

electron must also absorb momentum from the ﬁeld,22

ApzzéE—=E—mc=mc(y—l) 3.3.1)
c <

where

’Y: E = 1
me? \/1—\72/c2

The electron’s total momentum is

72 =E—2—m2c2 =m2c2(72 —1). (3.3.2)
C

From these we can determine the angle of ejection of the electron,
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2
00829=(ﬂ)£] _x-1 or tan26=i. (3.3.3)

P

This angle (see Figure 3.3.1)

is a function of the final

energy of the electron only.

The only assumptions made |Figure 3.3.1: The definition of the angle 0.

were that all available momentum in the field was in the z direction, and only the

electromagnetic field accelerates the electron.

3.4 The effects of a time-dependent pulse

An electron’s ejection energy following ionization in a laser focus is dependent
on the intensity at which it was ionized and the polarization of the field. An electron
born at the peak of the field in a linearly polarized cw beam has zero initial canonical
momentum and a potential energy given by the ponderomotive potential of the
ionization threshold intensity. Subsequent acceleration by the ponderomotive potential
converts the electron’s ponderomotive quiver energy to kinetic translational energy.
The electron is therefore ejected with the ponderomotive energy of the ionization
threshold intensity. In a circularly polarized cw beam, an electron is released into the
field with non-zero initial canonical momentum and a potential energy given by the
ponderomotive potential of the ionization threshold intensity. Conservation of

canonical momentum causes the electron to drift in the direction of the initial canonical
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momentum. The energy contributed by this drift is exactly equal to the ponderomotive
energy. In addition, the conversion of the ponderomotive quiver energy to
translational energy gives the electron another factor of the ponderomotive energy.
An electron born in circular polarization therefore acquires an energy of twice the
ponderomotive potential of the ionization intensity.

In a pulsed laser, the intensity is time-dependent, and the corresponding
ponderomotive potential is a time-dependent potential. Conservation of energy

(required for a time-independent potential) no longer applies. The energy of an

electron ejected from a laser focus by a time-dependent pulse is'!

E = x®,(7(to),to)+ J %ﬁ)’t)dt (3.4.1)
to

where tg is the time at which the electron is ionized, k is defined as one in linear

polarization and two in circular polarization, and the ponderomotive potential is
assumed to be zero at infinite time. The integral in equation (3.4.1) is the change in the
electron’s energy due to the time-dependent ponderomotive potential.

In the limit of long pulses, the partial differential in equation (3.4.1) will be
approximately zero since the electron will leave the intense regions of the field before
the slowly-varying temporal aspect of the pulse contributes to the differential. This

will cause the contribution of the integral in equation (3.4.1) to be small or,
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E = x®,(7(to ), to). (3.42)

The electron will therefore gain the full ponderomotive energy, and the pulse can be
closely approximated as cw.
For extremely short laser pulses, the electron will not move before the pulse

has passed. T(t) can therefore be approximated as constant, and the partial
differential in equation (3.4.1) can be approximated by a total differential or,
E = (k—1)®p(F(to).to). (3.4.3)

In very short pulses, the electrons will therefore gain no energy from the field in linear

polarization, and only the energy from the conservation of canonical momentum in
circular polarization, i.e., ®p, not 2@y as in the cw case.

We are interested in discovering the pulse width necessary to enter the long
pulse limit, i.e., the pulse width that allows full acquisition of the ponderomotive
energy. For a Gaussian temporal and spatial profile laser pulse,

2

wo ) r? t=2
(Dp('r'(t),t)oc (w g)] exp(-sz—(z)]exp ~In2 Tc (B.449)
2

and

YA
o, (T(t),t t==1
_P(at() ) - gin2 2 (i), (3.45)
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where 1 is the FWHM pulse width. Equation (3.4.1) can now be approximated as

E~ (x— 81:2 At)Qp(f(to),to), (3.4.6)

where At is the interaction time of the electron with the field. The interaction time can

be approximated by the time the electron takes to travel wy, or At = w/V where V is

the average velocity of the electron. Therefore equation (3.4.6) becomes

E ~(K—81:2%)d>p(f(t0),t0). (3.4.7)

For pulse duration effects to be small, we must have,

81n2_v_v_0_

K>> (3.438)
TV
The condition imposed on the pulse width for linear polarization is then
1>>81n2 20 (3.4.9)
v
and for circular polarization,
1>> 410220 (3.4.10)

v

The laser conditions used in these experiments were a circularly polarized
1.053-um wavelength laser with a 1.5-ps FWHM pulse width and a 5-um beam waist.
The maximum value of the right side of equation (3.4.10) is obtained for the lowest

energy electrons studied since these have the smallest average velocity. The lowest
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energy electrons studied had an energy of 3 keV. These have an approximate average
velocity of 0.09¢, which gives the requirement,

T>>05ps. (3.4.11)
This is only weakly satisfied by the 1.5-ps pulse width of the laser used. However, the
numerical integration of the electron trajectories in Chapter 4 will show that this is
sufficient for pulse effects to be minimal in the experiment.

The effects described so far have assumed that the relativistic, pulse envelope
and spatial effects can be considered independently and combined later. The next
chapter will test the validity of these assumptions by numerically integrating the
electron’s relativistic equation of motion in a Gaussian focus, and comparing these
results with those expected from the independent analytic treatment of spatial,

temporal, and relativistic effects.
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Chapter 4
Numerical simulation of electron dynamics in a focused laser field

The previous chapters have treated spatial, temporal, and relativistic effects
independently. The validity of independent treatment of these effects is tested in this

chapter by numerically integrating the covariant Lorentz force equation for an electron
in a spatially and temporally varying ﬁeld,]

dUa__E

dt c

(a"‘AB - PAUg = —SF"BUB, (4.1)

where F® is the electromagnetic field-strength tensor,

0 -& -§ -&
Faﬁzgxo—Bsz’

g B, 0 -B

g -B, B, 0

U% is the four-velocity,

U% = (e, 1),

and € and B give the complete temporal and spatial description of the focused laser

field, including the dependence on e and X7
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4.1 The paraxial approximation for a Gaussian laser focus

Accurate descriptions of the electric and magnetic fields are required to

numerically integrate equation (4.1). The paraxial approximation for the electric field

. . . oo . . .2
of a Gaussian continuous wave (cw) laser focus with k in the z-direction is

g =£& w(—g)exp(i(d)(r, z)- (ot)) ex‘{{;’(—zﬂ ]+ cc, (4.1.1)

where

w(z) = wm/ 1+ (z/zo)2 (beam radius at z),

R(z)=z+7 [z (radius of curvature at z),

2
<D(r,z) =kz- tan'l[i) + kr (time-independent phase),
2

£ is a complex unit vector in the plane perpendicular to the propagation direction that

specifies the polarization, and £ is the peak amplitude of the field. The electric field

for a pulsed laser with a Gaussian temporal profile is described by multiplying by

another Gaussian,

2
ét = écw ex;{—2ln Z(g(-r’;)t——mt) J +c.c. 4.12)

where 7 is the FWHM of the pulse in intensity and &, is a transverse electric field.

Use of ®(r,z) in equation (4.1.2) causes the propagation of the pulse in the proper
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direction, i.e., perpendicular to the phase fronts. The corresponding magnetic field can
be found using Faraday’s law,

Vx&+-—=0. (4.13)

O]»—d
9:"%1

The standard approximations of long pulse width (®wt >>1) and transverse electric
and magnetic fields gives
B, ~ix& (k assumed in z direction). 4.1.4)
The electron trajectories calculated with these transverse electric (equation (4.1.2))
and magnetic (equation (4.1.4)) fields have a polarization dependence in contradiction
with the ponderomotive potential (see section 3.2).
To demonstrate, consider a linearly polarized electromagnetic field (€ = X),
£ =& %
and (4.1.5)
B(F,1) =|&(F.1)5
We can write the equation of motion for the electron, equation 4.1, to the same order

of the ponderomotive potential as

@ _elg‘(, tj((l __) Tx ZJ 4.1.6)

There is no component of acceleration in the y-direction. This results in a polarization

dependence in contradiction to the ponderomotive potential.
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4.2 The longitudinal field of a Gaussian focus

The polarization dependence is caused by the failure of the standard paraxial
approximation for the electric and magnetic fields (correct to zeroeth order in £ ) to
obey Maxwell’s equations to the same order as assumed in the derivation of the
ponderomotive potential (first order in £ ). We must therefore find first order

corrections to the paraxial electric and magnetic fields.

The first order correction to the paraxial electric field is found from the
requirement that V- £ =0 3 The divergence of the electric field in equation (4.1.2) is
not equal to zero as required by Maxwell’s equation. The first order correction is
found by substituting the transverse electric field in equation (4.1.2) into V- £ =0 and

solving for a longitudinal field (z component of £) that satisfies V- £ =0,

9%, _ 5.2, (4.2.1)
0z

where V, = d/ox X + d/dyy . We now make the approximation

9E, _ kg, | (4.2.2)
dz

which is valid to first order in 1/f*. This approximation and the paraxial approximation

for the electric field in equation (4.1.2) give the solution to equation (4.2.1) as,

= - R i 1
g =-&- (2xx+2yy{k s )2 + R(z)] , (4.23)
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This equation for the longitudinal electric field, along with the transverse electric field
in equation (4.1.2), satisfies V.£€ =0 to first order in 1/f # The first-order solution to
the electric field is used in Faraday’s law (equation (4.1.3)) to find the magnetic field.
With the assumption that @t >> 1, the magnetic field to first order in e is

B, =zx &, 424)

and

I J | (4.2.5)

B, = B, (2x§( + 2y§r{ k(w(z))2 + = (z)

These expressions for the electric and magnetic fields give the expected results of

polarization independence for the electron trajectories. This first order approximation

in 1/f is sufficient for the £/5 optics used in our experiments.

4.3 Monte Carlo simulation of electron ejection from a high-intensity,
Gaussian laser focus

A Monte Carlo simulation computer program of the laser ionization and
subsequent acceleration of electrons under the relativistic equations of motion has
been written (see appendix A). The program models the propagation of a laser with a
Gaussian spatial and temporal profile through a focus containing randomly distributed

noble gas atoms.
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The simulation begins by reading various experimental parameters from a data

file. The experimental parameters used in the program include: the peak intensity,

pulse width, focal spot characteristics, and polarization of the laser pulse; the noble gas

to be studied; the noble gas pressure; and the initial charge state and number of atoms
of the noble gas to be examined.

The program calculates the critical electric field necessary to ionize the initial

charge state using BSI* (see section 2.3),

2
Eion

Eorit =19
it 4z

(4.3.1)

where E;qy is the ionization potential of the charge state and Z is the ionic charge.

Ionization occurs in the BSI approximation when the electric field reaches the critical

electric field defined in equation (4.3.1). The peak electric field in linear polarization is

V2 larger than the peak electric field in circular polarization at the same intensity.
This causes ionization to occur with linear polarization at half the intensity required

with circular polarization. The threshold intensities are,
4
Ith(W/ cm2) = 4x10° M;Zﬂ for linear polarization
and

4
Ith(W/ cm2) = 8x10° E‘%(;V) for circular polarization .
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The threshold intensity is used to calculate the volume within the focus (focal
volume) where ionization will occur.” An atom is then placed at a random position
within the focal volume. The Gaussian temporal envelope, ignoring the phase, is used
to solve for the time at which the electron experiences an intensity equal to the BSI
threshold intensity. In circular polarization, this time was used as the starting point for
when the electron was considered free of the atom. In linear polarization, it is
assumed that the electron will be released at the peak of the electric field. Therefore,
the program waits from the time determined by the Gaussian temporal envelope to a
time within a half cycle when the field is peaked.
In both circular and linear polarization, the electron is assumed born at rest.®
The electron then experiences the electromagnetic field found above, and its trajectory
is calculated using a 5th order Cash-Harp Runge-Kutta method to integrate equation
(441).7 The electron trajectory is calculated until the intensity drops six orders of

magnitude below the ionization threshold intensity.

The electron’s position and velocity vectors are then stored in a data file, and a
new atom is placed within the focus at another random position. This process
continues until the specified number of atoms to be studied is reached. At this point,
the program calculates the intensity necessary for ionization of the next higher charge
state using BSI. If the threshold intensity is below the peak laser field intensity, the

above process is repeated. This continues until the atom is completely ionized, or until



the peak laser intensity
specified in the input file is
below the intensity
necessary for ionization of
the next charge state. When
this occurs, the program has
all

calculated electron

trajectories and ends.
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Ne | Ein | Ininlin. Ejin=®p(lih) | Tlin

17 2166V | g 71x10" wWiem? | 90-1€V 10 ps
2t | 410 2.83x10"° 293 eV 55ps
3t | 635 723x10"° 748 eV 34ps
4t 971 2 22x1016 2.30 keV 2.0 ps
st | 126 403x10'° 4.17 keV 1.5ps
6 | 158 6.92x10'° 7.16 keV 1.1ps
5+ 1207 1.50x10"7 15.5 keV 770 fs
gt | 239 2.04x1017 21.1keV | 660 fs

Table 1: Ionization potentials, E;,,, BSI threshold

intensities, Iy in lin., and ejection energies, Eyy,, for

aser pulses much longer than 1y in linear polarization.

The dynamics of the electrons freed in creating Ne'" to Ne®* were calculated

for a variety of experimental conditions.

The ionization potentials, BSI threshold

intensities, expected ejection energies, and interaction times (see section 3.4) of

electrons from Ne'* to Ne®* are shown for linear polarization in Table 1, and for

circular polarization in
Table 2. The ejection
energies are the energies
expected for laser pulse
lengths much longer than

the interaction time of the

electron with the field.

Ne |Eion | Imincirc. Egire=20p(Itn) | Teire

17 [216eV | 7ax10 wiem? | 360. eV 1.4 ps
2t | 410 565x10°° 1.17 keV 800 fs
3+ ]635 1.45x10'° 3.00 keV 500 fs
4t | 971 4.44x10%° 9.19 keV 290 fs
st | 126 8.07x10'¢ 16.7 keV 220 fs
¢ | 158 1.38x10"7 28.6 keV 170 fs
7t | 207 3.00x10"7 62.1keV 120 fs
g | 239 4.08x10!” 84.4 keV 110 fs

Table 2: Ionization potentials, Ejo;, BSI threshold
intensities, Iy, in circ.,, and ejection energies, Ecir, in
laser pulses much longer than 7¢, in circular

polarization.
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In the discussion that follows, all calculations use a 1.053-um wavelength

Gaussian profile laser focused to a diffraction-limited 5-pm spot size and a peak
intensity of 10'® W/em?.

Electrons ionized in a long-pulse, linearly polarized laser are expected to

acquire an energy equal to the ponderomotive potential of their BSI threshold

intensity. Figure 4.3.1a shows the electron energy spectrum of Ne** to Ne* ionized

with a 1-ns pulse length (Tigser™> Tiin) linearly polarized laser. The electron energy

spectrum exhibits peaks at the ponderomotive energies corresponding to the different
threshold intensities of the neon charge states. This is expected since the long pulse
length allows the ponderomotive potential to behave as a time-independent potential,
and energy is conserved.

Figure 4.3.1b shows the energy spectrum for a 50 fs, linearly polarized laser

pulse. In this case, the pulse length is much shorter than 13, and the ponderomotive

potential is no longer a conservative potential. The time-dependence of the pulse
causes a wide range of ejected electron energies and no individual peaks are
discernible.

In long-pulse circularly polarized laser fields, electrons with energies of four

times those found for the same charge states in linear polarization are expected. This
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pulse (1-ns FWHM). (b) The energy spectrum for a short pulse (50-fs FWHM).
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occurs due to two factors. The first is because the ponderomotive potential is twice as
high for the same charge state in circular polarization as in linear polarization due to
the doubling of the BSI threshold intensity. The second is due to the conservation of
canonical momentum described in section 2.2. This contributes a second factor of the

ponderomotive potential.

Figure 4.3.2a shows the electron energy spectrum for Ne®* to Neb" ionized
with a 1-ns pulse length (Tiaser™> Tcirc) circularly polarized laser. The electrons gain
twice the ponderomotive energy of the circular polarization BSI threshold intensities
of the neon charge states. This shows that the ponderomotive potential predicts the
correct energy, even for relativistic electrons. 7y =12 for the 80-keV electrons. The
electrons are experiencing a slight mass increase due to the deviation of y from 1, but
the ponderomotive potential predictions are unaffected and still give the correct
results. Monte Carlo simulations of electrons ionized at intensities up to 1= 10%°
W/em? (®,~=10MeV; Yy =20) confirm that this agreement continues into the highly

relativistic regime.

Figure 4.3.2b shows the energy spectrum of a 50-fs pulse length circularly
polarized laser. The pulse length is now shorter than the interaction time, and the

lower charge state electrons exhibit half the energy of the long pulse case. This occurs
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because energy is only acquired due to the conservation of canonical momentum,
which is gained immediately following ionization. The pulse length is too short for
electrons to gain the slowly developing ponderomotive energy. The higher charge
state electrons are in the intermediate region between the long pulse case and the short
pulse case. These electrons’ interaction times are approximately twice the pulse width.
This results in the acquisition of a range of energies depending on their initial
placement within the laser focus. The electrons with 100-keV energies are “surﬁng”8

on the leading temporal edge of the laser pulse and gaining energies greater than 2@,

Other electrons experience very little acceleration beyond the canonical momentum
drift, or possibly even decelerate due to surfing on the trailing edge of the laser pulse.
The net effect of the wide range of possible energies for the same charge state is to

“wash-out” the peaks of the high charge states.

The pulse length of the laser used in the experiments reported here is
approximately 1.5 psec. The expected spectrum of Ne** and higher charge states for
linear polarization is shown in Figure 4.3.3a. The electrons here behave much as they
did in the linearly polarized 50-fs pulse (see Figure 4.3.1b). The electron peaks that
were visible in the long-pulse case are not present because the interaction time (from
700 fs for the highest energy electrons, to 3.5 ps for the lowest energy electrons) is
similar to the pulse length. The energy spectrum of linear polarization has not been

measured experimentally.
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The case of circular polarization in Figure 4.3.3b exhibits electron peaks similar
to those seen for the long-pulse case in circular polarization shown in Figure 4.3 2a.
The interaction time for circular polarization is approximately 100 fs for the highest
energy electrons, and 500 fs for the lowest energy electrons shown. This allows
complete conversion of the slowly developing ponderomotive energy into kinetic
energy. The energy spectrum in circular polarization has been measured
experimentally and agrees well with this expectation. These observations will be
discussed in detail in chapter 6.

The neglect of field momentum effects in the derivation of the ponderomotive
potential manifests itself in the angular distributions of the ejected electrons at high-

intensities. As was discussed in sections 3.2 and 3.3, the ponderomotive potential.

predicts electron ejection at 90° from k, but high-intensity Compton scattering

“pushes” the electrons forward of this predicted ejection angle

Figure 4.3.4 shows the Monte Carlo prediction (solid line) of the angular
distribution of Ne'* electrons ionized at 1.7x10"> W/em? in a 1.5-ps circularly
polarized laser pulse. The angular distribution is peaked at 89.1° from k. The ejection
energy of these electrons in the Monte Carlo simulation is approximately 186 eV. The

prediction of equation (3.3.3), which determines the angle of ejection based on
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Figure 43.4. The angular distribution of Ne'* electrons ejected with 186 eV of
energy. The solid line is the Monte Carlo simulation prediction for the angular
distribution. The dashed line is the angle of ejection calculated with equation (3.3.3)
using an energy of 186 eV ('Y =1.000364).

conservation of energy and momentum between the electron and the field, is 89.2° for
186-eV electrons (position shown by dashed line in Figure 4.3.4). vy =1 for these
electrons, resulting in ejection approximately perpendicular to the laser axis, which is
expected at low ionization threshold intensities since q<<1 and high-intensity Compton
effects are minimal.

Figure 4.3.5 shows the Monte Carlo prediction of the angular distribution of

Ne¥" electrons ionized at 4.0x10'” W/em? in a 1.5-ps circularly polarized laser pulse.

The angular distribution is peaked at approximately 74.1°. These electrons are ejected
with energies of 84.2 keV in the simulation, which corresponds to an angle of 74.0°
using equation (3.3.3) (position of dashed line in Figure 4.3.5). The high ionization

threshold intensity of these electrons causes interaction with a field strength of g~1.
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Figure 4.3.5: The angular distribution of Ne®* electrons ejected with 84.2 keV of
energy. The solid line is the Monte Carlo prediction of the ejected electron
distribution. The dashed line is the angle of ejection calculated using equation
(3.3.3) and the ejected energy of 84.2 keV (y = 1165).

High-intensity Compton scattering causes electron recoil and a kcomponent of
momentum in agreement with the conservation of energy and momentum argument
described by equation (3.3.3).

Many other numerical calculations of the relativistic electron trajectories have
been performed. All are in excellent agreement with the predictions of the previous
chapters. It is therefore clear that the predictions of the electron trajectories based on
the separation of relativistic effects, pulse envelope, and spatial effects are valid when
compared to a fully relativistic calculation of the electron trajectories. The next step is
to compare these predictions to the actual observations. This will be done following a

discussion of the apparatus used in the experiment.
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Chapter 5
Experimental Setup

In the experiments, a circularly-polarized, high-power (~ 1 TW) laser pulse is

focused into a vacuum chamber backfilled with neon gas (see Figure 5.0.1). The laser

pulse ionizes the gas at the focus, and freed electrons are ponderomotively accelerated

from the focus. A magnetic
spectrometer placed above the laser
focus measures the energy and angular
distributions of the electrons.  This
chapter describes the experimental setup
and, in particular, the magnetic

spectrometer.

5.1 Laser system

Vacuum chamber
backfilled withNeon gas

Figure 5.0.1: The general layout of the
experiment.

The high-power laser pulse used in the experiments is generated with a

Nd: YLF/Glass Chirped-Pulse-Amplification (CPA) laser system (see Figure 5.1.1).1’2

The pulse begins in a Nd:YLF oscillator where a 100-MHz pulse train with 1 nJ of

energy per 50-ps pulse is created. The pulse train undergoes dispersion and self-phase-

modulation (SPM) in a 1-km long optical fiber. The dispersion produces a linear

dependence of frequency on time (linear temporal chirp) and a pulse width of 100 ps.
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Figure 5.1.1: The Nd:YLF/Glass CPA laser system used for generation of
approximately 1 TW pulses.

The SPM increases the bandwidth from 0.3 to 25 A. Diffraction gratings further expand
the pulse width to approximately 500 ps.

A single pulse of this train is switched into a Nd phosphate glass regenerative
amplifier, where approximately 100 passes through the amplifier increase the pulse
energy to 500 pJ. The many passes also decrease the bandwidth of the pulse to
approximately 12 A due to gain narrowing in the amplifier rod. The pulse is further
amplified to 40 mJ by 3 passes through a 9-mm Nd phosphate glass amplifier. The final
amplification stage is a 30-mm Nd phosphate glass amplifier that increases the energy to
1 J or higher. The effects of thermal lensing in this amplifier limit the repetition rate of

the laser to one pulse every 3 minutes. A pair of gold coated, holographic diffraction
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gratings compress this high-

energy pulse to

to diagnostics
2% q\f incickent energy)

approximately the Fourier

transform limited pulse width
(AtAv = 044), or

approximately 1.5 ps.

) Figure 5.1.2. A glass wedge extracts 2% of the incident
The pulse width and |[5ser for energy and pulse width measurements.

vacuum
tank

glass wedge

energy are measured for each laser shot during the experiment by deflecting 2% of the

laser pulse to a pair of diagnostics
(see Figure 5.1.2). The pulse
width is measured using 2nd-
order auto-correlation which has
a relative uncertainty of +15%
and an absolute uncertainty of
130% . An example of an auto-
correlation trace of the pulse is

shown in Figure 5.1.3. The solid

Relative intensity
o
(=%
]

Time (in ps)

Figure 5.1.3: The temporal intensity distribution of
the laser pulse.

curve is a Gaussian curve fit to the data. In this case, the measured pulse was

approximately 2 ps long, which is longer than the typical pulse width of 1.5 ps.

The energy is measured with a photo-diode and a 2249w analog-to-digital

converter (ADC). The photo-diode produces a pulse of current that is integrated by the



80
ADC. The total charge integrated by the ADC is linearly related to the incident laser
energy. By calibrating this signal using an energy monitor placed directly before the
vacuum tank, the energy is determined to an absolute uncertainty of +10% and a relative

uncertainty of +5%.

Figure 5.1.4 shows the near-field intensity distribution of the laser at the lens.
This intensity distribution is without the 30-mm amplifier firing. Previous measurements
have shown that the 9-mm amplifier governs the intensity distribution, and the 30-mm
amplifier is unnecessary for these measurements. The flat-top nature of the distribution
shown is due to higher gain in the outer edges of the 9-mm amplifier rod. This is caused
by higher absorption of the pump radiation in the edges of the rod. The higher gain in
the edges of the rod amplifies the wings more than the center of the spatially Gaussian

input pulse and results in a flat-top beam profile.
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Figure 5.1.4: The near-field intensity distribution of the laser. On the left is a contour
plot of the laser’s intensity distribution. On the right is the intensity distribution along
the dashed line in the contour plot.
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A 20-cm focal length lens focuses the pulse to a spot size of 373 um2 in the

vacuum chamber. The area of the spot size is defined as,

Area=—— I(x,ydA, (5.1.1)
Tpeak

where Ijeak is the peak intensity and the integral is over the plane perpendicular to the

laser propagation direction at the beam waist (position where spot size is minimum).

The spot size was determined by placing a short focal length imaging lens after
the focus of the 20-cm lens used for the experiments. The 30-mm amplifier was not
used in these measurements. The imaging lens magnified the focal spot, allowing a
picture of the focus to be taken with a charge-coupled-device (CCD) (see Figure 5.1.5).
The magnification was found to be 3411 by measuring the image distance (distance
from the imaging lens to the imaged focus) and the object distance (distance from the

20-cm lens focus to the imaging lens) and taking their ratio. The area of the central
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peak of the imaged focal spot shown in Figure 5.1.5 was 85,400 umz. The true focal

spot size of the 20-cm focal length lens was determined to be approximately 37 um2 by

dividing the magnified focal spot area by the square of the magnification. The focal spot
size was found not to fluctuate on a shot-to-shot basis. The spot size was therefore not
measured for each laser shot during the experiments since a one-time measurement was
sufficient.

The combined uncertainties of the energy, pulse width, and spot size result in a
relative uncertainty in the intensity of +20% and an absolute uncertainty of

approximately +35%.

The calculations in the previous chapters assumed a Gaussian TEMgo mode laser
profile. The actual distributions are a super-Gaussian at the lens (see Figure 5.1.4) and
a Gaussian central peak with rings at the focus (see Figure 5.1.5). The rings at the
focus occur due to a combination of two diffraction effects. The approximately flat-top
incident beam produces an Airy disc pattem,3 and a 5-mm hole in the center of the
focusing lens results in diffraction rings. The effects of the experimental focal
distribution are minimal in connection with high-intensity Compton scattering. This is
because the focus is still axially symmetric, resulting in a symmetric ponderomotive
force (see section 3.2),

F,(2)=F,(-2)

An increase in the angular spread of the electron distribution is possible due to larger
variations in the radial vs. axial components of momentum, but the peak of the angular

distribution will be unaffected.
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5.2 Magnetic electron spectrometer

A magnetic spectrometer was constructed to measure the energy and angular
distributions of the electrons ejected from the laser focus. Figure 5.2.1 shows the
layout of the spectrometer. Detailed schematics of the spectrometer are presented in
Appendix B. Ejected electron trajectories are curved in a magnetic field in the gap of

a “c-shaped” electromagnet and travel toward an organic plastic scintillator.*

Electrons striking the scintillator release photons that are detected by a photo-
multiplier tube (PMT).

The electrons are detected if they are curved the proper amount in the
magnetic field to allow propagation to the scintillator.  Electrons traveling
perpendicular to a constant magnetic field travel in a circle with a radius known as the
gyration radius. This radius is found from the electron’s equations of motion in a

constant magnetic field,

P __C3xB and (5.2.1)
dt v

o meY oo, 5.2.2
at g (5:22)

Since y is constant in time, equation (5.2.1) reduces to

== $xB. (5.2.3)
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Figure 5.2.1: The magnetic spectrometer layout. A few electrons ejected from the
laser focus enter the gap of the magnet in the spectrometer. The electrons are curved
by the magnet field in the gap of the magnet. If the radius of curvature allows
propagation of the electrons to the scintillator, the electrons create scintillation
photons. The scintillation photons are detected by a PMT that gives a signal level
proportional to the energy and number of electrons striking the scintillator. The inset
shows the coil of wire wrapped around one arm of the magnet and the gap cut in the
center of the opposite arm.




85

This equation describes circular motion with a frequency of

= jﬁ_ = qu
() the gyration frequency), 524
B c E (the gyr. y) ( )

and a radius of

p= Jﬂ _qﬁl—vmc (the gyration radius). (5.2.5)

where vV, is the initial velocity of the electron. The geometry of the spectrometer
determines the gyration radius necessary for detection (see Figure 5.2.2). This causes

p to be fixed and the relation between the electron energy and magnetic field is,
= (epB)’ + m%* (5.2.6)
By varying the strength of the magnetic field, the energy window of the spectrometer

is changed according to equation (5.2.6).

to scintillator

Magnet
gap

from laser focus

Figure 5.2.2: Trajectory of the electron through the magnet gap for a constant
magnetic field within the gap. The direction of Py, and Py, required for
propagation from the focus to the scintillator are fixed by the geometry of the
spectrometer and its position relative to the focus. The radius of curvature required
for detection, pg, is therefore fixed and the relation of E vs. B is determined by
Equation (5.2.6).
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The magnetic field in the gap of the magnet is generated by sending current
through the coil wrapped around one arm of the c-shaped iron core. The coil is a
solenoid that generates a magnetic field within the iron core. The high permeability of

the iron core (| ~1000u,) confines the magnetic field lines in the iron and the

magnetic field travels around the core and through the gap creating a closed magnetic
circuit (see Figure 5.2.3). The small width of the gap (2 mm) allows approximately
97% of the magnetic field generated by the coil to travel around the core and through
the gap. Approximately 3% of the magnetic field from the coil “leaks” from the iron

core.

Coil B

Figure 5.2.3: The magnetic flux lines of the c-shaped magnet in the spectrometer.
The dark region is the iron core of the magnet. The high permeability (p~1000p,) of
the iron confines 97% of the magnetic field to the magnetic circuit created by the iron
and the gap. 3% of the magnetic flux leaks from the iron through the hollow center of
the magnet.
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The current through the coil is a 100-ms square-topped pulse. The coil can be
viewed as an inductor and resistor in series, where the resistance is the resistance of

the wire in the coil. A circuit of this type arrives in a steady state in a time given

approximately by L/R where L is the inductance and R is the resistance.’ The coil has

an inductance of approximately 1 millihenry and a resistance of 0.3 Q. This circuit
therefore arrives in a steady state in approximately 3 ms. The electrons enter the gap
of the magnet 80 ms after the beginning of the current pulse and therefore experience a
constant magnetic field.

The strength of the magnetic field in the gap of the magnet was measured using

a Hall probe6 to an accuracy better than 5% . Initial measurements of the field

measured the “hysteresis” loop of the magnet (see Figure 5.2.4). A 100-ms flat-top
pulse of current was fired through the coil and the steady state field in the gap was
measured. The magnitude of the current pulse was then decreased in constant
increments until the negative of the initial current pulse was reached. The opposite
arm of the hysteresis loop was generated by reversing the above process until the
initial current pulse was reached.

Accurate determination of the magnetic field is required for measurement of
the electron energy through equation (5.2.6). The significant hysteresis effects evident
in Figure 5.2.4 make a determination from the current alone insufficient since the

history of the iron core plays a crucial role in the amplitude of the magnetic field. Only
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Figure 5.2.4: The “hysteresis” loop of the magnet in the spectrometer
before degaussing the iron core. The arrows represent the direction the loop
was generated.

a direct measurement of the field would be sufficient and this was impractical during
normal operation of the spectrometer.

The problem was solved by degaussing the iron core after each flat-top pulse
of current through the coil. The hysteresis effects were related to residual fields left in
the iron core after the magnet was “fired.” For example, a pulse of 15 Amps left a
strong residual field of approximately 600 Gauss in the gap, which affected subsequent
firing of the magnet.

The degaussing of the core significantly reduces the magnet’s residual field.
One second after the end of the 100 ms DC pulse, a slowly diminishing sinusoidal
current is applied to the magnet. This has the effect of sending the magnet through a

hysteresis loop for each cycle of the current. The slowly decreasing amplitude of the
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AC current causes each subsequent hysteresis loop to become smaller and smaller.
After many cycles the current approaches zero and the hysteresis loop collapses about
the origin, i.e., zero current and field. This degaussing concept is shown pictorially in
Figure 5.2.5. This figure is only a demonstration of principle and is not an actual

measurement.
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Figure 5.2.5: Effect of a slowly decaying sinusoidal current on the magnetic field of a
solenoid with a ferromagnetic core. The time dependence of the current is shown in

the inset.

The schematic of a circuit to degauss a magnetic material is shown in Figure
5.2.6. When the switch is closed, 10 VAC is applied across a pair of positive-
temperature-coefficient (PTC) thermistors and the magnet coil. A PTC thermistor is a
device whose resistance increases as its temperature increases (see Figure 5.2.7).

Thermistors with 1 Q resistance at room temperature are used in the degaussing



circuit for the electromagnet in the
spectrometer.  The coil has a
resistance of 0.3 { giving a total
resistance for the circuit of 0.8 Q.

This results in an initial current of
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Thermistors
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MWV Magn
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Switch
Figure 5.2.6: A circuit for degaussing magnetic
materials.

12.5 A through the circuit. Each thermistor initially conducts 6.25 A and therefore

absorbs 78 W of power. The thermistors are only able to dissipate approximately 14

mW of power per °C above the ambient temperature and are therefore resistively

heated. As the thermistors heat up, their resistance increases and this decreases the

current flowing through the coil. As the current decreases, the power absorbed by the

thermistors also decreases. When each thermistor’s resistance reaches approximately

90 Q, the power absorbed is equal

to the power dissipated by the thermistor and the

circuit arrives in a steady state. The residual current is approximately 280 mA and the

corresponding magnetic field of
approximately 20 Gauss
represents the limit of the
degaussing of the magnet with
this setup.

The residual current can
be made smaller by increasing

the  voltage  across the

(/8 LN A S L LI
0 50 100 150 200
Temperature (°C)

Figure 5.2.7: Temperature versus resistance curve
for a typical PTC thermistor.
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thermistors and coil. However, an increase in voltage causes the thermistor to heat up
faster and therefore “turn off” faster. The current must diminish slowly to allow the
hysteresis cycles to spiral inward to zero field. The above combination of 1 Q
thermistors and 10 V of applied voltage represents the optimal arrangement (found
empirically) for minimum residual field.

The circuit for firing and degaussing the magnet is shown in Figure 52.8. A
variac adjusts the voltage from a DC power supply between 0 and 24 V. A trigger
from the laser system closes the “DC Relay” in the figure 80 ms before the laser pulse
arrives in the vacuum tank. This relay remains closed for 100 ms and allows the O to
24 V from the DC power supply through the magnet coil. A “reverse field switch”
selects the polarity of the voltage and therefore, the direction of the magnetic field in

the magnet. One second after the DC relay opens, another relay (AC relay) closes

o T odel
- - I -
Power Magnet p—
o |
0-24 )
~~_ ¢ A
120 volts, o L L, — |
Reverse Field
DC Relay Swatch
b
Thexrmstor
P Magnet
10 Volt i
Trmsfognu / Thermistor_
o4
S A Fuse %
—| (Slow blowIL /.c 1
|
AC Relay

Figure 5.2.8: Circuit diagram of the power supply to fire and degauss the magnet in
the electron spectrometer.
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allowing 10 VAC through the coil of the magnet. This current flows through two
thermistors that begin to heat and suppress the current flowing through the coil. The
AC relay closes for approximately 10 seconds to allow the current to arrive in a steady
state. After the AC relay opens, the thermistors require approximately 20 seconds to
cool before the magnet can be fired again. This technique assures that the magnet is
degaussed every time the DC voltage is fired.

The magnetic field as a function of current after degaussing is shown in Figure

5.2.9. The magnetic field generated in the gap was measured for a series of current
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Figure 5.2.9: The magnetic field generated in the gap of the magnet as a function of
current through the coil after degaussing. Six measurements were taken at a series
of current settings. The measurements were taken in random order so that any
significant hysteresis effects should cause large fluctuations in the field. The
average standard deviation of the magnetic field was <3% for fields above 80 gauss.
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settings. The current was randomly changed between current settings until 6 points at
each current were measured. The average values and the standard deviation (error
bars) of these 6 points at each current are shown in the figure. The error bars show
only small fluctuations in the magnetic field above 80 Gauss. The dependence of the
field on the history of the magnet has therefore been eliminated and the field strength
can now be accurately determined from the current alone. Below 80 Gauss, the
residual field still significantly affects the field produced, resulting in large relative
fluctuations. The spectrometer is therefore only accurate at magnetic field strengths
above 80 gauss or a corresponding electron energy of 2 keV.

The path of the electrons through the spectrometer is approximately 30 cm.
The operation of the spectrometer requires the propagation of electrons without
interaction with other particles at the pressure of neon gas used in the experiment,

10> Torr. Two interactions are possible; the electrons can interact with the

background atoms in the vacuum tank or the electrons can interact with other charged
particles.

The electron range of 0.3 keV to 20 MeV electrons in a neutral material is to a

good approximation,7

_ 4 E(keV) [, 09815
R(cm)=537x10 p(g /cm3)[1 0003103 E(keV)} (5.2.7)
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where E is the electron energy and p is the material’s density. The experiments

performed measured electron energies greater than 1 keV in neon. The range of

1 keV electrons in 10° Torr of neon gas (12x107° g/cm3) is 10 meters. Higher

energy electrons will propagate further and interactions with neutral atoms are
therefore insignificant in the experiment.
The effects of interactions with other charged particles were determined

experimentally. The signal level from the detection of low-energy (3 keV) electrons at

102 Torr was compared to signal levels at 5x10™ Torr. The signal level at 10” Torr

was twice the signal level at 5x10™. Collective plasma interactions would result in a
nonlinear dependence of the signal level on the pressure that was not observed. These
effects are therefore unimportant at 10 Torr and can be ignored.

The range of electrons is also important in determining the minimum thickness
of the scintillator and shielding needed for complete absorption of electrons. The
highest energy or deepest penetrating electrons in the experiments had an energy of
80 keV. These electrons have a range of 90 um in the plastic scintillator and 30 pm in
the aluminum shielding. The electrons are therefore completely absorbed in a very thin
layer on the inside surface of the scintillator and minimal thickness shielding is required
to block the electrons completely.

The shielding is necessary in two places within the spectrometer. One is the

bottom disk of the spectrometer which holds the magnet. This must stop electrons
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from traveling to the scintillator without going through the magnet gap. The disk is
1.27 cm thick which easily stops all electrons of interest. The second is a 3 mm thick
aluminum mask placed over the scintillator which is discussed below. This mask
completely blocks electrons from striking the outer portions of the scintillator.

The radius of curvature necessary for detection can be estimated analytically
using a square topped magnetic field within the gap of the magnet and zero magnetic
field elsewhere, i.e., by assuming that fringe fields and leakage from the magnet core
can be ignored. These estimates give the required gyration radius as 1.1 cm and do
not agree well with the radius found in the experimental calibration, 1.54 cm (see
section 5.3). This discrepancy occurs because the contribution of fringe and leakage
fields can be substantial.

The electron’s equation of motion in a constant magnetic field is given by

equation (5.2.3),

¥___° B
dt yme
or
- e - =
dv=-—"_df xB (5.2.8)
ymc

where df is the differential path length of the electron’s trajectory. Therefore, Bd¢
gives the magnitude of the curvature. Since the fringe and leakage fields act over

larger distances than the field within the gap, small values of the magnetic field outside
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the gap can be offset by large propagation distances and play a substantial role in the
electron trajectories.

The magnetic field profiles in and around the gap in the magnet were measured
using a Hall probe. The measured profiles (see Figure 5.2.10) showed large fringe
fields from the gap and a background leakage field of approximately 3% the peak
magnetic field in the gap.

The fringe fields are due to the finite dimensions of the faces of the gap. The
background field is due to the leakage of magnetic flux between the arms of the
magnet caused by the finite magnetic permeability of the iron core. To model the
magnet’s field profile analytically, the measured values are curve-fit to a field of the

form,

Dok (5.2.9)
(1 + (&/w)a)

where Bpeax is the peak magnetic field in the gap, € is the x or z coordinate as shown
in the inset of Figure 5.2.10, and w is the width of the distribution. This function fits
the curves well except for a slight deviation near the center of the magnet (at x=4 c¢m
in the profile in the x direction). The slight deviation is due to the leakage flux from

the iron and is accounted for by a separable field which drops off as /2% for large
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Figure 5.2.10: The measured relative strength of the magnetic field as a function of

position. The two scans are through the center of the gap along perpendicular axis as
shown in the inset of the top figure The dashed lines represent the positions of the
faces of the gap. The solid lines are the least squares curve fits of equation (5.2.9) to
the data. The leakage flux near the center of the magnet (top figure; x=4 c¢m) is not fit
well by this equation. The addition of equation (5.2.10) to the magnetic field is
necessary to correctly model the magnetic field profile.
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distances from the magnet, in analogy to the expected fall off of a field from a “hole”

in a conductor.® This field is assumed to be of the form,

= Bleak
B(y) T (5.2.10)

where Bieax is the field at the center of the magnet, y is along the central axis of the

spectrometer (see Figure 5.2.10 inset), and ry, is the effective radius of the hole in the

magnet (the radius of a circle with the same area as the opening in the center of the
magnet, 3.4 cm). The contributions from the fringe fields and the leakage flux are
added to give the total distribution of the magnetic field.

A Monte Carlo simulation of the electron’s propagation through the
spectrometer has been performed. The computer code is presented in appendix C.
The simulation modeled the magnetic field in the gap based on the measurements of
the fields described above. The gyration radius found in the simulation, 1.52 cm, was
in excellent agreement with the gyration radius found from the experimental
calibration, 1.54 ¢cm (see section 5.3).

The number of electrons striking the scintillator can be approximated from the

measured signal levels. The light output of the scintillator is linear with electron
energy for electron energies greater than 125 keV,4

N, <E-N, (5.2.11)
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where N, is the electron number, N, is the number of photons created, and E is the

electron energy. For energies below 125 keV, surface quenching effects’ cause the
light output to drop below the linear approximation of equation (5.2.11). The exact
energy dependence of surface quenching effects requires an experimental calibration of
the light output versus electron energy. This calibration has not been performed.
However, the maximum effect of surface quenching for the electron energies observed
in the experiments is a 10% deviation from the linear approximation of equation
(5.2.11).4 The use of a linear approximation for the scintillator’s energy response
therefore introduces little error.

The light output of the scintillator in the linear regime is approximately 10
photons per keV of incident electron energy or,7

N, =10- E(keV)- N, (5.2.12)

The 2.5-cm diameter photo-cathode of the PMT is 2.5 ¢cm from the inside surface of
the scintillator. If we assume photons are generated directly below the PMT on the
inside surface of the scintillator, the photo-cathode subtends a solid angle of 1.26 sr or
collects 10% of the photons produced in the scintillator. The quantum efficiency of

the photo-cathode is 25% for the 420-nm scintillation photons. The gain of the PMT

at the voltage used in the experiments, 1500 V, is 5x10°+£50% . The total charge

produced by the PMT for N, electrons of energy E striking the scintillator is therefore,



100

q = e E(keV)N,(10)010)(025{5x10°)
= 002 E(keV)N,, picocoulombs .

(5.2.13)

A 2249w Analog-to-Digital Converter (ADC) is used to integrate the total charge
produced. The ADC produces 1 count of signal for each 0.25 pC of input charge.
The number of counts from the 2249w is therefore given by,

N, = (008) E(keV)N,. (5.2.14)
This allows determination of the number of electrons striking the scintillator from the
measured signal of the ADC,

N

E(keV)

This derivation is intended as an order of magnitude calculation of the number

N, =~ 125

(5.2.15)

of electrons only. The uncertainty in the gain of the PMT and variations in the solid
angle subtended by the PMT (due to electrons not striking directly below the PMT)
may cause significant differences between the number calculated in equation (5.2.15)
and the actual number of electrons.

An error in the absolute number of electrons is unimportant to the experiments
described in this thesis. Only the relative number of electrons is required for an
accurate determination of the energy and angular distributions. The relative error is
known to within +10% since this only depends on the linearity of the scintillator and
PMT. The response of the PMT is highly linear in the absence of saturation, which

was avoided during these experiments.
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5.3 The energy calibration of the spectrometer

An electron gun was constructed to calibrate the energy versus magnetic field
response of the spectrometer. Two parallel copper plates were placed on either side of
the laser focus (see Figure 5.3.1). The plates were aligned so that the perpendicular to
the surface of the plates passed through the gap in the magnet. A hole was cut in the
plate between the laser focus and the gap in the magnet, and copper screening was
placed over the hole.

An electrostatic field was applied across the plates and the vacuum chamber
was backfilled with helium. A low-energy laser pulse (approximately 15 mJ) focused
between the plates ionized the helium resulting in a low-density plasma. The ions were

accelerated by the electrostatic field away from the gap in the magnet toward the

cathode. The ions struck the cathode and released many low-energy (Eipitia; < 50 €V)

secondary electrons.” These electrons were accelerated by the electrostatic field

toward the anode and the gap in the magnet. As the electrons reached the anode and
passed through the copper grid, acceleration ceased and the electrons traveled at a

constant energy corresponding to the full potential of the applied electrostatic field
(2.5 to 20 kV). The small initial energies (Einitiay < 50 €V) compared to the final
energies (Efina=2.5 to 20 keV) of the electrons resulted in a nearly monoenergetic

distribution. The electrons then traveled to the gap and entered the spectrometer.
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Figure 5.3.1 Calibration of the magnetic electron spectrometer. The electron gun is
centered on the laser focus and aimed toward the gap in the magnet of the
spectrometer. The lower picture shows the production of secondary electrons from
the collision of the ions with the cathode.

The electrons were determined to be secondary electrons from ions striking the
cathode by the observation of a significant time delay between the laser ionization of

the gas and subsequent detection of the electrons. The time-of-flight (TOF) of
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were observed. The delay
was due to the TOF of the ions in the electron gun as they traveled to the cathode.
The multiple peaks were due to multiple charge states of the ionizing gas.
Examination of helium, neon and xenon showed peaks at times in excellent agreement
with the TOF of the ions in the electron gun. No significant signal from the primary

electrons was observed.

The electrons were detected if the magnetic field was of the proper strength to
cause the gyration radius necessary for propagation to the scintillator. Since the
electron energy was known from the applied potential to the plates, the magnetic field
could be adjusted until electrons were visible on the scintillator, and the magnetic field
corresponding to that electron energy was determined (see Figure 5.3.2).

A series of the required magnetic fields for the applied potentials to the
electron gun was measured using this technique (see Figure 5.3.3). These points were

least-squares fit using equation (5.2.6) with the gyration radius as the curve-fit
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parameter. This determined the gyration radius as 1.54 cm, in excellent agreement

with the theoretical prediction of 1.52 cm.
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Figure 5.3.3 Plots of the kinetic energy of electrons observed versus the magnetic
field within the gap of the magnet of the magnetic spectrometer. The open circles are
the experimental calibration, the open squares are the Monte Carlo simulation
predictions, and the dashed curve is the prediction of the simple geometrical
calculation assuming a flat-top magnetic field within the gap.

The magnetic field in the gap of the magnet causes electrons entering the gap
to be projected on the scintillatorr The Monte Carlo simulation predicts
monoenergetic electrons are projected onto a strip approximately 3 cm long. An
aluminum mask blocking all but a 3-cm wide strip is therefore placed over the
scintillator to maximize the energy resolution of the spectrometer. With this mask in
place, the resolution of the spectrometer is found experimentally as AE/E =30%
FWHM, i.e., the FWHM of a monoenergetic electron peak is 30% of the energy of the

peak (see Figure 5.3.4).
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Figure 5.3.4: A scan of the scintillation photon signal as a function of energy for

approximately monoenergetic electrons.  The scan shows a resolution of

AE/E ~30%.

5.4 Measurement of the angular distribution of the electrons

The center of the scintillator disk, the center of the magnet, and the laser focus
lie on a single line. This is the central axis of the spectrometer. The alignment of the
focus to the central axis of the spectrometer is accomplished by viewing a laser
induced discharge in air through a 0.5-mm hole in the bottom disk of the spectrometer.

A PMT was placed above the output window of the spectrometer looking
through the hole. A low-energy laser pulse (approximately 1 mJ) was fired through
the lens into the vacuum chamber, which was open to air. The position of the focus
was moved by adjusting the focusing lens. The position of the lens was set so that the
signal observed by the PMT from the discharge in the focus was maximized. The hole

1s blocked for standard operation of the spectrometer.
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The plane of the gap in the magnet passes through the central axis which
assures that a line of sight can always be traced from the laser focus through the gap.
This is an important aspect of the magnet and spectrometer because rotation of the
magnet and entire spectrometer around the central axis maintains the ability to trace a
clear line of sight from the laser focus through the gap, regardiess of the rotation angle
of the spectrometer. This allows measurement of the angular distributions of the
electrons relative to the laser axis. The 2-mm width of the gap in the magnet
corresponds to a 2° angle over which electrons are accepted to the spectrometer.

Figure 5.4.1 shows the detection angle of the spectrometer as it is rotated.
Since the magnet rotates in a plane above the laser axis, the angle of rotation of the
spectrometer, ¢, is different from the angle between an electron trajectory from the
laser focus to the gap and the laser axis, 0. These angles are related by,

cosB = cos45° cosd 5.4.1)

Ionization and subsequent acceleration of electrons from a circularly polarized
Gaussian laser focus must cause a cylindrically symmetric distribution of ejected
electrons about the beam axis due to the symmetry of the laser. A measurement of the

angular distributions of 4 keV electrons ejected from N*ina circularly polarized

focus showed an asymmetry in the spectrometer. These electrons were observed at
$=81.9° on one side of the focus and at $=93.2° on the opposite side of the focus, i.e.,

with the spectrometer rotated approximately 180° (see Figure 5.4.2).
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Figure 5.4.1 The angular distribution is measured by rotating the entire spectrometer.
¢ is the angle of rotation of the spectrometer. 0 is the angle between an electron
trajectory from the laser focus to the gap and the laser axis.

The asymmetry is believed to be due to a 2° tilt in the magnetic field of the
spectrometer that curves the electrons in the z-direction as defined in Figure 5.2.10.
In circular polarization, the focus is symmetric and the only explanation for this
asymmetry is in the spectrometer. The shift can therefore be taken into account by
simply rotating the observed angular distributions by a ¢ of 5.7°+05° (see Figure
5.4.3). Measurement of high-energy electrons (80 keV) from neon confirm that a
rotation by ¢=5.7° corrects this asymmetry. The asymmetry causes an increase in the
uncertainty of the measured angles from +10° due to the geometrical acceptance angle

of the magnet gap to #15° due to the added uncertainty from the asymmetry.
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Figure 5.4.2: The angular distributions of 4 keV electrons from Nitrogen on opposite
sides of the laser focus.

Figure 54.3: The asymmetry in the angular distribution of electrons due to the
response of the spectrometer. The spectrometer rotates electrons 5.7° in ¢ from their
original angle and the electrons can be considered released relative to an effective
beam axis.

5.5 Energy spectrum of helium

An examination of the energy distribution of electrons ejected from helium at

85.0° from k using circular polarization was conducted. This scan is used to verify
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the expectation that the energy of the ejected electrons is approximately twice the
ponderomotive potential as predicted in chapter 3. Confirmation that the electrons are

ejected with 2d;, of energy allows the categorization of the different peaks to the
different charge states in the more complicated energy spectrums of neon. It is also
useful in testing the accuracy of the Monte Carlo simulation.

The BSI threshold intensity in circular polarization for the creation of He™ is

1.76x10' W/em®. This corresponds to a ponderomotive energy of 1.82 keV or an

expected ejection energy of 3.64 keV. The Monte Carlo prediction of the energy of
the ejected electrons is 3.4 keV. The slightly lower energy of the simulation is due to
the 500-fs interaction time (see section 3.4) of these low-energy electrons. This is
only a factor of 3 less than the pulse width of the laser, 1.5 ps, so the electrons acquire
only 87% of the ponderomotive energy.

The measured energy spectrum and the Monte Carlo simulation prediction are
shown in Figure 5.5.1. A single peak in the data is evident at 3.0 keV. This is the
highest energy peak visible from the ionization of helium (see Figure 5.5.1 inset).

These electrons must therefore be generated in the creation of He2+, or fully stripped

helium. The energy is within 12% of the prediction of the Monte Carlo simulation.
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Figure 5.5.1: The energy spectrum of helium at 85.0° from the beam axis. The inset
shows the measured spectrum out to 40 keV. The only peak is at 3.0 keV. These are
from electrons freed in creating He?*. The observed energy is slightly lower than the
Monte Carlo simulation prediction of 3.4 keV (the dashed curve).

The slight difference in the Monte Carlo prediction and the observed energy is
unimportant for the main goal of the helium experiment. The main goal is to
determine the validity of our predictions for the electron energy. The energies agree
well enough (within 12%) to allow the categorization of the peaks in the energy
spectrum of neon to their particular charge states. The absence of high-energy
electrons also confirms that no plasma physics mechanisms are generating energetic

electrons. Only single particle interactions with the field are significant.
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Chapter 6
Experimental observations of the electron distributions

Observations of the forward drift of electrons due to high-intensity Compton
scattering in an optical laser focus are presented in this chapter. The first section
discusses the steps involved in acquiring the electrons’ energy spectra at a variety of
angles. The analysis of the energy spectra and their conversion to the angular
distributions for each charge state are addressed in section 6.2. The final section
presents the angular distributions and their confirmation of the forward drift due to

high-intensity Compton scattering.
6.1 Acquisition

The energy and angular distribution of the electrons is measured with the
magnetic spectrometer by varying the spectrometer’s magnetic field and rotation
angle. Measurement of the electron energy spectra from 2 keV to 100 keV at nine
angles is accomplished using the following methods.

The spectrometer is placed above the laser focus with the gap at one specific
angle from k. The vacuum tank is filled with neon at 10° Torr of pressure. An

energy spectrum is generated by varying the magnetic field in the spectrometer to map
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out the electrons’ energy distribution. The energy scan begins at a magnetic field
corresponding to an electron energy of approximately 2 keV. Five circularly polarized

laser shots with a peak intensity of approximately 10'® W/cm? are taken. The electron

signal from the spectrometer is digitized with a 2249w Analog-to-Digital converter
(ADC), and the number of counts is recorded for each shot. The energy and pulse
width of the laser are also recorded to allow determination of the laser’s intensity. The
vacuum tank is then pumped out to minimize contamination in the tank. The magnetic
field 1s increased by an amount corresponding to an energy increase of one-quarter the
resolution limit of the spectrometer, or (0.075)E. This insures that even a
monoenergetic electron peak is not “skipped over” in the scan. The tank is refilled,
five more shots are taken and the signals recorded. The tank is pumped out and the
magnetic field increased, etc.

The energy scan results in measurements of the electron signal for energies

from 2 keV to 100 keV at the angle of observation of the spectrometer. The

spectrometer is then rotated to a different angle with respect to k and the energy scan

is repeated. This process is used to measure the electrons’ energy spectra at nine

different angles, 69.9° to 92.5° with respect to K.
6.2 Analysis

The number of electrons striking the scintillator (N¢) for each laser shot is

calculated using equation (5.2.15),
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NC

N.=125———
€ SE(inkeV)’

where N; is the number of counts from the ADC and E is the energy setting of the

spectrometer.

The laser fluctuates in intensity from shot-to-shot by as much as 50%. The
number of electrons varies as a function of the intensity because of the change in the
number of ionized atoms. As a result, the spectrometer’s signal level must be
normalized to eliminate these fluctuations and allow averaging of the five signal levels
at each magnetic field setting.

The normalization is accomplished by examining the signal level as a function
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Figure 6.2.1: Intensity scan of 3 keV electrons ejected from neon. The signal as a

function of intensity behaves asI'®*%2 . This is used to normalize the signal levels for

the 5 shots taken at each energy to the corresponding signal at a single intensity
18 2

(10" W/cm”).
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of intensity and normalizing the signal level to a single intensity (1018 W/cm® was used

for all of the data). An example of an intensity scan of 3 keV electrons ejected from

neon is shown in Figure 6.2.1. The signal varies as N, o I(I)Sio , where I is the peak
intensity of the laser pulse. This relation is due to the intensity dependence of the size
of the focal volume.

The focal volume is the volume within the laser focus where the intensity
exceeds the threshold intensity (intensity required for ionization) of the atom or ion at

the peak of the laser pulse.1 The intensity distribution of a Gaussian laser focus is

given by

I(F,t) = 1{%}2 ex —z($j2 (t). 6.2.1)

w(z) = wo 1+(£]2

z,

where

and f(t) describes the temporal envelope and is always <1. The peak intensity

reached at any position is given by equation (6.2.1) with f(z,t) replaced by 1,

1 (1) = 1{5%)2 ex;{-z(w—zzjf . (6.2.2)
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The maximum radius at which ionization can occur (the radius where the maximum

intensity reached is the threshold intensity) is

S
1 = W(z)| [%(%J } , (6.2.3)

where Iy, is the threshold intensity. The maximum axial position at which ionization

can occur is

1/2
2y = Zo[lh_ 1] | (624)
th

The volume enclosed by ry, and zy, is the focal volume,

V= | nidz (6.2.5)
)

or

1/2
V= mfzo {(Slth + 1)l ~ Ig) - 6132 tan‘{{%) J} C(626)

The focal volume as a function of I/l is shown in Figure 6.2.2. Also plotted is the

limit of equation (6.2.6) for Ijy<<Iy,

3/2
V= 2mwizg (h] , 6.2.7)
9 |14
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For Ii1,<0.41p, equation (6.2.7) agrees well with equation (6.2.6). 11,<0.4] is valid for

all of the electrons observed in these experiments. The number of electrons ionized

from each charge state can

then be approximated by,

2 2 L 3/2
N = M(_O] (6.2.8)

9 Iy

where p is the neon density.
This 1" intensity dependence

of the number of electrons
ionized in the focus is in rough

agreement with the measured

[18£02 intensity dependence.

1.00

Figure 6.2.2: The size of the focal volume of a
Gaussian laser profile as a function of the ratio of]
the threshold intensity to the peak intensity of the

laser pulse. For In<0.4lp, the functional
dependence of the focal volume is closely
approximated by (Ith/IO)m‘

The slight discrepancy is possibly the result of the non-Gaussian nature of the laser

profile described in section 5.1, or an intensity dependence of the collection efficiency

of the spectrometer.

Intensity scans at a large variety of electron energies (3, 7, 15, and 80 keV)

18402
have been performed, and all show this I, intensity dependence. By multiplying

1 . .
the number of electrons for each shot by (Iom/lo) 302 , the number is normalized to

the intensity Inorm (1018 W/cm® was used in the analysis). This eliminates the intensity

fluctuations of the laser and allows the averaging of the five shots taken at each energy
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setting. The uncertainty in the normalization exponent of 02 introduces a maximum
error of £30% in the normalized electron numbers.

Ejection energies of approximately 2®, are expected, where the

ponderomotive potential is calculated at the threshold intensity of each charge state.
This energy is expected from the conservation of canonical momentum in a circularly
polarized field and the acceleration from the ponderomotive potential (see section 3.2).
The BSI threshold intensities and corresponding ejection energies from the neon

charge states studied in these experiments are shown in Table 3.

The energy spectrum of neon || Ne Tihresh(W/em>) 20, (keV)
o c 3" 1.4x10% 3.0
taken at 87.3° with respect to is 4 44100 91
+ 16
shown in Figure 6.2.3. This figure 3 8.0x10 17
6" | 1.4x10" 29
shows the expected behavior of the || ~* 3 0x10Y’ 62
rum. Peaks in the soect 8" | 4.0x10"” 83
energy spectrum. F'eéaxs In the spectrum \“rFle 3. lonization threshold intensities,
) ) Ithresh, and expected ejection energies, 2,
corresponding to different charge states | of the neon charge states studied in the
experiments.

(Ne3+ to Ne5+) are observed with energies of approximately twice the ponderomotive

energy of each charge state’s BSI threshold intensity. The electron energy spectra at

all measured angles are shown in Appendix D. These spectra show electrons from

Ne’* up to Ne®* and continued agreement with the predicted energies.
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Figure 6.2.3: The electron energy sgectrum of neon at 87.3° from k. Three distinct
peaks corresponding to Ne3+, Ne' , and Ne>* are shown by the positions of the
arrows. The cross hatched area below 2 keV is not measurable with the
spectrometer.

The energy distribution measured at 75.8° is shown in Figure 6.2.4. This

spectrum illustrates the difficulties in extracting an angular distribution for each charge

state. The peak at approximately 65 keV is a combination of electrons from Ne'' and

Ne¥*. The two peaks are not resolvable.

The following paragraph demonstrates the method used to determine the
individual charge state’s contributions. Figure 6.2.5 shows the electron energy
distribution of neon at 78.8°, and Figure 6.2.6 shows the energy distribution at 69.9°.
These spectra show a peak at 60 keV for 78.8° and a peak at 85 keV for 69.9°. In
these spectra, the individual peaks of the 7" (60 keV) and the 8" (85 keV) charge
states are visible. A Gaussian curve fit to these resolvable peaks is used to determine

the energies and widths of each charge state’s electron peak. The centroids and
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Figure 6.2.4. The energy spectrum of neon at 75.8° from k. The peak at
approximately 67 keV is a sum of the contributions from the electrons of Ne’* and

8+
Ne™ .
widths of two Gaussians are then fixed at these energies and widths. The sum of the

two Gaussians is then least-squares fit to the electron spectra at 75.8° with only the
two peak heights as the fit parameters. The two peak heights give the contributions of
the individual charge states.

This method is generalized to find the number of electrons contributed by all of
the observed charge states at all angles. The width and energy of each charge state is
determined from all clearly resolvable electron peaks. The same charge states are
resolvable at a few different angles, allowing a few different values of each charge

state’s energies and widths to be determined. These are then averaged. The
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Figure 6.2.5: The energy spectrum of neon at 78.8° from k. The peak at
approximately 60 keV is almost entirely electrons from Ne’*.  This allows
determination of the energy and width of the peak from the Ne* electrons.
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Figure 6.2.6: The energy spectrum of neon at 69.9° from k. The peak at
approximately 85 keV is almost entirely electrons from Ne!*.  This allows
determination of the energy and width of the peak from the Ne** electrons.
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Ne | Iinyesh 20, Emc (inkeV) E, (in keV) w,(in keV)
1 | 1.7x10" [ 360ev | 0.186 +/- 0.005 |- _

2t 156x10"° | 12keV |0.662+/-0.020 |- -

3t | 1.4x10' [3.0keV | 2.89+/-0.05 3.11+/-0.30 |0.99+/-0.15
4" | 44x10" [9.1keV |8.83+/-0.19 6.49 +/-0.59 |2.21+/-0.40
st | 8.0x10% |[17keV | 169 +-0.27 149+4/-2.7 |4.51+-24
6" |14x10" [29keV |28.6+/-041 309+/-6.0 |113+/-23
75 1 30x10"7 | 62keV | 61.8+/-1.04 540+/-92 |[11.7+/-65
8" | 4.0x10"7 |83keV |84.2+/-163 842+/-62 |[189+4/-04
9" [2.0x10%° |41 MeV |- - -

10" | 2.8x10%° | 58 MeV | - - -

Table 4. A table of the expected and observed energies and widths of the electron
peaks for neon: Iwyresh is the BSI prediction of the threshold intensity in circular
polarization, 2®, is twice the ponderomotive energy of the threshold intensity, and
Emc. is the predicted ejection energy from the Monte Carlo simulation. E_ and W,
are the energies and widths of the ejected electrons found from averaging the
resolvable peaks in the experimental energy spectra. The positions with dashes
represent quantities not measurable due to the limits of the spectrometer or laser.

parameters calculated with this method are shown in Table 4. The standard deviations

of the energies and widths are typically + 10% and +30% respectively.

The average AE/E FWHM of the peaks is 05+ 01. The width of these peaks is
therefore not entirely due to the resolution of the spectrometer of AE/E=03. The
increased width is most likely due to the ionization process. The BSI approximation
assumes ionization occurs at a single intensity which results in monoenergetic
electrons due to the dependence of ejected electron energy on the ionization threshold
intensity. However, ionization is actually occurring over a range of intensities due to

tunneling through the Coulomb barrer (see section 2.2). This range of ionization
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intensities maps into a range of electron energies and increases the width of the
electron peaks.

The average energies and widths are used in a sum of six Gaussian

distributions,

N(E.0) = iNn(G)Exo[{ E%fﬂ ]2] (6.2.9)

where N, (0) is the number of electrons from Ne™ at each angle, and E, and W, are

the average energies and widths of the electrons from Ne™ shown in Table 4. For
each angle 0, the coefficients N, (0) are found by a least-squares fit to
equation (6.2.9). The N_(6) give the number of electrons for each charge state and

allow generation of the angular distributions, which are discussed in the next section.

6.3 The observed angular distributions of electrons ejected from neon

The angular distributions N,(6) of all observed electron peaks (from Ne’* to

Ne8+) are shown in appendix E. The angular distributions show the effects of electron
recoil due to high-intensity Compton scattering. As discussed in chapter 3, electron
ejection from a low-intensity laser focus is described by the ponderomotive potential.
Electron acceleration via the ponderomotive potential results in electron ejection at 90°
to k. The derivation of the ponderomotive potential, however, assumes Thomson

scattering describes the electron’s interaction with the field. At high intensities,
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significant electron recoil due to high-intensity Compton scattering causes an
additional forward component of electron momentum. The forward momentum

causes the ejected electron distribution to be “pushed™ forward into a cone centered

on k at high intensities. The angle of this cone is given by (see section 3.3)

tan®0 = —> 6.3.1)
Y-1
The angular distribution of electrons ejected at 3.1 keV following the creation
of Ne>* is shown in Figure 6.3.1. A peak is evident at 88° from k. The solid line is a
Gaussian curve fit to the data, and the dashed line is the angle predicted using
equation (6.3.1) for 3.1 keV electrons.

The Ne®* electrons show only a small forward shift in the angular distribution.
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Figure 6.3.1: The angular distribution of the 3.1 keV electrons from Ne®*. The solid
curve is a Gaussian curve fit to the experimental data. The dashed line is the angle
predicted using equation (6.3.1) and y = E/mc’+1 = 1.0059.
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This is because the low energy and corresponding low intensity at which they are
ionized results in minimal electron recoil and a correspondingly small forward
momentum component. The predicted ejection angle of these electrons using
equation (6.3.1) is 87°. This is within the 1.5° uncertainty of the observed ejection
angle of 88°.

Figure 6.3.2 shows the angular distribution of electrons ejected at 84 keV
following the creation of Nett. A peak is evident at 75° from k. These electrons are
acquiring a large forward momentum component (approximately 25% of their total
momentum). The forward momentum is caused by electron recoil due to absorption
of momentum from the field or, equivalently, high-intensity Compton scattering,

Equation (6.3.1) gives 74° from k as the ejection angle of these electrons. This is in
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Figure 6.3.2: The angular distribution of the 84 keV electrons from Ne®*. The solid
curve is a Gaussian curve fit to the experimental data. The dashed line is the angle

predicted using equation (6.3.1) and y = E/mc?+1=1.16.
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good agreement with the observed angle of 75°.

Figure 6.3.3 shows the observed angle of the electron peaks associated with
the ionization of the various charge states of neon versus electron energy (open
circles). The solid curve shows the conservation of energy and momentum prediction
of equation (6.3.1), and the solid circles represent the predicted positions of the peaks
from the fully relativistic Monte Carlo simulation. The observed ejection angles are in
excellent agreement with both predictions of electron recoil due to high-intensity

Compton scattering (equation (6.3.1)) and the Monte Carlo simulation.
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Figure 6.3.3: The energy of electrons ejected from the focus versus the angle of the
peak of the electron angular distribution. The open circles are the experimental data.
The solid circles are the Monte Carlo predictions. The solid line is the angle versus
energy relation of equation (6.3.1).

's. Augst, “Tunneling ionization of noble gas atoms using a high intensity laser at
1 um wavelength,” Ph. D. thesis, University of Rochester, 1991.
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Chapter 7
Conclusions

Electrons produced from the ionization of neon and subsequently ejected from
a high-intensity optical laser focus (I = IOISW/ cm?) have been investigated using an
energy- and angular-resolving magnetic spectrometer. Electrons with a significant
longitudinal momentum component were observed. These results were consistent
with the predictions of high-intensity Compton scattering.

Electrons ionized in a laser focus are ejected from the focus with energies
characteristic of their ionization threshold intensities. The 1.5-ps laser pulse duration
allows complete conversion of the ponderomotive (quiver) energy of an electron to
translational kinetic energy. Ionization with circular polarization also results in a
nonzero initial canonical momentum, which gives the electron momentum in the plane
of polarization of the laser. The combination of ponderomotive energy and
conservation of canonical momentum results in electron ejection at twice the

ponderomotive energy.
Electrons freed in the creation of Ne** to Ne®* were observed in the

experiments. The ejected energies were in good agreement with twice the
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ponderomotive energy of the Barrier-Suppression-lonization (BSI) threshold

intensities of the various charge states 100 &
; L
(see Figure 7.1). 8 L]
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2 3 4 5 6 7 8 9

high-intensity Compton scattering Neon charge state
Figure 7.1: The energies of electrons from
Ne’* to Ne*" in circular polarization. The
the lowest charge states of neon |Open circles are the predicted energies (twice
the ponderomotive potential of the BSI
threshold intensities) and the solid circles are
the observed energies.

regime. The electrons ejected from

(Ne3+) interacted with relatively low
y

laser intensities and displayed a small component of longitudinal momentum
(approximately 3% of their total momentum). The highest charge state electrons
observed (Ne8+) showed a much larger component of momentum in the k direction
(approximately 25% of their total momentum). The higher charge state electrons’
increased longitudinal momentum was due to field momentum or high-intensity

Compton scattering effects.
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Future work
The continuation of the || K~ Ithresh(Circ.) 20p | Oeject
9" | 2.8x10"7 W/em® | 58 keV | 76.6°
experiments described in this thesis for || 10" 4 6x10"7 95 73.0°
: . 117 6.6x10"" 140 | 69.7°
higher electron energies has begun o 9 2x10% 190 6.7
18 0
using krypton. As shown in Table 5, 13" 1.2x10 250 63.7
14" 1.7x10"® 350 | 59.7°
electrons ionized from Kr'' to Kr'® || 15* 2 2x1018 460 56.1°
16" 2.8x10' 580 | 53.0°
are predicted to gain energies from 58 | .+ 3 4x1018 700 50 4°
+ 18 )
keV to 870 keV based on the BSI [L18 4.2x10 870 473

Table 5: Predicted BSI threshold intensities
threshold intensity. ~ Observation of | in circular  polarization,  Itresn(Circ.),
electron ejection energies, 2®p, and ejection
angle from k, Ogject, Of a few charge states
of Krypton. Shown are charge states for
which the predicted ejection energies are
near the electron rest mass, 511 keV.

these electron energies will allow the

testing of the predictions of this thesis

in the regime where relativistic mass effects become important. Preliminary

experiments in krypton have observed ejection energies and angles in good agreement
with the previous predictions for up to Kr'!'* Intensities achievable with the current
laser system should allow measurement of electrons from Kr'® or electrons with
energies of approximately 870 keV (y = 27).

Other experiments will focus on the energy spectra of the ejected electrons.
These contain information about the physics of the ionization process. Tunneling

ionization and multiphoton ionization predict ionization to occur over a range of

intensities with, a higher probability as the intensity increases. The spread in intensity
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maps into a spread in the electron energy distribution due to the intensity dependence
of the ponderomotive potential.  Comparisons can be made between the
experimentally observed widths of the electron peaks and the various theoretical
predictions.

Finally, the experiments in this thesis have been performed with circular

polarization exclusively. Studies using linear polarization should also be performed.
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Appendix A
Monte Carlo simulation program of electron trajectories in a laser focus

The source code to solve for the electron trajectories following ionization in a
laser focus is presented here. The program was written for Microsoft FORTRAN
Powerstation, version 1.0 for MS-DOS and Windows operating systems. To
maximize portability, FORTRAN 77 with DEC VAX FORTRAN extensions have
been adhered to whenever possible. Only file access and random number generation
statements need alteration for compilation with DEC VAX extensions.

$SDECLARE
PROGRAM FOCAL_ EXPLOSION SIMULATION

IR R R e e e R s s R ey

* THIS PROGRAM USES A MONTE CARLO SIMULATION TO CALCULATE

* THE ELECTRONS EJECTED FROM A CIRCULARLY POLARIZED LASER FOCUSED INTO *
* A LOW DENSITY GAS. ATOMS ARE PLACED AT A RANDOM POSITION WITHIN *
* THE FOCAL VOLUME. THE TIME AT WHICH THE INTENSITY EXCEEDS THE THRESHOLD *
* INTENSITY OF THE CHARGE STATE BEING IONIZED IS CALCULATED AND THE *
* ELECTRON IS RELEASED INTO THE FIELD WITH ZERO INITIAL VELOCITY. THE *
* THE ELECTRON TRAJECTORY IS THEN CALCULATED USING THE LORENTZ FORCE OF *
* THE LASER FIELD. VELOCITIES ARE CALCULATED *
* IN UNITS OF OMEGA SO THAT POSITION AND VELOCITY ARE OF THE SAME *
* RELATIVE MAGNITUDE TO AVOID ROUND OFF ERROR. AFTER THE ELECTRON *
* ESCAPES THE LASER FOCUS, ITS POSITION, VELOCITY AND ENERGY ARE STORED *
* SO THAT OTHER PROGRAMS CAN CALCULATE ENERGY AND ANGULAR DISTRIBUTIONS *
* *
* *

FROM THESE TRAJECTORIES.
B L e S e T )

Thh ko kk ko kkk ko k kA k ko k ok ok ko

* VARIABLE DECLERATIONS *

L R R e e R T e R SR

INTEGER NEQ, ARRTEST, NUMINT, I,J, N, INITCHSTATE, IOCHECK

PARAMETER (NEQ=6, ARRTEST=10000)

REAL*8 C,R0,M0, PI,ECOUL, EPSO

PARAMETER (C=2, 9979245808, R0=2.,8179380D-15, EPS0=8 . 85418782D-12,
+ M0=511.0034D0, PI=3.14159265359D0, ECOUL=1.6021692D-19

CHARACTER*14 FNAME, POLARIZ

CHARACTER*2 GAS

INTEGER NGAS, CHSTATE, NOK, NBAD, INDMIN, INDMAX, INDCURR

LOGICAL LINPOL, ERRFLAG

REAL*8 T, TEND, TOL, Y (NEQ), W2, VSQR

REAL*8 INCREM, PHASE, INTENO, HMIN

REAL*8 COEF1,W0, Z0, K, OMEGA, GAMMA, H

REAL*S ITHRESH, VX, VY, VZ

REAL*S INTENSITY,R2, IRZ, TINDINT, SIGMAT

REAL*8 TINDPHASE

REAL*8 RMAX, VMAX, RQMAX, ZMAX, ZINIT, ARGRMAX

REAL*8 EPINIT

REAL*8 NDENSE

REAL*B PRESSURE, EPOND, ENERGY, THETAINIT, RINIT

REAL*8 IPEAK, PHIFREE, FOCALVOL

REAL*8 SCYC, EION{10, 40}

REAL SLITRES, PZ (1025}, PTEMP, P

REAL VOUT (3, ARRTEST) , POSOUT ( 3, ARRTEST)

INTEGER NUMTEST, FILENUM

EXTERNAL DERIVS,RKQS

COMMON /GLOB/ LINPOL,COEF1, W0, 20, K,OMEGA, SIGMAT, GAMMA, ERRFLAG

c HELIUM IONIZATION POTENTIALS (eV)
DATA (EION(1,I), I=1,40) /24.59,54.42,38*0.0/
C NEON IONIZATION POTENTIALS

DATA (EION(2,I), I1=1,40) /21.6,41.0,63.5,97.1,126.2,158.0,207.0,
+ 239.0,1196.0,1362,0,30*0.0/
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c ARGON IONIZATION POTENTIALS
DATA (EION(3,I), I=1,40) /15.8,27.6,40.7,59.8,75.0,91.0,124.0,
+ 143.0,422.0,479.0,539.0,618.0,686.0,756.0,855,0,918.0,4121.0,
4426.0,22%0.0/
c KRYPTON IONIZATION POTENTIALS
DATA (EION(4,1), I=1,40) /14.0,24.4,37.0,52.5,64.7,78.5,111.0,
126.0,230.0,275.0,316.0,358.0,403.0,451.0,497.0,545.0,593.0,
642.0,794.0,833.0,878.0,939.0,989,0,1039.0,1151.0,1206.0,2953.0,
3056.0,3203.0,3381.0,3551.0,3712.0,3912.0,4105.0,17292.0,
17931.0,4*0.0/
c XENON IONIZATION POTENTIALS
DATA (EION(5,I), I=1,40) /12.1,21.2,32.1,47.6,59.0,72.0,98.0,
112.0,171.0,202.0,233.0,264.0,294.0,325.0,358,0,390.0,421.0,
452.0,573.0,608.0,643.0,678.0,726.0,762.0,853.0,891,0,1394.0,
1491.0,1587.0,1684.0,1781.0,1877.0,1987.0,2085.0,2183.0,2291.0,
2548.0,2637.0,2726.0,2814.0/

+

+ 4+ o+ o+

+ o+ + o+

Khckdkkkdkkkkdkkkkkkkhkkkkkkhkkkk k&

* BEGIN PROGRAM *

*hkkkkkhkkhhkkdkddkdkhhkhhhdkddkh

**%x** DREPARE RANDOM # GENERATOR FOR LATER USE:
CALL SEED(-1)

SLITRES=1.0

**+%%% THIS OPENS THE FILE FOR INPUT WHERE ALL THE LASER AND GAS PARAMETERS
**xxx%+ ARE GIVEN:
OPEN (64, FILE="D: \FORTRAN\ INPFILES\INPUT.DAT ', IOSTAT=IOCHECK,
+ ERR=15, STATUS="CLD")

GOTO 18
15 CONTINUE

*¥xxxxxx*x*xx*xTFP REACH HERE THEN AN ERROR HAS OCCURED IN OPENING INPUT FILEX****¥xxxxxx
IF (IOCCHECK.EQ.6416) THEN

STOP 'FILE INPUT.DAT DOES NOT EXIST!!! ABORTING'
ELSE

WRITE(*, *} "UNKNOWN ERROR #', IOCHECK, ' OCCURED, ABORTING.'
ENDIF

18 CONTINUE

*%xx%* THESE READ STATEMENTS READ THE INPUT PARAMETERS TO BE USED IN THE PROGRAM.
*x%*%% INTENO = PEAK LASER INTENSITY (AT X=Y=Z=0 AND TIME=0)

*kx*%%* GAS = CHARACTER VARIABLE CONTAINING GAS TO BE TESTED

**x%** CHSTATE = LOWEST CHARGE STATE TO BE CONSIDERED IN SIMULATION

*x%x%x W0 = 1/e"2 RADIUS OF LASER FOCUS AT BEAM WAIST

*%xxxx* STGMAT = FWHM OF LASER IN TIME

*¥%%%* PRESSURE = PRESSURE IN TORR

***%%* TOL = THE RELATIVE ERROR TOLERANCE MAINTAINED IN ODEINT (DIFF EQN SOLVER)
*%%x%* NUMTEST=NUMBER OF ATOMS RANDOMLY PLACED WITHIN FOCUS

*%*x%* POLARIZ = CHARACTER VARTABLE SPECIFYING POLARIZATION OF LASER PULSE(CIRC OR LIN)

READ (64, *) INTENO, GAS, CHSTATE, WO, SIGMAT,
+ PRESSURE, TOL, NUMTEST, POLARIZ
CLOSE(64)

Ak kA KAk Ak Ak AR Ak A Ak ok ko k kA Ak A A A Ak kA kA A AR Ak kA hhh hh Ak d b A r rdr b d bk kd ko hkkkkkkkhkkkhkkkkhkkkk k&

*#%+%% THE FOLLOWING LINES INITIALIZE MANY PARAMETERS NEEDED LATER IN THE PROGRAM: **%%x%
Fed ok k Ak ok ko kA k ko ko k kA AR ko k ok kAR Rk kAR Rk Rk k dh kA Ak k kA kkkk kA ko kkkkkk ko kk ok kX k

IF (NUMTEST.GT.ARRTEST) THEN
WRITE(*,*) 'WITH THIS MANY ELECTRONS TESTED, '
WRITE(*,*} 'THERE WILL BE PROBLEMS WITH ARRAY DIMENSIONS!!!*
STOP 'ABORTING'

ENDIF

*xkk%* CONVERT GAS TO ARRAY #
IF ((GAS.EQ.'HE").OR. (GAS.EQ.'He')) NGAS=1
IF ((GAS.EQ.,'NE'},OR. (GAS.EQ.'Ne')} NGAS=2
IF ({(GAS.EQ.'AR').OR. (GAS.EQ.'Ar')) NGAS=3
IF ({(GAS.EQ.'KR').OR. (GAS.EQ.'Kr')) NGAS=4
IF ((GAS.EQ.'XE').OR. (GAS.EQ.'Xe')) NGAS=5

*hk Ak k THESE LINES DEFINE EO(CALLED COEF1 HERE) FOR CIRC OR LINEAR POL.
kK KAk EO IS THE PEAK ELECTRIC FIELD.
IF ((POLARIZ(:1).EQ.'L").OR. (POLARIZ{:1).EQ."1"'}} THEN
LINPOL=.TRUE.
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C FOR LINEAR POLARIZATION USE:
COEF1=DSQRT (2.0DO*INTENO*1.D4/ (C*EPS0))
ELSE
IF ((POLARIZ(:1).NE.'C"').AND. {POLARIZ(:1).NE.'c")) THEN
STOP 'Polarization not specified, aborting...'

ENDIF
LINPOL=. FALSE.
C FOR CIRCULAR POLARIZATION USE:
COEF1=DSQRT (INTENO*1.E4/ (C*EPS0) )
ENDIF

** %% %% MINIMUM STEPSIZE ALLOWED
HMIN = TOL/100.D0Q

**%%%* SCYC = STEPS PER LASER CYCLE USED IN SOLVING DIFEF EQN FOR LORENTZ FORCE
SCYC=1.0DQ

***x%% 70 = CONFOCAL PARAMETER
Z0=PI*W0**2/(1.053D-6)

*4%4x% K = WAVE NUMBER
K=2.0DO*PI/1.053D-6

*xxxxx OMEGA = OMEGA
OMEGA=K*C

***%*x* TNCREM = TIME INCREMENT USED IN SOLVING DIFFERENTIAL EQUATION
INCREM=OMEGA*0.6191582391034D0/ (SCYC*C/1.053D~6)

INITCHSTATE=CHSTATE
***%%% OUTPUT TO LOG FILE:

IF (LINPOL) THEN
WRITE(*,*) 'LINEAR POLARIZATION:'

ELSE
WRITE(*,*) '"CIRCULAR POLARIZATION:'
ENDIF
WRITE(*,464) INTENO, GAS, CHSTATE,W0*1E6, SIGMAT*1E12,
+ PRESSURE, TOL*1E2
464 FORMAT (/' Peak intensity =',El13.6,"' W/cm~2,",

/' Gas tested:',A2,/' Lowest charge state:',I3

/' Beam waist =',F8.2,' microns,',/' Pulse width =1,
F10.4,"' psec,',/' Pressure =',E13.6,

' torr,',/' Accurate to approximately',Fl10.4,"' percent.'/}

+ 4+ +

FILENUM=48
FNAME=GAS//POLARIZ (1:3)//CHAR(FILENUM) //'.DAT'

449 CONTINUE
**%%%%* QPEN OUTPUT FILENAME.
OPEN{65, FILE="D: \FORTRAN\OUTFILES\ '//FNAME, ERR=451,
TOSTAT=IOCHECK, STATUS="'NEW')
GOTO 453

+

451 CONTINUE
**xxxxx*%*TF REACH HERE THEN AN ERROR HAS OCCURED OPENING OUTPUT FILE*****¥¥kkk«
IF ((IOCCHECK.EQ.6415).AND. (FILENUM.LT.57)) THEN
FILENUM=FILENUM+1
FNAME=GAS//POLARIZ(1:3)//CHAR(FILENUM)//* . DAT'
GOTO 449
ELSE
WRITE(*, *) '"UNABLE TO OPEN OUTPUT FILE, INPUT NEW NAME:'
READ{*, ' (A\) '} FNAME
GOTO 449
ENDIF

453 CONTINUE
**x%x%* THIS SECTION SENDS THE HEADER TO OUTPUT FILE.
IF (LINPOL) THEN
WRITE (65, *) '"LINEAR POLARIZATION:'
ELSE
WRITE (65, *) '"CIRCULAR POLARIZATION: !
ENDIF
WRITE (65, 463) INTENO, GAS, INITCHSTATE,W0*1E6, SIGMAT*1E12,
+ PRESSURE, TOL*1E2, NUMTEST
463 FORMAT (/' Peak intensity =',E13.6,' W/cm™2,°',
+ /' Gas tested:',A2,/' Lowest charge state:*,I3
+ /' Beam waist =',F8.2,' microns,',/' Pulse width =",



F10.4, ' psec,',/' Pressure =',E13.6,
' torr,',/' Accurate to approximately',F10.4,' percent.'/,
' Number tested =',I5//)

ok kKK kA kKR AR R AR AR A Kk kR kR ok Ak ARk kK k ok k ko k ko ok ko ko ko ko h koA ko A A A A Ak Rk ok ok ok ko ok ok ok

* kKK A XK A KK A *H 4 * FTNTTTALIZATION DONE

BEGIN MATIN LOOP* % % s s ok s gk sk o sk s ok ok s ook ok ok ko ok ok ok ook o ok

3 sk g ok kg sk ok e e 3 ok ok ok ok e 3 e ok ok ok ok ke ok g ok ok ke sk Sk ok ok 3 e Sk ok S ok ke gk ok e sk ok ek ok ok ok ok Rk ok ok ok kR ok sk ok ek ok

**xxxx THIS CONTINUE IS THE BEGINNING OF THE LOOP FOR EACH CHARGE STATE.
*k*%%* THE COMPLETION OF THE IONIZATION OF NUMTEST ATCMS,

FOLLOWING ****

THE PROGRAM RETURNS HERE  ****

*k**xk* TO EXAMINE THE NEXT HIGHER CHARGE STATE., * % % % % s sk & s sk v s s Je % %k d e o ook ok ok kokok ok ok ook ok o
o e 3k ok K sk sk g sk ook gk sk ok g sk ok e sk kg g ok okook g sk ok ok ok ko ok Rk

CONTINUE

50

*4%xxx THESE LINES DETERMINE THE BSI THRESHOLD INTENSITY FOR THE CURRENT CHARGE STATE AND GAS

IF (LINPOL) THEN

ITHRESH=4.0E9*EION (NGAS, CHSTATE) **4/CHSTATE**2

ELSE

ITHRESH=8.0E9*EION (NGAS, CHSTATE) **4 /CHSTATE**2

ENDIF
WRITE (*, *) '"THRESHOLD INTENSITY =', ITHRESH

if ((ITHRESH.ge.intenO}.OR. (ITHRESH.EQ.0.0D0)) then

* %k ok k

%k ko okok

dk ok ok k%
* ko k
* ok ke k

25

26

IF (CHSTATE.EQ.INITCHSTATE) THEN
write(*,*)'el problemo, NO CHARGE STATES IONIZED!"'
goto 998

ENDIF

GOTO 950

endif

H
H

= STEPSIZE TO BE USED BY ODEINT

=INCREM

ZMAX = MAXIMUM Z VALUE WHERE ELECTRONS CAN POSSIBLY ESCAPE
ZMAX=Z0*DSQRT (INTENO/ITHRESH-1.0D0) *, 999999

THESE LINES CALCULATE THE FOCAL VOLUME FOR NORMALIZATION OF THE NUMBER OF
ELECTRONS TO THE PRESSURE SINCE NUMTEST IS ALWAYS THE NUMBER ICNIZED IN THE
PROGRAM BUT THE ACTUAL NUMBER DEPENDS ON FOCAL VOLUME AND GAS PRESSURE.
PTEMP=0.0

DO 25 I=1,1025

WZ=WO*DSQRT (1.,0D0+ (ZMAX* (I-513.)/(512.*20) ) **2)
ARGRMAX=, 5D0*DLOG (INTENO/ITHRESH* (WO/WZ) **2)
RMAX=WZ*DSQRT (ARGRMAX )

PZ (I)=PI*RMAX**2*(ZMAX/512.)+PTEMP

PTEMP=PZ (I)

CONTINUE

FOCALVOL=PZ (1025)
WRITE(*, *) '"FOCAL VOL =', FOCALVOL
DO 26 I=1,1025

Cl

N
N

PZ(I)=PZ(I)/FOCALVOL
ONTINUE

DENSE=3.5353D22*PRESSURE
UMINT=NDENSE*FOCALVOL

WRITE(65,*)" '
WRITE{65, *)1.0EO*NUMINT/NUMTEST

ok ok ek ke 3 ek ok k3 e e k3 e ok ok ok Sk sk sk ok Sk sk ok 3k sk ok ok sk gk Sk ok ok sk g o ok s sk ok v ok ok sk ok ek e ok ko ok ok ok ok ok ok g sk skook ok sk sk ok ke k ko

**%x%%% RMAX IS THE MAXIMUM RADIUS AT WHICH ATOMS CAN IONIZE
ARGRMAX=. 5D0*DLOG (INTENO/ ITHRESH)
RMAX=WO*DSQRT (ARGRMAX)

280

% s ok ok

WRITE(*,*)' !

WRITE (*, *) 'STARTING NEXT CHARGE STATE:',CHSTATE

WRITE(*:*)' !
y
r

WRITE(*,*)' !
WRITE(*,*) 'Threshold intensity =', ITHRESH
WRITE (*,280)ZMAX/20, RMAX/WO, NUMTEST

FORMAT (/' Threshold focal volume to',F5.2,' times the ',
'confocal parameter'/,' and to',F5.2,' times the ',
'1/e”2 point at the beam waist.'/,' Calculating for',I6,
' electrons.'//)

THE MAIN LOOP WHERE NUMTEST ELECTRONS ARE PLACED AT RANDOM POSITIONS WITHIN THE
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*%*%%% LASER FOCUS,IONIZED, AND PROPAGATED FROM THE FOCUS.
DO 70 N=1,NUMTEST

*x %444 p DETERMINES THE PLACEMENT OF THE ELECTRON IN Z. SINCE THE RMAX CHANGES AS A
*axx*% FUNCTION OF Z, A WEIGHT IS APPLIED TO GIVE A HIGHER PROBABILITY OF PLACEMENT
**x4xx WHERE RMAX IS LARGER.
CALL RANDOM(P)
INDMIN=1
INDMAX=1025
INDCURR=513
291 CONTINUE
IF {PZ(INDCURR}.EQ.P) THEN
ZINIT=ZMAX* (INDCURR~513.) /512.
GOTO 292
ENDIF
IF ((INDMAX-INDMIN).LE.l) THEN
ZINIT=ZMAX* ( (INDMAX+INDMIN)/2.-513.)/512.
GOTO 292
ENDIF
IF (PZ(INDCURR).LT.P) THEN
INDMIN=INDCURR
ELSE
INDMAX=INDCURR
ENDIF
INDCURR= ( INDMAX~INDMIN) /2+INDMIN
GOTO 291
292 CONTINUE

Hok kX THESE LINES PLACE THE ELECTRON AT A RANDOM RADIUS WITH A QUADRATIC WEIGHT.
WZ=WO*DSQRT (1.0D0+ (ZINIT/Z0} **2)
ARGRMAX=. 5DO*DLOG { INTENO/ ITHRESH* (WO/WZ) **2)
RMAX=WZ *DSQRT {ARGRMAX )

CALL RANDOM(P)
RINIT=RMAX*SQRT (P)

CALL RANDOM(P)
THETAINIT=2.*PI*P

FEK KKK THE INITIAL POSITIONS (X=Y({1),Y=Y(3}),2=Y(5)) AND VELOCITIES (VX=Y(2),VY=Y(4},VZ=Y(6))

Y (1)=RINIT*COS (THETAINIT)

Y(2)=0.0D0
Y (3)=RINIT*SIN(THETAINIT)
Y (4)=0.0D0
Y (5)=ZINIT
Y(6)=0.0D0

Fxkxkxxkkkkx R = RADIUS FROM BEAM AXIS
R2=(Y (1) **2+4Y(3)**2)

*kxkkkkkkkkx W7 = 1/e”2 POINT OF INTENSITY IN RADIAL DIRECTION AT Y(5)
WZ=WO*DSQRT (1.0DO0+ (Y (5)/20) **2)

FRAxxxxxxx% % TR7Z = INVERSE OF RADIUS OF CURVATURE OF LASER BEAM AT Y(5} i.e. AT 2
IRZ=Y (5)/ (Y (5)**2+420**2)

*xAxkkkkkk%*% TINDINT = PART OF INTENSITY EQN WHICH IS INDEPENDENT OF TIME
TINDINT=INTENO* (WO/WZ) **2*DEXP (-2.0D0* (R2/WZ**2} )

*Hx*xx*x*xx %% TINDPHASE = TIME INDEPENDENT PORTION OF PHASE (ARGUMENT IN COSINE}
TINDPHASE=K*Y (5) -DATAN (Y (5) /20) +K*R2*IRZ/2.0D0

AAkAAAk k%% % TPEAK = THE PEAK INTENSITY THAT THE ATCM WILL EXPERIENCE AT A Z POSITION OF Y (5)
IPEAK=TINDINT

IF (LINPOL) THEN

Cc THESE STATEMENTS ARE FOR RELEASE AT I=ITHRESH AND PEAK OF COS{) OF PULSE FOR LINEAR
o) POLARIZATION:
PHIFREE=PI*DINT (SIGN (OMEGA*SIGMAT/2.0D0*DSQRT (DLOG
+ (IPEAK/ITHRESH) /DLOG(2.0D0) } /PI~1,Y(5)))
ELSE
c THESE STATEMENTS ARE FOR RELEASE AT I=ITHRESH OF PULSE FOR CIRCULAR POLARIZATION:
PHIFREE=DSIGN (OMEGA*SIGMAT/2 . 0D0*DSQRT (DLOG{IPEAK/
+ ITHRESH) /DLOG(2.0D0) ) ,Y(5))
ENDIF

*rxxxkx*k k% T = THE TIME IN UNITS OF PHASE WHEN THE ATOM IS IONIZED

135
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T=TINDPHASE-PHIFREE

PHASE=PHIFREE

INTENSITY=TINDINT*DEXP (-DLOG(2.0DQ) *
+ ( (PHASE/ (OMEGA*SIGMAT/2.0D0) )} **2))

okl ol TEND IS THE TIME AT WHICH THE DIFF
] EQUATION IS TO BE SOLVED GIVEN THE SOLUTION AT T.
TEND=T+INCREM

*rkxkkkkxkkk%x FPINIT IS THE PONDERMOTIVE POTENTIAL AT THE INTENSITY WHERE THE ELECTRON

Frrxkkkkkkkk TS JONIZED. IT IS USED FOR CHECKING TO SEE IF LASER PULSE INTENSITY

*axkxxxxkx%%  HAS SUFFICIENTLY DIMINISHED TO STOP AND ALSO FOR ERROR CHECKING.
EPINIT=1,0345D-16*INTENSITY

C WRITE (*, *) INTENSITY, EPINIT

FrExkxkk k%% VMAX AND RMAX ARE USED BY THE DIFF EQN SOLVER FOR MAINTAINING SOLUTION WITHIN
TOLERANCES (TOL) :

VMAX=DSQRT {2.0DO*EPINIT/M0) /K

ROMAX=VMAX

C WRITE (*, *) 'BEFORE'

¥xxxxxx*x%*** THIS IS THE BEGINNING OF THE LOOP TO CALCULATE ELECTRON TRAJECTORY
* oAk ok ko ok ok k ok k BASED ON LORENTZ FORCE.

810 CONTINUE

****xxkxxxx* ODEINTD IS A NUM, RECIPES ROUTINE TO CALCULATE THE SOLUTION TO A DIFF EQN
Fokh Ak kkkk kK DERIVS IS5 THE SUBROUTINE WHICH CONTAINS THE LORENTZ FORCE EQN
C CALL DIVPRK (IDO,NEQ,SUBONE, T, TEND,TOL, PARAM,Y)
CALL ODEINTD(Y, 6,T, TEND, TOL,H, HMIN, nok,nbad, DERIVS,
+ RKQS, RQMAX, VMAX )

VX=CMEGA*Y (2)
VY=OMEGA*Y (4)
VZ=OMEGA*Y (6)

¥ xwrxxwekkk ENERGY = ENERGY OF THE ELECTRON AT THE CURRENT TIME
VSQR= (VX**24VY**2+VZ**2) /CH**2
ENERGY=(1.0D0/DSQRT (1.0D0-VSQR})~-1.0D0) *511.D0

FHhFk Ak kkkkx%% RP = DISTANCE OF ELECTRON FROM BEAM AXIS SQUARED
R2=Y (1) **2+4Y (3)**2

*HExxxxxxx«%% TRZ = INVERSE OF RADIUS OF CURVATURE OF LASER BEAM
IRZ=Y(5)/(Y(5)**2+20**2)

*xAxHAXKXKX* WZ = 1/e”2 RADIUS OF LASER AT Y(5)
WZ=WO*SQRT (1.0D0+(Y(5)/Z0) **2)

*kxxxxkxksxkwx INTENSITY = TIME DEPENDENT INTENSITY NOT INCLUDING OSCILLITORY TERM.
INTENSITY=INTENO* (WO/WZ)**2*DEXP (-2.0D0* (R2/WZ**2) -
+ DLOG(2.0D0) * { (Y (5) *K-T-DATAN(Y (5)/20)+
+ R2*IRZ*K/2.0D0)/ (OMEGA*SIGMAT/2.0D0) ) **2)

Fkkxkkkkxx*x* EPOND = PONDEROMOTIVE POTENTIAL OF LASER AT CURRENT ELECTRON POSITION
EPOND=1.0345D-16*INTENSITY

C WRITE(*, *) EPINIT, EPOND, ENERGY

Frxxkkxx k4 4% TP PONDEROMOTIVE POTENTIAL OF LASER AT CURRENT ELECTRON POSITION IS
faaokakokokoho bl MUCH LESS THAN PONDEROMOTIVE POTENTIAL AT IONIZATION INTENSITY THEN
FHRE KA KA KK A KK ANY FURTHER CALCULATION OF ELECTRON TRAJECTORY WILL HAVE MINIMAL
Hok ok Kk k ok kK % CONSEQUENCES AND WE CAN STORE TRAJECTORIES AND EXIT CALCULATION,
AAFAAKA KA AKX {11 ITHIS COMPARISON BASED ON NON-RELATIVISTIC CALC
alalolohlolaaldded (i.e. EPOND=,5MV**2) 1111111

IF (EPOND.LT. (TOL**2*EPINIT)) THEN

VOUT (1,N)=VX
VOUT (2,N)=VY
VOUT (3,N)=VZ
POSOQUT (1,N)=Y({1)
POSOUT (2,N)=Y (3)
POSOQUT (3,N)=Y{5)

*%**%k**%%*** TF THE INTENSITY IS STILL OF SUFFICIENT MAGNITUDE, THEN CONTINUE
*dk*krkkx*k*  CALCULATING ITS TRAJECTORY.
ELSE
T=TEND
TEND=TEND+INCREM



GOTO 810
ENDIF

*»*¥+%*%x THESE LINES OUTPUT INFO TO THE LOG FILE TO KEEP UPDATED
IF ((1.*N}.EQ.(10.*INT(N/10.))) THEN
WRITE (*, 66)N
66 FORMAT (14, 1X\)
ENDIF

70 CONTINUE

**%%% OUTPUT INFO FOR PREVIOUS CHARGE STATE TO QUTPUT FILE *****xxx
DO 77 I=1,NUMTEST
WRITE (65, 76 ) CHSTATE, {(POSOUT (J,1},J=1,3), (VOUT(J,1),J=1,3),
+ (1.0D0/DSQRT (1.0D0-(VOUT (1,I)**2+VOUT(2,I)**2+VOUT(3,1I)**2)/C**2)
+ -1.0D0)*511.DC0
76 FORMAT (12,6 (2X,E10.3),F8.2)
11 CONTINUE

**%%% DONE WITH THIS CHARGE STATE SO CONTINUE ON TO THE NEXT HIGHER ONE
CHSTATE=CHSTATE+1

**%%%  START ALL OVER AGAIN WITH NEW CHARGE STATE AND THUS HIGHER ITHRESH
GOTO 50

950 CONTINUE
998 CONTINUE

END

e Je ok sk ok k3 e ek g3 ok ok g ko ke ek ok k3 ok ok k3 ok ok ok e e e Rk S e e sk ke e N ke kR ke Xk ki ke ok ok ke k ke ok ko k
S de 3 ek ke kg3 ok ok g ek k& e k3 Sk ok ok ko ok ke ok e ke ok ok ok g e ok kK 3 ek e e ke e e ok o e ke ke ok ek ok ke ek
e de e e gk S 3k e g g g e ek kR Kk ke ok ok END OF MAIN PROGRAM e 3k Jc 3k 3k 3k S de ok o ke e 3 o ok e ok gk ok ke
e e e ok ke 30 e s s g3 e ok gk ke s gk 3 o ek e ok o sk ek R ok e ok ok ok ok o e e ek ok sk sk ok ok ek o o o ke e o e e ok ok
ke e Je g 3k ke ok ok ok ok e e de e g ok g ke Sk ok ke s e e ok ok e e o o g ok sk ok s ok ke ok g o ke sk e sk ke sk ok ke ek ek ok ok ke ok k

SUBROUTINE DERIVS(T,Y,YPRIME)

*dxwxk THIS SUBROUTINE IS THE RELATIVISTIC EQUATION OF MOTION OF AN ELECTRON
#4&%xx% IN A LASER FIELD. IT IS USED BY ODEINTD TO CALCULATE ELECTRON TRAJ.

INTEGER NEQ

PARAMETER (NEQ=6)

LOGICAL LINPOL,ERRFLAG

REAL*8 C,M0, T, Y(NEQ), YPRIME (NEQ)}, GAMMA, ZCOEF1, ZCOEF2
REAL*8 PI,EO0,EPSO,K,OMEGA,W0,Z0,WZ, PHASE, IRZ

REAL*8 EXO,EX,EY,EZ, BX, BY, BZ, BETADOTE, PHASEC, PHASES
REAL*8 BETAX,BETAY,BETAZ, R2, VSQR

REAL*8 COEF1,SIGMAT,COEFF

PARAMETER (C=2.99792458D8,M0=9.109534D-31, PI=3.141593D0)
PARAMETER (E0=1.6021892D-19, EPS0=8.85418782D-12)

COMMON /GLOB/ LINPOL,COEF1,W0, Z0,K, OMEGA, SIGMAT, GAMMA, ERRFLAG

WZ=WO*DSQRT (1.0D0+ (Y (5)/20) **2)

IRZ=Y{5)/{Y(5}**2+Z0**2)

BETAX=Y (2} *K

BETAY=Y (4)*K

BETAZ=Y (6) *K

R2=Y {1) **2+Y (3)**2

VSQR=BETAX**2+BETAY**2+BETAZ**2

C GAMMA=1.0D0

IF (VSQR.LT.1.0D0) THEN
GAMMA=1.0D0/DSQRT (1.0D0-VSQR)

ELSE

C WRITE(*, *) '"GAMMA AT DUMMY SETTING'

GAMMA=9.99999D37
ERRFLAG=.TRUE.

ENDIF

COEFF=- (EQ/ (MO*OMEGA**2) ) /GAMMA

PHASE=K*Y (5) -T-DATAN (Y {5)/Z0)+K*R2*IRZ/2.0D0

PHASEC=DCOS (PHASE)

PHASES=DSIN (PHASE)

EX0=COEF1* (WO/WZ) *DEXP (- (R2/WZ**2)-DLOG(2.0D0) /2.0D0*

+ ( (PHASE/ (OMEGA*SIGMAT/2.0D0} ) **2}))
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ZCOEF1=IRZ*EX0
ZCOEF2=EX0*2.,0D0/ (K*WZ**2)

IF (LINPOL) THEN
EX=EX0*PHASEC
EY=0,0D0
EZ=(ZCOEF2*PHASES-ZCCEF1*PHASEC) *Y (1)
BX=0.0D0
BY=EX
BZ=(ZCOEF2*PHASES-ZCOEF1*PHASEC) *Y (3)
ELSE
EX=EX0*PHASEC
EY=-EXO0*PHASES
EZ=ZCOEF1* (-Y (1) *PHASEC+Y (3) * PHASES ) +ZCOEF2 *

+ (Y (1) *PHASES+Y (3) *PHASEC)
BX=-EY
BY=EX
BZ=ZCOEF1* (-Y (1) *PHASES-Y (3) *PHASEC) +ZCOEF2 *
+ (-Y (1) *PHASEC+Y (3) *PHASES}
ENDIF

BETADOTE=BETAX*EX+BETAY*EY+BETAZ*EZ

YPRIME (1)=Y(2)
YPRIME (2} =COEFF* (EX+BETAY*BZ-BETAZ*BY-BETAX*BETADOTE)
YPRIME (3)=Y (4}
YPRIME (4 )=COEFF* (EY+BETAZ*BX~BETAX*BZ-BETAY*BETADOTE)
YPRIME (5)=Y(6)
YPRIME (6)=COEFF* (EZ+BETAX*BY-BETAY *BX-BETAZ *BETADOTE)

RETURN
END

Ak kkk kKA R kKA KK A KA KA I KA Ik kkkk ko ko kK kA h kA Rk hkkkkkk ko ko kk ok h ok hhh kK kK h kA k ko kA &k ok k%
**x*x** THE FOLLOWING SUBROUTINES MAKE UP A DIFFERENTIAL EQUATION SOLVER AND ARE kbt

*k kkkk PROM: * kK k
**xx*x*x WILLIAM H. PRESS, SAUL A, TEUKOLSKY, WILLIAM T. VETTERLING, AND BRIAN P. Hok ok ok ok
*%*xx%x* FLANNERY, NUMERICAL RECIPES IN FORTRAN 2ND ED(CAMBRIDGE, NEW YORK, 1992). *x%x*%

LR R T e e s R R L

SUBROUTINE odeintd{ystart,nvar,x1,x2,eps,hl,hmin,nok,nbad,derivs,
*rkgs, RQMAX, VMAX)

INTEGER nbad, nok, nvar, KMAXX, MAXSTP, NMAX

REAL*8 eps,hl,hmin,x1l,x2, TINY, VMAX, RQMAX

EXTERNAL derivs,rkgs

PARAMETER (MAXSTP=10000,NMAX=6, KMAXX=200, TINY=1.D-30)

INTEGER i, kmax, kount,nstp

REAL*8 dxsav,h,hdid,hnext, x,xsav,dydx (NMAX), ystart (NMAX) ,
+ Xp (KMAXX),y(NMAX) , yp (NMAX, KMAXX) ,yscal {NMAX) , XPREV

COMMON /path/ kmax, kount,dxsav, Xp,Yp

KMAX=0
x=x1
XPREV=X1
h=dsign(hl,x2-x1)
nok=0
nbad=0
kount=0
do 11 i=1,nvar
y(i)=ystart (i)
11 continue
if (kmax.gt.0) xsav=x-2.D0*dxsav
do 16 nstp=1,MAXSTP
call derivs(x,y,dydx)
do 12 i=l,nvar/2
c YSCAL(I)=DABS(Y(I))+DABS (H*DYDX(I})}+TINY
yscal(2*i)=VMAX
yscal(2*i-1)=RQMAX
12 continue
if (kmax.gt.0)then
if (DABS {x-xsav).gt.DABS(dxsav)) then
if (kount.lt.kmax~-1)then
kount=kount+1
Xp (kount)=x
do 13 i=1,nvar
yp (1, kount)=y (i)
13 continue
Xsav=x
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endif
endif
endif
if{(x+h-x2} *(x+h-x1).gt.0.D0) h=x2-x
call rkgs(y,dydx,nvar,x,h,eps,yscal,hdid, hnext,derivs)
if (hdid.eqg.h)then
nok=nok+1
else
nbad=nbad+1
C WRITE(*,*) '"NBAD =',NBAD
endif
if ((x-x2)*({x2-x1).ge.0.D0)then
do 14 i=1,nvar
ystart (i)=y (i)
14 continue
if (kmax.ne.0)then
kount=kount+1
xp (kount)=x
do 15 i=1,nvar
yp{i,kount)=y(i)
15 continue
endif
return
endif
if (dABS (hnext).lt.hmin) pause
*'stepsize smaller than minimum in odeint!
h=hnext
leé continue
pause 'too many steps in odeint!
return
END
C (C) Copr. 1986-92 Numerical Recipes Software #(ksl10R2-117.

CrF ok h ko d ko Ik kA h k kA k kA h ko kA FE R kR kA Ak kA kA I A Ak Kk h ko k ko k ok ko h ko k ok h ok kA kA hhh kA hk ok kh k&

SUBROUTINE rkgs({y,dydx,n,x,htry, eps,yscal,hdid, hnext,derivs)
INTEGER n, NMAX
DOUBLE PRECISION eps,hdid,hnext,htry,x,dydx{(n),y{(n),yscal(n)
EXTERNAL derivs
PARAMETER (NMAX=6)
cu USES derivs,rkck
INTEGER i
LOGICAL LINPOL, ERRFLAG
DOUBLE PRECISION errmax,h,xnew,yerr (NMAX),ytemp (NMAX),SAFETY, PGROW
» PSHRNK, ERRCON
PARAMETER (SAFETY=0.9d0, PGROW=-.2d0, PSHRNK=~.25d0, ERRCON=1.89d-4}
REAL*8 COEF1,WO0, 20, K,OMEGA, SIGMAT, GAMMA
COMMON /GLOB/ LINPOL,COEF1,W0,Z0,K,OMEGA, SIGMAT, GRMMA, ERRFLAG
h=htry
1 ERRFLAG=. FALSE.
call rkck({y,dydx,n,x,h,ytemp,yerr,derivs)
errmax=0.d0
do 11 i=1,n
errmax=max (errmax, DABS (GAMMA*yerr (1) /yscal(i)})
11 continue
errmax=errmax/eps
if (errmax.gt.1.d0)then
IF (ERRFLAG) THEN

*

c WRITE(*,*) 'ESCAPED ERROR TRAP!!'
H=.1*H
ELSE
h=SAFETY*h* (errmax**PSHRNK)
ENDIF
xnew=x+h
if (xnew.eq.x)pause 'stepsize underflow in rkqs'
goto 1
else

IF (ERRFLAG) THEN
STOP 'EXITTED WITH GAMMA SET TO DUMMY SETTING!!!'
ENDIF
if(errmax.gt.ERRCON)then
hnext=SAFETY*h* (errmax**PGROW)
else
hnext=5.d0*h
endif
hdid=h
x=x+h
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do 12 i=1,n
y(i)=ytemp (i)
12 continue
return
endif
END
C (C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-11j.

Fe e e e A e d ok kR Kk A A Kk kR kA ok kR Ak K Kk k ko ko ko kk Ak ok kk ok k k k ko k ok ko ko kk ok k ok ok ok ok ok k

SUBROUTINE rkck(y,dydx,n,x, h,yout,yerr,derivs)
INTEGER n, NMAX
DOUBLE PRECISION h,x,dydx(n),y{(n),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=6)

CcU USES derivs
INTEGER i
DOUBLE PRECISION ak2{NMAX),ak3(NMAX}, ak4 (NMAX),ak5 (NMAX),ak6 (NMAX)
*
1
*ytemp (NMAX) ,A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,B52,B53,
*B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3, DC4,DC5,DC6
PARAMETER (A2=.2d0,A3=.3d0,A4=.6d0,A5=1.d0,A6=.875d40,B21=.2d40,B31
*=3.d40/40.4d0,
*B32=9.d0/40.d0,B41=.3d0,B42=-.9d0,B43=1.2d0,B51=-11.d0/54.d0,BS2
*=2.5d0,
*B53=-70.d40/27.d0, B54=35.d0/27.d0,B61=1631.d0/55296.d0,B62=175.d0
*/512.,d0,
*B63=575,d0/13824.d0,B64=44275,d0/110592.d0,B65=253.d0/4096.d0,C1
*=37,d0/378.d0,
*C3=250.d0/621.d0,C4=125.d0/594.d0,C6=512.d0/1771,d0,DC1=C1-2825.d0
*/27648.d0,
*DC3=C3-18575.d0/48384.d0, DC4=C4-13525.d0/55296.d0, DC5=-277.d0
*/14336.d0,
*DC6=C6~.25d0)

do 11 i=1,n
ytemp (i)=y{i)+B21l*h*dydx (i)
11 continue
call derivs(x+A2*h,ytemp,ak2)
do 12 i=1,n
Ytemp{i)=y(i)+h*(B31*dydx (i)+B32*ak2(i})

12 continue
call derivs(x+A3*h,ytemp,ak3)
do 13 i=1,n
ytemp (i)=y(i)+h*(B41*dydx (i}+B42*ak2 (i)+B43*ak3(i))
13 continue

call derivs{x+A4*h,ytemp, ak4)
do 14 i=1,n
ytemp (i)=y(i)+h* (B51*dydx (i)+B52*%ak2(i)+B53*ak3(i)+B54*ak4(i))
14 continue
call derivs(x+A5*h,ytemp,akS)
do 15 i=1,n
ytemp (i)=y(i)+h* (B6l*dydx (i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+
*B6S*ak5(1))
15 continue
call derivs(x+A6*h,ytemp,aké)
do 16 i=1,n
yout (1)=y(i)+h*{Cl*dydx (i)+C3*ak3 (i) +C4a*ak4 (1)+Cé*aké (i)}
16 continue
do 17 i=1,n
verr (i)=h*(DC1l*dydx (i}+DC3*ak3(i)+DC4*akd (1)+DC5*ak5(1i)+DC6*
*ak6(i))
17 continue
return
END
C (C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-117j.
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Appendix B
Schematics of the magnetic electron spectrometer

All materials are aluminum except the iron core of the magnet, screws which are non-
magnetic stainless steel or brass, the quartz output window, and the plastic scintillator.
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Bottom View of Magnet Disk:
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Shielding Disk:
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Bottom View of Output Flange:
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Appendix C
Computer code for propagation of electrons through the spectrometer

The source code to propagate the electrons through the spectrometer is
presented here. The program was written for Microsoft FORTRAN Powerstation,
version 1.0 for MS-DOS and Windows operating systems. To maximize portability,
FORTRAN 77 with DEC VAX FORTRAN extensions have been adhered to
whenever possible. Only file access statements need alteration for compilation with
DEC VAX extensions.

$SDECLARE
PROGRAM ENERGY DISTRIBUTION

R R e T T T Y T E T T

****x* THIS PROGRAM USES THE EJECTED ELECTRON TRAJECTORIES FOUND IN THE MONTE CARLO **%*%**

*Axxx% STMULATION PROGRAM GIVEN IN APPENDIX A AND PROPAGATES THEM THROUGH THE HEEK KKK
**xxx% GPECTROMETER TO GIVE PREDICTIONS OF THE ELECTRON ENERGY DISTRIBUTIONS FRKK KKK
***x*x*x AT A FIXED ANGLE. THE SAME PROGRAM IS USED TO CALCULATE PREDICTED ANGULAR FRK KK KK
**x*+% DISTRIBUTIONS AT A FIXED ENERGY BY SIMPLY CHANGING A FEW LINES TO SCAN FHEEX AKX
****%% THROUGH ANGLE INSTEAD OF ENERGY. *hkkkhk

EE R e e e e ]

CHARACTER*12 FNAME

CHARACTER*16 HEAD2

CHARACTER*60 HEADER

INTEGER IOCHECK, NUMTEST,CHSTATE, CHDUM, MAXCHAR

INTEGER I, J,K,NOK,NBAD

REAL PI,POSIT(10,3,10000},VEL(10,3,10000),PNORM(10),C
PARAMETER {PI=3.14159265359E0,C=2.99792458E8)

REAL ANGLE,ANGSPEC,MAXXSCINT,MAXZSCINT, SCINTPOS, MINYMASK, MAXYMASK
REAL MINYMAG, MAXYMAG,MIDMAG, MAXX1,MINXMASK, MAXXMASK, MAXZ
REAL MINXSHIELD,MAXXSHIELD,MINYSHIELD,MAXYSHIELD,MAXX?2, BMAX
REAL Y(6),VTOT, T, TSTEP, ENUM, GAMMA, VMAX, RMAX, TEND, H

REAL HMIN, TOL, ENERGY, XP,YP, ZP, VX, VY, VZ, MINXMAG, MINPROP, VXY
REAL MINTPROP, ZATMAG, ENOBS, ENMAX

EXTERNAL DERIVS, RKQS

COMMON /GLOB/ GAMMA, BMAX

**xxx*% OPEN THE FILE CONTAINING THE ELECTRON TRAJECTORIES CALCULATED BY MONTE CARLO **%#%x
***%x++ STMULATION PROGRAM OF APPENDIX A:
10 CONTINUE

WRITE (*, *) "INPUT FILENAME CONTAINING ELECTRON TRAJECTORIES:'
READ(*, ' (A) ') FNAME

OPEN (64, FILE="D: \FORTRAN\OUTFILES\ '//FNAME, IOSTAT=IOCHECK,
+ ERR=15, STATUS="OLD")

GOTO 20

15 CONTINUE
WRITE(*, *) '"THERE WAS AN ERROR OPENING ', FNAME
WRITE(*, *) "MAKE SURE DATAFILE EXISTS AND IS IN DAT DIR'
WRITE(*,*)"' !
GOTO 10

20 CONTINUE

*¥*%x%% OPEN FILE TO SAVE ENERGY DISTRIBUTIONS:
WRITE(*,*)} 'INPUT FILENAME FOR OUTPUT:'
READ(*, ' (A) ') FNAME
OPEN {65, FILE="D: \FORTRAN\OUTFILES\ ' //FNAME, IOSTAT=ICCHECK,
+ ERR=25,STATUS="NEW')
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GOTO 30

25 CONTINUE
WRITE(*,*) 'THERE WAS AN ERROR OPENING ', FNAME
WRITE(*, *) "THAT FILENAME PROBABLY ALREADY EXISTS®
WRITE{*,*}" '
GOTO 20

30 CONTINUE

*% %% %% COPY THE HEADER INFORMATION CONTAINING EXPERIMENTAL CONDITIONS FROM THE ELECTRON
**%%%% TRAJECTORY FILE TO THE FILE FOR OUTPUT IN THIS PROGRAM.
DO 40 I=1,9
READ (64, ' (A60) ') HEADER
WRITE (65, *) HEADER
40 CONTINUE

READ (64, ' (A16\) ' )HEAD2
READ({64, *) NUMTEST
CHSTATE=0

ENMAX=0.0

***x*x*x THIS LOOP READS IN THE INITIAL TRAJECTORIES.
45 CONTINUE

CHSTATE=CHSTATE+1
READ {64, *, END=60) PNORM (CHSTATE)
DO 50 I=1,NUMTEST
READ(64, *) CHDUM, (POSIT (CHSTATE, J,1),J=1,3),
+ (VEL(CHSTATE, J, I}, J=1,3), ENERGY
IF (ENERGY.GT.ENMAX) THEN
ENMAX=ENERGY
ENDIF
50 CONTINUE

GOTO 45

60 CONTINUE
CLOSE (64)

MAXCHAR=CHSTATE-1
WRITE(*, *}MAXCHAR

** %%+  TNPUT ANGLE FROM BEAM AXIS WHERE ELECTRON DISTRIBUTION TO BE FOUND.
WRITE(*,*) 'ENTER ANGLE TO OBSERVE'
READ (*, *) ANGLE
ANGLE=PI/180.*ANGLE

*¥*% %%  CONVERT THE ANGLE FROM BEAM AXIS TO THE ROTATION ANGLE OF THE SPECTROMETER.
ANGSPEC=ACOS {COS (ANGLE) /COS (PI/4.))

wx*x% THESE PARAMETERS DEFINE THE GEOMETRY OF THE SPECTROMETER AND ITS DISTANCE FROM

ix%xx  THE LASER FOCUS.
MAXXSCINT=1.5E-2
MAXZSCINT=3,7E-2
SCINTPOS=28.19E-2
MINYMASK=3.968E-2
MAXYMASK=4.128E-2
MINYMAG=MAXYMASK
MAXYMAG=5.081E-~2
MIDMAG=4.604E-2
MAXX1=15.0E~2
MINXMASK=3.454E-2
MAXXMASK=4.454E-2
MAX7Z=.11E-2
MINXSHIELD=2.00E~2
MAXXSHIELD=5.174E-2
MINYSHIELD=3.175E-2
MAXYSHIELD=3.968E-2
MAXX2=6.668E-2
MINXMAG=3.9544E-2

**%%x% PARAMETERS USED FOR ACCURACY OF DIFFERENTIAL EQUATION SOLVER.
TOL=2.5E-3
HMIN=TOL/1.E10

*%¥*x* FENOBS IS THE CENTRAL ENERGY OF OBSERVATION OF THE SPECTROMETER. THE ENERGY SCAN



*%%%%k*x BEGINS AT AN ENERGY OF 2 KEV.
ENOBS=2.0

*%%xxx THIS LOOP IS THE MAIN LOOP WHICH SCANS IN ENERGY FROM 2 KEV TO 30% ABOVE THE MAXIMUM
**x**%% ENERGY ELECTRON.
175 CONTINUE

*%xxx% BMAX IS THE PEAK FIELD IN THE GAP OF THE MAGNET. THIS LINE CONVERTS ENERGY TO
*% %% %% CORRESPONDING MAGNETIC FIELD. THE CONVERSION WAS FOUND BY “CALIBRATING” THE CODE.
**x x4+ THE TRAJECTORIES OF ELECTRONS THROUGH THE SPECTROMETER WERE CALCULATED AND THE
*x %% %% ENERGIES OF THE ELECTRONS VERSUS THE REQUIRED MAGNETIC FIELD FOR PROPAGATION TO THE
****** SCINTILLATOR WAS FOUND.

BMAX=1E-4 *SQRT (ENOBS* (ENOBS/511.+1) /3.36E-4)

***xx* THIS LOOP SCANS THROUGH THE CHARGE STATES
DO 200 J=1,MAXCHAR

*%##%% THIS LOOP SCANS THROUGH ALL ELECTRONS IN ONE CHARGE STATE
DO 100 K=1,NUMTEST
VTOT=SQRT (VEL (J, 1,K) **2+VEL (J, 2, K) **2+VEL (J, 3, K} **2)
G =SQRT (1./(1.-(VTOT/C) **2))
ENERGY=511, * (GAMMA-1.)

**%x%%% TO INCREASE THE SPEED OF THE CODE, IF AN ELECTRON’S ENERGY IS >50% OUTSIDE THE
***x%%x% OBSERVATION ENERGY OF THE SPECTRCMETER, IT IS SKIPPED.
IF (ABS(ENERGY-ENOBS).GT. (.5*ENOBS)) GOTO 888

#%%%** THESE TWO IF-THEN-ELSES INCREASE THE STATISTICAL ACCURACY OF THE CODE.
*%%x%* ELECTRONS WHICH ARE NOT EJECTED IN THE FIRST QUADRANT, [+X,+Y] (WHERE THE
*%*%%% GAP IN THE SPECTROMETER WILL BE PLACED), WILL NEVER ENTER THE GAP. TO INCREASE THE
*%%%** NUMBER OF ELECTRONS DETECTED TO BETTER THE STATISTICS, THE II-IV QUADRANTS ARE
#%%%x4* MAPPED INTO THE FIRST QUADRANT. THIS REQUIRES THE NUMBER OF ELECTRONS DETECTED
x%++x* LATFR BE DIVIDED BY 4 SINCE 4 TIMES AS MANY ELECTRONS WILL BE COLLECTED AS SHOULD
*#+x+%* BE, THESE IF-THEN~ELSES ARE ONLY VALID FOR CIRCULAR POLARIZATION SINCE LINEAR
*#**x%% POLARIZATION WILL BREAK THE SYMMETRY REQUIRED TO DO THIS.
IF (POSIT(J,1,K).LT.0.0) THEN
XP=-POSIT(J,1,K)
VX=-VEL(J, 1,K)
ELSE
XP=POSIT(J,1,K)
VX=VEL(J,1,K)
ENDIF

IF (POSIT(J,2,K).LT.0.0) THEN
YP=-POSIT(J,2,K)
VY=-VEL(J,2,K)

ELSE
YP=POSIT(J,2,K)
VY=VEL({J,2,K)

ENDIF

Zp=POSIT (J, 3,K)
V2=VEL (J, 3,K)

xx*%%* THESE LINES CONVERT THE ELECTRON TRAJECTORIES TO THE REFERENCE FRAME OF THE
*%*%%% SPECTROMETER. THE ROTATION OF THE SPECTROMETER CAN BE INVERSELY VIEWED AS A
***%%% ROTATION OF THE REST OF THE UNIVERSE RELATIVE TO THE SPECTROMETER. THESE LINES
**x%%* PRODUCE THIS ROTATION AT AN ANGLE OF ANGSPEC WHICH WAS THE PREVIOUSLY CALCULATED
**4%%% ANGLE OF ROTATION OF THE SPECTROMETER BASED ON THE USERS INPUT ANGLE FROM K.

Y (1) =SIN(ANGSPEC) *XP+COS (ANGSPEC) *ZP

Y(3)=YP

Y (5)=~COS (ANGSPEC) *XP+SIN {ANGSPEC) *ZP

Y (2)=SIN (ANGSPEC) *VX+COS (ANGSPEC) *VZ

Y(4)=VY

Y {6)=-COS (ANGSPEC) *VX+SIN (ANGSPEC) *VZ

**xxx%x% AN ANALYSIS OF THE REQUIRED PROPAGATION DIRECTION OF THE ELECTRONS SHOWED THAT IF
**%%%x% THE ELECTRONS DID NOT TRAVEL AT 45°+/-5° FROM THE X AXIS, THERE WAS NO CHANCE OF ****#*x
DETECTION. THE CURRENT ELECTRON IS THEREFORE SKIPPED IF ITS EJECTION ANGLE DOES NOT ***##%+ LIE
WITHIN THIS RANGE.

IF (ABS(ATAN(Y(4)/Y(2))-.7854).GT.8.7266E-2) GOTO 888

*#%#%#%%% MINPROP IS THE DISTANCE FROM THE FOCUS TO THE GAP. VXY IS THE ELECTRONS VELOCITY

**%%%x%x TN THE X-Y PLANE. MINTPROP IS THE MINIMUM TIME IT TAKES THE ELECTRON TO PROPAGATE

**+x*% TO THE GAP. NO Z COMPONENTS OF MAGNETIC FIELD ARE CONSIDERED IN THIS PROGRAM SO

*****% WE CAN PROPAGATE THE ELECTRON FREELY IN THE Z DIRECTION (ZATMAG IS Z POSITION AT THE

**%x*% MAGNET) AND DETERMINE IF IT STRIKES THE SPECTROMETER WITHOUT PROPAGATING THROUGH.
MINPROP=SQRT (MINYMAG* *2+MINXMAG**2}
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VXY=SQRT (Y {2) **2+Y (4) **2)
MINTPROP=MINPROP/VXY
ZATMAG=Y (6) *MINTPROP+Y (5)

IF (SIGN(ZATMAG,Y(6)}).GT.(1.1*MAXZ}) GOTO 888

TSTEP IS THE TIME STEP SIZE USED BY THE DIFFERENTIAL EQUATION SOLVER IN CALCULATED
THE ELECTRON TRAJECTORY. THE SMALLEST STRUCTURE OF THE MAGNET IS THE MASK BLOCKING
THE OUTSIDE PORTIONS OF THE C-MAGNET. THE TIME STEP MUST THEREFORE BE NO GREATER
THAN THE TIME IT TAKES THE ELECTRON TO PROPAGATE THROUGH THIS MASK OR THE CHECK
FOR SEEING IF THE ELECTRON STRUCK THE MASK WOULD BE IN ERROR.

TSTEP= (MAXYMASK-MINYMASK) /VTOT

H=TSTEP

T=0

RMAX AND VMAX ARE SCALE LENGTHS USED IN THE DIFFERENTIAL EQUATION SOLVER TO
DETERMINE THE ACCURACY OF THE SOLUTION REQUIRED.

VMAX=VTOT

RMAX=VMAX*TSTEP

THIS IS THE LOOP WHICH PROPAGATES THE ELECTRON FROM THE FOCUS USING THE
MAGNETIC FIELD DETERMINED FROM MEASUMENTS WITH A HALL PROBE AND CURVE FITS
TO THE MEASURED FIELDS.
CONTINUE
TEND=T+TSTEP
CALL ODEINT(Y,6,T,TEND,TOL,H, HMIN, nok, nbad, DERIVS,
RKQS, RMAX, VMAX)
T=TEND

THESE IF-THENS CHECK TO SEE IF THE ELECTRON IS BLOCKED BY ANY PART OF THE
SPECTROMETER, GETS TURNED AROUND BY THE FIELD,OR MAKES IT THROUGH TO THE
SCINTILLATOR.
IF (Y(3).GE.SCINTPOS) GOTO 500
IF (Y(4).LT.0.0) GOTO 888
IF ((Y(3).LT,MINYSHIELD).AND. { (ABS(Y(l)}.GT.MAXX1).OR.
(Y(2).LT.0.0}))) GOTC 888
IF (({(Y(3).LT.MAXYSHIELD) .AND. (Y (3).GE.MINYSHIELD) ) .AND.
((Y(1).LE.MINXSHIELD}.OR. (Y (1) .GE.MAXXSHIELD))) GOTO 888
IF {({(Y(3).LT.MAXYMASK).AND. (Y (3).GE.MINYMASK) ) .AND,
((Y(1).LE.MINXMASK) .OR. (Y{1) .GE.MAXXMASK) ) ) GOTO 868
IF (((Y(3).LT.MAXYMAG}.AND. (Y(3).GE.MINYMAG) ) .AND,
(ABS(Y(5)).GE.MAXZ)) THEN
GOTO 888
ENDIF
IF ((Y(3).GE.MAXYMAG) .AND. (ABS(Y (1)) .GE.MAXX2)) GOTC 888
GOTO 150

IF THE CODE REACHES THIS POINT THEN THE ELECTRON HAS MADE IT THROUGH THE GAP TO
THE PLANE CONTAINING THE SCINTILLATOR. THE IF-THEN DETERMINES IF THE ELECTRON
STRIKES THE ACTIVE AREA OF THE SCINTILLATOR.

CONTINUE

IF ((ABS(Y(1l)).LE.MAXXSCINT).AND. (ABS(Y(5}).LE.MAXZSCINT))

THEN
THIS ADDS A DETECTION TO THE NUMBER OF ELECTRONS DETECTED. PNORM(J)/4 IS
THE NORMALIZATION FACTOR TO THE PRESSURE AND THE SINGLE QUADRANT OF INTEREST.
ENERGY/ENOBS CORRECTS FOR ERROR INTRODUCED BECAUSE THE EXPERIMENTAL DATA DETERMINES
THE NUMBER OF ELECTRONS FROM THE NUMBER OF PHOTONS. IF THE ENERGY OF THE ELECTRON
IS LESS THAN THE ENERGY OF OBSERVATION THEN FEWER PHOTONS WILL BE CREATED WHICH
WILL APPEAR AS FEWER ELECTRONS.

ENUM=ENUM+PNORM(J) /4 . *“ENERGY/ENOBS

ENDIF

CONTINUE

CONTINUE
CONTINUE

OQUTPUT TO DATA FILE AND LOG FILE
WRITE (65, *) ENOBS, ENUM
WRITE(*, *) "ENOBS=", ENOBS, 'ENUM="', ENUM

INCREASE THE ENERGY BY 5%
ENOBS=ENOBS+. 05*ENOBS
ENUM=0.0

CHECK TO SEE IF ENOBS IS >30% ABOVE MAXIMUM ENERGY ELECTRONS AND IF IS THEN
ALL DONE.
IF (ENOBS.LE. (ENMAX*1.3)) THEN
GOTO 175



ENDIF
999 CONTINUE
CLOSE(65)

END
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SUBROUTINE DERIVS(T,Y,YPRIME)

***xxx THIS SUBROUTINE IS THE RELATIVISTIC EQUATION OF MOTION OF AN ELECTRON
*%x***x IN A SPATIALLY VARYING, TIME INDEPENDENT MAGNETIC FIELD. IT IS USED BY ODEINTD
*4%%%% TO CALCULATE ELECTRON TRAJ.

INTEGER NEQ

PARAMETER (NEQ=6}

REAL MO, Y (NEQ), YPRIME (NEQ) , GAMMA
REAL PI,EPS0O,EQ,C

REAL BMAX,DUMMY, BZ

REAL, COEFF, BEFIELD

PARAMETER (C=2.99792458E8,M0=9,109534E~-31, PI=3.141593E0)
PARARMETER (E0=1.6021892E-19,EPS0=8.85418782E-12}

COMMCON /GLOB/ GAMMA, BMAX

DUMMY=T
COEFF=-(E0/M0) /GAMMA

**x**x*x THIS FUNCTIONAL CALL DETERMINES THE MAGNETIC FIELD AT THE ELECTRONS CURRENT
***xx*xx POSITION.

BZ=BFIELD(Y(1),Y(3),BMAX)

YPRIME (1)=Y(2)

YPRIME (2)=COEFF* (Y (4) *BZ)

YPRIME (3)=Y(4)

YPRIME (4} =COEFF* (-Y (2) *BZ)

YPRIME (5)=Y(6)

YPRIME(6)=0.0

RETURN
END

Hok ok kA A IR Kk Rk ok kA I Kk kN k ko k ok ko k kkkk kAR IRk k ok kh ko ko kA Ak d ek ko kkk Ak k kk k& & ok ek ok ko
REAL FUNCTION BFIELD(X,Y,BMAX)

**%*xx%x THIS FUNCTION DETERMINES THE FIELD AT THE ELECTRONS CURRENT POSITION. THE FIELD
F*xFxx%x IS GIVEN BY MEASUREMENTS WITH A HALL PROBE AND CURVE FITS TO THESE MEASUREMENTS.

REAL X,Y,BMAX
BFIELD=(.97/(1.+(ABS(Y~4.604E-2)/.448E-2}**9,2)**(,266)*(1./(1.+

+ (ABS (X-3.9544E-2)/.9407E~2)**9,2)**(.266) )+20./(650.* (1+
+ ((Y-4.604E~2)/3.3851E-2) **2}) ) *BMAX

RETURN

END
ko ek 3k ke ko ok ok ek ok R R ok ok ok ko ke ok ok Rk sk ok ok ke ko ek ke ok sk ok ko ek ok ok ok ok kK ok ook ok
***%xx THE FOLLOWING SUBROUTINES MAKE UP A DIFFERENTIAL EQUATION SOLVER FROM: KR A A H
**xxx* WILLIAM H. PRESS, SAUL A. TEUKOLSKY, WILLIAM T. VETTERLING, AND BRIAN P. Hk ok

*#*xxx*x FLANNERY, NUMERICAL RECIPES IN FORTRAN 2ND ED(CAMBRIDGE, NEW YORK, 1992). ***x*x
ok ek ko ok ke kR ko ok ke ko Rk kR ok ko ok ok ke ok Rk ok ok ok ok ok ok ok ok ko ok ko ok ok ok ok ok ok kR ok ko ok ok ok ok kX ok ko ok R ok K Kk

SUBROUTINE odeint(ystart,nvar,x1,x2,eps,hl,hnin, nck,nbad,derivs,
*rkqgs, RMAX, VMAX)

INTEGER nbad, nok,nvar, KMAXX,MAXSTP, NMAX

REAL eps,hl,hmin,x1,x2,ystart{nvar), TINY, RMAX, VMAX

EXTERNAL derivs, rkgs

PARAMETER (MAXSTP=10000,NMAX=50, KMAXX=200, TINY=1.e~30)

INTEGER i, kmax,kount,nstp

REAL dxsav,h,hdid,hnext,x,xsav,dydx (N\MAX}, xp (KMAXX) ,y (NMAX),
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*yp (NMAX, KMAXX )}, yscal {(NMAX)
COMMON /path/ kmax, kount,dxsav,xp,yp
x=x1
h=sign(hl,x2-x1)
nok=0
nbad=0
kount=0
do 11 i=l,nvar
y{i)=ystart (i)
continue
if (kmax.gt.0) xsav=x-2.*dxsav
do 16 nstp=1,MAXSTP
call derivs(x,y,dydx)
do 12 i=1,nvar/2
YSCAL(I)=DABS(Y(I))+DABS(H*DYDX(I})+TINY
yscal {2*1)=VMAX
yscal {2*i-1)=RMAX
continue
if (kmax.gt.0)then
if (abs({x-xsav}).gt.abs(dxsav)} then
if (kount.lt.kmax-1)then
kount=kount+1
xp (kount)=x
do 13 i=1,nvar
yp (i, kount)=y (i)
continue
xsav=x
endif
endif
endif
if((x+h-x2)*(x+h~-x1).gt.0.) h=x2-x
call rkgs({y,dydx,nvar,x,h,eps,yscal, hdid, hnext,derivs)
if (hdid.eq.h)then
nok=nok+l
else
nbad=nbad+1
endif
if {({x-x2)*(x2-x1).ge.0.)then
do 14 i=1,nvar
ystart (i)=y(i)
continue
if (kmax.ne.0)then
kount=kount+1
xp (kount)=x
do 15 i=1,nvar
yp (i, kount)=y (i)
continue
endif
return
endif
if{abs(hnext).lt.hmin) pause
*?'stepsize smaller than minimum in odeint!
h=hnext
continue
pause 'too many steps in odeint?
return
END
(C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-117.

SUBROQUTINE rkgs (y,dydx,n,x,htry,eps,yscal,hdid, hnext,derivs)
INTEGER n,NMAX
REAL eps,hdid,hnext,htry,x,dydx (n),y(n),yscal(n)
EXTERNAL derivs
PARAMETER (NMAX=50)
USES derivs,rkck
INTEGER i
REAL errmax,h,xnew,yerr (NMAX),ytemp (NMAX),SAFETY, PGROW, PSHRNK,
*ERRCON
PARAMETER (SAFETY=0.9,PGROW=-.2, PSHRNK=-.25, ERRCON=1.89e-4)
h=htry
call rkckiy,dydx,n,x,h,ytemp,yerr,derivs)
errmax=0.
do 11 i=1,n
errmax=max (errmax,abs(yerr(i)/yscal(i)))
continue
errmax=errmax/eps
if(errmax.gt.l.)then
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h=SAFETY*h* {errmax* *PSHRNK)
if(h.1lt.0.1*h)themr
h=.1*%h
endif
xnew=x+h
if (xnew.eq.x)pause 'stepsize underflow in rkgs'
goto 1
else
if (errmax.gt.ERRCON) then
hnext=SAFETY*h* (errmax**PGROW)}
else
hnext=5.*h
endif
hdid=h
x=x+th
do 12 i=1,n
y(i)=ytemp (i
continue
return
endif
END

(C} Copr. 1986-92 Numerical Recipes Software #(kslOR2-117.

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs)
INTEGER n, NMAX
REAL h,x,dydx(n),y(n}),yerr(n),yout(n)
EXTERNAL derivs
PARAMETER (NMAX=50)
USES derivs
INTEGER 1
REAL ak2 (NMAX),ak3 (NMAX),ak4 (NMAX),ak5 (NMAX),ak6 (NMAX),
*ytemp (NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,B52,B53,
*B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,DC4,DC5,DCE
PARAMETER (A2=.2,A3=,3,R4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
*B32=9./40.,B41=,3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5,
*B53=-70./27.,B54=35./27.,B61=1631.,/55296.,B62=175./512.,
*B63=575./13824.,B64=44275./110592,,B65=253,/4096,,C1=37./378.,
*C3=250./621.,C4=125,/594.,C6=512./1771.,DC1=C1-2825./27648.,
*DC3=C3-18575./48384,,DC4=C4-13525./55296.,DC5=-277./1433¢.,
*DC6=C6~.25)
do 11 i=1,n
ytemp (i)=y{(i)+B21*h*dydx (i)
continue
call derivs(x+A2*h,ytemp,ak2)
do 12 i=1,n
ytemp (i)=y (i)+h* (B31*dydx (i)+B32*ak2 (i)
continue
call derivs(x+A3*h,ytemp, ak3)
do 13 i=1,n
ytemp (1) =y (i)} +h* (B41*dydx (i) +B42*ak2 (i) +B43*ak3(i))
continue
call derivs(x+A4*h,ytemp,ak4)
do 14 i=1,n
yvtemp(i)=y(i)+h* (B51*dydx (i) +B52*ak2{(i)+BS53*ak3(i)+B54*akd(i))
continue
call derivs(x+A5*h,ytemp, ak5)
do 15 i=1,n
ytemp (1)=y(i)+h*(B61*dydx (i)+B62*ak2 (i) +B63*ak3(1i)+B64*akd (i)+
*B65*ak5(i))
continue
call derivs(x+A6*h,ytemp, ak6)
do 16 i=1,n
yout (1)=y(i)+h* {Cl*dydx (1)+C3*ak3(i)+C4*ak4 (i)+Ce*aké (1))
continue
do 17 i=1,n
yerr{i)=h*(DCl*dydx (i)+DC3*ak3(i)+DC4*ak4 (1)+DC5*ak5(1)+DCé*
*ak6(i))
continue
return
END

(C) Copr. 1986-92 Numerical Recipes Software #(kslOR2-117.
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Appendix D

Energy spectra of Neon as a function of the angle from k

1

52

These spectra were generated via the methods described in section 6.2. Each
point is an average of five shots after the electron number has been calculated from

18

equation (5.2.8) and normalized by multiplying by (I ,orm / Io)l'8 where Inomm=10
W/cm? and Iy was the peak intensity of the laser shot.
1500 92.5° from beam axis
1]
S 1000 | o
9 ]
o ]
[+ ] N
G i
o J
B j
€ 500
Z. i
) 1
O | T T 7T T T T T l ﬁg oo C In T T T | ~
o o oo
- =4
Electron energy (in keV)
4000 - 89.9° from beam axis
-
3500 {
7] ¢
(=
=
8
v
U
o
B
e
= !
Z T
05 . .l,.,],Q@G’@encoc]c,&fs
~ o o o
— AR

Electron energy (in keV)



Number of electrons

Number of electrons

153

87.3° from beam axis

Electron energy (in keV)

85.0° from beam axis

I
o (= =]
— (=R
— p—

Electron energy (in keV)



154

0Z1
D
- 001
Q@
e}
b
— L
5
5 ﬁ
<
g
2=
°,
= — 01
N i
Fat e
—
M T T _1_\_ T ‘ T T T 1_ T __ ._O :_ N
(e] (o] [e] (e (] (e] (o]
(e (o] [e] (] [e] (e
u m o0 O <t (@]

SUOIO9d JO JOqUINN

Electron energy (in keV)

0ZI
— 001
—— |
7~~~
>
[
M v
g
m A
S &
0 ™
L
m a
o) [\
&= =]
o S
0 3
0 |53
7 Lc
5|
—
o
——1
T T _ T T T _ T T T _ T T T _ T _j : “N
()] () (=] (=] (=] oo
< (=) 0 [o\] -] <
(@] (q\] — o

SUOJJO3[ JO JOqUINN



155

0cl1 01
— 001 001
L -~ o~
P .m >
Q Q
m v v
[=}
g X : s
O o w O @
- —o— g & z
m o S V] [3=] (5
& ° : 5 :
—a—
Q [ : =
~ —o— E — o — r H
- O [~
—— § e r
0 I [e) i
o i _|®’x|.
——— o — 0
T 17T _ LR _ IR ﬁ T 1 1T _ T 1T _ T T _wA!_ TT {1_‘ N q_ T ﬁ T T 7T . T 1 T _ LI _ LI _ LR ~ BRI ‘ 7T T I N
(=] (=] (=] o (=] o =) o (=] ) (=] (=] = (=] (=] o (=]
vy (=} vy o vy =] vy O <+ Q] o o0 O < o
N cn (] o3 — — — — — —

SUOI}39J3 JO JoqUINN SUOIJ39]9 JO Ioquni



156

rq |
L 001
L
)
@
m &
g ®
[-F] L
e}
=) (s
@)
3=
o c]
a
© o - 01
.|®|_H
©
© — F
© o
o -
T T T _ T T T _ T 1 T _ T T T _JJ T N
o =) < = <
S ) O < I3

SUOIIOR[3 JO JOqUINN

Electron energy (in keV)



157

Appendix E

Angular distributions of electrons from Neon relative to the laser beam axis

These angular distributions were generated through the techniques of curve fitting
to the energy spectra described in section 6.2. The solid lines on each plot are Gaussian
curve fits to the experimental data points and the dashed lines are the expected ejection
angle calculated with equation (3.3.3).
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Neon 5+
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Neon 7+
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