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Abstract 

The theory of reflection and refraction phenomena of inhomogeneous plane waves at a 
planar interface is a crucial step in developing the theory of both pulsed electron~agnetic 
beam field reilection and refraction and dielectric slab waveguides. In the first case, inhomo- 
geneous plane waves form the basic elements of the angular spectrum representation of both 
the reflected and refracted fields of pulsed electron~agnetic beams at a planar interface sepa- 
rating two lossy, dispersive dielectric media. In the second case, dielectric slab waveguides 
inherently have two planar interfaces at which the electromagnetic energy interacts to form 
guided modes which are the sum of two inhomogeneous plane waves. Both formulations 
fully account for the temporally dispersive behavior of the lossy dielectric medium and the 
vector nature of the electromagnetic fields involved. The double resonance Lorentz model 
accurately represents dielectric dispersion in the infrared to ultraviolet spectral region. This 
model adheres to the Kramers-Kronig relations and is therefore causal. Inhomogeneous 
plane waves result as general solutions to Maxwell's equations in an infinitely extended di- 
electric medium with a complex refractive index. Many new results are discovered when 
these plane waves are utilized to form the generalized theory of reflection and refraction and 
the generalized Fresnel equations. For example, certain spectral regions will not support 
near total internal reflection which is a necessary condition of guiding of electromagnetic 
energy. Further, even if an inhomogeneous plane wave is at supercritical angles of incidence, 
near total internal reflection may be lost when both the incident and transmitted inhomoge- 
neous plane waves become primarily attenuative. 
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CHAPTER I 

INTRODUCTION 



1 .I Motivations and Applications 

The study of pulsed electromagnetic beam wave propagation is fundamental to many ap- 

plications of electromagnetic theory such as dielectric slab waveguides. A complete under- 

standing of this phenomena permits accurate prediction of the shape and arrival time of a 

given pulse after it has travelled a certain distance through an optical transmission system. 

This includes an understanding of the dispersion characteristics of these optical transmission 

systems and the manner in which electromagnetic fields interact with a boundary surface. 

The media through which an electromagnetic field propagates has certain dynamical 

properties that strongly influence the behavior of propagation. For optical systems, the most 

common type is dielectric media such as glass because of its low transmission loss at optical 

frequencies and the fact that near lossless guidance is easily attained at supercritical angles 

of incidence. The common physical properties of all dielectric media, other than vacuum, 

are loss and dispersion, whose frequency behavior is coupled through the Kramers-Kronig 

relations[l]. The physical processes involved in dispersion are well understood[2] (e.g. the 

infrared polarization mechanism and the ultraviolet electronic absorption mechanism), and 

the complicated manner in which they effect pulsed electromagnetic plane wave propagation 

in an infinitely extended medium has been extensively investigated using asymptotic tech- 

niques[3]. This mathematically rigorous research has provided a complete, accurate de- 

scription of the transient phenomena associated with such fields and has provided a correct 

description of the signal velocity for ultrashortlultrawideband electromagnetic pulses in a 

linear, homogenous, isotropic and temporally dispersive medium. 

Most data communication systems utilize electromagnetic radiation in some specific fre- 

quency band to relay information from a transmitter to a receiver through a specified trans- 

mission system. High performance data communications depend on the quality, the data 

transmission rate of the transmitted signal and the fidelity of the transmitted signal. A trans- 

mission system achieves high fidelity by being tolerant of electromagnetic interfer- 

ence(EMI), radiative and internal losses, the external environment, system imperfections, 



invasive monitoring (for security purposes), and distortion that is caused by dispersion after 

the signal has traveled some distance through the transmission system. A high data rate de- 

pends on the pulse's width, rise time, repetition rate, and the frequency bandwidth of the 

transmitting source. Optical laser systems offer an abundance of these four attributes. It is 

for this reason that the current trend in the communications industry is to establish a high 

performance communications network that utilizes the optical portion of the electromagnet- 

ic spectrum. Unfortunately, as the pulse width decreases and more importantly as the pulse 

rise time becomes shorter, the effects of dielectric loss and dispersion increase and dominate 

the entire dynamical field evolution in the ultrawidebandlultrashort pulse limit. 

The most fundamental technological issue is that of determining the optimum transmis- 

sion system for high performance optical communications. Utilization of the atmosphere 

as the transmission system would be desirable from an economical standpoint since many 

kilometers of cabling would not be necessary; however, Rayleigh scattering, diffraction, and 

the diurnal interference from the sun render the atmosphere inhospitable to high perfor- 

mance optical data communications. Consequently, a method of cabling or guiding must be 

used to properly employ optical data transmission for high speed communications. Optical 

waveguides conveniently provide this capability. 

Optical waveguiding structures are capable of containing and guiding optical radiation 

in a well-controlled and predictable manner, thereby satisfying most of the restrictions im- 

posed by fidelity. Optical waveguides are typically constructed from two types of dielectric 

media. The media with the greater refractive index forms the core of the waveguide while 

the cladding has a smaller refractive index which forms the surrounding outer layer. Optical 

containment can be achieved by the phenomenon of total internal reflection at the corelclad- 

ding interface. Because the guided fields are virtually inaccessible external to the core of 

the guiding structure, optical containment of radiation naturally alleviates radiative losses, 

invasive monitoring, EMI, and other external environmental effects. Internal losses have 

been overcome with the introduction of low-loss glass that is used in the manufacture of opti- 
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cal fibers. Additionally, the materials used are chemically tolerant to most solvents, so that 

dielectric optical waveguides may be used in chemically hostile areas, and are mechanically 

tolerant to smooth bending. Each of these assets was once a problem that needed to be over- 

come in order that dielectric optical communication systems would become a viable technol- 

ogy. 

The modern history of dielectric optical waveguides began with the coining of the terms 

jiber optics by N.  S. Kapany in 1956[4.] and integrated optics by S .  E. Miller in 1969[5]. 

Developments in fiber optics have been nearly continuous since its inception, with the 

world's first optical link being installed by the General Telephone Company on April 22, 

1977[6]. Research in integrated optics, however, has been somewhat sporadic. This re- 

search has been spurred by developments in fibers and slowed by funding only to be stimu- 

lated again through extensive international exchanges[7]. Recently the use of both classes 

of dielectric waveguides has proliferated to such a degree that they are commonplace in ev- 

eryday life, as exemplified by fiber optic telephone cables and the optoelectronic integrated 

circuits within commercially available compact disc (CD) players. Optical waveguides not 

only play a major role in the household, but also in the technology of relaying massive 

amounts of data between remote computers connected together by high-speed optical fiber 

networks, as well as in Opto-Electronic Integrated Circuits (OEIC) which are used as 

switching networks, repeaters for fibers and analog computers. 

Improvements in the performance level of optical waveguides constitute a major portion 

of the current international research effort. Performance issues may be categorized under 

three main categories: material properties, signal characterization, and information band- 

width. Improvements in material purity may result in lower loss and lower dispersion. Im- 

provements in the signal properties are characterized by less distortion and an increased con- 

trol of shape in both space and time. Both are a consequence of the material properties and 

the electronics which initially produce the pulse and later condition the pulse. Improvements 



in the information bandwidth result in an increased data rate and is a consequence of im- 

proved signal production and decreased material dispersion. 

There is a trend to increase the information bandwidth of existing data networks in order 

to cope with an increased load that results from concurrently sending computer data, audio 

data and video data. If the information bandwidth is increased, then there must be an increase 

in data rate which, in turn, necessitates the production of shorter data pulses. As the data 

pulse width diminishes, the pulses eventually become both ultrashort (where the temporal 

width of the pulse approaches the period of the carrier) and ultrawideband (where the resul- 

tant bandwidth of an ultrashort pulse spreads over a large portion of the electromagnetic 

spectrum). Useful pulse widths in the foreseeable future for data communication systems 

are still far from the ultrashort/ultrawideband pulses that are considered here. Currently, the 

rate at which a state of the art network operates is limited by multiplex switching and repeater 

electronics[8]. However, it is inevitable that further research will provide a means to over- 

come these limitations. There are also other applications that do require such ultrashort/ult- 

rawideband pulses, e.g. in femtosecond spectroscopy[9] and stroboscopic measurements of 

fast-flowing processes like chemical reactions. 

The theory of idealized waveguiding structures that are comprised of ideal, lossless di- 

electrics is well understood and can be found in a variety of textbooks such as those authored 

by Marcuse[lO] and Sodha and Ghatak[ll]. However, dielectric waveguides that are com- 

prised of realistic media, which are both lossy and dispersive, have yet to be considered in 

full detail. Consequently, an accurate description of both loss and dispersion of the complex 

refractive index must be included. 

Many authors apply simplifying assumptions in an effort to make dispersive waveguide 

theory admissible to rather simple analytical solutions. However, all of these approaches 

become invalid as they approach the ultrawideband limit. These assumptions typically rely 

on both the low loss of the medium and on the small bandwidth of a slowly modulated signal. 



The latter assumption is known as the quasimonochromatic approximation. This quasimo- 

nochromatic approximation enables one to use a truncated Taylor series expansion to model 

the material dispersion in the region of normal dispersion of the dielectric while the low loss 

approximation enables one to neglect the coupling of loss and dispersion. However, when 

the pulse envelope becomes extremely short, its bandwidth extends beyond the range of va- 

lidity of the truncated Taylor series expansion and into the region of anomalous dispersion 

of the dielectric. This can result in an incorrect description of the pulse velocity as well as 

yielding noncausal results (i.e. an output preceding the input). Since, the bandwidth of ultra- 

short pulsed signals can extend over regions of anomalous dispersion where the material loss 

is no longer negligible, the coupled frequency dispersion of the material loss and dispersion 

can no longer be neglected to any acceptable degree of approximation. A rigorous theory 

of pulse propagation in optical waveguides that includes the coupled effects of loss and dis- 

persion is currently nonexistent. 

The ultimate goal of this general area of research is to obtain a rigorous description of 

ultrashort pulse propagation in dielectric waveguides. This entails understanding the disper- 

sion characteristics of dielectric waveguides. Dielectric waveguide dispersion can be classi- 

fied into three distinct groupings: intramodal, intermodal and material. Modal dispersion 

is inherent to guiding structures in general, whether or not material dispersion exists. In or- 

der for a wave to propagate in a repeating, self-sustaining pattern, certain eigenmode equa- 

tions must be satisfied. Only a discrete set of solutions of these eigenvalue equations is al- 

lowed, each of which represents a guided mode. Each guided mode has its own distinct 

velocity which varies with frequency, thereby producing what is known as intramodal dis- 

persion. The velocity also varies from mode to mode, and this produces what is known as 

intermodal dispersion. A rigorous incorporation of material dispersion into dielectric wave- 

guide theory poses a rather formidable problem, since this entails coupling material disper- 

sion with both types of modal dispersion. For example, adding loss implies a complex propa- 

gation vector and this causes an ambiguity of mode cutoff because there is no longer a 



trenchant distinction between propagating and radiating modes. Both mode types will lose 

energy to both the cladding and the core media and thereby have the same general functional 

form. 

1.2 Previous Research 

Published research in the areas of dispersive pulse propagation and dielectric wave- 

guides is widely varied and extensive. The present account only discusses the major works 

and attempts to categorize them into a minimum number of logical groups. The earliest at- 

tempt at the problem of dispersive wave propagation was made by Sir William Hamilton in 

which the concept of group velocity seems to have been first introduced[23]. Subsequently, 

Lord Rayleigh presented the distinction between the group and phase velocities that are 

associated with plane wave propagation[24] [25]. 

Dispersive wave propagation analysis requires a model that represents the dispersive be- 

havior of the medium. A classical atomistic model, known as the Lorentz model, was devel- 

oped for this purpose over the years (as early as 1869 by Maxwell as footnoted by Paul 

Drude[26]) and culminated in Lorentz's work[27]-[30]. This model described a dielectric 

as an ensemble of independent charged particles each harmonically bound to a nucleus at a 

fixed site in the material which are driven by the local electric field. A simple, consistent 

development of the Lorentz theory is found in the introductory text by Wooten[3 11. The im- 

portance of this classical model lies in the fact that it is causal and provides an adequate de- 

scription of anomalous dispersion in lossy dielectrics from the infrared through the visible 

regions of the electromagnetic spectrum[20]-[22]. 

The earliest attempt to obtain an asymptotic description of dispersive signal propagation 

in a single resonance Lorentz model medium with a step-modulated scalar wave was made 

by Sommerfeld[32] and Brillouin[33][34]; a brief review of Brillouin's results appears in 

97.11 of Jackson[l]. Their work demonstrated that the signal did not propagate with the 

group velocity in the region of anomalous dispersion, thereby demonstrating that the true 



signal velocity was not given by the group velocity in general. Their asymptotic analysis 

clearly showed that the signal always arrived with a velocity less than or equal to the speed 

of light, c. Additionally the first description of the transient fields known as precursors was 

made. However, only a rough, qualitative description of the field evolution of these precur- 

sors was obtained. A close examination by Brillouin[33][34] of the complex phase function 

that was associated with the complex frequency behavior of a single resonance frequency 

Lorentz model of the refractive index was found to yield two sets of saddle points: a pair of 

distant saddle points that evolved in the high frequency domain above the medium absorp- 

tion band and a pair of near saddle points that evolved in the low frequency domain near the 

origin and below the absorption band. The associated exact integral representation of the 

propagated field was then evaluated asymptotically for large propagation distances by the 

method of steepest descent through these saddle points. However, the unnecessary 

constraint imposed upon the deformed contour of integration by the method of steepest de- 

scent resulted in an erroneous description of the frequency dependance of the signal arrival 

at the associated signal velocity, which was partially corrected later on by Baerwald in 

1930[35]. 

Oughstun et al. extended the accuracy of the asymptotic description of this problem by 

employing modern asymptotic techniques in an effort to provide a correct description of the 

signal velocity and also to provide an accurate description of the complete field evolution. 

The basic approach relies upon Olver's theorem which relaxes the condition on the deformed 

contour of integration through the saddle points[36]. Olver's theorem uses an Olver-type 

path[36] through the saddle points, instead of the steepest descents path, in order to obtain 

an asymptotic approximation of the propagalion integral. By a careful application of this 

technique to the case of a simple resonance Lorentz model medium, an accurate description 

of the entire field evolution was obtained. This included a correct, quantitative description 

of the entire precursor evolution and signal arrival, the signal and energy velocities, and the 

resultant signal distortion from closed form analytic expressions[3]. 



Other mathematical techniques have also been proposed to solve this problem. One pop- 

ular approach is to use a Taylor series approximation of the complex phase func- 

tion[ 1 ] [ 101 [37] [38-1[39]. The Taylor series approximation converts the Helmholtz wave 

equation into a high-order Schrodinger type equation, which has been well studied and 

solved in quantum mechanics by a technique in which the wave packet is described in terms 

of the moments of its complex envelope function[39]. A second technique, which also ap- 

plies a Taylor series expansion of the complex phase function, utilizes a recursive method 

to solve a system of coupled first order differential equations[38 1 [39]. Both of these methods 

are valid only in the quasimonochromatic (or slowly varying envelope) approximation if 

only the first few terms in the Taylor series expansion are retained, as is typically the case, 

and consequently yield noncausal results for ultrawideband signals[40]. Two other impor- 

tant analytic methods utilize ray techniques[41] [42][43] as an alternate asymptotic approach 

to a solution. One ray technique, known as the direct-ray method[41], obtains the approxi- 

mate solution of a class of partial differential equations with prescribed boundary or initial 

conditions. This is accomplished by assuming that the solution may be represented by an 

asymptotic series of a specific form which is then substituted into the partial differential 

equation that describes the wave propagation system. As a result, families of rays are 

introduced along which the functional terms of the assumed series satisfy ordinary differen- 

tial equations which can then be solved by standard approaches. An alternate approach is 

provided by the space-time ray theory[42] which relies upon "the plotting of rays and disper- 

sion surfaces along with the initial or boundary values of the field to demonstrate the propa- 

gation phenomena and develop the asymptotic representation"[l2]. Both of these ray tech- 

niques are applicable only in certain situations. They are heuristic in origin, complicate the 

problem, and obscure any physical insight regarding the solution of the problem. 

Finally, in addition to a straightforward application of the Fast Fourier Transform algo- 

rithm, purely numerical solutions have been developed with specific application to disper- 

sive pulse propagation studies. These include the Hosono Inverse Laplace Transform algo- 



rithm and the Finite Difference Time Domain[FDTD] technique. The latter approach 

provides a direct integration of Maxwell's equations[47] but suffers from numerically 

introduced dispersion due to the finite stepping procedure in time that it relies upon. The 

Hosono algorithm[44] provides a numerical integration of the associated propagation inte- 

gral when expressed in the form of an inverse Laplace transform. The Hosono algorithm 

provides accurate results for ultrashort signals provided that it is carefully implemented. The 

application of this algorithm to ultrashort pulse propagation in a linear dispersive medium 

has been found to provide very accurate results which can then be used to confirm the asymp- 

totic description[45II[46]. Unfortunately there is currently no known error bound for either 

numerical approach. In any case, a purely numerical solution primarily serves as a verifica- 

tion for analytic results since they cannot offer any physical insight. 

Dielectric waveguide structures of various geometries and refractive index profiles com- 

prise the second category of previous research and have been thoroughly examined and pres- 

ented in the open literature. Both integrated optics and fibers have been the central focus 

since they have the most practical application. Some of the earliest papers discussing the 

guided mode solution and applications of integrated optics were authored by Henvig Kogel- 

nik[5] and P. K. Tien[48], both at Bell Telephone Laboratories. The paper by Kogelnik pres- 

ents an extensive overview on the previous literature covering the history and the mathemati- 

cal development of integrated optics. Many textbooks cover the same material and include 

the discussion of the solution to fibers[lO;l [ I  :I 1. The solution methods are widely varied, dif- 

fering not only in approach but in accuracy and simplicity. Exact solutions have only been 

obtained for the simplest geometries of the slab waveguide[lO] and the cylindrical fiber with 

infinite cladding[49]. The modal solution to other waveguide geometries and refractive in- 

dex profiles may be obtained by using either well-known approximate analytical techniques 

or numerical techniques. The approximate analytical techniques used to solve the compli- 

cated geometrical problems with a continuous refractive index profile are typically based on 

either perturbation methods or variational methods[ll]. These two techniques are useful 



when a rigorous solution is not possible. In the perturbational approach, a reference wave- 

guide solution, which must be known a priori, is used a basis set. A small perturbation is 

then added to this known reference solution and the corresponding solution is found from 

an expectation value of the perturbation alone. This approach is limited since the number 

of rigorous solutions that are currently known is limited. An alternate approach which 

avoids this limitation is provided by the variational method. This method assumes a trial 

function that depends on certain parameters; the appropriate solution is then obtained by 

minimizing an energy relationship with respect to those parameters. The variational method 

overcomes the requirement of having any apriori knowledge of a reference solution, but the 

error is predetermined by the choice of trial function and its parameters. A Steepest Descent 

Approximation Theory (SDAT), which uses a quantum mechanical or Schrodinger-like 

equation to represent the Helmholtz wave equation[50], can be applied to both the perturba- 

tion and variation methods in order to make them amenable to a numerical calculation. The 

advantage of this approach is that the choice of either the reference solution or trial function 

is not limited to known functions, but can be a purely numerical choice which can then be 

optimized using the SDAT method. Both the approximate analytical and numerical tech- 

niques are restricted to a continuous variation of refractive index profile and are not applica- 

ble to a stepped index profile since the derivative of such a profile is infinite at the corelcla- 

dding interface. 

The third important category of previous research is connected with the phenomena of 

the reflection and refraction of electromagnetic waves as described by the Fresnel equations. 

The most general physical situation for which these equations are known exactly is that of 

a planar interface when the incident medium is a vacuum and the transmitting medium is a 

lossy dielectric with a complex refractive index[2]. A well-developed paper that discussed 

the improved treatment of the Fresnel equations for the planar vacuumllossy dielectric inter- 

face was recently published by M. A. B. Whitaker [51]. It is of considerable importance to 

this research to obtain a generalization of these equations to the situation in which both the 



incident and transmitted media are both lossy dielectrics because the planar dielectric inter- 

face is fundamental to the slab waveguide problem. 

Gitterman and Gitterman presented a thorough explanation of the transient refraction 

process when the medium in which the incident field propagates is a vacuum and the medium 

in which the transmitted field propagates is described by a single resonance Lorentz model 

dielectric[52]. They presented their results for a spatially bounded monochromatic signal. 

Their results depicted a similar precursor field and signal evolution as that obtained for a 

freely propagating wave with the additional angular spreading of the precursors upon 

oblique incidence. The steady-state portion of the field (i.e. the main signal) is refracted and 

reflected just as it would be for a non-modulated monochromatic signal. The angular 

spreading of the precursors upon refraction occurs because the refractive index varies as the 

frequency structure of each precursor changes. The first or Sommerfeld precursor's angle 

of refraction begins at the incident angle because the precursor's instantaneous frequency 

of oscillation begins at infinity where the dielectric permittivity equals that of vacuum. As 

the instantaneous angular frequency of the Sommerfeld precursor field chirps downward 

from its initial infinite frequency, the refractive index decreases, below that of vacuum, and 

the Sommerfeld precursor's angle of refraction sweeps away from the angle of incidence as 

it grows more oblique. The angle of refraction for the second or Brillouin precursor field 

begins at a value appropriate for a static field because the instantaneous angular frequency 

of oscillation of this precursor field begins at zero as the field amplitude builds up to its peak 

value. As the Brillouin precursor amplitude decreases from its peak value and begins to os- 

cillate with an instantaneous frequency that chirps upward from zero, the Brillouin presur- 

sor's angle of refraction sweeps away from its static value towards the perpendicular and ap- 

proaches the angle of refraction of the main signal at the input carrier frequency w, when 

w ,  is less than the medium resonance frequency. The reflected transient field was also con- 

sidered by Gitterman and Gitterman, but only for the special case of a plasma model (a high 

frequency limiting case of the Lorentz model). The most significant difference between the 



reflected and refracted fields was the delay time associated with the transient reflection. This 

delay time may be understood from a physical point of view as being due to the inertial reac- 

tion delay of the electrons and ions to the incident field in the sense that a reflected field can- 

not exist until there is an interaction of the incident field energy with the transmission me- 

dium. 

Each of the phenomena discussed above are present in the problem of dispersive pulse 

propagation in dielectric waveguides that are constructed from lossy, dispersive media. As 

previously mentioned, dispersion in waveguides is manifested three ways: intermodal, intra- 

modal and material. Intermodal and intramodal dispersion are inherent to dielectric wave- 

guides. The two are a function of the geometry and refractive index profile. Material disper- 

sion is a quality of all dielectrics and can only be controlled by processing techniques (e.g. 

by controlling the material purity during fabrication), varying composition and through ap- 

propriate material choices. Material dispersion has a dominant effect on intramodal disper- 

sion and some effects can be minimized by a careful adjustment of the refractive index pro- ,, 

file[53]. All three dispersion sources must be accounted for in a careful analysis of pulse 

propagation in dielectric waveguides. 

An exact integral representation of the electromagnetic field vectors may be obtained for 

dispersive pulse propagation in a given waveguide that is comprised from two different dis- 

persive dielectric materials. However, the analytic evaluation of the required integrations 

is intractable even if one assumes the simplest case of a single resonance Lorentz model die- 

lectric and a slab waveguide configuration. Consequently, some approximations must be 

made. Many authors[lO][l l][54] have chosen to apply the same aforementioned numerical 

and heuristic analytic approaches solve this problem. However, these solutions do not in- 

clude the coupled effects of frequency dependant loss and dispersion in the refractive index, 

and so they cannot predict the precursor field evolution which is of critical importance for 

ultrawideband/ultrashort pulses. Other authors[53] [55II [56] have included a nonlinear effect 

by adding a nonlinear term to the Schrodinger equation in the slowly varying envelope 
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approximation. This nonlinearity is a result of a high power density associated with the opti- 

cal pulse. The increased power density is caused by pulse compression, which is needed to 

generate ultrashort pulses. Zhao and Bourkoff note that the third and forth-order Taylor se- 

ries approximations will not be adequate when pulse widths grow shorter than the present 

capabilities of current ultrashort pulsed laser systems[57]. 

1.3 Description of Methods and Results 

A precise formulation of linear, causally dispersive dielectric slab waveguide theory is 

developed in this dissertation. This formulation fully accounts for the temporally dispersive 

behavior of the lossy waveguide medium and the vector nature of the electromagnetic fields. 

New and exact solutions of the reformulated waveguide eigenvalue equation are derived. 

The understanding gained here is important from a practical point of view because of the 

recent development of near femtosecond laser pulses[58] which may find use in optical fiber 

communication systems and optoelectronic devices and systems. 

The double resonance Lorentz model accurately represents dielectric dispersion in the 

infrared to ultraviolet spectral region. Numerical computations are presented in this disserta- 

tion which utilize data taken from a commercially available glass to determine the appropri- 

ate parameter values for the double resonance Lorentz model. These glass data should be 

representative of the complex dielectric permittivity (i.e. the dispersion and absorption char- 

acteristics of the medium) of typical glass materials that are currently used in fiber and inte- 

grated optics systems. 

Inhomogeneous plane waves result as general solutions to Maxwell k equations in an infi- 

nitely extended dielectric medium with a complex refractive index. Inhomogeneous plane 

waves have a complex wavevector whose real-part is the propagation vector and imaginary- 

part is the attenuation vector. The propagation vector describes the direction of propagation 

of the planar phase front and the attenuation vector describes the direction of propagation 

of the planar amplitude front. In general these vectors are not collinear. 



Inhomogeneous plane waves are used to develop the generalized theory of reflection and 

refraction and the generalized Fresnel equations. Many new results are discovered which 

are not found in the lossless case. For example, total internal reflection is never achievable 

due to the loss terms. However, near total internal reflection is achievable in regions of low 

loss and supercritical angles of incidence. Another possibility is that no critical angle occurs 

even though the medium of incidence is optically denser than the medium of transmittance. 

This can happen when the loss of the medium of incidence is much greater than that of the 

medium of transmittance. It is also possible that the real-parts of the complex refractive in- 

dices switch from a normal optically dense to rare transition to the inverted optically rare to 

dense transition when going from the medium of incidence to the medium of transmittance 

within and about the regions of anomalous dispersion. These situations imply that certain 

spectral regions will never support near total internal reflection which is a necessary condi- 

tion of guiding of electromagnetic energy. Lastly, even if an inhomogeneous plane wave is 

at supercritical angles of incidence, near total internal reflection may be lost when both the 

incident and transmitted inhomogeneous plane waves become primarily attenuative. 

The theory of reflection and refraction of pulsed electromagnetic beam fields at a planar 

interface separating two lossy, dispersive dielectric media is also developed. Exact integral 

relationships are derived for both the reflected and transmitted fields within local coordinate 

systems. The basic elements of a pulsed electromagnetic beam field are inhomogeneous 

plane waves. These basic elements are summed by integrals that form the angular spectrum 

representation. Each of the inhomogeneous plane waves of this decomposition can be con- 

sidered separately based on the an assumed linearity of the dielectric media. 

The theory of reflection and refraction phenomena of pulsed electromagnetic beam 

fields at a planar interface is a crucial step in the development of the electromagnetic theory 

of dielectric slab waveguides. Dielectric slab waveguides inherently have two planar inter- 

faces at which electromagnetic energy interacts forming guided modes. These guided modes 

are the sum of two inhomogeneous plane waves that solve certain eigenmode equations. 



These modes are shown to be equivalent to an inhomogeneous plane wave that is repeatedly 

reflected from both planar interfaces such that every other reflection is identical. 

The solution to the dielectric slab waveguide is an important canonical problem because 

it lays the groundwork for more complex problems of pulsed wave propagation in optical 

fiber optic systems and integrated optics. The dielectric slab waveguide contains all of the 

fundamental interrelations between the spatial and temporal properties of the field so that 

its solution will provide the physical intuition that is required to understand the behavior in 

more complex problems. 



CHAPTER I1 

Fundamental Theory 
and 

Mathematical Preliminaries 



In this chapter some mathematical preliminaries that are required to develop the funda- 

mental theory of pulsed electromagnetic inhomogeneous plane wave propagation and pulsed 

electromagnetic beam field propagation are presented. The media considered here are ho- 

mogeneous, isotropic, locally linear, temporally dispersive dielectrics. Media that possess 

electric conductivity will not be considered. The analysis here focuses on the source-free 

form of Maxwell's equations and the general inhomogeneous plane wave solutions in such 

simple, temporally dispersive media. In addition, since the general field solution is an inho- 

mogeneous plane wave with both a complex wavevector and a complex vector amplitude, 

the properties of complex vectors are presented in this chapter. These properties delineate 

the distinction between the direction of phase front propagation and the direction of ampli- 

tude front propagation and permit the mathematical description and interpretation of the var- 

ious polarization properties. 

2.1 Fourier and Laplace Transform Analysis 

An important method for solving the differential space-time form of Maxwell's equa- 

tions is provided by either the Fourier or Laplace transform which take advantage of the lin- 

ear aspect of both Maxwell's equations and the material response. Through the appropriate 

application of either transform technique, the first order linear differential Maxwell's equa- 

tions become simple algebraic equations. These transformed equations may then be solved 

within the associated frequency domain. The appropriate inverse transform operations are 

then applied to the derived frequency domain solutions in order to obtain the space-time do- 

main form of the solution. 

2.1.1 The Ten-~poral Fourier-Laplace Transform 

The temporal Fourier-Laplace transform pair may be defined by the pair of equa- 

A , )  ( , t )  = A.(r,t)ef '"'dt , I 



provided that A(r ,  t )  E L' and that the inverse temporal Fourier-Laplace transform given 

by Eq. (2.1.1 b) is represented by the Poisson summation 

when the transform is of the Fourier type. Here, w  is the temporal frequency variable and 

A(r, w )  is known either as the temporal Fourier-Laplace transform or as the temporal fre- 

quency spectrum of A(r ,  t ) .  The function A(r,  t )  is assumed to be analytic along the path 

of integration except at any finite jump discontinuities. As suggested by its name, the Fouri- 

er-laplace transform behaves as a hybrid form of both the Fourier and Laplace transforms. 

If the function A(r,  t )  E L1 and the temporal behavior at any fixed position r possesses 

neither an explicit beginning nor ending while remaining absolutely integrable, so that 

where M is a finite upper bound then A(r, w )  exists and represents its Fourier transform[60]. 

These conditions also provide a sufficient condition[60] for the existence and uniqueness of 

the inverse Fourier transform in that 9-'[9(A(r,  t ) ] ]  equals A(r,  t )  at any time t  where 

1 A(r, t )  is continuous, or else it equals - [ ~ ( r ,  t - )  + A(r, t  +)] wherever A(r,  t )  has a finite 
2 

jump discontinuity. A more physically realistic sufficiency condition states that the Fourier 

transform exists whenever the function A(r,  t )  represents a physically realizable quanti- 

ty[60]. For the Fourier transform, the contour of integration C ,  denotes the straight line 

path along the real axis in the complex a-plane. 



The Laplace transform applies to the function A(r ,  t )  if it vanishes for t  < 0. In this 

case, it is unnecessary to state initial conditions for the function A ( r ,  t )  at t  = 0' because 

the function is explicitly defined for all time.l The Laplace transform of A(r ,  t )  with respect 

to the time t  is defined here as 

&(A(r,  t ) }  = A(r ,  t)e +"'dt , i 
0 

which is simply a Fourier transform with complex o that is taken over only the positive time 

interval2. Let A 1 ( r ,  t )  be another function of both position and time such that 

but which may not vanish for t  5 0. The Laplace transformEq. (2.1.3) may then be written 

&(A(r,  t ) }  = \ u( t )A1(r ,  t)e+iatdt , 
- 0) 

where u( t )  = 0 for t  < 0 and u(t)  = 1 for t  > 0 is the Heaviside unit-step function. It 

is then seen that, for real o, the Laplace transform of A(r ,  t )  is equal to the Fourier transform 

of u( t )A1(r ,  t ) ,  viz. 

&(A(r,  t ) }  = T,[u(t)a1(r, f ) ]  ; for real o , (2.1.6) 

where the subscript o indicates that it is the Fourier transform variable. The inverse Fourier 

transform of Eq. (2.1.6) then yields 

u( t )A1(r ,  t )  = T; l[&{A(r,  t ) } }  

for real o. 

1. If the function was unknown prior to the turn-on time, then it would be necessary to include the 
temporal initial conditions. This distinction becomes important when the Fourier-Laplace transform 
operates on a temporal derivative. 

2. See Oughstun and Sherman [59] pp. 53-56 for the source of this development. 



For complex w  = w '  + iw", where w '  = X { w )  and w" = S ( w ) ,  the Laplace trans- 

form given in Eq. (2.1.5) becomes 

&{A(r7 t ) ]  = 1 [u( t )Af ( r7  t)e -m"t]e +im'tdt 

The inverse Fourier transform of Eq. (2.1.8) then yields 

u( t )A1( r ,  t)e W " t  = F w T1[&(A(r, t ) } ]  

which may be rewritten as 

Here C, is the straight line contour o = of  + io "  with w  " fixed and a' ranging from - oo 

to + m.  Since A(r7  t )  = u( t )A1(r7  t ) ,  Eqs. (2.1.la,b) then define the Laplace transform 

pair relationship where A(r ,  a )  is the complex tetnporal frequency spectrum of A(r ,  t )  with 

w  = w  ' + i o  ". Notice that w  " = 8 { w  ) plays a passive role in the Laplace transform op- 

eration since it remains constant in both the forward and inverse transformations. Neverthe- 

less, its presence can be important because the factor e -W"' appearing in the integrand of the 

transformation Eq. (2.1.1 a) may serve as a convergence factor when w  ' I  > 0. In particular, 



is just the Fourier transform 5 , . ( ~ ( r ,  t)e -,"']. The Fourier transform of 4 ( r ,  t )  alone is 

m 

which exists provided that 4 ( r ,  t )  is absolutely integrable, viz. that the condition given in 

Eq. (2.1.2) is met. If 4 ( r ,  t )  does not vanish properly at infinity then the absolute integration 

of 4 ( r ,  t )  diverges and the existence of the Fourier transform 5,.[4(r,  t ) ]  is not guaranteed. 

However, if there exists a real number y such that 

00 

where M is a finite, constant upper bound, then 4 ( r ,  t )  is transformable for all w" 2 y and 

its temporal frequency spectrum is given by the Laplace transform given in Eq. (2.1. la); note 

that some authors refer to this as the one-sided Laplace transform[60]. The lower bound 

y, of all of the values of y which satisfy the inequality in Eq. (2.1.13) is called the abscissa 

of absolute convergence for the function 4 ( r ,  t ) .  The region of convergeizce is defined as 

any complex w = w ' + iw " satisfying w " 2 y. The complex frequency spectrum A(r, w ) 

is analytic within the region of convergence. The contour C,is also known as the Bromwich 

contour which guarantees that the inverse Laplace transform given in Eq. (2.1.  lb) uniquely 

determines 4 ( r ,  t )  so long as C, denotes the straight line path given by o = o' + ia, with 

a being a real constant that resides within the region of convergence and where o' = Re(o) 

ranges from negative to positive infinity[62]. 

The temporal partial derivative and convolution integral are two important operations 

that the Fourier-Laplace transform operation itself will encounter when applied to the 



source-free form of Maxwell S equations. The former situation is best illustrated by defining 

the function A ( r ,  t )  as the temporal partial derivative of another function %(r, t ) ,  so that 

The forward Fourier-Laplace transform given in Eq. (2.1.1 a) operates on the function 

and integration by parts then yields 

The integral in Eq. (2.1.16) is just the forward Fourier-Laplace transform U(r, w )  of the 

function CU(r, t ) .  The reality condition[60], which stipulates that a given signal must have 

finite energy, implies that at both the upper and lower limits of integration the signal must 

vanish when w resides in the region of convergence, so that lim CU r  t  e  = 
t+ -  m 

[ ( 9 )  J Oand 

lim [CU(r, t)e +imt]  = 0. The Fourier-Laplace transform of a temporal partial derivative is 
t+ m 

then given by 

For the second special case of a convolution i.ntegra1, consider the function A(r ,  t )  that 

is given by the convolution of %(r, t )  with V^(t) as 

The forward Fourier-Laplace transform (2.1. la )  operates on the function A(r ,  t )  as 



The change of variable 6 t - z then gives 

The inner integral of Eq. (2.1.19) may be identified as the forward Fourier-Laplace trans- 

form ;(a) of v^(t), so that 

Similarly, the integral appearing in Eq. (2.1.20) may be identified as the forward Fourier- 

Laplace transform U(r, o )  of %(r, z). The Fourier-Laplace transform of a convolution in- 

tegral can then be expressed as 

so that the temporal Fourier-Laplace transform of the convolution integral is given by the 

product of the temporal spectra of the individual functions. 

2.1.2 The Two Dimensional Spatial Fourier Transform 

A two dimensional spatial Fourier 1:ransform pair may be defined by the pair of equa- 

A ( ~ ~ . Z ,  o)  = ' 3&t(r7  o)} = I I A(r, o ) e  -ik~'r~dxdy , 



provided that A ( r ,  w )  E L' and that the two dimensional inverse spatial Fourier transform 

given by Eq. (2.1.22b) is represented by the Poisson summation 

.A(r ,o)  -- T z k ( k p r , o ) ]  = lim {+ (1 e-Ek7!!(kT,z ,o)e  
"O (2.n) 

- a, 

Here, 

is the transverse position vector, and 

is the transverse spatial frequency wavevector. The field A ( k p z ,  w )  is known as the two 

dimensional spatial Fourier transform or as the two dimensional spatial frequency spectrum 

of ,R(r, o) .  If the function A(r ,  o )  E L', for any value o, so that 

where M is a finite upper bound then A ( k p z ,  w  exists and represents its two dimensional 

spatial Fourier transform[60]. The two dimensional inverse spatial Fourier transform, writ- 

ten as 9 ~ ' [ T m ( A ( r ,  a)}) ,  equals A(r ,  w )  at any position r  where A(r ,  o )  is continuous. 

The curl operation is operated on by the two dimensional spatial Fourier transform with 

the resultant equivalence 

while the divergence operation is operated on by the two dimensional spatial Fourier trans- 
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form with the resultant equivalence 

2.1.3 The One Dimensional Spatial Laplace Transform with Respect to the 
z-Dimension 

A one-sided spatial Laplace transform pair in the z-variable may be defined by the pair 

of equations[60] 

where 

k = kxi  + kyp + kzi 

is the three-dimensional spatial frequency wavevector. The quantity A(k ,  o )  is known as 

the one-sided spatial Laplace transform of 4 ( k P z ,  a) .  The following two conditions pro- 

vide for the existence and uniqueness of the one-sided spatial Laplace transform: if, for any 

frequency o and any transverse position rT, ~ ( k ~ z ,  o )  is absolutely integrable 

where M is a finite uniform upper bound and where a is some real constant number and if 

.A(krz, o )  only possesses finite discontinuities, then A(k ,  o )  exists and represents its La- 

place transform. If a increases, assuming that the condition given in Eq. (2.1.28) remains 

valid, the resultant integral increases. As a continues to increase, eventually a limit is 

reached due to the inability of the term eaz to keep the integral bounded. This upper limit 

called yb is then related to the behavior of . A ( k P z , o )  for z > zo. As long as a < yb 



(known as the region of convergence[62]) then the integral in Eq. (2.1.28) converges. In 

terms of the one-sided spatial Laplace transform, given in Eq. (2.1.26a), the real constant a 

represents the value taken by 9 { k , )  which must reside within the region of convergence 

9 { k , )  < yb SO that the integral appearing in Ecl. (2.1.26a) converges. The quantity yb is 

sometimes referred to as the upper abscissa of convergence[62]. In this case, the lower ab- 

scissa of convergence is given by y, = - w because the lower limit of integration in Eq. 

(2. I .26a) is finite. The integration contour C must be a Bromwich contour so that the inverse 

one-sided Laplace transform given in Eq. (2.1.26b) uniquely determines ~ ( k ,  z ,  w)[62]. 

The Bromwich contour denotes the straight line path given by k, = - w + ia to 

k, = w + ia with a being a real constant that resides within the region of convergence 

- w < a < yb. The definition of the integration contour C as the Bromwich contour im- 

plies that 8 . - 1 [ k [ A ( k p z ,  w  ) ] I  equals A ( k p z , o )  wherever 4 , ( k p z , o )  is continuous, or 

else it equals 1 [ 4 ( k p z + ,  o )  + A ( k p z - , o ) ]  wherever A.(kpz ,  w )  has a finite jump dis- 2 

continuity. 

The one-sided spatial Laplace transform of the spatial derivative with respect to z is best 

illustrated by defining the function 4 ( k p z ,  w  ) as a spatial partial derivative of another func- 

tion %(kpz ,  o )  as 

The forward one-sided spatial Laplace transform (2.1.26a) operates on the function 

and integration by parts then yields 
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The integral appearing in Eq. (2.1.31) is the forward one-sided spatial Laplace transform 

U(k,w)  of the function %(knz, w ) .  The condition given in Eq. (2.1.28) stipulates that 

lirn [%(k, z ,  o)Cikg] = 0. The forward one-sided spatial Laplace transform of a partial 
2- m 

spatial derivative can then be written as 

2.2 Maxwell's Field Equations in a Lossy, Dispersive Dielectric 

The formulation of the problem has its origin in the macroscopic Maxwell's equations 

together with the proper constitutive (or material) relations that are appropriate for a linear, 

homogeneous, isotropic, locally linear, temporally dispersive dielectric. Throughout this 

thesis both Gaussian and MKS units are employed through use of a double bracket notation 

in each effected equation. If the quantity * appearing in the double brackets (I*II  is included 

in the particular equation, then that equation is in Gaussian (or cgs) units where E~ = 1 and 

po = 1, whereas if that quantity is replaced by unity then that equation is in MKS units. 

Equations with no double bracketed quantities are valid in either system of units. The equiv- 

alency 

is found to be a useful relationship between the Gaussian and MKS unit systems. 

2.2.1 Space-Time Domain Form of the Field Equations 

Maxwell's equations for the macroscopic electromagnetic field vectors in a linear, causal, 

spatially and temporally homogeneous, isotropic, spatially locally linear and temporally dis- 

persive medium are given by[l] 



Here, 6(r7 t )  and 36(r7 t )  denote the electric and magnetic field intensity vectors, respective- 

ly, 9)(r7 t )  represents the electric displacement vector and 93(r7 t )  represents the magnetic 

induction vector. The remaining two quantities, $(r, t )  and e(r7 t ) ,  represent the total macro- 

scopic conduction current density vector and the scalar charge density. For a complete de- 

scription of the electromagnetic field within a ponderable medium, three types of macro- 

scopic response functions of the medium musit be defined: the dielectric response, the 

magnetic response and the conductivity response. Together these three medium response 

functions form the set of constitutive relations. They are defined for ponderable media that 

possesses the attributes of being linear, causal, spatially and temporally homogeneous, iso- 

tropic, spatially locally linear and temporally dispersive[21] as 

Here, ;(t) represents the dielectric permittivity response function, @ ( t )  represents the mag- 

netic permeability response function and G(t) represents the conductivity response function 

of the material, and Bo(r7 t )  denotes the current density solely due to the exciting current 

source. The three functions E^(t), b ( t )  and G(t) contain all the information about the manner 
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in which the medium responds to the applied electromagnetic field vectors 6(r7t )  and 

X(r7 t ) .  In addition, the requirement of causality[l] requires that each response E^(t), b(t) 
and 6( t )  function must be identically zero for all time t < 0, as indicated by the upper limit 

of integration in the constitutive relatioris given in Eqs. (2.2.3a-c). 

2.2.2 Space-Time Domain Form of the Source Free Field Equations in Dielec- 
tric Media 

This research deals with electromagrletic wave propagation within general optical mate- 

rials (such as glass), which implies that the materials of interest are nonmagnetic. Nonmag- 

netic materials possess a magnetic permeability response function that is nonhysteretic, so 

that 

i ( t )  = ,Mw) 7 (2.2.4) 

where p is the constant scalar magnetic permeability. With this substitution, the constitutive 

relation given in Eq. (2.2.3b) becomes 

The dielectric materials examined in this research are considered ideal dielectrics in the 

sense that they possess no conductive loss mechanisms. Conductivity is generally a low fre- 

quency phenomenon and consequently has negligible influence on optical signals as consid- 

ered within the context of this current work. The conductivity response function for an ideal 

dielectric is then given by 

6( t )  = 0 . (2.2.6) 

The vector $(r, t )  appearing in Eq. (2.2.2b) denotes the total macroscopic current density 

due to both conduction currents and an externally supplied current source Bo(r7 t ) .  In any 

source free, nonconducting medium the constitutive relation given in Eq. (2.2.3~) becomes 

$(r7t )  = 0 . (2.2.7) 



This relation is always satisfied in a passive waveguide, and so is valid throughout this re- 

search. The equation of continuity (which follo\vs from the divergence of Eq. (2.2.2b) and 

the time derivative of Eq. (2.2.2~)) 

ae then yields the simple differential equation - := 0, so that if e is zero at any time in the 
at 

infinite past, then 

e( r , t>  = 0 

for all time. 

The source-free form of Maxwell's equations for optical dielectric media are then given 

by 

with the constitutive relations 

(2.2.1 la) 

which are appropriate for any dielectric that is nonmagnetic, nonconducting, source-free, 

linear, causal, spatially and temporally homogenr:ous, isotropic, spatially locally linear and 

temporally dispersive, which will be hereafter referred to as a simple dispersive dielectric. 

Here Ê (t - t) denotes the real-valued dielectric permittivity response function of the gener- 

al dispersive medium. By causality, Ê (t - t )  = 0 for t < t, as exhibited in the upper limit 
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of integration in the constitutive relation given in Eq. (2.2.1 It should be noted that the 

field vectors 9 ( r ,  t )  and %(r, t )  are solenoidal as a direct consequence of the divergence 

relations given in Eqs. (2.2.10 c,d). 

2.2.3 Temporal Frequency Domain Form of the Field Equations 

With the results of 92.1.1 appropriately generalized to apply to vector fields, the Fouri- 

er-laplace transform of the source-free form of Maxwell's equations given in Eqs. 

(2.2.10a-d) yields the set of temporal frequency domain relations 

1 V x E(r, o )  = Ilrllio~(r, a )  , (2.2.12a) 

V - D ( r , w )  = 0 ,  (2.2.124 

V . B ( r , w )  = 0 , (2.2.12d) 

and the constitutive relations given in Eqs. (2.2.11a,b) take the form 

D(r, w )  = i ( o ) ~ ( r ,  W )  , (2.2.13a) 

B(r, w )  = pH(r, o )  . (2.2.13b) 

Here 

F(o) &[E^(t)] = c r ( o )  + i c i (o )  (2.2.14) 

is the complex valued dielectric permittivity and the real-valued functions &,(a) and c i ( o )  

represent the real and imaginary parts, respectively. 

Since the dielectric permittivity response function i ( t )  is real-valued, by definition, its 

Fourier-Laplace transform i(o) is subject to the restriction 

;(a) = i* ( -a*)  , (2.2.15) 

so that ;(a) is Hermitian. This then implies that c r ( o )  is an even function and c i ( o )  is an 

odd function when the angular frequency o is real-valued. 

3. See Oughstun and Sherman 1591 $2.1. 



2.2.4 Poynting's Theorem and the Conservation of Energy 

Energy flow and conservation of energy play an important part in the interpretation of 

electromagnetic field propagation. These interpretations can be obtained from direct manip- 

ulal-ion of the temporal frequency domain form of Maxwell's equations. The general for- 

mulation of this problem begins by talung the scalar product of E(r, w )  with the complex 

conjugate of Eq. (2.2.12b), yielding 

Similarly, taking the scalar product of H*(r, w )  with Eq. (2.2.12a) yields 

The difference between the two relations then yields the diflerential form of Poynting 's theo- 

rem 

v - [ ~ ( r ,  o )  x H*(r, a ) ]  = I l f l l i o [ ~ ~ ( r ,  o )  . B(r, w )  - E(r, w )  . ~ * ( r ,  o ) ]  

The complex Poynting vector S(r, o )  of the electromagnetic field is defined as 

which has the dimensional units of power per unit area. With this definition, the differential 

fonn of Poynting's theorem may then be written as 

V . S ( r , o )  = 2io[um(r, o )  - ue(r, w ) ]  , (2.2.17) 

where the scalar quantities ue(r, o )  and um(r, o )  are known as the harmonic energy densi- 

ties[59] of the electric and magnetic fields (with dimensional units of energy per unit vol- 

umle), defined by the relations 

Integration of Eq. (2.2.17) over an arbitrary voli~me V bounded by a closed surface S and 

appllication of the divergence theorem yields the integral form of Poynting 's theorem 
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where n̂  is the outward unit normal vector to the closed surface S. The integral form of 

Poynting's theorem given in Eq. (2.2.20) is a rigorous consequence of Maxwell's equations 

and is therefore a self-consistent relationship within the framework of classical electrody- 

namics[59]. 

The physical interpretations of the quantities appearing in Eq. (2.2.20) depend to a cer- 

tain degree on hypothesis[59]. The classical interpretation of the conservation of energy 

comes from the real part of the integral'fomz of Poynting 's theorem, viz. 

f f %[s(r ,  o )  - n  ̂ Ida = -b 11 1 9{ue(r,  o )  - um(r, o)}  d3r .(2.2.21) 

S v 

As a consequence of this interpretation, the surface integral on the left-hand side of Eq. 

(2.2.21) is interpreted as the time time-averaged electromagnetic power flow into the region 

V across the boundary surface S, while the volume integral on the right-hand side of Eq. 

(2.2.2 1) is interpreted as the time-averaged rate of energy dissipated by the electromagnetic 

field the region V[59]. 

All media considered in this research are attenuative, which implies that the time-aver- 

aged power flow into any given region V across the boundary surface S must be positive for 

any non-zero field[59]. This then means that 

v 

for all real, non-zero frequencies o > 0. The harmonic electric energy density ue(r, o )  to- 

gether with the constitutive relation given in Eq. (2.2.13a) yields 

1 1  * 
u e ( ~ ~ )  = z~lGll[h (o)E(r ,  0 )  . ~ * ( r ,  o ) ]  , 

so that the imaginary part gives 



Similarly, the harmonic magnetic energy density u,(r, o )  together with the constitutive 

relation given in Eq. (2.2.13b) yields 

and since the magnetic permeability ,u is pure real the imaginary part gives 

3[um(r ,  a)]  = 0 . 

Since the inequality appearing in Eq. (2.2.22) is valid over an arbitrary region and the magni- 

tudt: of the electric field vector is positive, it then follows that 

O E ~ ( O )  > 0 , 

for all real, non-zero frequencies w  > 0.  This condition then requires c i ( o )  to be positive 

when the angular frequency o is real-valued anti positive, so that 

& i ( ~ )  > 0  V 0 > 0 .  (2.2.23a) 

In addition, since that c i ( o )  is an odd function of the real-valued frequency o [cf. 32.2.31, 

then 

~ i ( a )  < 0  V U O O .  (2.2.23b) 

By continuity, it then follows that 

~ ~ ( 0 )  = 0  . (2.2.23~) 

2.2.5 Spatio-Temporal Frequency Domain Form of the Planar Boundary Value 
Problem for the Source-Free Maxwell's Equations 

An electromagnetic field that propagates within a source free region of space originates 

from some isolated current source such as an antenna or a laser. If the behavior of an isolated 

cun-ent source gO(r, t )  is known, then the electromagnetic radiation produced can be ex- 

pressed explicitly in terms of the source. However, the detailed structure of the current 

source is often not known and only the electromagnetic field structure (e.g. the mode pattern 

of a laser source) is known at a planar boundary some distance away from the true source. 



Source Region Separation distance can propagation Region Due 
be many wavelenghts to P s e u d ~ o u r c e  
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I I tx Planar Boundary : 
Acts as Pseudo-Source for 
Electromagnetic Energy 

I 
Propagating to the right. 

Planar Boundary Conditions : 

>> a Eo(x,y, ~1 = E(x,Y,z~, 0 )  
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I 

Figure 2.2.1 Schematic diagram of an unknown isolated current source imbedded within the 
dielectric medium somewhere within the range z < lZ(. The current source is the sole source of 
the electromagnetic energy propagating in the region z > IZI. However, the electromagnetic field 
behavior is only prescribed on the planar boundary z = which serves as a boundary condition 
and acts as a pseudo-source for Maxwell's equations in the source-free half space z > a. 

I 

I 
1 

In this situation, one has a planar boundary value problem for Maxwell's equations that is 

valid in the region beyond the known planar boundary, as indicated schematically in 

Figure 2.2.1. The known planar boundary values act as a pseudo-source term that drives 

the electromagnetic fields which propagate to the right of that boundary. 

I 

I 

I 

I 

Application of the two-dimensional spatial Fourier transform of the curl and divergence 

operators given in Eqs. (2.1.25a,b) to the temporal frequency domain form of the source- 

free form of Maxwell equations given in Eqs. (2.2.12a-d) yields the set of mixed space and 

spatio-temporal frequency relations 
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and the constitutive relations given in Eqs. (2.2.13a,b) take the form 

The forward one-sided spatial Laplace transform, as defined in Eq. (2.1.26b), of Fara- 

day's Law given in Eq. (2.2.24a) yields 

m 

Application of the transform of a partial spatial derivative given in Eq. (2.1.32) to Eq. 

(2.2:.26) then yields 

where, 



Ex&p @ ) E ~ ~ ( k p z o ,  a )  , (2.2.28a) 

EY,(kp 0 )  E ~ y ( k p z o , o )  , (2.2.28b) 

Ez,(kp o )  Ez(kp ~ 0 ,  a )  , (2.2.28~) 

and 

EO(kp o )  - E ~ , ( ~ ~ , O F  + ~ ~ , ( k ~ o b ;  + Ez0(kp o i  = E(kpz0 ,  w )  . (2.2.29) 

Similarly, from Amp2re S Law given in Eq. (2.2.24b) one obtains 

where, 

Hx0(kp o )  E ~ ~ ( k p  zo, 0 )  , (2.2.3 la) 

Hy0(kp a )  ~ y ( k p z 0 , ~ )  , (2.2.3 lb) 

~ z , ( k p  @ )  E ~ z ( k p  z0, a )  , (2.2.31~) 

and 

HO(kT, o )  = Hx0(kp oF + Hy,(kp ob; + HzO(kp o)i = H(kpz0,  o )  . (2.2.32) 

The forward one-sided spatial Laplace transform of Gauss' Law (2.2.24~) yields 

= ik . D(k,w) - ~ ~ ~ k ~ o ) e - ~ ~ ~ o  , (2.2.33) 

where, 

~ z , ( k p  a )  E ~ z ( k p z 0 ,  a )  . (2.2.34) 

Similarly, from Eq. (2.2.24d) one obtains 

= ik B (k ,o )  - ~ , ( k ~ o ) e - ~ ~ ~ o  , (2.2.35) 

where, 

Bz,(kp m)  r ~ z ( k p z 0 ,  a )  . (2.2.36) 



'These expressions then yield the spatio-temporal frequency domain form of the source- 

free form of Maxwell's equations when the field is specified on the plane z = zO, viz. 

ik B(k, w )  - ~ , ( k ~ z ~ ,  ~ ) e - ' ~ J o  = 0 , (2.2.37d) 

and the constitutive relations given in Eqs. (2.2.25a,b) take the form 

D(k, w )  = E(o)E(k ,o )  , 

B(k, a )  = pH(k, a )  . 

2.3 Theoretical Description of Dielectric Dispersion; The Double Reso- 
nance Lorentz Model 

In the previous section, a linear relationship between the applied electric field and the 

induced electric flux density is implied by the constitutive relation D(r, a )  = F(o)E(r, a ) .  

A complete solution to the macroscopic Maxwell 1s equations requires this auxiliary equation 

which specifies the manner that the host medium responds to an applied external electric 

field. The Maxwell's equations are then complete with an appropriate specification of the 

proportionality factor represented by the complex permittivity E(o). The proper description 

of ;-(a) must model the observed dispersive behavior of the given dielectric medium. The 

choice of dielectric media for this research is restricted to media where there exists neither 

free charge nor conduction mechanisms. Finally, the linear constitutive relation 

DO, a )  = E(w)E(r, a )  assumes that the field strengths involved are always sufficiently 

small in order to make any nonlinear effects negligible. This in turn implies that the principle 

of superposition applies throughout the analysis. 
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The Lorentz model describes the frequency dispersion of the complex permittivity, and 

hence of the complex refractive index n ( w )  - $*, over the entire temporal frequen- 

cy domain considered in this research, where it is also assumed that p = po. The Lorentz 

model was chosen for its ability to accurately model the observed dispersive behavior of 

glass (the most commonly used dielectric material in dielectric waveguides) and other types 

of dielectrics within the infrared, visible and ultraviolet portions of the electromagnetic spec- 

trum. The model was also chosen for its inherent simplicity. Further, the Lorentz model 

satisfies the Kramers-Kronig relations[ I ] so that it is causal. The Lorentz model is classical 

and therefore is inherently heuristic; quantummechanical theory is required in order to accu- 

rately explain the true origin of the dispersion mechanisms. For example, the location of the 

resonance frequencies and the strength of the spectral lines cannot be derived by classical 

methods[63] but can, in principle, be obtained quantum mechanically. 

The type of electromagnetic field of interest to this research has its spectrum in the ex- 

tended optical regime from the far infrared (IR) to the hard ultraviolet (UV). For this reason, 

the dielectric dispersion of glass will be modeled only in this spectral region. Optical glass 

typically possesses two absorption bands or resonances in this extended optical regime; one 

resonance is in the IR range due to induced motion of ions and the other resonance is in the 

UV due to electronic transitions of the constituent atoms. Consequently, a double resonance 

Lorentz model sufficiently and accurately describes the complex refractive index's frequen- 

cy dispersion. 

2.3.1 The Lorentz Model 

Under the assumptions of a negligible magnetic field and an oscillation amplitude small 

enough that the electric field may by evaluated at the electron's average position the dynam- 

ical equation of motion of a harmonically bound electron driven by an external electromag- 

netic source becomes[l] 



whexe m is the electron's mass, 6 is a phenomenological damping constant, w;' is the un- 

damped angular frequency of oscillation related to the harmonic restoring force and where 

E,,,,(r, t )  is the local complex time-harmonic e,lectric field oscillating at the angular fre- 

quency w. If the MosottiJield[63] E,loc(r, t) - E,(r, t) + Il4xllPw(r, t) is substituted for 
3&0 

the local electric field, Eq. (2.3.1) becomes 

where the effect of the term Il4xllP,(r, t) has been subsumed into the resonance frequency 
3&0 

since P,(r, t) = - Ner where N represents the number density of electrons. The factor 

-- Y4xllNe2 in Eq. (2.3.3) represents a small correction factor to the resonance frequency wi t  for 
3nw 

transparent or non-optically dense materials such as glass. For this reason, some authors 

elect to neglect this factor. However, the form of the final equation for the dielectric constant 

appears unaltered whether or not the correction factor "4x"e2 is included. The difference 
3m&o 

between w;' and w, becomes a moot point since the resonance frequency either w;' or a, can 

onl:y be determined in the classical theory via a numerical fit to experimental data. Inclusion 

of this correction factor merely serves to illustrate the microscopic details of the problem. 

With the complex time-harmonic field oscillating at the angular frequency w as e-',', 

the elementary dipole moment due to this harmonically bound electron becomes[63] 



The definition of the macroscopic polarization vector P,(r, t )  = & i e ( w ) ~ , ( r ,  t ) ,  where 

ie (a)  is the complex electric susceptibility, together with the assumption of a uniform dis- 

tribution N of elementary dipoles P,(r, t )  = Np,(r, t )  combines with Eq. (2.3.4) to yield 

so that the complex electric susceptibility is given by 

In general, there are many different species of electronic oscillators; one for each electron 

in each atomic and/or molecular component of the dielectric substance. For each type of 

oscillator, let N, represent the number density with binding frequency aj and phenomeno- 

logical damping constant $. The definition of the relative complex dielectric constant 

-- '(a' - 1 + 14nlge(a) together with the Eq. (2.3.5) for the complex electric susceptibility 
&o 

ie(a) then yields[63] 

An oscillating ionic system can also be modeled with this equation by reinterpreting N, as 

the density of the oscillating ionic system, qj as the charge of a single species of the oscillat- 

ing ionic system and mi as the reduced mass of the ionic system. 

The complex refractive index is obtained from Eq. (2.3.6) as 

where 



where bj is the plasma frequency. The j'th Lorentz oscillator is then completely described 

by specifying the three parameters wi, bj and $. The real part of Eq. (2.3.7) yields the real 

refractive index of the medium and the imaginary part is related to the extinction coefficient. 

The Lorentz model given in Eq. (2.3.7) provides an accurate representation of the electronic 

and atomic contributions to the complex refractive index[63]. 

The resonance frequencies a, and the phenomenological damping constants dj  are speci- 

fied as positive real constants, so that the poles of Eq. (2.3.7), given by 

o p ~ l e ~  = -idj k (a: - d:) , (2.3.9) 

resilde in the lower half of the complex w-plane. This means that the Lorentz model is analyt- 

ic in the upper half of the complex a-plane so that an inverse Fourier transform of i(a) 

yields a causal dielectric permittivity response function E^(t), i.e. E^(t) = 0 for all negative 

time t < 0. 

2.3.2 The Double Resonance Lorentz Model for Glass 

'The bandwidth of the signals considered in this research resides within the extended opti- 

cal regime from the far infrared to the hard ultraviolet. In general, glass possesses two ab- 

sorption bands or resonances in this extended optical regime: one resonance in the far in- 

frared range due to induced motion of ions, and one resonance in the hard ultraviolet due to 

electronic transitions of the constituent atoms. The frequency dispersion due to these two 

resonance structures is modeled here using a double resonance Lorentz model. 

A simple modification of Eq. (2.3.7) yields the double resonance Lorentz model for the 

corr~plex refractive index, viz. 



The parameter E ,  lim - E(W)repre~ent~ a correction factor of the Lorentz model for oth- 
w B o 2  &o 

er resonances that exist. If the other resonances are sufficiently far away from the IR and 

UV resonances then their contributions to the refractive index appear constant within the 

modeled spectrum as assumed in Eq. (2.3.10). 

It should be noted here, that there exists some discrepancies with only using two reso- 

nances. If a model completely and physically describes a medium's refractive index then 

certain sum rules must be satisfied[2]. Sum rules are derived using the Kramers-Kronig rela- 

tions which follow from little more than the assumption of causality (whose basis is the ana- 

lyticity of n(o) in the upper half o plane)[l]. The sum rules dictate certain properties that 

a proper dispersion relationship must possess. Although the double resonance Lorentz mod- 

el is causal (i.e. it's analytic in the upper half o plane), it fails to satisfy the zero frequency 

sum rule, the f-sum rule and the average over the real part of the refractive index. This sug- 

gests that there exist additional pieces required to completely specify the refractive index 

over the entire electromagnetic spectrum. By examining real glass data over the entire spec- 

tral domain, the low frequency plateau and the infinite frequency asymptote (the refractive 

index must asymptotically approach 1) are not described by the double resonance Lorentz 

model given in Eq. (2.3.10). The complete description of dielectric dispersion can be written 

by separating the double resonance Lorentz model piece from the low and high frequency 

behavior, viz. 

Debye's relaxation and any Lorentz lines that may exist below oo describes the low frequen- 

cy behavior, and Lorentz lines above o2 describes the high frequency behavior. The spectral 

content of the real pulses considered in this research do not significantly spread past the ex- 



tentled optical regime. So, the addition frequency behavior of the complex refractive index 

which is not modeled only slightly modifies the precursor behavior. 

Values for the two resonance frequencies oo and o2 are selected to lie in their respective 

spectral regions: the far infrared and hard ultraviolet. Then reasonable values are chosen to 

represent the phenomenological damping constants, plasma frequencies and E , . Alterna- 

tively, the double resonance Lorentz model is numerically fit to experimentally measured 

refractive index data. The end result of the fit defines numerical values of the Lorentz param- 

eters ( a j ,  bj and aj for each resonances and E m) that accurately resemble observed physical 

data. The Levenberg-Marquardt Method "has become the standard of nonlinear 

least-squares routines"[67]. For this reason, it has been chosen as the numerical data model- 

ing method for this research. The Levenberg-Marquardt method and the C routines given 

in ref. [67] were written for real data and functions. This necessitated a careful reformulation 

of tlhe method and consequently a revision of the C routines to account for complex data and 

functions. The Levenberg-Marquardt method uses the merit function as a maximum li- 

kelihood estimator defined as 

where n ( w ,  a )  represents the double resonance Lorentz model given in Eq. (2.3.10) as a 

function of the Lorentz parameters 

- 
a ( ~ 0 ,  bO, 60, a ,  b2, 62, E m ]  . 

Here, ni represents the experimentally measured refractive index data, oi represents the fre- 

quency where the experimental data was measured and ai represents the experimental data's 

standard deviation. Basically, the Levenberg-Marquardt method executes as an iterative 

procedure which improves a trial solution by a steepest descent method when the merit func- 

tion's value deems that the trial solution lay far away from convergence. The procedure 

smoothly converts to an inverse Hessian method as decreases. The Hessian method 



Table 2.3.1 Numerically determined double resonance Lorentz parameters for a fluoride 
(CLAP) glass found by applying the complex Levenberg-Marquardt nonlinear least-squares fit 
algorithm. 

Double Resonance Lorentz Model Parameters 

approximates Eq. (2.3.13) as a quadratic and then minimizes the equation to find an accurate 

trial solution as convergence is approached. The iteration procedure stops when x2 effec- 

tively stops decreasing. 

E m  

1.9938 

As an example, the double resonance Lorentz model given in Eq. (2.3.10) was numeri- 

cally fit to the fluoride glass CdF2 - LiF - AlF3 - PbF2 (which is referred to as a CLAP 

glass)[64] using the Levenberg-Marquurdt method. The calculated double resonance Lo- 

rentz parameters are presented in Table 2.3.1. The resultant optimized Lorentz model is il- 

lustrated in Figure 2.3.1 and the corresponding error of the numerical fit is presented in 

Figure 2.3.2. The standard deviations were assigned the value of unity due to their unavail- 

ability and the numerical fitting routine minimized the merit function as 

x2 = 7.4017 x 10 -7 from 29 data points. A maximum likelihood estimate of the variance 

x2 is a2 = - where N is the number of data points, which yields a value of 
N' 

Resonance 
Number 

j 

0 

2 

a2 = 2.4672 x for the variance. In this particular example, experimental data was 

not available for the absorption spectra. The fitting program automatically compensates for 

this deficiency by minimizing the phenomenological damping constants 6,. The impetus of 

this procedure is the assumption that a optical glass manufacture attempts to create a high 

quality product by minimizing loss, therefore minimizing the loss represented in the Lorentz 

4 
(10 13rad/sec) 

4.9555 

143.41 

(1014rad/sec) 

1.7412 

91.448 

bj 

(1014rad/sec) 

1.2155 

67.198 



n,(W 
- n,(w) 

Experimental data 

Figure 2.3.1 Index of refraction data for a fluoride (CLAP) glass plotted along with the com- 
plex Levenberg-Marquardt nonlinear least-squares fit of the double resonance Lorentz model 
with the numerically determined Lorentz model parameters E, = 1.9938, COO = 1.7412~ 10f4Hz, 
bo = 1.2155~1014Hz, 60 = 4.9555~1013Hz, C O ~  = 9.1448~1015Hz, b2 = 6.7198~10'5Hz, a2 = 
1.4341x1015Hz. 

moldel simulates manufacturing goals. Of course, if absorption spectra data were available, 

thein the fitting program would incorporate that data in the algorithm. The minimum loss, 

where loss is defined as 3[n(o) F], that occurs within the spectral range of the plotted data 

is155.46 m - ' at o = 1.0 x 1013Hz and the minimum loss that occurs within the spectral 

range of the data is 1.2002 x lo4 m -' at o = 7.1340 x 1014Hz. In contrast, the maxi- 

mu:m loss that occurs within the spectral range of the plotted data is 1.7867 X lo7 m -' at 

o = 9.4044 x lol'Hz and the maximum loss that occurs within the spectral range of the 

data is 7.7676 x 10' m - I  at o = 4.7863 x lol'Hz. 



Figure 2.3.2 Error of the Levenberg-Marquardt nonlinear least-squares fit of the double reso- 
nance Lorentz model parameters to the index of refraction data for a fluoride (CLAP) glass with 
the found Lorentz model parameters E, = 1.9938, wo = 1.7412x10~4Hz, bo = 1.2155x1014Hz, 
ti0 = 4.9555x10'3Hz, w2 = 9.1448~101SHz, b2 = 6.7198~101SHz, ti2 = 1.4341~10 '~H~.  

2.4 Properties of Complex Vectors 

Certain properties of complex vectors must be addressed in order to evaluate certain 

properties of complex wavevectors and the particular properties of an electromagnetic 

field's polarization state. Any complex vector c  can be written in terms of two real vectors 

as 

c = p + i q ,  

where p  = R { c )  and q  = 3 { c ) .  The plane that contains both p  and q  defines the charac- 

teristic plane of the complex vector c .  If the real vectors p  and q  satisfy p  x q  # 0, then 

the complex vector c  can be written in terms of two orthogonal real vectors a and b, viz. 



c = p  + iq = (a  + ib)ei@ . (2.4.1) 

Exploiting the orthogonality of a and b allows the the real-valued phase quantity $J to be 

written as 

The magnitudes of the vectors a and b are readily obtained from the previous two equations 

as [:59] 

If p x q = 0 then the complex vector takes on the polar form 

it3 c = p + i q = ~ e  a ,  (2.4.4) 

where Q and 8 are real valued scalars and where the characteristic plane of c is now undeter- 

mined. 

Given two complex vectors c l  and c2, a vanishing inner product leads to some interesting 

consequences not found in the pure real counterpart4. Let the two complex vectors be written 

as cl  = pl  + iql and c2 = p2 + iq2, whose inner product yields 

' 1  ' C 2  = P1 . P2 - 41 42 + i b1  ' 42 + P2 ' 41) . 
When cl  c2 = 0 the the real and imaginary parts separately equal zero, which produces 

the following two conditions 

Pi ' P2 = 41 ' 42 7 PI ' 42 = -P2 ' 41 - (2.4.5) 

The: subsequent analysis naturally divides into two classes: when the real vector component 

pairs p l ,  q l  and p2, q2 are not parallel and when at least one pair is parallel. 

4. See Caviglia and Morro 169) 0 1.2 for a additional information on this development. 
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For the first class, the real vector component pairs satisfy pl x ql # 0 and 

p2 x q2 f 0 which permit cl and c2 to be expressed in the form of Eq. (2.4.1) 

c1 = pl + iql = (a1 + ibl)ei@l , a , . b l = O ,  (2.4.6a) 

c2 = p2 + iq2 = (a2 + ib2)ei@2 , a 2 . b 2  = 0 .  (2.4.6b) 

Consequently, the conditions given in Eq. (2.4.5) become 

al  . a 2  = b l .  b2 , al . b2 = -a2 bl . (2.4.7) 

First, consider the case when the characteristic planes of cl and c2 are coplanar, i.e. the plane 

that contains al ,  bl also contains a2, b2, then c2 can be written as a linear combination of 

a l ,  b given as 

c2 = [pa, + Abl + i(val + flbl)]ei@2 , p,A,v,fl 

Under the condition of a vanishing inner product, cl c2 = 0, the vector c2 becomes 

Next, consider the vectors pl x ql and p2 x q2 which are perpendicular to the characteris- 

tic planes of cl and c2, respectively. Their inner product produces5 

61 41) . 6 2  42) = 61 . pz)(qi . 42) - 61 . 42)62 . 41) 

Under the condition of a vanishing inner product, cl c2 = 0, the inner product of the or- 

thogonal vectors yields the following strictly positive inequality 

2 

61 41) . 6 2  42) = 61 . ~ 2 )  + 6 2  . 4112 > O . (2.4.8) 

The inequality given in Eq. (2.4.8) establishes that the characteristic planes are never or- 

thogonal and that the vectors pl  x ql and p2 x q2 are either parallel or at an acute angle 

due to conditions given in Eq. (2.4.7) together with the fact that the real vector component 

pairs are not parallel. 

5. See Phillips [61] p. 18 (27). 



the 

of c2 

/ c2=[a2+ib2)e i42 

a characteristic plane of c2 

Figure 2.4.1 If cl is expressible in polar form, then the vector a1 is orthogonal to both vectors 
b2 and a2. 

For the second class, consider the case when at least one of the real vector component 

pairs is parallel which permits at least one of the two complex vectors to be expressed in polar 

fonn of Eq. (2.4.4). For example, let cl satisfy pl x ql = 0, so that 

c1 = p1 + iql = eleie&l , 

where the characteristic plane of cl is now undetermined and, without loss of generality, let 

c2 be given as in Eq. (2.4.6b). Consequently, the conditions given in Eq. (2.4.5) become 

a l - a 2 = 0  , a l . b 2 = 0 .  (2.4.9) 

Therefore, by the conditions given in Eq. (2.4.9), ifat least one complex vector is expressible 

in polarform then that vector is orthogonal to both of the orthogonal real vector components 

of the other complex vector, as depicted in Figure 2.4.1. 

These cases demonstrate that great care must be taken when interpreting the geometric 

consequences of a vanishing inner product of a pair of complex vectors. Complex vector 

space analysis labels two vectors cl  and c2 as 'orthogonal', in a general sense, under the 



condition cl . c2 = 06. However, without any other supplementary information, the label 

'orthogonal' leads to an apparently ambiguous geometrical meaning. 

2.5 lnhomogeneous Plane Wave Solution of Maxwell's Equations in an 
Infinitely Extended Dielectric with Complex Permittivity 

The purpose of the present section is to determine the general inhomogeneous plane 

wave solution of Maxwell S equations within source free regions of space. This general solu- 

tion will be utilized later to develop the generalized reflection and refraction laws and the 

generalized Fresnel equations. 

Upon taking the curl of the the first two space-frequency Maxwell's equations Eqs. 

(2.2.12 a,b) and using the corresponding constitutive relations given in Eqs. (2.2.13a,b) one 

obtains the pair of relations 

Since, the field vectors D(r, o )  and B(r, o )  are solenoidal, their divergences vanish in Eqs. 

(2.5.la,b). Cross-substituting Eq. (2.2.12b) into Eq. (2.5.la) and Eq. (2.2.12a) into Eq. 

(2.5.lb) yields the homogeneous vector wave equations known as the homogeneous vector 

Helmholtz equations 

V' + k  (o)  E ( r , o )  = 0 , [ -'I 
Here 

-2 
k  (o)  - n2(o)ki  (2.5.3) 

- 
where k ( o )  is the complex wavenumber of the electromagnetic disturbance with angular fre- 

6. cf. Cater 1721 $5-1. Cater defines the inner product as cl  . c2 = pr . p2 + ql . q2 + i(p1 . q2 - ql . pz) 
s o  that the vector space is be unitarian. That is, the vector space has a metric defined such that CI cl 
is strictly positive. However, similar geometric consequences occur a s  a result of this metric. 



quency w that is propagating in the medium with complex refractive index 

0 .  wh'ere ko = is the vacuum wavenumber and c = - JC'J  is the vacuum speed of light. 
6 

Let the complex wavenumber be defined as 

where p(o) r ~k(o)]  is thepropagation factor and a (w)  - S k(w) is the attenuation [ -  I 
factor. Substitution of Eq. (2.5.5) into Eq. (2.5.3) yields 

which, upon equating the real and imaginary parts, yields the pair of equations 

1 2  p2(@) - a2(u) = lllllm c PE~(U)  Y (2.5.6a) 

where Er(w) = R(E(o)] and E ~ ( w )  = s(E(w)]. It is possible that Eq. (2.5.6a) is negative 

for an arbitrary dielectric within the absorptive spectral regions, however, for optical glass 

Eq. (2.5.6a) is positive in the extended optical regime since it is assumed to have a low attenu- 

ation factor a(w). The conditions given in Eqs. (2.2.23a,b) demand that Eq. (2.5.6b) be- 

haves as an odd function of w, such that 

Up'on solving Eq. (2.5.6b) for p(w) and substituting the result into Eq. (2.5.6a), one obtains 

the fourth order equation 

with the solution 



where E ~ ( o )  is allowed to be negative with no alteration to the above two equations7. The 

quantity I o I in Eq. (2.5.8b) effectively selects the branch cut for Eqs. (2.5.4) and (2.5.5) 

which lies along the positive real axis. This branch cut causes the propagation factor and 

the real part of the refractive index to be odd functions of frequency o, viz. 

and the attenuation factor and the imaginary part of the refractive index to be an even func- 

tions of frequency o, viz. 

a(@),  ~ ( h ( o ) )  > 0 , v , (2.5.9b) 

since, physically, for a lossy medium a(o)  must always be positive because it represents 

loss. 

A general solution to the homogeneous vector Helmholtz equations given in Eqs. 

(2.5.2a,b) in an infinitely extended lossy medium is given by the inhomogeneous plane 

waves 

- + - - 
E(r, o )  = E + (o)e ik  ( O )  " + E - (o)e ik  (01 " , (2.5.10a) 

- + 
H(r, o )  = H + (o)e ik  6)" + H - (o)ei-(a) .r  . (2.5. lob) 

Let the position vector 
A A 

r = u u ^ + v v + w w ,  (2.5.11) 

be defined in an arbitrarily oriented rectangular coordinate system (u ,  v, w) with corre- 

-* 
sponding unit vectors (û , c, G).  Here the complex wavevector k (o)  describes the planar 

7. cf. Oughstun and Sherman [59] 52.3 pp. 39-40. 



phase and amplitude front propagation of the electromagnetic inhomogeneous plane wave 

disturbance. The complex wavevector must satisfy 

- * 
The real and imaginary parts of the complex wavevector k (o) have precise physical 

inte:rpretations. Let the complex wavevector be defined in terms of two real vector quantities 

as 

- * 
k (o) = /?*(o) + i a f ( o )  . (2.5.13) 

Here the propagation vector /? * (o) = 3 k (w)  specifies the direction of propagation [-* I 
of the planar phase front for o > 0 while the attenuation vector a * (a )  = 3 k (o) i* I 
speicifies the direction of propagation of the planar amplitude front for any o .  When o < 0 

the phase factor in Eqs. (2.5.10a,b), /?* (o) . r - ot ,  establishes that the surfaces of 

constant phase propagate in the direction -/?* (o) for o < 0. The propagation vector 

/? * (0) is nonnal to the surfaces of constant phase such that 

/? * (o) . r = constant , 

while the attenuation vector a *(a) is normal to the surfaces of constant amplitude such that 

a *(o) r = constant , 

where r is the position vector as defined in Eq. (2.5.11). Substitution of Eq. (2.5.13) into 

Eq. (2.5.12) yields 

2 -2 
P*(o)l - la*(o)12 + 2i/?*(o) a * ( o )  = k (o) . 

The imaginary part of Eq. (2.5.14) must then obey the condition given in Eq. (2.5.7), viz. 

Therefore, the angle between /? * (0) and a *(a) is less than ' for o > 0. Although an 
2 



inhomogeneous plane wave decays at its maximum rate in the direction of a * (o), the condi- 

tion given in Eq. (2.5.15) demands that the amplitude also decays in the direction of /? * (o) 

for o > 08. B* (4 Define a position vector in the direction of /? * (o), viz. ra = IS * (o),ra. 

Therefore, the amplitude portion of Eqs. (2.5.10a,b) becomes 

B i b )  
, -a i (w) .r ,  = , - a * ( w ) . , - r  (0) (2.5.16) 

so that the amplitude decays in the direction of /?*(a) as raincreases for o > 0. However, 

the condition given in Eq. (2.5.15) for o < 0 together with the fact that the direction of 

phase front propagation is -/? * (o) for o < 0 demands that the amplitude decays in the 

direction of -/?*(a) as ra increases by virtue of Eq. (2.5.16). 

In the most general sense, for some complex frequency o, all but one of the various com- 

-* 
plex components of k (o) may be chosen arbitrarily whereas the relationship given in Eq. 

(2.5.12) constrains and wholly determines the remaining complex component9. For exam- 

ple, let the complex wavevector be defined in the same (u, v, w) rectangular coordinate sys- 

tem as the position vector, viz. 

where k, and k, are known as the transverse wavenumbers which are the arbitrarily chosen 

-* 
components of k (o). The transverse wavenumbers are defined to be real-valued. Conse- 

quently, the remaining quantity y(o), which is known as the longitudinal wavenumber, is 

complex-valued since it is defined through the complex relationship given in Eq. (2.5.12). 

Substitution of Eq. (2.5.17) into Eq. (2.5.12) defines the longitudinal wavenumber as the 

principal branch of the expression 

8. See  Caviglia and Morro 1691 31.3 p. 10. 

9. See Stratton 1681 p. 363. 



S[k2(o) - k:] 
f (z) = +(z)% 

0 n-> 

Figure 2.5.1 The first sheet of the Riemann surface and its range. The sheet divides into two 
distinct regions depending on the sign of the real-valued frequency w as indicated by the differ- 
ently shaded areas. 

where k$ = k: + k;. 

Examining the nature of the square y2(w) of the complex longitudinal wavenumber re- 

veals that the first sheet of the Riemann su$ace separates into two distinct regions depending 

of the sign of the real-valued frequency o. The quantity k$ which is pure real by definition, 

together with Eq. (2.5.6b) and the condition given in Eq. (2.5.7) yields 

- 2  

] 1 1 : ~  2 i > 0 9v w > 0 a k (o) - k2, = 
E ~ ( w ) < O  , V o  c o .  

The first sheet of the Riemann su$ace then divides into two distinct regions, viz. 

Consequently, the range of first sheet of the Riemann su$ace divides accordingly into 

The first sheet of the Riemann su$ace and its range are both illustrated in Figure 2.5.1. 

60 



Based on the results of Eq. (2.5.20), when o > 0 then R [ y ( o ) }  > 0 which in turn esta- 

blishes that the surfaces of constant phase propagate along the positive tG direction. Similar- 

ly, when o < 0 then ~ ( ~ ( o ) }  < 0 which still establishes that the surfaces of constant phase 

propagate along the positive 6 direction because the direction of phase front propagation 

- + 
is -B + (a)  for w < 0. Consequently, k can be appropriately labeled the forward complex 

wavevector for any frequency o. 

- + - + 
Therefore, the vector field pair { E + (w)ek (O)", H + (w)ek (O).') represents an inho- 

mogeneous plane wave disturbance propagating into the positive half-space w > 0 in a 

-+ 
direction specified by the complex wavevector k (a).  Analogously, the other vector field 

-- - - 
pair { E-(o)eik (O)", H - (o)e ik  (O)") represents an inhomogeneous plane wave propagat- 

.., - 
ing into the negative half-space w < 0 in a direction specified by k (o). Let the complex 

wavevector be given again by Eq. (2.5.17) so that the propagation vector may be written as 

and the attenuation vector may be written as 

a * (o) = f 8 { y ( o ) } ~  . (2.5.21b) 

An example of these propagation and attenuation vectors is presented in Figure 2.5.2. As 

illustrated, the propagation and attenuation vectors do not necessarily point in the same 

direction. When B * (o) and a *(a)  are not collinear, the general wave solution is referred 

to as an inhomogeneous plane wave, otherwise the general wave solution is a homogeneous 

plane wave. 

2.5.1 The Transversality Conditions 

Either inhomogeneous plane wave solution of Eq. (2.5.10) may be represented by the 

vector field pair 



Figure 2.5.2 An example of an inhomogeneous plane wave phase front propagating in the 
direction specified by the propagation vector. The attenuation vector is directed along the posi- 
tive w-axis. The quantities 6, 5 and 5 represent the direction cosines for the propagation vector. 

H ( r , o )  = H ( o ) e  +ik*(o).r (2.5.22b) 

If Eq. (2.5.22b) is substituted into Eq. (2.2.12b) using Eq. (2.2.13a), then the electric field 

intensity can be written in terms of the complex wavevector and the magnetic field intensity 

as 

llcll -* E ( r , o )  = - 7 k  ( w )  x H ( r , o )  , 
E ( ~ U  

wh:ile substitution of Eq. (2.5.22a) into Eq. (2.2.12a) using Eq. (2.2.13b) allows the magnetic 

field intensity to be expressed in terms of the complex wavevector and the electric field inten- 

sity as 



-* 
Finally, the dot product of k (o) with Eqs. (2.5.23) and (2.5.24) yields 

-* 
k ( o )  E(r ,o)  = 0 , 
-* 
k ( o )  . H(r ,o)  = 0 , (2.5.25b) 

and the dot product of H(r, o) with Eq. (2.5.23) yields 

H(r ,o)  - E(r ,o)  = 0 . (2.5.25~) 

Eqs. (2.5.25a<) together with relations Eqs. (2.5.23) and (2.5.24) are known as the trans- 

versality conditions. 

2.5.2 Direction Cosine Form of the Inhomogeneous Plane Wave 

Consider the inhomogeneous plane wave spectral components of the electromagnetic 

field vectors in the positive half space as given in Eqs. (2.5.22a,b), each with the complex 

w avevector 

which has the complex direction cosine representation[59] 

- 
k + ( o )  = k(w)[pu^ + q; + m i ]  (2.5.27) 

with the complex wavenumber 

k(o)  = P(o) + i a (o)  = G(o)ko (2.5.28) 

- - - 
where p = k,/k(o), q = k,/k(o), and m  = y(o)/k(o). The quantities P(o) and a(@) 

are not to be confused with the magnitudes of the propagation and attenuation vectors. Since 

both ku and k, are chosen to be real valued, then p = + ip" and q = q'  + iql'must both 

be complex valued with 



The complex direction cosine m = m' + im" is then given by the principle branch of the 

expression 

With these results, the spatial phase term appearing in the exponential factor of the inhomo- 

geneous plane wave disturbance given in Eq. (2.5.22) is seen to be given by 

- +- 
k (o) . r = k,u + k,v + y(o)w 

This then represents the spatial part of the inhomogeneous plane wave disturbance of angular 

frequency o whose surfaces of constant amplitude w = constant are, in general, different 

from the surfaces of constant phase 

w = constant . (2.5.33) 

The attenuation vector for the inhomogeneous plane wave disturbance is directed along the 

c as before, while the propagation vector's direction is specified by the real-valued vector 

with magnitude 

This direction is then completely specified by the set of real-valued direction cosines 



as illustrated in Figure 2.5.2. 

2.5.3 The Poynting Vector and the Time Averaged Power Density of an Inhomo- 
geneous Plane Wave 

The phase fronts and amplitude fronts of an inhomogeneous plane wave propagate in dif- 

ferent directions. The question concerning the manner in which power flows for such a wave 

naturally arises. The complex Poynting vector for an arbitrary electromagnetic field was de- 

fined in Eq. (2.2.16). Utilizing the transversality condition given in Eq. (2.5.24) for an inho- 

mogeneous plane wave, the complex Poynting vector becomes 

1 c2 1 S(r, o )  - - 11-11 - ~ ( r , o )  X k (o) x ~ * ( r ,  o )  2 4n P o  [-** 

where the application of thevectoridentity A  x (B x C )  = B(A - C )  - C(A . B )  yields 

Let the complex wavevector be defined in terms of Eqs. (2.5.21a,b) so that 

and 

k* (o) . E ( r , o )  = [EU(o)ku + Ev(o)kv k E W ( o ) y * ( o ) ] e  +ik* (o) . r  

Substitution of Eq. (2.5.38) into the transversality condition given in Eq. (2.5.25a) yields 

-* 
k* (o) E ( r , o )  = [Eu(o)ku + Ev(o)kv f Ew(@h(o) ]e  +ik ( o ) - r  = 0, 

which, when solved for the transverse components, becomes 

Eu(o)ku + Ev(o)kv = r E w ( o h ( 4  - 
The appropriate substitution yields 



= r 2i3[y(w)}EW(w)e +ikf(o).r (2.5.39) 

The complex Poynting vector can now be written, using Eq. (2.5.39), as 

A similar expression for the complex Poynting vector can be derived in terms of the magnetic 

field, viz. 

As reasoned with Eq. (2.2.21), the real part of the complex Poynting vector represents the 

time-averaged power density, so that 

represents the time-averaged power density of an inhomogeneous plane wave of frequency 

w. The terms within the imaginary operator of the second term of Eq. (2.5.40), using the 

conlplex conjugate of Eq. (2.5.38), yield 

where 

E;(w) - Ei(w)r;  + E;(w); . 

The exponent in Eq. (2.5.41) reduces to 

where r is defined in Eq. (2.5.11). Substitution of Eq. (2.5.41) into Eq. (2.5.40) together with 



Eq. (2.5.43) yields 

because the & component of Eq. (2.5.41) is pure real. This means that the second term pres- 

ent in Eq. (2.5.44) only contributes to the time averaged power in the transverse directions 

u  ̂ and G .  

The second term present in Eq. (2.5.44) generalizes typical representations10 for time- 

harmonic plane wave Poynting vectors. This additional term results from the unique nature 

of inhomogeneous plane waves, namely the fact that the propagation and attenuation vectors 

are not collinear. This term will direct power in directions not dictated by the propagation 

vector. However, if the electric field is transverse to the uw plane then EW(w) = 0 or if the 

-* -f A 

wave is homogeneous (i.e. k,,k, = 0) then k (o) = k w. Both cases imply that 

Ew(o)  = 0, due to the transversality condition given in Eq. (2.5.25a), so that Eq. (2.5.40) 

reduces to the typical form of 

where all the power is directed by the propagation vector. 

2.5.4 The Energy Transport Velocity for a Plane Wave in an Infinitely Extended 
Double Resonance Lorentz Model Dielectric 

The derivation of the velocity of energy transport begins with the differential form of 

Poynting's theorem, which may be written as[30] 

Upon taking a volume integral of this expression over some arbitrary region, the Poynting 

vector S (watts/m2 in MKS units) can be interpreted as the amount of electromagnetic power 

10. See Oughstun and Sherman 1591 p. 43 92.3. 



per unit surface area that is either leaving or entering the region, and the three scalar quanti- 

ties appearing on the right hand side may be interpreted as the time rate of change of the mag- 

n e t ~ . ~  field energy density, the electric field energy density and the energy density stored in 

the medium. 

The energy transport velocity of a monochromatic plane wave field is defined as the rate 

of electromagnetic energy flow in the medium and is given by the ratio of the time-average 

Pojmting vector to the total time-average electromagnetic energy density of the coupled 

field-medium system[l9], so that 

For a monochromatic homogeneous plane wave field in a nonconducting, dispersive disper- 

sive dielectric with p = pO, the time average of the magnitude of the Poynting vector is 

found to be[19] [34][68][70][59], 

where c is the vacuum speed of light. 

The quantity WtOtal is given by the sum of the time-average energy density of both the 

electric and magnetic energy densities and the amount of time-average energy density stored 

in the medium, so that 

Wtotal Wfield + . (2.5.48) 

The: time-average energy density of the electromagnetic field is then found to be given 

by [ 591 

where n, is the real part and ni is the imaginary part of the complex index of refraction i .  

The: stored time-average energy density of the double resonance Lorentz model dielectric 

medium is also found as[59], 



0 (1OI2Hz)  

Figure 2.5.3 Frequency dependence of the normalized magnitude of the energy transport ve- 
locity of a monochromatic plane wave for a double resonance Lorentz model of a fluoride glass 
(CLAP) with Lorentz model parameters taken from Table 2.3.1. 

The total time-average electromagnetic energy density stored in both the field and the 

double resonance Lorentz model dielectric medium is then given by[59] 



The final expression for the magnitude of the energy transport velocity of a monochro- 

matic plane wave field in a double resonance Lorentz model is then given by[59] 

This result is a generalization of the well known expression for a single resonance Lorentz 

medium given by Loudon[70] andEq. (2.5.52) reduces to that expression in the limit of that 

special case. The frequency dispersion of the energy transport velocity of a monochromatic 

plane wave in the double resonance Lorentz model for the CLAP fluoride glass: CdF2 - LiF 

- AlF3 - PbF2 that was considered in 3 2.3.2, is depicted in Figure 2.5.3. 

2.6 Polarization Properties for Propagating Electromagnetic Inhomoge- 
neous Plane Waves 

One of the principle characteristics that describes an electromagnetic field is its polariza- 

tion state. Generally speaking, the polarization state for either the electric or magnetic field 

vectors can be linear, elliptical or circular. In addition, the electric and magnetic field vectors 

can have different polarization states. Elliptical and circular polarization states possess, as 

an additional characteristic, a left or right handed sense that describes the particular direction 

in which the field vector rotates. Further, for a particular space-time point, circular polariza- 

tion is a linear combination of properly phased and orthogonally oriented linear polarized 

fields and elliptical polarization is a linear combination of properly phased and oriented cir- 

cular polarized fields. The polarization state refers to the behavior of the field at a particular 

space-time point and, in general, varies from point to point for arbitrary pulsed beam 

fields l.  

On the other hand, inhomogeneous plane waves expressed as [cf. $2.51 

are uniformly polarized. The vector A(r, o) represents either the electric or magnetic field 

11. For a complete description of these and other polarization phenomena see Oughstun and Sherman 
1591 64.2. 



-* 
and, in general, A ( o )  and k (o)  are complex vectors which are functions of frequency. 

The vector nature of A(o)  determines the polarization state: either linear, elliptical or circu- 

lar. Uniform polarization refers to a characteristic independence of A ( o ) ,  and accordingly 

the polarization state, with respect to space and time. The independence with respect to time 

can be understood by considering the field vector A(r, o )  of an inhomogeneous plane wave 

to be a particular monochromatic spectral component for a real-valued angular frequency 

o, which when transformed yields 

where it is evident that A ( o )  is neither a function of position nor of time. 

2.6.1 The Polarization Ellipse for the Complex Field Vectors 

Let the complex spectral amplitude vector A ( o )  of an inhomogeneous plane wave be 

expressed in terms of two real vectors as in the $2.4, viz. 

A ( o )  = p(o )  + iq(o)  = [a (o )  + i b ( ~ ) l e ~ @ ( ~ )  . 

Assuming that p x q # 0 and that a b = 0, then Eqs. (2.4.3a,b) define the magnitudes 

b(o)( and b(o)l of the orthogonal vectors and Eq. (2.4.2) defines the real-valued phase 

quantity @. Consider a particular monochromatic spectral component for a real-valued fre- 

quency o, the transform of the field vector of an inhomogeneous plane wave yields 

-* 
where the complex wavevector k (o) r /3 * (o)  + ia * (o)  is also expressed in terms of 

two real vectors. At a particular space point r = ro, the real and imaginary parts of the field 

vector ~ ( r ~ ,  t)are given by12 

%{A(ro, t)] = [cos(<)a(o) - sin(c)b(w)]e -a* ' r o  , 

12. cf. Oughstun and Sherman [59] 94.2.1. 



where [ 3 p *(w) ro - wt + @(w)  AS time increases, the tips of vectors %[A.(ro, t ) ]  

and 8[A.(ro, t ) ]  both describe the same ellipse while jointly g o u t  of phase. The semi-axes 
2 

lengths of the ellipse are b(w)k "0 and b(w)k -a' "0. The field vector is said to be ellip- 

tically polarized. 

If the vectors p(w) and q(w) are orthogonal and of equal amplitude such that 

p(w) - q(w) = P 2  - q2 = 0 , 

then the vectors a(w) and b(w) are indeterminate and consequently the real-valued phase 

quantity @ is also indeterminate. As an example, let the vector p(w) lie in the û  direction 

and let q(w) lie in the v̂  direction so that the field vector can be written 

At i i  particular space point r = ro, the real and imaginary parts of the field vector A.(ro, flare 

giv'en by 

!RIA.(ro, t ) ]  = b(w)l[cos [û - sin [ ~ ] e  , (2.6.2a) 

3[A.(rO7 t)]  = b(w)J (2.6.1b) 

where 5 = p* (w) ro - o t  + @(a) .  Now, as time increases, the tips of vectors 

%[4(ro,  t ) ]  and 8[A.(ro, t ) ]  both describe the same circle while jointly out of phase. The 
2 

field vector is said to be circularly polarized. From this example, it is readily understood 

that circular polarization is a Iinear superposition of properly phased and orthogonally ori- 

ented linearly polarized fields. 

Depending on a(w) and b(w)'s orientation with respect to each other and the perspective 

of an observer, the ellipse described by Eqs. (2.6.la,b) may rotate in either a counterclock- 
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wise or clockwise sense. According to traditional terminology, if the scalar triple product 

a(o) x b(o) . /? *(a) > 0 then the polarization sense is left-handed; the field vector de- 

scribes an ellipse in the counterclockwise direction to an observer loolung in the direction 

opposite to the direction of propagation[59]. Correspondingly, if the scalar triple product 

a (w)  x b(o) . b * (a) < 0 then the polarization sense is right-handed; the field vector de- 

scribes an ellipse in the clockwise direction. 

Based on the information presented in 32.4, the characteristic planes of the complex wa- 

-* 
vevector k (a) and the complex spectral amplitude vector A(o) can be coplanar while the 

-* 
transversality condition k (o) A(o) = 0 remains satisfied, e.g. the magnetic field is el- 

- * 
liptical and coplanar with k (a) for a T E  field. This causes the scalar triple product to van- 

ish, viz. a(o) x b(o) - b * (o) = 0. In other words, although the field A(o) is elliptically 

polarized, it appears to be linearly polarized when observed in the direction opposite to the 

direction of propagation. Therefore, some other means must be established in order to assign 

the polarization sense to this anomalous case if it is desirable to know the direction of rotation 

of the field. Using the normal to the characteristic plane of the complex wavevector 

a *(a) x /?*(a) instead of the propagation vector provides satisfactory results. For the 

-* 
anomalous case when the characteristic planes of k (a) and A(o) are coplanar, if 

a (w)  x b(o) [a*(@) x b*(o)] > 0 then the polarization sense is considered to be 

left-handed and if a(o) x b(o) [a * (o) x b * (a)] < 0 then the polarization sense is 

considered to be right-handed. 

2.6.2 The Linearly Polarized lnhomogeneous Plane Wave Field: TE and TM 
Cases 

If p x q = 0 the spectral amplitude vector A(o) of the inhomogeneous plane wave 

may be expressed in polar form as [cf. $2.41 



where Q and 6 are real valued scalars. The field vector is now considered to be linearly polar- 

ized. However, the other field vector is elliptically polarized in general as shown in the fol- 

lowing development. While the field vector is linearly polarized any vanishing inner prod- 

ucts 

A(@) . C 2  = 0 

force the complex vector c2 to lie in the plane orthogonal to the real vector a as mandated 

by conditions given in Eq. (2.4.9). This form of the field is of particular importance because 

other polarization states are linear combinations of properly phased and oriented linear po- 

larized fields: circular polarization is a linear combination of properly phased and orthogo- 

nally oriented linearly polarized fields and elliptical polarization is a linear combination of 

properly phased and oriented circular polarized fields. 

Given a particular reference plane, for example the uw-plane, let a linear polarized inho- 

mogeneous plane wave field be oriented such that it is transverse to this reference plane. The 

transverse linearly polarized inhomogeneous plane wave field can then be written as 

where the complex wavevector is defined as in Eqs. (2.5.21a,b), and attenuation is assumed 

to only exists along the &-direction. Since A(r, w )  represents an inhomogeneous plane wa- 

ve then p(o) x a ( @ )  # 0. Conditions given in Eq. (2.4.9) force the complex wavevector 

to lie in the uw reference plane i.e. k, = 0. If A(r, o )  represents the electric field then the 

field is called TE or Transverse Electric and is sometimes referred to as s-polarization 

(where 's' stands for senkrecht which means perpendicular in German). If A(r, o )  repre- 

sents the magnetic field then the field is called TM or Transverse Magnetic and is sometimes 

referred to as p-polarization (where 'p' stands for parallel). Conversely, if it is known, a 

priori, that k,  # 0 then conditions given in Eq. (2.4.9) determine that the field A(r, o )  can- 

not be transverse to the reference plane. 



Let the electric field be TE, viz. 

E ( r , o )  = E(o)e  +iki(w).r , ~ ( o )  = ee(o)ceiBe(w) . 

The transversality condition given in Eq. (2.5.25a) gives 

Conditions given in Eq. (2.4.9) force the complex wavevector to lie in the uw reference plane 

i.e. k,  = 0. Additionally, the transversality condition given in Eq. (2.5.25~) gives 

Again, by conditions given in Eq. (2.4.9), the magnetic field vector also must lie in the uw 

reference plane, i.e. H,(r, o )  = 0. This causes the characteristic planes of H(r, o )  and the 

-* 
complex wavevector k (a) to be coplanar. Further, the transversality condition given in 

Eq. (2.5.24) defines the magnetic field as 

-* 
The vector k (o) x G is complex and p ( w )  x a(o) # 0. Consequently, the magnetic 

field vector is elliptically polarized. The spectral amplitude vector can then be written as 

H ( o )  = [ p m ( o )  + iqrn(u)]e +iee(w) =   am(^) + ibrn(o)]e + iO,,,(w) + iOe(w) 7 

IIc II IIc II 
where pm(o)  = mee(a)[p(@) X 61, qrn(u) = rnee(o)[a(u) x j], P ,  x qm # 0 

-f 
and a ,  b ,  = 0. Because the characteristic planes of k (o) and H(r, o )  are coplanar the 

the polarization sense is determined by 

> 0 ; left-handed 
 am(^) X bm(o) ' [a ' (u) P ' (u)] < 0 ; right-handed , (2.6.3) 

where a , ( o )  and b m ( o )  are the orthogonal components of the magnetic field. 



The complementary T M  case yields analogous results. Let the magnetic field be TM, 

viz. 

-* 
H ( r , a )  = H(a)e  +ik ("1" , H ( ~ )  = em(a)jeiem(~) . 

The transversality condition given in Eq. (2.5.25b) gives 

Conditions given in Eq. (2.4.9) force the complex wavevector to lie in the u-w reference 

plane i.e. k,  = 0. The transversality condition given in Eq. (2.5.25~) gives 

Again, by conditions given in Eq. (2.4.9), the electric field vector also must lie in the u-w 

reference plane, i.e. E,(r, a )  = 0. This causes the characteristic planes of E(r, a )  and the 

-* 
complex wavevector k (a)  to be coplanar. Further, the transversality condition given in 

Eq. (2.5.23) defines the electric field as 

[ -* I +iii(w).r+iem(w) E ( r , a )  = - L e m ( a )  k (a)  x v e  
&(a )a 

-* 
The vector k (a)  X v̂  is complex and B(a) X i a ( a )  # 0, consequently the electric field 

vector is elliptically polarized. The spectral amplitude vector can then be written as 

E ( a )  = [pe(a) + i qe (a ) ]e f  iem(w) = [ae(a)  + ibe(a)]e +ie,(w) +ie,(w> , 

- * 
a ,  . be = 0. Because the characteristic planes of k (a)  and E(r, a )  are coplanar the the 

polarization sense is determined by 

where a e ( a )  and b e ( a )  are the orthogonal components of the electric field. 



In summary, i f a  given field vector is a linearly polarized inhomogeneous plane wave 

then the complex wavevector lies in the plane orthogonal to this field vector and the other 

field vector is elliptically polarized and coplanar with the complex wavevector. The other 

field vector cannot be linearly polarized if the complex wavevector corresponds to an inho- 

mogeneous plane wave. 

2.6.3 The Homogeneous Plane Wave Field 

If the field vector is a homogeneous plane wave then the complex wavevector can be 

written in polar form as [cf. 92.41 

-f -5  
k (o) = k (up, 

where is a real unit vector that directs both the phase fronts and amplitude fronts and 

-* 
k (o) is the complex wavenumber. When the complex wavevector corresponds to a homo- 

geneous plane wave any vanishing inner products 

-f 
k (o) . c2 = 0 

force the complex vector c2 to lie in the plane orthogonal to the real unit vector; as mandated 

by conditions given in Eq. (2.4.9). Therefore, the transversality conditions given in Eqs. 

(2.5.25a,b) determine that the electric and magnetic field vectors are coplanar within the 

plane orthogonal to the real unit vector s  ̂

If one of the field vectors is linearly polarized then the transversality condition given in 

Eq. (2.5.25c), by conditions given in Eq. (2.4.9), forces the other field vector to be linearly 

polarized as well since both vectors must lie in the plane orthogonal to i. On the other hand, 

if one of the field vectors is elliptically polarized then the transversality condition given in 

Eq. (2.5.25c), by conditions given in Eq. (2.4.8), determines that the other field vector must 

be elliptically polarized as well. 



CHAPTER I11 

Reflection and Transmission 

Pulsed Inhomogeneous Plane Wave 
Electromagnetic Field 

at a 
Planar Interface Separating 

Two Lossy Dielectrics 



The physical phenomenon of plane wave reflection and refraction from a planar interface 

is a fundamental problem in electromagnetic wave theory with particular importance to the 

mode formation in a dielectric slab waveguide[lO]. The exact modal solution set for the ideal 

dielectric slab waveguide, as derived from Maxwell's equations for lossless dielectric media, 

reveals that two superimposed homogeneous plane waves comprise each mode. One plane 

wave is incident on the upper corelcladding interface and is superimposed upon the other 

plane wave that is incident on the lower corelsubstrate interface. These two plane wave com- 

ponents are interrelated in that each is the other's reflection from its associated interface and 

each interferes constructively with the other to form the modal solution. This constructive 

interference then results in a discrete set of modes. 

A similar description is sought for the nonideal dielectric slab waveguide, i.e. when the 

core and surrounding regions are comprised of lossy, dispersive dielectric media. This de- 

scription will then provide insight into the modal solutions of the nonideal dielectric slab wa- 

veguide as it does in the ideal case. The dielectric permittivities are considered to be complex 

and the general solutions to Maxwell's equations are inhomogeneous plane waves [cf. 92.51. 

The analysis of inhomogeneous plane waves that are incident upon a planar interface sepa- 

rating two lossy, dispersive dielectric media then becomes a necessary step in the evaluation 

of the dielectric slab waveguide and is then the impetus for this chapter. 

This chapter contains a complete derivation of the generalized laws of reflection and re- 

fraction, as well as the generalized Fresnel equations. The exact analysis of this problem 

when loss is included in the dielectric permittivity of both the medium of incidence and trans- 

mittance is developed here for the first time. A simplified version of this problem which 

accounts for loss only in the medium of transmittance has been given by Whitaker[5 11 in 

1979. In addition, these results are extended to describe a pulsed electromagnetic inhomoge- 

neous plane wave incident upon the interface through an application of an inverse Fourier 

Laplace transform. 



3.1 Inhomogeneous Plane Wave Reflection and Refraction from a Planar 
Interface Separating Two Lossy Dielectrics 

A propagating electromagnetic field is both reflected and refracted as it encounters any 

spatial discontinuities of the refractive index. A discontinuity alters the local homogeneity 

of the medium and the electromagnetic field reacts by producing reflected and refracted 

fiellds. This discontinuity is treated as a boundary or interface between two homogeneous 

media with different refractive indices. The medium that contains the incident propagating 

electromagnetic field is called the medium of incidence. After the incident field reacts to 

the boundary the medium of incidence also contains the reflected field. The second medium 

is called the medium of transmittance and it contains the transmitted field. 

This section will treat the simple case where the boundary is a planar interface separating 

two half-spaces of dielectric media. Both dielectrics are considered to be lossy and tempo- 

ra1l:y dispersive. The incident electromagnetic field is chosen to be an inhomogeneous plane 

wave as discussed in $2.5. The laws that govern this situation are called the generalized laws 

of reflection and refraction and the generalized Fresnel equations. 

The dielectric medium of incidence and medium of transmittance are described by the 

frecluency dependent complex refractive indices 

and 

respectively. The interface coordinate system is the standard rectangular x, y, z coordinate 

system with corresponding unit vectors x,y,z z, v, n chosen to delineate the tangential 
( A  A A) = ( A  A A)  

and normal components of the field vectors with respect to the interface. The xy-plane (or 

the z = 0 plane) defines the separation between the two media and therefore represents the 

planar interface. The xz-plane defines the reference plane containing the incident attenua- 
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v n 
Figure 3.1.1 Planar interface separating two lossy, dispersive half-spaces with complex refrac- 
tive nl for the medium of incidence and n2 for the medium of transmittance. 

tion vector and the normal vector to the interface. With this choice, the in-plane tangential 

component is in the direction, the out of plane tangential component is in the $ direction, 

and the normal component is in the 2 direction for any given field vector with respect to the 

interface coordinate system, as illustrated in Figure 3.1.1. 

The orientation of the incident inhomogeneous plane wave is defined by the incident lo- 

cal rectangular u, v, w coordinate system with corresponding unit vectors (;, $, 6). The posi- 

tion vector ri is given by 

In this problem the incident electromagnetic field vectors defined in the incident local coor- 

dinate system are given by [cf. 32.51 

which satisfy the homogeneous vector Helmholtz equations given in Eqs. (2.5.2a,b) and are 



defined only in the medium of incidence (i.e. for z 5 0). Therefore, the incident conzplex 
- 

wavevector k i ( o )  satisfies the relation [cf. Eq. (2.5.12)] 

and i l ( o )  is given by Eq. (3.1.1). Here ko - :is the vacuum wavenumber. In general, 

the frequency w - o '  + ia is complex, where w' and a are both real-valued. However, for 

the present it is assumed that a = 0 so that the angular frequency o is real-valued. 

Let the incident complex wavevector be defined within the incident local coordinate sys- 

tem as [cf. Eq. (2.5.17)] 

k i ( o )  = k,; + kvG + Yi(w)& , (3.1.7) 

where the transverse wavenumbers k,  and k, are real-valued and the longitudinal compo- 

nent y i (o )  is given by the principal branch of the expression [cf. $2.51 

This describes a function of both the angular frequency o and the real-valued transverse spa- 

tial frequency k$ = k f  + k:, where Tis  a positive real-valued quantity. The angular range 

of the phase of y i (o )  dictates that $(yi(w)l > 0, which implies that the imaginary part of 

the complex wavevector is directedin the positive & direction. Further, as was shown in $2.5 

[cf. Eq (2.5.20)] 

for a real-valued angular frequency o .  The surfaces of constant phase propagate along the 
. . 
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positive 6 direction as a consequence of Eq. (3.1.8b), regardless of the sign of the frequency 

0. 

The incident complex wavevector may be defined in terms of two real vector quantities 

- 
as k i (o )  Bi(o) + iai(o). The incident propagation vector Bi(o)  

fies the direction of propagation of the planar phase front while the incident attenuation ve- 

ctor ai(o)  S specifies the direction of propagation of the planar amplitude front. 

From Eq. (3.1.7), the incident propagation vector is given by 

Bi(o) kuû  + kvG + L [ ~ ~ ( ~ ) ] I ;  , (3.1.9) 

and the incident attenuation vector is given by 

ai(o) = + S[yi(o)]6 . (3.1.10) 

The complex components of the incident complex wavevector in the incident local coordi- 

nate system are represented in matrix form as 

In this problem, the given real-valued transverse wavenumbers ku and k, cover the 

range 

- m  < k , <  m ,  (3.1.12a) 

--a < k , <  m .  (3.1.12b) 

For a realistic dispersive dielectric, the refractive index h ( w )  remains bounded as the real- 

valued frequency covers the range - m < o < m . For every frequency o, the longitudi- 

nal component y i ( o )  of the complex wavevector, as defined by Eq. (3.1.8a), originates at 

- 
the complex point kl(o)  when kT = 0. As the transverse wavenumbers k, and k, vary 

within their range, the transverse spatial frequency covers the range 0 r kT < m and the 

longitudinal component y i ( o )  of the complex wavevector traces the trajectory depicted in 



t 
Figure-3.1.2 The longitudinal component of the complex wavevector originates at the complex 
point k , ( o )  for some real-valued frequency w when kT=O and follows the indicated curve as the 
transverse spatial frequency-kT increases. A family of such curves is generated as the frequency 
o changes. The sign of %[k,(o)) directly corresponds to the sign of the frequency o. The imag- 
inary part of yi(o) is always positive. As the curve crosses the dashed line ref + for o > 0 
and - for o < 0, yi(o) becomes predominantly imaginary. As kT+m, yi(o) asymptotically ap- 
proaches the positive imaginary axis. 

Figure 3.1.2. The longitudinal component y i ( o )  of the complex wavevector asymptotically 

- 
approaches the imaginary axis in the limit as kT S I k l ( o ) l ,  which can be understood by first 

Y-2 [ ] as a binomial series13 exp.ressing y i ( o )  = ikT 1- 

so tlhat its asymptotic behavior14 is given by 

13. See Abramowitz and Stegun [73]  p. 14, where the results are generalized to complex variables. 

14. See Bleistein and Handelsman 1741 $1.3 cf. Eq. (1.3.16).  



For a low loss medium, $kl(w)] is small compared to R kl(w) for frequencies re- [ -  I 
moved from any resonances. In that case, the longitudinal component yi(o) of the complex 

wavevector represents a strongly propagative component of the inhomogeneous plane wave 

for small kT - 0 and frequencies removed from any resonances. However, as Eq. (3.1.14) 

clearly demonstrates, yi(o) becomes predominantly an attenuative factor for large 

kT S Ikl(w)I. The transition from a propagative to an attenuative factor occurs when the 

trajectory of yi(w) crosses the line re indicated in Figure 3.1.2. The line re *':is equiva- 

lent to the square root of all positive imaginary numbers. 

-2 
For a fixed real-valued angular frequency w, the straight line generated by kl (o)  - k g  

as a function of real-valued kT, crosses the imaginary axis and consequently yi(u) crosses 

the line re * when 

The critical transverse wavenumber for the longitudinal component yi(o) of the complex 

wavevector which satisfies this condition is given by 

where = R[E~(o)]. The following results then apply 

Let the complex number c be defined as c2 = r2eiB, where the square root yields 

c = reie. The branch cut is then defined along the negative real axis and r is a positive real 



number. If W[c2] < 0, then the angle 28 lies either in the range 1 < 28 < n or the range 
2 

-n < 28 < -g. Then W{c) < 8(c) since the complex number c can be written as 
2 

c = r(cos 6' + i sin 6') and cos 6' < 1 sin 6' 1 for this range of the angle 6'. Conversely, if 

W(c2] > 0, then the angle 28 lies in the range - 1 < 28 < Then W{c) > 8{c} since 
2 2' 

cos 6' > ( sin 6' 1 for this range of the angle 6'. These results are summarized by the inequali- 

ties 

Application of the results given in Eq. (3.1.18) to the inequalities given in Eq. (3.1.17) 

yields the inequalities 

When kT < lkT I then the term y i ( o )  is labeledpmpagative and when kT > k then the 
C y  I TcJ 

tern1 y i ( o )  is labeled attenuative. 

The complete range of the longitudinal component y i ( o )  of the complex wavevector is 

then given by the inequalities 

where the absolute values appearing in Eq. (3.1.20a) are required because the sign of the real 

parts correspond to the sign of the angular frequency o and the operator max{) denotes the 

88 



maximum value of the set contained within the braces. Based on the range covered in Eq. 

(3.1.12), the quantity max[kT} is obviously equal to m . However, the quantity max[kT} is 

used in Eq. (3.1.20b) instead of m to emphasize the manner in which yi(u), as a function 

of k, and k,, asymptotically approaches the imaginary axis, as given by the expansion ap- 

pearing in Eq. (3.1.14). Further, in some applications, the complete range of Eq. (3.1.12) 
- 

may not be covered and as long as max[kT} 9 Ikl(u)I, then Eq. (3.1.20b) will appropriately 

limit the range of 3h(u)) 

In this problem the incident local unit vector is directed towards the interface and is 

oriented at an angle Oi with respect to the interface normal G .  Where the angle Oiis confined 

to the quadrant 

The origin of the incident local coordinate system is situated the distance wo away from the 

interface along the w-coordinate axis, as illustrated in Figure 3.1.3. Up until this point in 

the development, the incident transverse unit vectors h, $have not been fixed in any particu- 

lar orientation. The transverse unit vector $is chosen to coincide with the out of plane tan- 

gential unit vector $ of the interface coordinate system. The origin of the interface x, y, z 

coordinate system is defined as the point where the w-axis of the incident local coordinate 

system intersects the interface, as depicted in Figure 3.1.3. 

A h ? .  

Any vector in the incident local coordinate system (u, v, w) transforms into the interface 

A A A  

coordinate system (r,  v ,  n) through use of the projection operation 

* 

'inteBce = ROti ' 'local 7 

* 
where the incident transformation matrix Roti is a function of the angle Oi and is given by 



planar boundary 

Medium of 
Incidence 

Medium of 
Transmittance 

Figure 3.1.3 The incident inhomogeneous plane wave field and complex wavevector are speci- 
fied in relation to the incident local coordinate system. The w-axis is oriented at an angle Oi 
with respect to the interface normal. The origin of the incident local coordinate system is si- 
tuated a distance wg away from the interface along the w-axis. The origin for the x,  y, z coordi- 
nate system of the interface is defined at the point where the w-axis intersects the interface. The 
out of plane vector tangential to the interface is taken to be coincident with the out of plane inci- 
dent local vector. 

cosOi 0 sinOi 
). 

Roti - [ 0 1 0 ] 
- sin Oi 0 cos Oi 

). 

The incident transformation matrix Roti is orthonormal so that its inverse is equal to its trans- 

pose, viz. 

'The given propagation vector p i ( m )  that is defined with respect to the incident local 

coordinate system [cf. Eq. (3.1.9)] transforms into the interface coordinate system as 

Bi,(m> ku ku cos Oi + L[yi(o)]  sin Oi 

Pi(.) = [ R ] = aoti . [ *v ] = [ kv I . (3.1.25) 

Bin(m)  ~ [ ~ i ( o ) ]  - ku sin ei + ~ [ ~ ~ ( o ) ]  cos B~ 

In this case, notice that the term Pi,  is not a function of frequency o. The range of the inde- 
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pendent variables ku, k, and Oi and the function yi(a), which are given in Eqs. (3.1.12), 

(3.1.21) and (3.1.20a7b) define the ranges of the propagation vector components within the 

interface coordinate system as 

min{k,) cos Oi I pi (a) < max{ku) cos Oi , (3.1.26a) 

- min{k,) < pi < max{k,) , (3.1.26b) 

- max{k,) sin Oi r pi (a) < %[yi(a)] cos oi - min{ku} sin Oi , (3.1.26~) 

where the quantity %(yi(o)] was included in the upper limit of Eq. (3.1.26~) in order to in- 

clude the special case when the angle Oi = 0. The operator min{) represents the minimum 

value of the quantity contained within the braces. In some applications, the complete range 
- 

given in Eq. (31.12) may not be covered and as long as max{ku} S Ikl(a)l, 

- 
max{k,) * lil(w)l, - min{k,) * F1(a)l and - min{kV * k 1  then Eqs. 

(3.1.26a-c) appropriately limit the ranges of pi (a) ,  pi and pin(@), respectively. 

Similarly, the given attenuation vector ai(a) defined with respect to the incident local 

coordinate system [cf. Eq. (3.1.10)] transforms into the interface coordinate system as 

0 8[yi(a)] sin Oi 

ai(a) = o ] = [  0 1 .  (3.1.2'7) 
'[yi(a)] a[yi(~)] cos O, 

Here, the term aiv = 0. The range of the independent variables k,, k, and Oi and the func- 

tion yi(a), which are given in Eqs. (3.1.12), (3.1.21) and (3. 1.20a7b), respectively, define 

the ranges of the attenuation vector components within the interface coordinate system as 

sin Oi < ai ( a )  < max[kT] sin Oi , (3.1.28a) 

In some applications, the complete range given in Eq. (3.1.12) may not be covered, but as 



long as max[kT] 9 Ikl(w)l, then Eqs. (3.1.28a,b) appropriately limit the ranges of ai,(a) 

and ain(w), respectively. 

'The complex components of the incident complex wavevector in the interface coordinate 

system are summarized in matrix form as 

whe:re the Ŷ  component is pure real and independent of the frequency a. 

Similarly, the incident electromagnetic field vectors Ei(a) and Hi(o) defined with re- 

spect to the local coordinate system [cf. Eq. (3.1.4)] transform into the interface coordinate 

system as 

Ei  ( a )  cos Oi + Ei ['r(w)] Ei,(a) = ~ o t ~  - [ I iu (o ) ]  Ei.(a) = [ 
(3.1.30) 

Ei,, ( a  Ei,(w) - Ei ( a )  sin Oi + 

Hiu(w) cos Oi + Hi 

. (3.1.31) 

-Hi ( a )  sinOi + 

While in the interface coordinate system, the incident propagation and attenuation vec- 

tors are conveniently expressed in terms of their magnitude, elevation angle and azimuthal 

angle, as illustrated in Figure 3.1.4. The incident propagation vector pi(a),  as defined in 

Eq. (3.1.9), requires three degrees of freedom to be completely described within the interface 

coordinate system, viz. 

cos $! sin f; + sin $! sin @!Y^ + cos 88r; . 
I I I I (3.1.32) 

The: magnitude of the incident propagation vector is defined as 



where pi,, pi, and pin are defined in terms of the independent variables k,, k, and Oi in the 

matrix given in Eq. (3.1.25). Substituting the matrix components given in Eq. (3.1.25) into 

Eq. (3.1.33) yields, 

whose range is 

The azimuthal angle is defined as 

where the multi-branched inverse tangent function is sensitive to the signs of both argu- 

ments15 pi, and pi, which vary as given in Eqs. (3.1.26a,b) so that the range of @! becomes 
1 

in order to cover the allowed azimuthal range of Pi(o).  The elevation angle is defined in 

terms of spherical coordinates as 

where only the principle branch of cos - ' is required16. The quantity pi > 0, by definition, 

and the quantity pin both vary over the range specified in Eq. (3.1.26c), so that the range of 

8B is restricted to the domain 
1 

15. S e e  Abramowitz and Stegun 1731 p. 80. The multi-branched Tan-] = tan-] + kn where k is an arbi- 
trary integer. The complete range of the principle branch is 0 I tan-lx I n/2 for 0 < x  < - and -n/2 5 
tan-lx < 0 for -- < x < 0. 

16. S e e  Abramowitz and Stegun [73] p. 80. The complete range of the principle branch is 0 5 ~ o s - ~ x  5 
n/2 for 0 5 x I 1 and n/2 < cos-]x I n for -1 I x  < 0. 



Figure 3.1.4 The propagation and attenuation vectors in the interface coordinate system given 
in spherical coordinates. Notice that the attenuation vector only requires an elevation angle. 

The quantity cos@! is required in Eq. (3.1.39) because Pi(w)  only covers the upper hemi- 

sphere while in the u, v, w coordinate system. It is possible that the complete range of @! 
that is given in Eq. (3.1.37) is not needed for certain situations. This then implies that the 

full range given in Eq. (3.1.39) may not covered because max can be less than unity. 

For example, if the propagation vectors are known apnon  to lie in one plane with ( = n 

and the angle of the incident local coordinate system is Oi = then max 8! = 4 1 1  4. 

'The range of 8!, given in Eq. (3.1.39), represents the complete span of forward propagat- 
z 

ing inhomogeneous plane waves that can emanate from the planar boundary u, v of the inci- 

dent local coordinate system defined in $2.5. If 8! > then as shown by E q  (2.5,44), the 
1 2' 

time-averaged power that is in the direction specified by Pi(w)  will not be incident on the 

interface. Positive values of the transverse wavenumber k,  that are large enough to cause 



0; > will be excluded from this analysis, so that the range of @ will be limited to 
2 1 

bearing in mind that the range given in Eq. (3.1.39) still applies if the term cos r$f causes the 

maximum value of f3! to be less than g. Consequently, the range of ku will be limited to the 
1 2 

range 

- 03 < k,  I kUm , (3.1.41) 

where kum is defined as the positive-valued transverse wavenumber for which 819 = ZE for 
2 

a particular value of frequency w  and azimuthal angle $. 

The incident attenuation vector a i ( w ) ,  defined in Eq. (3.1.10), is restricted to lie along 

the ;-axis and requires only two degrees of freedom to be completely described within the 

interface coordinate system, where 

a i ( w )  = ai[sin 8:; + cos epii] . 

The magnitude of the incident attenuation vector is defined as 

where air and ai are defined in terms of the independent variables k,, k, and Oi in the ma- 

trix given in Eq. (3.1.27). Substitution of the matrix components given in Eq. (3.1.27) into 

Eq. (3.1.43) yields, 

2 2 
a .  z = J[3 ly i (  a ) ]  sin oil + [ 3 [ y i ( w ) ~  cos ei] = 3 1 y i ( o ) ~  , (3.1.44) 

so that the range is the same as given in Eq. (3.1.20b), viz. 

r ai < max(kT] . 

The elevation angle is defined as 



where only the principle branch of the arctangent is required since the quantity air is always 

positive. Substitution of the matrix components given in Eq. (3.1.27) into Eq. (3.1.46) yields 

8lYi (w)]  sin Oi 

8lYi (w)]  cos Oi 

so that the range of 6; = Oi is the same as that given in Eq. (3.1.21), viz. 

'The resultant reflected and refracted fields are defined in their respective local coordi- 

nate systems in an analogous manner to that for the incident field. The reflected field is de- 

, I  I 

fined in the reflected local rectangular u , v , w coordinate system with corresponding unit 

( A '  A ' )  
vectors u , v , w . The unit vector 6 is directed away from the interface into the medium 

of incidence at the angle x - Or with respect to the interface normal ;and intersects the 

inteirface at the interface origin 0. The origin of the reflected local coordinate system is sit- 

uated the distance wb away from the interface along the wr-coordinate axis and lies in the 

medlium of incidence. The refracted field is defined in the transmitted local rectangular 

I ,  I !  t ,  

u , v , w coordinate system with corresponding unit vectors . The unit vector 

, I  

6 11s directed away from the interface into the medium of transmittance at the angle O, with 

respect to the interface normal ;and intersects the interface at the interface origin 0. The 

origin of the transmitted local coordinate system is situated the distance w i  away from the 

interface along the wU-coordinate axis and lies in the transmitted medium. The out of plane 

, I I 

local unit vectors v̂  and v̂  are both oriented parallel to the unit vector v^. The entire geome- 

try is depicted in Figure 3.1.5. 
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Figure 3.1.5 The incident, reflected and transmitted fields and complex wavevectors are de- 
fined in their respective incident, reflected and transmitted local coordinate systems. The w'- 
axis and the w "-axis make the angles n-0, and Ot, respectively with respect to the interface 
normal. 

The reflected field vectors in the medium of incidence ( z  I 0) are expressed as [cf. 

E r ( r r , ~ )  = E , ( ~ ) e + ~ ~ r ( ~ ) . ~  , (3.1.49a) 

Hr(rr, a ) = Hr(a )e + ik;(o) err 9 (3.1.49b) 

and the transmitted field vectors in the medium of transmittance ( z  2 0) are expressed as 

[cf. $2.51 
- 

Et(rt, a )  = Et(a)e  + i k l ( u ) * r t  , (3.1.50a) 

Ht(rt, a )  = Ht(a)e +ig(m)'rt . (3.1.50b) 

Here r ,  and r ,  denote the position vectors in each respective local coordinate system and are 

given by 

I 

rr u'U^ + v'V^ + w'G , (3.1.51) 



The inhomogeneous plane wave fields given in Eqs. (3.1.49) and (3.1 .SO) independently sat- 

isfy the homogeneous vector Helmholtz equations given in Eqs. (2.5.2a,b) and are defined 
- - 

only in their respective half-spaces. Therefore, the complex wavevectors k , (o )  and k t ( o )  

for the reflected and transmitted waves are each governed by the respective relation [cf. Eq. 

(2.5.12)] 

where k l ( w )  = nl(o)ko  and 

c .  

where n2(o) is given by Eq. (3.1.2). 

Any vector in the reflected or transmitted local coordinate system transforms into the 

interface coordinate system through use of one of the transformations 

u U .  

'interjizce = ' 'I,,I 9 'interface = - Viocal 9 (3.1.55) 
i +; 

where the transformation matrices are functions of the angles 0, and 0,, respectively, and 

are given by 

+. [- C ~ S  siYr 1 
Rot, E 9 

- sin 0, 0  - cos 0, 

cos 0, 0 sin@, 
U 

R o t t = [  - sin 0 0, 0 1 cos 0 1 ,  0, 

U U 

res~~ectively. The transformation matrices Rot, and Rott are orthonormal, so that their in- 

verses are equal to their transposes, viz. 

- - 1  ,T - - 1  -T 
Rotr = Rotr , Rott = Rot, 



Therefore, any vector in the interface coordinate system transforms into either the reflected 

or transmission local coordinate system through use of one of the transformations 

*T *T 
'local = ' 'interface 9 'Leal = Rott ' 'interface 

3.1.1 Tangential Boundary Conditions 

The tangential boundary conditions are obtained from the curl relations of Maxwell 

equations given in Eqs. (2.2.12a,b) by first talung the surface integral over an open region 

9L bounded by a contour (3 that traverses the interface 2 ,  as shown in Figure 3.1.6, so that 

where h is the unit outward normal to the open surface a. The surface is arectangle where 

the long sides are on opposite sides of the interface 2. The positive normal is the unit vector 

Ŷ  which is tangent to the interface 2, as depicted by Figure 3.1.6. The positive normal to 

the interface 2 is n^, which makes a right handed coordinate system with the definition of 

the second interface tangent unit vector .t̂  = Ŷ  X n^. Application of Stokes' Theorem to Eqs. 

(3.1.60a,b) then results in 

where the differential vector length dl lies along the contour (3 and is directed in the right- 

handed sense. The surface integrals appearing in Eqs. (3.1.61) vanish and dl becomes para- 

llel to the interface tangent ẑ  in the limit as the contour (3 shrinks to the interface 2. The 
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Figure 3.1.6 Geometry for the derivation of the tangential boundary conditions for an 
arbitrarily shaped boundary separating two dielectric media. A rectangle is situated 
between the two media and its surface area is shrunk to zero while holding its perimeter 
at a non-zero length. 

contour integrals become 

in that limit. Upon combining the above results, applying the vector identity 

a . b X c = b . c x a and dividing out the quantity dl, the tangential boundary conditions 

become 

A k X[E2(rp, o) - ~ ~ ( r ~ ,  o)] - v = 0 , 



The orientation of the rectangular surface 9b andits normal are entirely arbitrary17 relative 

to the direction of the electromagnetic field vectors, so that 

The tangential boundary conditions given in Eqs. (3.1.62alb) represent the continuity of the 

tangential components of the electric and magnetic fieldintensity vectors across the interface 

2, where rp describes any given point in the interface. 

The normal boundary conditions are obtained by taking volume integrals of the diver- 

gence relations of Maxwell equations given in Eqs. (2.2.12cld), with the results 

In this case, the region T i s  represented by a small cylinder situated half in medium 1 and 

half in medium 2 and whose generators are perpendicular to the interface. The region T is 

situated such that the normal to the boundary surface A is perpendicular to both end caps of 

the cylinder, as depicted in Figure 3.1.7. Application of the divergence theorem to Eqs. 

(3.1.63a,b) then yields 

I I 

where A is the unit outward normal to the bounding surface 3 of the region V. Now let the 

17. See Stratton [68] $1.13. 
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Figure 3.1.7 Geometry for the derivation of the normal boundary condition for an 
arbitrarily shaped boundary separating two dielectric media. 

volu.me V shrink to zero in such a way that the length of the cylinder goes to zero faster than 

the radius of both end caps. The surface integrals appearing in Eqs. (3.1.64a,b) become 

in that limit. Upon combining the above results and dividing out the quantity Aa, the normal 

boundary conditions become 

A 

- ~ l ( ~ p . ~ ) ]  ' = O , (3.1.65a) 

A 

[ ~ z ( ~ p ,  W )  - g1(rp7w)] ' n = O . (3.1.65b) 

Eqs. (3.1.65a,b) represent the continuity of the normal components of the electric displace- 



ment vector and the magnetic induction vector across the interface at the point described by 

the position vector rp. 

The above boundary conditions apply to the total fields in both medium 1 and medium 

2. The total field in medium 1 is given by the sum of the incident and reflected fields as 

Etotall(r, m) = Ei(r, m) + Er(r, m) 7 (3.1.66a) 

Htotal,(r7 0) = Hi(r7 a) + Hr(r, 0) 7 
(3.1.66b) 

while the total field for medium 2 is just the transmitted field 

EtOta~,(r7 m) = Et(r7 4 7 (3.1.67a) 

Htota12(r7 a) = Ht(r7 0) . (3.1.67b) 

Substitution of these total field quantities into the boundary conditions given in Eqs. 

(3.1.62a,b) and (3.1.65a,b) results in the system of equations 

where rp is the position vector that describes any point along the boundary interface 2 sepa- 

rating medium l from medium 2. 

3.1.2 The Generalized Laws of Reflection and Refraction 

The generalized laws of reflection and refraction relate the incident, reflected and trans- 

mitted complex wavevectors within the interface coordinate system. They specify each rect- 

angular component of the reflected and transmitted complex wavevectors in terms of the 

known rectangular components of the incident complex wavevector. Further, if the complex 

wavevectors are written in terms of their magnitude, elevation angle and azimuthal angle, 

then the generalized laws specify the associated angular relationships between them. 



In this problem, the incident electromagnetic field vectors and the incident complex 

wavevector are known. The incident electromagnetic field vectors E,(w) and Hi(w)  are 

expressed in the interface coordinate system as 

E i ( o )  = E ~ ; + E ~ ~ + E ~ ~ ^ ,  Hi(w) - H i ; + H i V ; + H i n ^ ,  (3.1.69) 

where their components are defined by the matrices given in Eqs. (3.1.30) and (3.1.3 I), re- 
- 

spe'ctively. The incident complex wavevector ki(w)  = Bi(w) + i a i (w)  is expressed in 

terrns of the propagation and attenuation vectors in the interface coordinate system as 

A A A 

Bi(o) = pi ; + pi ; + pinn , a , ( w )  - ai? + ainn , (3.1.70) 

where their components are defined by the matrices given in Eqs. (3.1.25) and (3.1.27), re- 

spectively. The incident complex wavevector can also be expressed in the interface coordi- 

natt: system as 

where their components are defined by the matrices given in Eq. (3.1.29). In this case, 

aiv = 0 and PiV is not a function of angular frequency w. 

The reflected and transmitted electromagnetic field vectors and complex wavevectors 

are expressed in a similar manner within the interface coordinate system as 

E r ( o )  E,; + ErV; + Ern; , Hr(u)  H,; + HrV; + Hrnn  ̂, (3.1.72) 

A A 

Br(o) Brr; + prv; + Brnn  ̂, a,(o) arrr + arvv + a,n̂  , (3.1.73) 

E,(w) - E,? + EtVG + Etni  , H , ( o )  - Htr; + H,; + Htnn  ̂, (3.1.74) 

Bt(w) = /Itr; + ptv; + /Itn; , a,(o) = atr; + atv; + atn; , (3.1.75) 

although their respective components are not yet defined. The complex components of the 

reflected complex wavevector are expressed in matrix form while in the interface coordinate 

system as 



while the complex components of the transmitted complex wavevector are expressed in ma- 

trix form while in the interface coordinate system as 

Substitution of Eqs. (3.1.69) - (3.1.75) into the the boundary conditions given in Eqs. 

(3.1.68a-d) then yields the set of vector relations 

where the complex refractiveindices i l ( w )  and n2(0)  are given by Eqs. (3.1.1) and (3.1.2), 

respectively. Here rp denotes the transverse position vector in the interface coordinate sys- 

tem, which is given by 
A A 

'j. - n + y v ,  (3.1.79) 

which then lies anywhere along the planar interface . 

Since Eqs. (3.1.78a-d) must be satisfied for any value of rp, the following condition must 

then be satisfied: 



The vector rp is the cross product rp = n̂  x r ,  where r  denotes the position vector that may 

be expressed in the interface coordinate system as 

r - x t ^ + @ + z ; .  (3.1.81) 

Together with the cyclic property a - b x c = c - a x b of the scalar triple product, Eq. 

(3.1. .80) may be rewritten as 
- - 

A 
- 

A 

k . x A . r = k t x n . r = k t x n . r .  I 

Separation of the equation into its real and imaginary parts then yields 

[pi(,) x n^] - r  = [pr(o)  x n^] r  = [p t (o)  x n^] r  , 

[ai(,) x n^] - r  = [ar(u) x n^] . r  = [a t (w)  x n^] . r  , 

where r  E [R~]. Since the position vector r appearing here is completely arbitrary, it then 

follows that 

pi(w)  x n̂  = pr(w) x n̂  = pt(w)  x n̂  , (3.1.82) 

a i ( w )  x  n̂  = a r ( w )  x  n̂  = a t ( w )  x  n̂  . (3.1.83) 

Therefore, the continuity of the tangential components of p (o )  across the interface is inde- 

pendent of the continuity of the tangential components of a(o).  This independence means 

that the ensuing development must treat the continuity of the tangential components of the 

propagation and attenuation vectors as two separate problems. 

The relationship appearing in Eq. (3.1.82) forces all three propagation vectors pi, pr, pt 
to lie in the plane formed by the incident propagation vector pi and the unit normal vector 

n̂  to the interface. This plane defines the so-called p-plane of incidence. The incident prop- 

agation vector pi is defined in terms of its magnitude, elevation angle and azimuthal angle 

in Eq. (3.1.32). The incident propagation vector and p-plane of incidence are rotated out 

of the xz reference plane by the angle @, as illustrated in Figure 3.1.8. 
1 



of incidence 

Figure 3.1.8 Diagram of the fi-plane of incidence, which contains the incident, re- 
flected, and transmitted propagation vectors and also the interface normal vector. The 
transmitted propagation vector is not shown in order to reduce clutter. 

In a similar manner, the relationship appearing in Eq. (3.1.83) forces all three attenuation 

vectors ai, a,, a ,  to lie in the plane formed by the incident attenuation vector ai and the unit 

normal vector n̂  to the interface. This plane defines the so-called a-plane of incidence. 

The incident attenuation vector ai is defined in spherical coordinates in Eq. (3.1.42). Since 

the a-plane of incidence has no azimuthal component, it is coplanar with the xz reference 

plane, as illustrated in Figure 3.1.9. For the lossy case, the /3-plane of incidence and the 

a-plane of incidence are not coplanarin general. However, in the limit of a lossless medium 

of incidence, there is no a-plane of incidence. 



Figure 3.1.9 Diagram of the a-plane of incidence, which contains the incident, re- 
flected, and transmitted attenuation vectors and also the interface normal vector. 

The unknown reflected and transmitted complex wavevector's tangential components 

may be determined in terms of the known incident complex wavevector's tangential compo- 

nents. Using the definitions given in Eqs. (3.1.70), (3.1.73) and (3.1.73, the propagation 

vectors appearing in Eq. (3.1.82) may be expressed in component form as 

&(o) x r; = pi! - pir(w)6 , 

B r ( 4  x r; = Brv(& - Brr(w>y^ 7 

B t ( 4  x n̂  = B t v ( 4 ;  - Btr(w)6 7 

while the attenuation vectors appearing in Eq. (3.1.83) may be expressed in component form 

as 

ai(u) x ii = - air(u)6 , 



Since the different tangential components are mutually orthogonal, it then follows that 

Based on the result given in Eq. (3.1.25), the component pi, is not a function of the angular 

frequency o. Similarly, the tangential components of the attenuation vector are 

ai,(a) = arr(o) = atr(a) (3.1.85a) 
- aiv - arv = atv = 0 ,  (3.1.85b) 

where the second relation follows from the fact that aiv = 0 [cf. Eq. (3.1.27)] 

The unknown reflected complex wavevector's normal components may now be deter- 

mined in terms of the known incident complex wavevector's normal components. The inti- 
- 

dent and reflected complex wavevectors share a common complex wavenumber k l ( o )  that 

is given in Eq. (3.1.6). The results given in Eqs. (3.1.5) and (3.1.53) then yield 

- 
k r ( a )  . R,(o) = nl(w)ki = ki(o) . . 

Each side of this expression is expanded into component form using the relations appearing 

in Eqs. (3.1.70) and (3.1.73). Application of the tangential relations given in Eqs. (3.1 34)  

and (3.1.85) then permits the indicated cancelations 

resulting in the expression 

2 2 
(Br,, + iar,,) = (pi,, + iai,,) . (3.1.86) 

The reflected wave travels in the opposite normal direction to the interface, which implies 

that the appropriate branch of the square root appearing in Eq. (3.1.86) is 

fir,, + iarn = - (pi,, + iain) . 



Upon equating the real and imaginary parts, there results 

P r n  = -Bin 7 

- 
Urn - -ain . 

Finally, consider determining the unknown transmitted complex wavevector's normal 

connponents in terms of the known incident wavevector's tangential components. The rela- 

tion given in Eq. (3.1.54), viz. 

- -L 

k t ( 4  - k t ( 4  = k 2 ( 4  7 

ma:y be expanded into component form using definition given in Eq. (3.1.73, yielding 

Substitution of the tangential relations appearing in Eqs. (3.1.84) and (3.1.85) into the left 

hand side of the above expression yields 

The unknown complex transmitted normal component may then be expressed in terms of 

the known complex incident tangential components as 

From a physical point of view, a transmitted wave must deliver power into the medium of 

transmittance. Quantitatively, this means that the inequality !R ktn(o) 1 0 must be satis- 1- I 
fiecl in order that the portion of the time-averaged Poyrzting vector given in Eq. (2.5.44) that 

is directed by the transmitted propagation vector Bt(o) points into the medium of transmit- 

tance. Otherwise, if !R ktn(o) < 0, power would then be directed towards the interface 1- I 
from the medium of transmittance. As a consequence, the appropriate branchxut lies along 

the negative real axis of the domain of the square root. Notice that this is different from the 



branch4ut chosen for the longitudinal wavenumber yi(u) which was based on entirely dif- 

ferent physical criteria. 

Now that the reflected and transmitted complex wavevectors are completely specified, 

it is useful to express these vectors in terms of their magnitudes, elevation angle and azimuth- 

al angle so that the corresponding angular relationships may be developed. To that end, let 

the reflected propagation vector Br(u) be expressed in spherical components as 

Br(u) = pr[cos @! sin tf? + sin qf sine!; - cos @6] , (3.1.89) 

where the negative sign appears because O! is measured relative to -6. The magnitude is 

then given by 

The elevation angle is then given by 

where only the principle branch of the inverse cosine function is required, and the azimuthal 

angle is given by 

where the multi-branched inverse tangent function is sensitive to the signs of both factors 

appearing in its argument. The reflected attenuation vector ar(u) is expressed in angular 

component form as 

ar(u) = ar[sin 8;; - cos e;6] , 

where the negative sign appears because 0: is measured relative to -6. The magnitude is 

given by 

and the elevation angle is given by 



where only the principle branch of the inverse tangent function is required. 

Similarly, let the transmitted propagation vector /?,(a) be expressed in spherical coordi- 

nate components as 

/?,(a) - /~,[cos qf sin 0;; + sin @ sin 8;; + cos @;;I . (3.1.96) 

The magnitude is given by 

the elevation angle is given by 

where only the principle branch of the inverse cosine function is required, and the azimuthal 

angle is given by 

where the multi-branched inverse tangent function is sensitive to the signs of both factors 

appearing in its argument. The transmitted attenuation vector at(a) is expressed in angular 

conlponent form as 

a,(a) - a,[sin 8:; + cos @:;I . (3.1.100) 

The: magnitude is given by 

and the elevation angle is given by 

where only the principle branch of the inverse tangent function is required. 
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The tangential and normal component relations given in Eqs. (3.1.84a,b), (3.1.85a,b) 

and (3.1.87a,b) for the propagation and attenuation vectors imply that the magnitudes of the 

incident and reflected wavevectors are equal, so that 

B r = +  J m = +  J-=B~, (3.1.103a) 

a r r  + Jm= + J q = a i .  1r (3.1.103b) 

Substitution of Eqs. (3.1.87a) and (3.1.103a) into Eq. (3.1.91) for @ yields 

and substitution of the normal component of the relation given in Eq. (3.1.32) yields 

which then states that 

eb r = ef . 

The appropriate substitution of the tangential component relations given in Eqs. (3.1.84a,b) 

for the propagation vector into Eq. (3.1.92) yields 

The right-hand side of this equation defines the incident azimuthal angle q!f [cf. Eq. 

(3.1.36)] so that 

@!=@, (3.1.105) 

which is no surprise since all of the propagation vectors must lie in the p-plane of incidence. 

Substitution of the tangential and normal component relations for the attenuation vector giv- 

en in Eqs. (3.1.85a) and (3.1.87b) into the definition of the angle 8: given in Eq. (3.1.95) 

then yields 



The right-hand side of this equation defines the incident elevation angle 0: [cf. Eq. (3.1.46)] 

so that 

The tangential and normal relations for the attenuation vector given in Eqs. (3.1.84), 

(3.1.85) and (3.1.87), when substitutedinto the relations given in Eqs. (3.1.97) and (3.1.101) 

yield, respectively, 

Substitution of the real and imaginary parts of Eq. (3.1.88) into the quantities Btn and at, then 

gives 

Substitution of Eq. (3.1.107a) and the real part of Eq. (3.1.88) into the definition of the angle 

@ t given in Eq. (3.1.98) yields, 

(3.1.108) 



Substitution of the tangential component relations for the propagation vector given in Eqs. 

(3.1.84a,b) into the definition of the angle @ given in Eq. (3.1.99) yields 

# Tan- - = T - 1  2 [ an I;:] . 

The right-hand side of this equation defines the incident azimuthal angle @! [cf. Eq. 
z 

(3.1.36)] so that 

# = @ ,  (3.1.109) 

which states that the transmitted propagation vector with azimuthal angle gf also lies in the 

B-plane of incidence. Substitution of Eq. (3.1.85a) and the imaginary part of Eq. (3.1.88) 

into the definition of the angle 6; given in Eq. (3.1.102) yields, 

8; = tan-' 
ai,(w) 

-2 2 
J k 2 ( 0 )  - ( ~ i ~ ( w )  + i a i j w ) )  - p2 i, 

The complete set of equations that form the generalized laws of reflection are summa- 

rized in the following three sets of equations which specify the reflected wavevector compo- 

nents in terms of the incident wavevector components in both the rectangular and spherical 

coordinate components: 

( i )  Tangential component relations: 

Prr(w) = Pi,(@) 7 Br, = Bi, 7 ah (w)  = air(w) 7 arv = aiv = 0 . (3.1.111a) 

(ii) Normal component relations: 

Br,,(w) = -Bi,(a) 7 a r , , ( ~ )  = -ai,,(w) . (3.1.111b) 

(iii) Spherical component relations: 

B r = P i ,  6 ! = 0 ! ,  I @ = @ ,  a r = a i ,  8 : = 8 q .  (3.1.111~) 



The complete set of equations that form the generalized laws of refraction are then sum- 

marized in the following three sets of equations which specify the transmitted wavevector 

components in terms of the incident wavevector components in both the rectangular and 

spherical coordinate components: 

(iv) Tangential component relations: 

Pt,(a) = Pi,(a) atr(a) = ai,(a> 7 

Pt, = Pi, 9 at" = aiv = 0 .  

( v )  Normal component relations: 

(vi) Spherical component relations: 

3.1.3 The Generalized Fresnel Equations 

The generalized Fresnel equations relate the tangential reflected and transmitted electric 

field vectors in terms of the tangential incident electric field vector within the interface coor- 



dinate system. These relations are obtained from the tangential boundary conditions given 

in Eqs. (3.1.78a,b). Prior to this, however, a relationship between the tangential magnetic 

field vectors and the tangential electric field vectors needs to be obtained. 

Either the incident, reflected or transmitted complex wavevector of an inhomogeneous 

plane wave in the interface coordinate system may be written as 
- 

R(o) = B(o) + i a ( o )  = k,(o); + pvG + kn(o)n^ , 

where 
- 

L ( w )  B.(o) + , kn(o)  p n ( o )  + ian(a) , 
and where pv is independent of the angular frequency o and a ,  = 0, as explained at the be- 

ginning of 93.1. Expansion of the transversality condition given in Eq. (2.5.25) into compo- 

nent form yields 

which may then be solved for En in terms of E ,  and Ev as 

Upon expansion of the transversality condition given in Eq. (2.5.24) into component form 

yields 

rlokdr(4 = x E ( o )  

which contains the normal component En. Substitution of Eq. (3.1.113) for En and rear- 

ranging terms then yields in matrix form, 



The 1,2 matrix entry may be simplified as 

while the 2, l  matrix entry may be simplified as 

- 7 -2 
whe.re the identity k (w)  k (w)  - k ( a )  was applied. 

.Application of the above two simplifications to Eq. (3.1.114) and the utilization of a sub- 

matrix containing only the tangential field vectors yields the relation 

Htun(a) F ( a ) ~ t a n ( a )  (3.1.116) 

w he:re 

Here, 

is the complex admittance matrix[77]. The complex admittance matrix is anisotropic in that 

both the H, and Hv tangential components of the magnetic field strength are dependent upon 

both tangential components E,  and Ev of the electric field strength. This anisotropy is due 

to the diagonal matrix elements which are both linear in Bv. 



With Eqs. (3.1.116) and (3.1.117) as a model, the specific tangential relations for each 

of the incident, reflected and transmitted field vectors are given by 

and 

The incident complex admittance matrix is given by 

the reflected complex admittance matrix is given by 

and the transmitted complex admittance matrix is given by 

The tangential components of the generalized law of reflection given in Eq. (3.1.11 la) 

are 

Brr (@)  = Bi,(w) 9 arr(a) = air(a) 7 

Brv = Piv 7 
- arY - aiv = 0 . 

In addition, the normal component relationships of the generalized law of reflection given 

in Eq. (3.1.111b) are 

Br, , (a> = -Bi,(m) 7 urn(@) = - a j , , ( ~ )  

These facts indicate that the incident and reflected complex admittance matrices are equal 



but of opposite sign, viz. 

.. .. 
Y r ( o )  = - Y i ( o )  . (3.1.124) 

The: tangential components of the generalized law of reflection given in Eq. (3.1.11 la) yield 

Pt,(a) = Pi,(,> 7 at,(,> = air(,) 7 

P t ,  = Pi,  7 a ,  = aiv = 0 .  

With these results, Eq. (3.1.123) becomes 

Since it was determined in 33.1.2 that the complex phase terms appearing in the bound- 

ary .value conditions given in Eqs. (3.1.78a,b) are equal, these terms may be eliminated from 

those relations with the result 

Substitution of the electromagnetic field vectors in component form, from Eqs. (3.1.69), 

(3.1.72) and (3.1.74), into the above relations then yields 

- E ~ ~ ( U ) ;  + E ~ J U ) ;  - E,(u)C + E,(u); = -E,(,)C + E,,(u); , 

-Hir(,); + Hi (0); - Hr7(o); + HrV(o); = -H,,(o)G + HtV(o); 

which may be rearranged as 

Due to the independence of the mutually orthogonal tangential vector components, the sep- 

aratr: vector components appearing in this pair of equations must then be equal, resulting in 

the set of equations 



These tangential boundary conditions may be rewritten in matrix form as 

Upon substitution of the relationships given in Eqs. (3.1.118), (3.1.119) and (3.1.120) 

into Eq. (3.1.126b) yields 

Httm(a) = Ft(a)Ethn(~) = Fi(o)Eim.(a) + Fr(~)ErU,,(~) . (3 1.127) 

With the substitution of Eq. (3.1.126a) into the transmitted electric field vector Ethn(a), this 

equation becomes 

which may be solved for the reflected tangential field vector as 

Since -fr(w) = Fi(a), there results 

, 
Erh,,(a) = r Eih,,(a) , 

where the tangential reflection matrix F is defined as 

whose elements represent the generalized Fresnel equations for the reflection coefficients. 

Substitution of the complex admittance matrices given in Eqs. (3.1.121) and (3.1.125) into 



the tangential reflection matrix, yields 

where 



The determinant A appearing here is given by 

Upon rearranging Eq. (3.1.126a) for the reflected electric field vector and substituting 

the result into Eq. (3.1.127), there results 

K(a)Et tan(a)  = Fi(a)~j tan (a) + F r ( a ) [ ~ t _ ( a )  - Eitan(a)] 

whose solution for the transmitted tangential field yields 

-1 , 
Ettan(a) = [ F t ( a )  - F r ( a ) ]  [J'j(a) - Fr(a)]Ei,,(a) . 
, 

Since -Fr(m) = Y i ( a ) ,  there results 

Et,(a) = TEitan(a)  

where the tangential transmission matrix T is defined as 

whose elements represent the generalized Fresnel equations for the transmission coeffi- 

cients. Substitution of the complex admittance matrices given in Eqs. (3.1.121) and 

(3.1.123) into the tangential transmission matrix, yields 

where 



ttv - rtv , (3.1.136~) 

tvr = rvr . (3.1.136d) 

Notice the fundamental relationship between the tangential reflection and transmission ma- 

trices 

- - 
t = I + ? ,  (3.1.137) 

- 
where I = [dQ] is the unit matrix. 

3.1.4 Special cases of the Generalized Laws of Reflection and Refraction and 
the Generalized Fresnel Equations 

The generalized Fresnel equations developed in $3.1.3 exhibit an inherent anisotropy, 

which is due to the presence of the / I i v  and / I tv  terms in the complex admittance matrices. 

The:se terms couple one tangential component of the reflected or transmitted field vector in 

ternns of both tangential components of the incident field vector. The existence of the compo- 

nents /Iiy and ptv is due to the fact that the a-plane of incidence is, in general, different from 

the p-plane of incidence. An important implication of this inherent anisotropy is that any 
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Figure 3.1.10 Geometry of the inhomogeneous plane wave reflection and refraction at a 
planar interface separating two lossy, dispersive dielectric half-spaces when the a-plane 
of incidence is coplanar with the P-plane of incidence. 

logical separation of the electromagnetic fields into strictly TE or TM polarized fields (also 

denoted as s- or p-polarized fields, respectively) does not exist. However, if the a- and 

P-planes of incidence are coplanar then this anisotropy disappears. Two special cases are 

now examined to help explain this phenomenon. 

Case  I :  The B-Plane of Incidence is Coplanar with the a-Plane of Incidence: Lin- 
early Polarized TE and TM Fields 

Under certain circumstances, the polarization state of the electromagnetic field will be 

known. If one of the field components is linearly polarized in the direction perpendicular 

to thexz reference plane then, by the results of 32.6.2, the other fieldcomponent is elliptically 

polarized and the xz reference plane contains both the elliptically polarized field and the 

complex wavevector. If the electric field is perpendicular to the xz reference plane then the 

field is called TE or Transverse Electric and is sometimes referred to as s-polarized (where 

's' stands for senkrecht, which means perpendicular in German). If the magnetic field is per- 



pen~dicular to the xz reference plane then the field is called TM or Transverse Magnetic and 

is sometimes referred to as p-polarized (where 'p' stands for parallel). As a consequence, 

the transverse wavenumber vanishes ( P i ,  = 0) and, from Eq. (3.1.36), 

@ = o ,n ,  (3.1.138) 

the choice depending on the sign of Pir .  The b p l a n e  of incidence is assumed to be coplanar 

with the a-plane of incidence. When this occurs, the generalized laws of reflection and re- 

fraction in spherical components, given in Eqs. (3.1.111~) and (3.1.112c), show that 

B = @B = @ B =  0,n.  
@ i  r t (3.1.139) 

As a result, all of the propagation and attenuation vectors lie in the same plane, as illustrated 

in Figure 3.1.10. The remaining generalized laws of refraction and reflection, given in Eqs. 

(3. :I[. 11 1) and (3.1.11 2), are correspondingly altered. 

The complete set of equations that form the generalized laws of reflection at a planar in- 

terface separating two lossy dielectrics when the p-plane of incidence and the a-plane of 

incidence are coplanar are summarized in the following three sets of equations that are ex- 

pressed in terms of the incident wavevector components in both the rectangular and spherical 

coordinate components: 

( i )  Tangential component relations when the p-plane of incidence and the a-plane of 

incidence are coplanar: 

Prr(w) = Pir(w) , Prv = Pi ,  = O , a,(w) = air(w)  , a ,  = aiv = O . (3.1.140a) 

(ii) Normal component relations when the p-plane of incidence and the a-plane of inci- 

dence are coplanar: 

Pr,,(w) = -Pi,(w) ar,,(w) = -ai ,(w) - (3.1.140b) 

(iii) Spherical component relations when the p-plane of incidence and the a-plane of inci- 

dence are coplanar: 

Pr = Pi  , Of  = O! , @ B  = @! = 0,n , a, = ai , 8; = O p  . 
I r I (3.1.140~) 



The complete set of equations that form the generalized laws of refraction at a planar 

interface separating two lossy dielectrics when the B-plane of incidence and the a-plane 

of incidence are coplanar are summarized in the following three sets of equations that are 

expressed in terms of the incident wavevector components in both the rectangular and spher- 

ical coordinate components: 

(iv) Tangential component relations when the B-plane of incidence and the a-plane of 

incidence are coplanar: 

Btr(a) = Bi,(a) 7 Bt, = Piv = 0 9 atr(a) = air(a) at,, = aiv = 0 . (3.1.141a) 

(v)  Normal component relations when the B-plane of incidence and the a-plane of inci- 

dence are coplanar: 

-2 2 
~ t , , (a)  + iat,,(a) = + Jk2(a) - (Bija) + iair(a)) . (3.1.141b) 

(vi) Spherical component relations when the B-plane of incidence and the a-plane of inci- 

dence are coplanar: 



In this special case, the form of the generalized Fresnel equations for the reflection and 

trar~smission coefficients remains unaltered from that given in Eqs. (3.1.129) and (3.1.134). 

However, the complex admittance matrices are reduced to isotropic forms using Eq. 

(3. I .  115) and noting that p, = 0 for this special case, viz. 

and 

U 1 1 [-; -ii(uj 
Yt(u)  = -- 

'lob i t n @ )  k z ( o )  

Sut~stitution of the above isotropic incident and transmitted complex admittance matrices 

into the generalized Fresnel equations produces isotropic versions of the tangential reflec- 

tion and transmission matrices in that they are both diagonal. The diagonal terms can be 

identified as the reflection and transmission coefficients for TE or TM polarized fields. The 

tangential reflection matrix becomes 

where the r ,  component is the reflection coefficient for TM polarized fields and the r,  com- 

ponent is the reflection coefficient for TE polarized fields. The tangential transmission ma- 

trix becomes 



where the t, component is the transmission coefficient for TM polarized fields and the t, 

component is the transmission coefficient for TE polarized fields. The relationship between 

7 and 7 becomes [cf. Eq. (3.1.137)] 

Case II: The Refractive Index of the Medium of Incidence is Lossless 

Let the refractive index of the medium of incidence be real-valued so that iil = nl, 

where nl E IF&. Consequently, the incident and reflected complex wavevectors are also 

real-valued, where 

ii(a) = Bi(a) (3.1.147) 

and 

L(0) = Br(a)  . (3.1.148) 

The generalized laws of refraction and reflection appearing in Eqs. (3.1.11 1) and (3.1.112) 

are then correspondingly altered. 

The complete set of equations that form the generalized laws of reflection when the me- 

dium of incidence is lossless are summarized in the following three sets of equations that are 

expressed in terms of the incident wavevector components in both the rectangular and spher- 

ical coordinate components: 

( i )  Tangential component relations when the medium of incidence is lossless: 

Br,(a)  = Pi,(@) Br, = Pi, , - - a,  - air = 0 , a,  - aiv = 0 . (3.1.149a) 

(ii) Normal component relations when the medium of incidence is lossless: 

Brn(@> = -Bin(a) , a,  = -ain = 0 .  (3.1.149b) 

(iii) Spherical component relations when the medium of incidence is lossless: 

B r = B i ,  0 t = e ! ,  1 $!=@, 1 a r = a i = O ,  Or=Oi .  (3.1.149~) 



'The complete set of equations that form the generalized laws of refraction when the me- 

diurn of incidence is lossless are summarized in the following three sets of equations that are 

expiressed in terms of the incident wavevector components in both the rectangular and spher- 

ical coordinate components: 

(iv) Tangential component relations when the medium of incidence is lossless: 

Pt,(a) = Bir(a) 7 Bt, = Piv 7 
atr = air = 0 7 atv = aiv = 0 . (3.1.150a) 

(v)  Normal component relations when the medium of incidence is lossless: 

(vi) Spherical component relations when the medium of incidence is lossless: 

In this case, the form of the generalized Fresnel equations for the retlection and transmis- 

sion coefficients remains unaltered from that given in Eqs. (3.1.129) and (3.1.134). The 

components of the incident complex wavevector are affected and reduce to 



and the tangential component of the transmitted complex wavevector reduces to 

ktr(o) - Bt.(o) . 

The complex admittance matrices are affected by the simplified case and are reduced to 

The admittance matrices still exhibit anisotropy because the incident propagation vector is 

not limited to the xz reference plane. 

3.2 The Reflected and Refracted Inhomogeneous Plane Wave Fields Ex- 
pressed Within Their Respective Local Coordinate Systems 

In this section, the incident inhomogeneous plane wave, given in terns of the local inci- 

dent coordinate system, is related to the reflected and transmitted fields within their respec- 

tive local coordinate systems. A common reference point between all three local coordinate 

systems must be found, which lies within the interface, because it is here that the relation- 

ships between the incident inhomogeneous plane wave and the reflected and transmitted 

fields as governed by the generalized laws of reflection and refraction and the generalized 

Fresnel equations are defined. The interface origin provides a convenient common reference 

point because all three local longitudinal axes intersect at that point. 

This problem assumes that the incident local coordinate system is fixed, i.e. the charac- 

teristic angle Oi is given and that the real-valued transverse wavenumbers k,  and k, are al- 

lowed to span their whole domain while the real-valued frequency o is another independent 

variable. Initially, while within the incident local coordinate system, propagating the inci- 

dent inhomogeneous plane wave field along the ;-axis a distance wo from the local origin 

places the field at the interface origin. The incident field is then transformed into the inter- 



face: coordinate system using the transformation matrix defined in Eq. (3.1.23). The re- 

flected and refracted inhomogeneous plane wave fields may then be expressed in terms of 

the given incident inhomogeneous plane wave field within the interface coordinate system 

using the generalized laws of reflection and refraction, given in Eqs. (3.1.11 la-c) and 

(3.1.112a-c) and the generalized Fresnel equations given in Eqs. (3.1.130) and (3.1.135). 

The reflected and refracted inhomogeneous plane wave fields are then expressed within their 

respective local coordinate systems using the transformation matrices defined in Eqs. 

(3.1.56) and (3.1.57). Finally, while within their respective local coordinate systems, propa- 

gating the reflected and refracted fields along the 6 -axis and 6 -axis a distance wb and wi, 

places the fields at their respective local origins. Before this final result is derived a few pre- 

liminary definitions are required. 

There exists a certain degree of freedom in choosing the characteristic angle of the re- 

flected local coordinate system @,. The angle @,could, in principle, be any angle. However, 

defining Or = Oi intuitively makes sense based on the spherical component relations of the 

generalized laws of reflection given in Eq. (3.1.11 lc). The associated angles of the reflected 

propagation and attenuation vectors of any reflected inhomogeneous plane wave field are 

equ,al to that of the corresponding angles of the incident propagation and attenuation vectors. 

In particular, the angular relationship for the attenuation vector yields 8; = 8;. Since the 

incident local coordinate system was defined to have the &axis aligned with the incident 

attenuation vector, aligning the reflected 6 -axis along the reflected attenuation vector the 

achi~eves a consistent relationship. Therefore, Or = Oi will be assumed throughout all sub- 

sequent analysis. 

As a result of the generalized laws of reflection given in Eqs. (3.1.11 la-c), the complex 

wavevector of the reflected field relates to the complex wavevector of the incident field with- 

in the interface coordinate system as [cf. Eq. (3.1.76)] 



where the v̂  component is pure real and not a function of frequency. The reflected complex 

wavevector transforms into the reflected local coordinate system through multiplication of 

"T 
the inverse transformation matrix Rot, as 

Substitution of Eqs. (3.1.25) and (3.1.27) into this equation defines the reflected complex 

wavevector in terms of the given wavenumbers k, and k,, 

- 1 0  0 
k , (a )  = Rot, 0 1 0  Roti 

-T [o 0 -j- [y:ij 
where the complex wavenumber y i (o )  is a function of k, and k, as defined in Eq. (3.1.8a). 

The matrix multiplication is then achieved using Eqs. (3.1.23) and (3.1.58) and the fact that 

0, = Oi which results in an expression for the reflected complex wavevector within there- 

flected local coordinate system in terms of the given wavenumbers k, and k,, viz. 

There also exists a certain degree of freedom in choosing the characteristic angle of the 

transmitted local coordinate system 0,. The angle 0, could, also be any angle. However, 

let the angle of the transmitted local coordinate system 8, be the angle 0, = -kv=o, U - 

i.e. the refracted angle of the attenuation vector for an incident homogeneous plane wave. 



As a result of the generalized law of refraction given in Eqs. (3.1.112a-c), the refracted 

field's complex wavevector relates to the incident field's complex wavevector within the in- 

terface coordinate system as [cf. Eq. (3.1.77)] 

notice that the Ŷ  component is pure real and not a function of frequency. The transmitted 

complex wavevector transforms into the transmitted local coordinate system through multi- 

,T 
plication of the inverse transformation matrix Rott as 

Use: of the defining Eqs. (3.1.25) and (3.1.27) puts the transmitted complex wavevector in 

terrns of the given wavenumbers k ,  and k ,  

- - 
' i ~ w  

Pi,  

-2 
[i:(o) - *ir(o) - ~t 

k t ( o ) =  

- - 
k ,  cos Oi + y i ( o )  sin Oi 

,T kv 
= Rott 

2 
k2(w)  - (k,  cosOi + yi(o) sin@,) - kZ 

where the complex wavenumber y i ( o )  is a function of k,  and k,  as defined in Eq. (3.1.8a). 

-itu,,(d 
Pt;. 

itw,,(o) - - 

,T 
Substituting the definition of Rott given in Eq. (3.1.58) results in an expression for the trans- 

,T 
= Rot, 

mitted complex wavevector within the transmitted local coordinate system in terms of the 

given wavenumbers ku and k,, viz. 



- 
k, cos Oi + yi(o) sin Oi 

cos 8, 0 - sin 8, 
= [ o  1 0 I[ k" 2 

sin gt 0 cos ~t [ii(a) - (x,  cos O~ + yi(a)  sin - kz 

The normal component of the reflected electric field vector can be expressed in matrix 

form in terms of the two tangential components within the interface coordinate system as a 

result of the transversality condition given in Eq. (2.5.25) [cf. Eq. (3.1.113)], viz. 

The generalized laws of reflection given in Eqs. (3.1.11 1a-c) determine that 

where Erron(a) [ ~ ~ i : ; ] .  The generalized i r ewe i  equations relate Erb,,(a) to Eibn(@) 

in Eq. (3.1.128) via the tangential reflection matrix 7., given in Eq. (3.1.130) so that 

By combining this result with that of Eq. (3.1.128), the reflected electric field vector relates 

to the incident electric field vector within the interface coordinate system by 

- 
where the intermediate reflection matrix R is defined as 
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and rtr, rtv, rvr and rvv are the elements of the tangential reflection matrix 7. All of the ele- 

U 

merits of R are defined in terms of the transverse wavenumbers k,  and k, from Eqs. 

(3.1.25), (3.1.27) and (3.1.112b). Due to the dependence of the normal incident electric 

fielld component on the tangential components, only the tangential components effect Eq. 

(3.2!.4). 

The reflected field is defined within the reflected local coordinate system as [cf Eq. 

(3. I. .49a)] 
- 

E r r  ) = E,(o)e +ikr(o)'" , 
- 

where the reflected complex wavevector kr(w) is given in Eq. (3.2.1). Reverse propagating 

the reflected electric field from the local origin towards the interface along the ; -axis for 

a distance - wb yields an expression for the reflected electric field vector at the interface 

origin within the reflected local coordinate system, viz. 

Er(w)e -c i ,b )wh . (3 .2 .6)  

An alternate expression for the reflected electric field vector at the interface within the 

reflected local coordinate system can be written in terms of the incident electric field vector. 

The incident electric field is defined within the incident local coordinate system as [cf Eq. 

(3.:1.4a)] 

E . ( ~ .  I 1' o )  = Ei(w)e+i&(o)"i 

Propagating the incident electric field along the ;-axis for a distance wo gives the incident 

electric field vector at the interface origin 



Multiplying this incident electric field vector by the transformation matrix goti defines the 

incident field vector at the interface origin within the interface coordinate system, viz. 

* 
Roti ~ , ( w ) e ~ y i ( ~ ) ~ o  . (3.2.7) 

, 
Multiplying the field vector by the intermediate reflection matrix g defines the reflected 

electric field vector at the interface origin within the interface coordinate system, viz. 

*T 
Multiplying the reflected electric field vector by the inverse transformation matrix Rot, de- 

fines the reflected electric field vector at the interface origin within the reflected local coordi- 

nate system, viz. 

g E ~ ( ~ ) ~ ~ Y L ( ~ ) w o  , (3.2.8) 

- 
where the reflection matrix R is defined as 

- *T -' - 
R = Rot, R Roti . 

Equating the two different expressions for the reflected electric field vector at the inter- 

face within the transmitted local coordinate system given in Eqs. (3.2.6) and (3.2.8) and solv- 

ing for the quantity E,(o)  results in 

E,(@) = 2 E ~ ( ~ ) ~ ~ Y ~ ( ~ ) ( ~ O + W ; )  . (3.2.10) 

Consequently, the reflected electric and magnetic fields can be defined in terms of the known 

incident electric field vector and the transverse wavenumbers k,  and k, within the reflected 

local coordinate system. Substituting Eq. (3.2.10) into Eq. (3.1.49a) yields 
- 

Er(rr, = ~ , ( ~ ) ~ i Y i ( m ) ( w o  +wile +*r(m) .rr , (3.2.11a) 

and substituting Eq. (3.2.11a) into the transversality condition given in Eq. (2.5.24) yields 

where the reflection matrix g is defined in Eq. (3.2.9), the reflected complex wavevector 



&(w) is defined in Eq. (3.2.1) and the position vector rris defined in the reflected local coor- 

dinate system. 

'The normal component of the transmitted electric field vector can be expressed in matrix 

fornn in terms of the two tangential components within the interface coordinate system as a 

result of the transversality condition given in Eq. (2.5.25) [cf. Eq. (3.1.113)] 

The generalized laws of refraction given in Eqs. (3.1.112a-c) determine that 

where Etfan(a) - F?jwj]. The generalized iresnei equations relate Et,an(a) to E Z I , ,  (a )  

in E.q. (3.1.133) via the tangential transmission matrix ? given in Eq. (3.1.135) so that 

By combining this result with that of Eq. (3.1.133), the transmitted electric field vector re- 

lates to the incident electric field vector within the interface coordinate system by 

U 

where the intermediate transmission matrix T is defined as 

and trr, t r ,  tvr and tVv are the elements of the tangential reflection matrix 7. All of the ele- 

U 

men~ts of T are defined in terms of the transverse wavenumbers k,  and k,  from Eqs. (3.1.25), 



(3.1.27) and (3.1.112b). Due to the dependence of the normal incident electric field compo- 

nent on the tangential components, only the tangential components effect Eq. (3.2.13). 

The transmitted field is defined within the transmitted local coordinate system as [cf. 

Eq. (3.1.50a)l 
- 

Et(rt, o )  = E,(o)e + i k l ( w ) ' r l  , 
- 

where the transmitted complex wavevector k t ( o )  is given in Eq. (3.2.2). Reverse propagat- 

ing the transmitted electric field from the local origin towards the interface along the 

I I 

6 -axis for a distance - wi yields an expression for the reflected electric field vector at the 

interface origin within the reflected local coordinate system, viz. 

An alternate expression for the transmitted electric field vector at the interface within the 

transmitted local coordinate system can be written in terms of the incident electric field vec- 

tor. The incident electric field vector at the interface origin within the interface coordinate 

system is given in Eq. (3.2.7). Multiplying this incident electric field vector by the inter- 

mediate transmission matrix ? defines the transmitted electric field vector at the interface 

origin within the interface coordinate system, viz. 

HT 
Multiplying the transmitted electric field vector by the inverse transformation matrix Rott 

defines the transmitted electric field vector at the interface origin within the transmitted local 

coordinate system, viz. 

H 

where the transmission matrix T is defined as 

HT H' H 

T Rot, T Roti . 



.Equating the two different expressions for the transmitted electric field vector at the in- 

terface within the transmitted local coordinate system given in Eqs. (3.2.15) and (3.2.16) and 

solving for the quantity E,(o) results in 

ik, ,,(o)wi Et(w) = ? ~ . ( w ) e ~ y i ( ~ ) ~ o e  I (3.2.18) 

Consequently, the transmitted electric and magnetic fields can be defined in terms of the 

known incident electric field vector and the transverse wavenumbers k ,  and k, within the 

transmitted local coordinate system. Substitution of Eq. (3.2.18) into Eq. (3.1.50a) yields 

- 
Et(r,, o )  = f' Ei(w)e iyi(m)woeik~w, . (~)wC, +i<(m) r ,  (3.2.19a) 

Substitution of Eq. (3.2.19a) into the transversality condition given in Eq. (2.5.24) yields 

where the transmission matrix ? is defined in Eq. (3.2.14), the transmitted complex wave- 
- 

vector k,(o) is defined in Eq. (3.2.2) and the position vector r, is defined in the transmitted 

local coordinate system. 

Pulsed Electromag~~etic Inhomogeneous Plane Waves Incident Upon 
a Planar Interface Separating Two Lossy, Dispersive Dielectric Half- 
Spaces 

The results presented here are concise integral expressions that describe pulsed electro- 

magnetic inhomogeneous plane waves incident upon a planar interface separating two lossy, 

dispersive dielectric half-spaces. These results are the sum of all the previous work and are 

quite significant. They are achieved by simply applying the inverse Fourier-Laplace trans- 

form to the final results of 33.2. 

The inverse Fourier-Laplace transform, as defined in Eq. (2.1.1 b), of Eqs. (3.2.1 la,b) 

yields the reflected fields as 



where R" is defined in Eq. (3.2.9) and rr is the position vector defined in the reflected local 

coordinate system. 

The inverse Fourier-Laplace transform of Eqs. (3.2.19a,b) yields the transmitted fields 

and 

where ? is defined in Eq. (3.2.17) and rt is the position vector defined in the transmitted local 

coordinate system. 

If the temporal conditions of the incident field Gi(rt, t )  permit the use of a Fourier trans- 

form, then the contour of integration C,, in Eqs. (3.3.la,b) and (3.3.2a,b), denotes the 

straight line path along the real axis in the complex wplane. However, if the temporal 

conditions of the incident field Bi(rt, t )  require the use of a Laplace transform then the con- 

tour C, is the Bromwich contour which is the straight line path given by o = o' + ia, with 

a being a real constant that resides within the region of convergence and where o' Re(o) 

ranges from negative to positive infinity. 



CHAPTER IV 

Reflection of Linearly Polarized 
TM Plane Waves 

Incident Upon a Planar Interface 
Separating Two 

Lossy, Dispersive Dielectrics 



The results from 93.1.4 are now applied to TM polarized homogeneous and inhomoge- 

neous plane waves incident upon a planar interface separating two lossy, dispersive dielec- 

trics. A double resonance Lorentz model describes the two dielectric media. 

4.1 Double Resonance Lorentz Models of the Two Lossy, Dispersive Di- 
electric Media 

The double resonance Lorentz model equation that describes two different media types 

is given by [cf. Eq. (2.3.10)] 

where the index j denotes the media type ( j  = 1 for the medium of incidence and j = 2 

for the medium of transmittance). For each of the numerical examples considered here, Eq. 

(4.1.1) is used to characterize the complex refractive index of each medium separated by the 

planar interface. Two different types of relations between the two materials are considered 

here. 

The first type has equal-valued double resonance Lorentz parameters for the both the 

medum of incidence (medium 1) and medium of transmittance (medium 2), with the excep- 

tion of the E~ parameter. By choice, _ > E ~ , ,  SO that the real parts of the complex refrac- 

tive indices make an optically dense to rare transition when going from the medium of inci- 

dence to the medium of transmittance at any given angular frequency. In effect, the real and 

imaginary parts of the complex refractive index of the medium of incidence are vertically 

displaced, although not uniformly, relative to the those of the medium of transmittance. This 

means that %[nl(o)] > %[n2(o)] and ~ + i ~ ( o ) J  < 3[i2(w)] for all o. The benefit of this 

choice of double resonance Lorentz parameters is that the more complicated effects of over- 

lapping real and imaginary parts within the anomalous dispersion regions are eliminated and 

are reserved exclusively for the other interface type considered here. The double resonance 

Lorentz model parameters chosen for this interface type are based on those presented in 



Tab1.e 2.3.1 and are tabulated here in Table 4.1.1. The frequency dispersion for these two 

similar media are illustrated in Figure 4.1.1. 

'The second type has dissimilar Lorentz parameters for the both the medium of incidence 

and the medium of transmittance. Again, by choice, rn > e2,, so that the real parts of the 

complex refractive indices make an optically dense to rare transition in those spectral regions 

that are removed from any medium resonances, i.e. in the regions of normal dispersion. 

Hovvever, within and about the regions of anomalous dispersion, the real parts of the complex 

refractive indices are inverted to make an optically rare to dense transition. The double reso- 

nance Lorentz model parameters chosen for this interface type resemble those presented in 

Table 2.3.1 and are tabulated in Table 4.1.2. The frequency dispersion for these two dissimi- 

lar rnedia are illustrated in Figure 4.1.2. 

4.2 The Transmitted Complex Wavevector 

- -L 

'The behavior of the angle OF, the normal component ktn(u)  and its square ktn(u)  of the 

transmitted complex wavevector in the complex plane reveals many unique features that pro- 

vide insight into the dynamics of both the generalized law of refraction and the generalized 
- 

Fre:~nel equations. For simplicity, the normal component ktn(u)  of the transmitted complex 

wavevector will be referred to as the transmitted normal complex wavenumber. 

'The behavior of the square of the transmitted normal complex wavenumber in the com- 

-2 
pler. plane is considered first. The quantity ktn(u)  within the interface coordinate system 

is given by the generalized law of refraction given in Eq. (3.1.112b) as 

-2 
Two critical values of ktn (u )  occur: one when !R = 0 and the other when 



w ( l ~ ~ ~ r a d / s e c )  
Figure 4.1.1 The complex refractive index for both the medium of incidence (solid lines) and 
the medium of transmittance (dashed lines) using the double resonance Lorentz model with pa- 
rameters taken from Table 4. l .  l. 

Table 4.1.1 Double resonance Lorentz model parameters of the two media separated by an 
interface where the only difference lies in the choice of the parameter ~ j ,  
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Medium 
Type 

medium of 
incidence 

j = 1  

medium of 
transmittance 

j = 2 

Double Resonance Lorentz Model Parameters 

' j  

2.9938 

1.9938 

Resonance 
Number 

1 

0 

2 

0 

2 

Oil 
(1014rad/sec) 

1.7412 

91.448 

1.7412 

91.448 

bjl 

(1014rad/sec) 

1.2155 

67.198 

1.2155 
- 

67.198 

' j l  

(1013rad/sec) 

4.9555 

143.41 

4.9555 

143.41 



w n , ( o ) j  

- - - - - - - -  - - -  
I R{G(o)J  

1.5- 1 -  
_ _ - - - - -  - 

I / '  - - - -  
I / 

Table 4.1.2 Double resonance Lorentz model parameters of the two media separated by an 
interface where the behavior of the real part of the complex refractive index switches from the 
normal optically dense to rare transition to optically rare to dense transition within the anoma- 
lous dispersion regions. 

1 

0.5 

- 

Medium 
Type 

medium of 
incidence 

j = 1  

medium of 
transmittance 

j = 2  

I /  

- - 

- 11 g { G ( w ) )  - 
I 1  
I I 

0- -. 

10' 1 02 1 o3 1 o4 1 o5 
o (10'~radlsec) 

Figure 4.1.2 The complex refractive index for both the medium of incidence (solid lines) and 
the medium of transmittance (dashed lines) using the double resonance Lorentz model with pa- 
rameters taken from Table 4.1.2. 

Double Resonance Lorentz Model Parameters 

' j  

2.4938 

1.9938 

Resonance 
Number 

1 

0 

2 

0 

2 

%I 

( l ~ ' ~ r a d / s e c )  

4.9555 

143.41 

4.9555 

143.41 

@ j I  
(10'~radlsec) 

1.7412 

91.448 

4.1000 

120.00 

b,, 
(1 ~ ' ~ r a d l s e c )  

1.2155 

67.198 

2.5155 

67.198 



3 ktn(w) = 0. These two critical values influence the behavior of both the generalized r2 I 
law of refraction and the generalized Fresnel equations. 

7 

The transmitted normal complex wavenumber ktn(w) in the complex plane is then con- 

-2 
sidered. A branch cut in the complex plane of ktn(w) is chosen as the negative real axis [cf. 

- 
$3.1.21. The quantity ktn(o)  is primarily propagative when Q > 0 and becomes 

primarily attenuative when 92 < 0. Also, when 3 < 0 the field expo- 

nentially grows in the direction normal to the interface in the medium of transmittance and 

is referred to as a leaky surface wave under certain conditions. 

4.2.1 The Asymptotic Behavior of the Normal Component and the Angle of the 
Transmitted Complex Wavevector 

- -L 

Let the asymptotic behavior of ktn(o) ,  k tn(o)  and 8: be examined for a case when I ku I 
approaches infinity while k,  = 0.. The asymptotic values given in this section are used to 

determine the asymptotes which provide valuable insight into the general functional behav- 

ior of the normal component of the transmitted complex wavevector. Bearing in mind that 

when Oi > 0, the transverse wavenumber k,  reaches a positive limit kum. The values 

k,  > kUm are ignored for a practical problem since no time averaged power is incident upon 

the interface for this situation [cf. $3.11. However, the asymptotes still provide valuable in- 

formation so that k ,  is allowed to go to positive infinity in order to obtain these asymptotes. 

The incident field is assumed to be an inhomogeneous plane wave whose transverse 

wavenumber k,  varies over the domain - C.Q < k ,  < C.Q while k,  = 0 and the angle of the 

incident local coordinate system Oi is fixed. The longitudinal component y i ( o )  of the com- 

plex wavevector within the incident local coordinate system is given by [cf. Eq. (3.1.8a)l 



Uncler the transformations defined in Eqs. (3.1.25) and (3.1.27), the incident components 

of the complex wavevector may be expressed in the interface coordinate system in matrix 

fornn as 

k ,  cos 0, + ~ ~ [ y ~ ( o ) ]  sin Oi 

B i ( o )  = O (4.2.3a) 
- k ,  sin Oi + %fYi(o)] cos Oi 

and 

The in-plane tangential component Bir(o) of the incident propagation vector has the 

simple asymptotic approximation given by [cf. Eq. (3.1.14)] 

Pi,(@) - k,  cosOi , k,  +f a , k ,  = 0 . (4.2.4) 

Similarly, the in-plane tangential component air(w) of the incident attenuation vector has 

the simple asymptotic approximation given by 

air(@) - I k,  I sin Oi , k,  +f a , k ,  = 0 . (4.2.5) 

The square of the normal transmitted complex wavenumber given in Eq. (4.2.1) then has the 

asymptotic approximation 

L - - (k,  cos Oi + i I k,  I sin oi) 
2 

= - k: cos2 Oi + I ku 1 sin2 Oi - i2ku 1 ku 1 sin Oi cos Oi 

2 
= ( I k,  1 sin Oi - ik, cos Oi) , ku + f a ,  k,  = 0, (4.2.6) 



2 
where the fact k t  = (k, I was used to obtain the final expression. The real part of this 

asymptotic approximation yields 

2 
using the fact k t  = ( ku ( . This equation equals zero for an angle 8irt which has an exact 

value of g. Based on the range of Oi, the quantity 91 satisfies the inequalities 4 

Taking the square root of Eq. (4.2.6) using the chosen branch cut yields an asymptotic ap- 

proximation of the transmitted complex wavenumber which is given by 

1 k, 1 sin Oi - ik, cos Oi ; Oi > 0 
, k , + f  m,kv = 0 ,(4.2.9) ; o i=o  

where the special case for Oi = 0 is necessary because the domain of the square root is along 

the branch cut in this situation. The imaginary part of of this expression yields the asymptotic 

approximation 

The elevation angle 8: of the transmitted attenuation vector, as given in Eq. (3.1.112c), 

is given by 



Sublstitution of the asymptotic approximations given in Eqs. (4.2.5) and (4.2.10) into the this 

expression yields the asymptotic approximation of the angle 8: of the transmitted attenua- 

tion. vector, viz. 

4.2.2 The Transmitted Normal Complex Wavenumber, Critical Angles and the 
Critical Transverse Wavenumbers 

-L - 
There are two basic ways to present the dynamics of ktn(o)  and ktn(o)  within the com- 

plex plane. First, the incident wave is assumed to be a homogeneous plane wave whose angle 

of incidence Oi varies over the range given in Eq. (3.1.21). Second, the incident wave is 

assumed to be an inhomogeneous plane wave with a fixed angle of incidence Oi. The trans- 

verse wavenumber k,  varies over the domain - oo < k,  < k,- while the other transverse 

wavenumber is fixed at k ,  = 0 so that the incident field can be either TE or TM. 

In the first case, the incident field is assumed to be a homogeneous plane wave so that 

both of the transverse wavenumbers are zero, i.e. k, = k ,  = 0. This means that the longitu- 

dinal component y i (o )  of the complex wavevector within the incident local coordinate sys- 

tem is given by [cf. Eq. (3.1.8a)l 

- 
~ i ( 4  = k l b )  (4.2.12) 

With the use of the transformations defined in Eqs. (3.1.25) and (3.1.27), the incident com- 

plex wavevector components are given in the interface coordinate system in matrix form as 

and 



Substitution of the tangential components of the matrices given in Eqs. (4.2.13a,b) into Eq. 

(4.2.1) then yields 

for any incident homogeneous plane wave. Let the complex wavenumbers be defined as [cf. 

Eq. (2.5.5)] 

&(o) E B l ( 4  + i a l ( 4  , (4.2.15) 

and 

k 2 ( 4  = B 2 ( 4  + i a 2 ( ~ )  , 

so that Eq. (4.2.14) becomes 

It is assumed here that the conditions p:(w) - a:(o) > 0 and @(o) - a$(o)  > 0 

are satisfied. If not, then the glass would be highly attenuative and useless from an engineer- 

ing standpoint. The real part of Eq. (4.2.17) is then positive when Oi = 0. For Oi > 0, 

the quantity 32 ktn(o) will equal zero for some critical angle Oi = OC if the dielectric r2 I 
media are such that the condition 

b:(@) - a:(w) > B$(o) - a$(o)  , (4.2.18) 

is satisfied. The critical angle Oc is the lossy analog of the critical angle that causes total 

internal reflection for supercritical angles of incidence Oi > Oc for lossless media. If the 

condition given in Eq. (4.2.18) is satisfied, then the critical angle is given by 



The quantity R ktn(o) then satisfies the inequalities 1-' I 

Application of the results of Eq. (3.1.18) to these inequalities yields the inequalities 

- 
which imply that if Oi < Oc then the term ktn(o) is primarily apropagative factor. Con- 

- 
versely, if Oi > Oc then the term ktn(o) is primarily an attenuative factor. 

From Eq. (2.5.7), the inequality B2(o)a2(o) > 0 is always satisfied for o > 0 so that 

the imaginary part of Eq. (4.2.17) is positive when Oi = 0. For Oi > 0, the quantity 

3 ktn(o) will equal zero for some critical angle Oi = OLS if the dielectric media are such r2 I 
that the condition 

Bl(o)al(o) > B2(4a2(o> , (4.2.22) 

is satisfied. The angle OLS is called the leaky surface wave critical angle. If the condition 

given in Eq. (4.2.22) is satisfied, then the leaky surface wave critical angle is given by 
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The quantity S ktn(o) then satisfies the inequalities r2 I 
S ktn(o) = 0 ; Oi = O I-' I LS . 

According to the chosen branch-cut, these inequalities yield the inequalities 

S ktn(o) = 0 ; Oi = OLS and Oc > OLs . I -  I 
The top condition given in Eq. (4.2.25) implies that the amplitude exponentially increases 

with distance normal to the interface. Transmitted waves of this type do not violate the re- 

quired condition that pt(o) . a t (o )  2 0 [cf. Eq.(2.5.15)] so that the transmitted waves at- 

tenuate in the direction of phase front propagation pt(o) for o > 0 and -pt(w) for o < 0. 

For spectral regions where a l ( o )  is small and the condition given in Eq. (4.2.22) is still satis- 

fied, then the angle BLs B and the incident homogeneous plane wave is considered a 
2 

leaky surfclce wave18 when Oi > OLS because Oi is then at near grazing incidence to the 

interface. 

If the conditions given in Eqs. (4.2.18) and (4.2.22) are both satisfied in addition to the 

condition 

18. See Caviglia and Morro [69] 41.3 p. 10. 



Table 4.2.1 The values of the propagation factor and the attenuation factor for various fre- 
quencies. This example utilizes the double resonance Lorentz model parameters taken from 
Table4.1.1. 

o 

(1014rad/sec) 

1.7379 

3.0201 

9.3326 

Table 4.2.2 The values of the propagation factor and the attenuation factor for various fre- 
quencies. This example utilizes the double resonance Lorentz model parameters taken from 
Table 4.1.2. 

then Oc > O,,. All three of these conditions are satisfied for the real and imaginary parts 

Bl(o> 

(10' radlm)  

10.986 

18.410 

58.418 

of tlhe complex wavenumbers of the medium of incidence and the medium of transmittance 

given in Table 4.2.2 for o = 173.79THz. The results are tabulated in Table 4.2.4. The 
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a l ( 4  
(lo4 radlm)  

13.168 

2.8021 

1.6208 

B 2 ( o )  

( lo5 radlm)  

9.3665 

15.410 

49.433 

a 2 ( 4  

( lo4 radlm)  

15.445 

3.3475 

1.9154 
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x 10" 
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!Jl {kt} loq3 
Figure 4.2.1 Plot of the transmitted normal complex wavenumber squared as a function of the 
angle of the incident local coordinate system for the fixed frequencies a) 174 THz and b) 933 
THz for a homogeneous plane wave incident upon the interface separating two lossy, dispersive 
media. 



- -3 0 '1 0 5  1 1.5 2 2.5 3 3 5  4  4 5  5  

{kto) x lo6 
Figure 4.2.2 Plot of the transmitted normal complex wavenumber as a function of the angle of 
the incident local coordinate system for the fixed freauencies a) 174 THz and b) 933 THz for a 
homogeneous plane wave incident upon the interface separating two lossy, dispersive media. 



-2 - 
functions kt , (@) and ktn(w) for this situation are plotted in the complex plane in Figure 4.2.1 

- 
a) and Figure 4.2.2 a). Notice that, in this situation, kt ( w )  is pure real when Oi = OLS as 

seen in Figure 4.2.2 a). 

In contrast, if the conditions given in Eqs. (4.2.18) and (4.2.22) are both satisfied in addi- 

tion to the condition 

then Oc < OLs All three of these conditions are satisfied for the real and imaginary parts 

of the complex wavenumbers of the medium of incidence and the medium of transmittance 

given in Table 4.2.2 for o = 933.26THz and o = 1000.OTHz. The results are tabulated 

-L 
in Table 4.2.4. The functions ktn(o)  and i ( w )  for w = 933.26THz are plotted in the com- 

plex plane in Figure 4.2.1 b) and Figure 4.2.2 b). When this situation prevails, the branch 
- 

cut is crossed so that there will be a discontinuity in the function kt , (o )  with respect to the 

- 
variable Oi when Oi = OLS. Notice that, in this situation, kt , (o)  is pure imaginary at the 

point of discontinuity Oi = OLS. According to the inequalities given in Eq. (4.2.25), imagi- 
- 

nary part of kt,(@) is in the positive imaginary half plane immediately before the discontinu- 

ity and then continues in the negative half plane after the discontinuity. This effect is not 
- 

discernable in Figure 4.2.1 b) because kt,(@) lies very close to the imaginary axis in this 

case. 

If the condition given in Eq. (4.2.18) is satisfied but not the condition given in Eq. 

(4.2.22) then the critical angle Oc occurs but not the leaky wave critical angle OLS. This 

situation is satisfied for the real and imaginary parts of the complex wavenumbers of the me- 

dium of incidence and the medium of transmittance given in Table 4.2.2 for 

o = 407.40THz. The results are tabulated in Table 4.2.4. In contrast, if the condition given 



Table 4.2.3 The critical angles for an interface for various frequencies. This example utilizes 
the double resonance Lorentz model parameters taken from Table 4.1.1. 

w 

(1014rad/sec) 

1.7379 

3.0201 

9.3326 

Table 4.2.4 The critical angles for an interface for various frequencies. This example utilizes 
the double resonance Lorentz model parameters taken from Table 4.1.2. 

10.000 

91.225 

in Eq. (4.2.22) is satisfied but not the condition given in Eq. (4.2.18) then the leaky wave 

criti~cal angle OLS occurs but not the critical angle Oc. This situation can occur even if the 

real parts of the complex refractive indices of the two dielectric media separated by the inter- 

face represent an optically dense to rare transition. An example of this behavior is tabulated 

in Table 4.2.4 for w = 9122.5THz for the real and imaginary parts of the complex wave- 

numbers of the medium of incidence and the medium of transmittance given in Table 4.2.2. 

@ m i n ( ~ { r ~ } )  
(degrees) 

58.4703 

57.2489 

57.9635 

@C 

(degrees) 

57.8918 

56.8203 

57.7992 

@LS 

(degrees) 

none 

90.0000 

90.0000 

59.2633 

none 

59.6772 

23.2947 

59.2780 

15.5527 



The values of Oc and OLS for various frequencies are tabulated in Table 4.2.3 and 

Table 4.2.4. The term 'none' indicates the failure to meet to either of the inequalities given 

in Eq. (4.2.18) or Eq. (4.2.22). However, when Eq. (4.2.18) is not satisfied due to an optical- 

ly rare to dense transition, then this instance is indicated in these tables by the term 'optically 

rare + dense'. 

In the second case, the incident field is assumed to be an inhomogeneous plane wave with 

a fixed angle of incidence Oi whose transverse wavenumber k, varies over the domain 

- a < k, < k,,,, while k, = 0. Substitution of Eqs. (4.2.3a7b) into Eq. (4.2.1) yields 

-2 -2 2 
ktn(w) = k2(o )  - (k, cosO, + R[y,(o)] sin Oi + i 3 (y i (o ) ]  sin@,) , (4.2.28) 

-2 
for an incident inhomogeneous plane wave. The quantity k 2 ( o )  is given in Eq. (4.2.16), so 

that Eq. (4.2.28) becomes 

2 2 
- [k: cos2 Oi + (R(yi(w)]  - 3[y i (w)]  ) sin2 Oi + 2kUR[yi(w)) cos 0, sin 

+ 2[/12(w)a2(w) - (k,  cos Oi + R[yi(w)] sin Oi)3[yi(w)]  sin Oil . (4.2.29) 

If the condition given in Eq. (4.2.18) is satisfied then a real-valued critical transverse 

wavenumber k, = k,, can exist such that R = 0. The sign of k,, is dependent 

on the value of Oi relative to OC. This can be understood by noting that when the transverse 

wavenumber k, = 0 then the incident plane wave becomes homogeneous and the results 

from Eq. (4.2.20) apply. Consequently, if Oi < Oc, then R [ - 2  ktn(o)  l k u = o ]  > Owhich 



means that kuc > 0. Similarly, if Oi > Oc, then R { ktn(u)  I k u  = o ]  < 0 which means that 

The factor k$ in real part of Eq. (4.2.29) suggests that another real-valued secondary 

cri~'ical transverse wavenumber ku = ku, can exist such that R ktn(u)  = 0. The sign r2 I 
of ku, is dependent on the value of Oi relative to @:it. This can be understood by inspecting 

the asymptotic behavior of the quantity R ktn(u)  given in Eq. (4.2.8), as it relates to the r2 I 
value of Oirelative to @:it. If Oi > @:it then R ktn(u)  > 0 as ku -. d~ so that if both I" I 
k,, and k,,, exist then it must be that R ktn(u) < 0 over the range in between k,, and r2 I 
kUc2. If Oi < OC then the signs of k,, and kUc2 must be the same because the quantity 

R [ ( u ) k u o ]  > 0 lies in the same half space as the asymptotic limit. The quantity 

,.- , 
k,, > 0 for this case, which means that k,,, > 0 where it is defined that kUc2 > k,,. If 

Oi > Oc then the signs of k,, and k,,, must be opposite because the quantity 

k,, < 0 for this case, which means that k,,, > 0. Therefore, if Oi > OXit then ku, > 0 

and the quantity R ktn(u)  satisfies the inequalities 
- I 



Conversely, if Bi  < B i t  then R kt,,(w) < 0 as k, + f m so that if both k,, and ku, r2 I 
exist then it must be that R kt,,(o) > 0 over the range in between kuc and k,,,. Using r2 I 
similar logic leads to the conclusion that if Bi  < @iyt then kuc2 < 0 (where it is defined that 

k,,, < k,, < 0 when Bi  > Bc) and the quantity 'A ktn(o) then satisfies the inequalities 1' I 

Application of the results of Eq. (3.1.18) to the inequalities given in Eqs. (4.2.30a,b) yields 

the following two sets of inequalities 

when B i  > Oiyt and 
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Table 4.2.5 The critical values of the transverse wavenumber. The angle of the incident local 
coordinate system Oi = 20". This example utilizes the double resonance Lorentz model with 
parameters taken from Table 4.1.1. 

0 

(1014rad/sec) 

1.7379 

3.0201 
- 

Table 4.2.6 The critical values of the transverse wavenumber. The angle of the incident local 
coordinate system Oi = 50". This example utilizes the double resonance Lorentz model with 
parameters taken from Table 4.1.1. 

ku- 
( lo5  radlm) 

10.815 

17.315 

kuc 
(lo5 radlm) 

6.6454 

11.030 

0 

(10'~rad/sec) 

1.7379 

9.3326 

when Oi < o:;~. When the bottom conditions of Eqs. (4.2.31a,b) are met then the term 

- 
ktn(:w) is primarily apropagative factor and when the top conditions of Eqs. (4.2.31a,b) are 

kuc2 
(lo5 radlrn) 

- 11.193 

- 17.950 

k&m 
( lo5 radlm) 

7.0963 

37.551 

- 
met then the term ktn(w) is primarily an attenuative factor. All of the above inequalities have 

ass~lmed that both kuc and kuc, exist and that kuc < ku- and kuc2 < kum. The ranges will 

need to be adjusted if either critical transverse wavenumber is greater than ku-. 

~ u L S  

( lo5 radlm) 

10.815 

17.315 

kuc 
(lo5 radlm) 

1.4855 

7.9274 

If the condition given in Eq. (4.2.22) is satisfied then a real-valued leaky surface wave 

kucy 
( lo5  radlm) 

5 10.906 

* 18.408 

cri~ical transverse wavenumber ku = kuLs can exist such that 3 ktn(w) = 0. The sign t" I 

kuc, 
( lo5 radlm) 

> ku,, 

> ku,, 

ku,s 
( lo5 radlm) 

7.0963 

37.551 

kucy 
(10' radlm) 

5 10.906 

5 58.418 



Table 4.2.7 The critical values of the transverse wavenumber. The angle of the incident local 
coordinate system Oi = 50". This example utilizes the double resonance Lorentz model with 
parameters taken from Table 4.1.2. 

W 

(1014rad/sec) 

1.7379 

3.4675 

4.0740 

9.3326 

of kuLs is dependent on the value of Oirelative to OLS. Notice that when the transverse wave- 

number ku = 0 then the incident plane wave becomes homogeneous and the results from 

ku- 
( los  rad/m) 

6.6032 

12.643 

14.965 

34.783 

[ - 2  l k u = o ]  > Owhichmeans Eq. (4.2.24) apply. Consequently, if Oi  < OLS then 3 kt,(@) 

[ -' l k u = o ]  < 0 which means that that kuLS > 0. Similarly, if Oi > OLS then 3 kt,(@) 

kuc 
( lo5  radlm) 

3.7668 

opticah "la 
rare + &me 

5.8209 

8.4.784 

-2 
kuL, < 0. The quantity kt,(@) then satisfies the inequalities 

According to the chosen branch cut, these inequalities yield the following inequalities 

kuc, 
( loS radlm) 

> ku- 

opticag nla 
rare + &me 

> ku- 

> ku- 

~ u L S  

( lo5  radlm) 

-7.4869 

> ku- 

> ku- 

28.893 

ku, 
(10' radlm) 

k 10.107 

k 19.666 

k 23.280 

k 54.112 



- 
When k,, > kuLS, the quantity k,,(w)is pure real when ku = kULs. When kuc < kuLS, the 

- 
quantity ktn(w)is pure imaginary when k, = kULS which means that the branch cut is crossed 

- 
so that that there will be a discontinuity in the function kt,(@) with respect to the variable 

- 
k,. According to the inequalities given in Eq. (4.2.33), the imaginary part of kt,(@) is in 

the positive imaginary half plane immediately before the discontinuity and then continues 

in the negative half plane after the discontinuity. 

It is impossible to obtain exact expressions for the critical values kuc, kUC2 and kuLs since 

the longitudinal component yi(w) of the complex wavevector is a function of ku. Numerical 

results are tabulated in Table 4.2.6, Table 4.2.5 and Table 4.2.7. The expression ' > k,,,,' 

indicates that the evaluated values of k,,, kUC2 and kULS are greater than the maximum al- 

lowed value k,,,,. When Eq. (4.2.18) is not satisfied due to an optically rare to dense transi- 

tion, then this instance is indicated in these tables by the term 'optically rare + dense',  e.g. 

in Table 4.2.7 for w = 346.75THz. The critical transverse wavenumber k,,for the longi- 

tudinal component of the complex wavevector given in these tables is the evaluation of Eq. 

(3.1.16) for the situation where k, = 0. 

4.3 Results of the Generalized Fresnel Reflection Coefficient for Incident 
Linearly Polarized TM Plane Waves 

The classical evaluation of the generalized Fresizel reflection coefficient utilizes homo- 

geneous plane waves. The angle of incidence of the homogeneous plane waves is varied 

from normal incidence to grazing incidence. The reflection coefficient is then plotted 

against the angle of incidence. Certain critical angles that relate to total internal reflection 



and Brewster 's angle are encountered when both of the media on opposite sides of the inter- 

face are lossless. When loss is included, the critical angle that relates to near total internal 

reflection is the analog to the lossless case. The character of the reflection coefficient is simi- 

lar to that of the lossless case for spectral regions removed from any resonance. In contrast, 

when evaluating the generalized Fresnel reflection coefficient for an inhomogeneous plane 

wave, the angle of incidence Oi is fixed and the transverse wavenumber k, varies over the 

domain - oc, < k ,  < kUm while the other transverse wavenumber is fixed at k, = 0. This 

section only treats TM polarized plane waves. In this situation, certain critical transverse 

wavenumbers are encountered which are analogous to the critical angles for the homogenous 

case. 

4.3.1 Results of the Generalized Fresnel Reflection Coefficient for an Incident 
Linearly Polarized TM Homogeneous Plane Wave Where Both Media are 
Lossless 

The incident field is assumed to be a TM polarized homogeneous plane wave where the 

refractive indices of the medium of incidence and the medium of transmittance are assumed 

to be pure real so that nl = n and h2 = n2 where nl ,  n2 E IF&. Consequently, the incident 

complex wavevector is pure real, viz. 

i i ( W )  = &(o) . 

The isotropic generalized Fresnel reflection coefficient for TM fields is given as the r, com- 

ponent of the matrix given in Eq. (3.1.144) and is changed into 

- 
where bin(o) is the normal component of Eq. (4.3.1). The quantity ktn(w) is given by [cf. 

Eq. (4.2.1)] 
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where k2 (o )  = n2(o)ko is real-valued and Pi (o) is the in-plane tangential component of 

- - 
Eq. (4.3.1) which is given by Pi (o) = k l ( o )  sinOi where k l ( o )  = nl(o)ko.  

- - 
Since k l ( o )  and k2(w) are real-valued the critical angle Ocis given by [cf. Eq. (4.2.19)] 

when the inequality 

P l ( 4  > P 2 ( 4  , (4.3.5) 

is satisfied. If this inequality is satisfied and Oi > Oc then Eq. (4.3.3) becomes pure imagi- 

nary so that 

itn(o) = iatn(o) . (4.3.6) 

As a consequence, Eq. (4.3.2) can be written as 

where z = n:(o)atn(o) + ina(o)Pi ( o ) .  The reflection coefficient then has a magnitude 

of unity. This situation is called total internal reflection and occurs for supercritical angles 

of incidence Oi > Oc 

As an example, Figure 4.3.1 a) and b) depict the real part and the magnitude of the reflec- 

tion coefficient, respectively, plotted against the angle of incidence Oi. The values of the 

1 &2 dielectric permittivity are chosen as - = 2.9938 and - = 1.9938 to match those in 
&o &o 

Table 4.1.1. If Oi = 0, then I r ,  ( > 0 as seen in Figure 4.3.1 a). As Oi increases, the quan- 

tity X{r,)  decreases until X{r,)  = 0 at the angle Oi = OB where OB is known as Brew- 

ster's angle. In this example OB = 39.2170". As Oi continues to increase, the quantity 

X{r,)  continues to decrease until X{r,) reaches a minimum value of -1 at Oi = Oc In 



Fresnel reflection coefficient (TM mode) 

Fresnel reflection coefficient (TM mode) b) '[. . .  ; . .  . . . . . . . . . . . . . . . .  . . .  

0.1 

0 I I I I I I 

0 10 20 30 40 50 60 70 80 90 

0, 
Figure 4.3.1 Plots of the a) real part and b) magnitude of the isotropic generalized Fresnel re- 
flection coefficient for the TM mode as a function of the angle of the incident local coordinate 
system. Homogeneous plane waves are incident upon the interface separating two lossy, disper- 
sive media. This example represents lossless media where the values of the dielectric permittiv- 
ity are taken from Table 4.1.1. 



this example Oc = 54.6937". In between Ocand the grazing angle g, total internal reflec- 
2 

tion occurs as illustrated in Figure 4.3.1 b). 

4.3.2 Results of the Generalized Fresnel Reflection Coefficient for an Incident 
Linearly Polarized TM Homogeneous Plane Wave 

The incident field is assumed to be a TM polarized homogeneous plane wave where the 

refractive indices of the medium of incidence and the medium of transmittance are assumed 

to be lossy. The generalized Fresnel reflection coefficient for TM fields is given as [cf. Eq. 

- 
where ki (a)  is given by [cf. Eqs. (4.2.13a,b)] 

- 
and ktn(o)  is given by [cf. Eq. (4.2.14)] 

- - 
where k l ( o )  and k 2 ( 0 )  are given by Eqs. (3.1.6) and (3.1.54), respectively. 

Examples of both the real part and the magnitude of the generalized Fresnel reflection 

coefficient are illustrated in Figure 4.3.2 and Figure 4.3.3, respectively. The results are 

plotted against the angular frequency o and the angle of incidence Oi. These examples uti- 

lize the double resonance Lorentz model with parameters taken from Table 4.1.1. In regions 

removed from any resonance, the character of the generalized Fresnel reflection coefficient 

closely resembles that of the lossless case, as illustrated in Figure 4.3.1. The quantity %{r,) 

reaches a minimum near the critical angle Oc, as given in Eq. (4.2.19), in spectral regions 

removed from any resonances. The angle at which %{r,) reaches a minimum is called 
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Fresnel reflection coefficient (TM mode) 

I I I I I I I I I 

0 10 20 30 40 50 60 70 80 90 

Oi 
Figure 4.3.2 a) Three and b) two dimensional plots of the real part of the isotropic generalized 
Fresnel reflection coefficient for the TM mode as a function of the angle of the incident local 
coordinate system and frequency w as indicated. Homogeneous plane waves are incident upon 
the interface separating two lossy, dispersive media. This example utilizes the double resonance 
Lorentz model with parameters taken from Table 4.1.1. 



Fresnel reflection coefficient (TM mode) 

b) 1 

0.9 

0.8 

0.7 

0.6 

. . . .  . . . . .  : I  

0 10 20 30 40 50 60 70 80 90 

Oi 
Figure 4.3.3 a) Three and b) two dimensional plots of magnitude of the isotropic generalized 
Fresnel reflection coefficient for the TM mode as a function of the angle of the incident local 
coordinate system and frequency o as indicated. Homogeneous plane waves are incident upon 
the interface separating two lossy, dispersive media. This example utilizes the double resonance 
Lorentz model with parameters taken from Table 4.1.1. 
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Fresnel reflection coefficient (TM mode) 

Figure 4.3.4 a) Three and b) two dimensional of the real part of the isotropic generalized 
Fresrzel reflection coefficient for the TM mode as a function of the angle of the incident local 
coordinate system and frequency o as indicated. Homogeneous plane waves are incident upon 
the interface separating two lossy, dispersive media. This example utilizes the double resonance 
Lorentz model with parameters taken from Table 4.1.2. 



@ m i n ( ~ { r ~ ~ ) ~  In between Oc and the grazing angle g, 2 total internal reflection does not occur 

even for regions removed from the resonance as illustrated in Figure 4.3.3 b) where Ir, 1 pla- 

teaus at a value less than 1 for w = 933.26THz. For this reason, when Oi > Oc, the condi- 

tion of near total intenzal repection prevails for spectral regions removed from any reso- 

nance for lossy, dispersive dielectric media. 

Another example of the real part of the generalized Fresnel reflection coefficient is illus- 

trated in Figure 4.3.4. The result is plotted against the frequency w and the incident local 

coordinate system's angle of incidence Oi. This example utilizes the double resonance Lo- 

rentz model with parameters taken from Table 4.1.2. The main difference in this example 

is that the character of the reflection coefficient changes due to the two media switching from 

the normal optically dense to rare transition to an optically rare to dense transition in the 

anomalous dispersion spectral regions, as illustrated by Figure 4.3.4 b) for 

w = 346.75THz. 

4.3.3 Results of the Generalized Fresnel Reflection Coefficient for an Incident 
Linearly Polarized TM Inhomogeneous Plane Wave 

The incident field is assumed to be an inhomogeneous plane wave with a fixed angle of 

incidence Oi whose transverse wavenumber ku varies over the domain - < ku < kum 

while k, = 0. The complex refractive indices of the medium of incidence and the medium 

of transmittance are assumed to be lossy and are then given by Eqs. (3.1.1) and (3.1.2). The 

generalized Fresnel reflection coefficient for TM fields is given as [cf. Eq. (3.1.144)] 

- 
where ki (w) is given by [cf. Eqs. (4.2.3a,b)] 

ki (o) = - ku sin Oi + yi(o) cos Oi 

- 
and ktn(w) is given by 



- (k,  cosBi + y i ( o )  sinBi) 

- 
where k 2 ( o )  is given by Eq. (3.1.54) and y i ( o )  is given by Eq. (4.2.2). 

Let the incident and transmitted normal complex wavenumbers be defined as 

- 
ki ( a )  = pi ( 0 )  + iai (0)  , (4.3.14) 

and 

7 

where Pi,(w), a in (w) ,  Btn(w) and a,,,(@) are the real and imaginary parts of kin(@) and 

- 
k t n ( o ) ,  respectively. Let the squares of the complex refractive indices be defined as [cf. Eq. 

and 

where el$w) .  E ~ , ( o ) ,  ~ ~ $ 0 )  and ~ ~ ~ ( 0 )  are the real and imaginary parts of il(0) and 

- 
E ~ ( O ) ,  respectively. Substitution of Eqs. (4.3.14 - 4.3.17) into Eq. (4.3.11) yields 

A simplifying assumption can be made for both media in the spectral regions removed 

from a resonance, viz. 

1 * 1 7 & 2 $ 4  9 & 2 i ( 4  

This approximation reduces Eq. (4.3.18) to 



- - 
First, consider that if both of the quantities kin(w) and ktn(w) are highly propagative then 

Bin(@) S a in (w)  and Btn(o) S atn(w) so that Eq. (4.3.20) reduces to 

This situation can occur when the value of k, is such that the bottom inequalities given in 

Eq. (3.1.19) and either Eq. (4.2.3 la) or Eq. (4.2.3 1b) are satisfied. Second, consider that 
- - 

if the quantity kin(w) is highly propagative and the quantity ktn (o )  is highly attenuative then 

Bin(o)  S ai ( 0 )  and Btn(w) < atn(w) so that Eq. (4.3.20) reduces to 

This situation can occur when the value of k, is such that the bottom inequality given in Eq. 

(3.1.19) and the top inequality in either Eq. (4.2.31a) or Eq. (4.2.3 1b) are satisfied. This 

situation represents the condition of near total internal reflection. Third, consider that if the 
- - 

quantity ki ( w )  is highly attenuative and the quantity ktn(w) is highly propagative then 

Bin(@) < a i n ( o )  and Btn(o) 9 at.(@) so that Eq. (4.3.20) reduces to 

This situation can occur when the value of k, is such that the top inequality given in Eq. 

(3.1.19) and the bottom inequalities in either Eq. (4.2.31a) or Eq. (4.2.31b) are satisfied. 

This situation also represents the condition of near total internal reflection. Finally, if both 
- - 

of the quantities ki n ( w )  and ktn(w) are highly attenuative then pi ( w )  4 ai ( a )  and 

Btn(w) < atn(w) so that Eq. (4.3.20) reduces to 
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This situation can occur when the value of k, is such that the top inequalities given in Eq. 

(3.1.19) and either Eq. (4.2.3 1 a) or Eq. (4.2.3 1b) are satisfied. 

- - 
If the angle of incidence Bi = 0 then kin(o)  = ktn(o)  = i 1 ku ( [cf. Eqs. (4.2.3a,b) and 

- - 
(4.2.9)] in the limit k,  - f a. The quantities ki ( w )  and ktn(w) are both highly attenua- 

tive. The approximation given in Eq. (4.3.21d) applies to this situation and reduces to 

- 
If the angle of incidence Oi = then kin(w) = -ku + ilk, 1 [cf. Eqs. (4.2.3a,b)] and 4 
- 
k,,(o) = lku I - ik, [cf. Eq. (4.2.9)] in the limit k,  -, - co. The approximation given in 

Eq. (4.3.20) applies to this situation and also reduces to the expression given in Eq. (4.3.22). 

Examples of both the real part and the magnitude of the generalized Fresnel reflection 

coefficient are illustrated in Figure 4.3.5 and Figure 4.3.6, respectively. The results are 

plotted against the angular frequency w and the real-valued wavenumber k, where the angle 

of incidence is fixed at 0i = 50'. The angle Oi = 50' is chosen since it is less than the 

critical angle 0, for incident homogeneous plane waves [cf. Table 4.2.41. This example uti- 

lizes the double resonance Lorentz model with parameters taken from Table 4.1.1. Due to 

the complexity of the generalized Fresnel reflection coefficient, only the spectral region 

around the first resonance is plotted. The data generated for k, > kum is removed from the 

plots, seen in the 3D plots as the missing regions and in the 2D plots as the clipped data. 

A real-valued Brewster's critical transverse wavenumber k, = k,, can exist such that 

{ r }  = 0 as observed in Figure 4.3.5 b). The value k,, corresponds to the angle = B! 
1, 



Fresnel reflection coefficient (TM mode) 
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ku x lo6 
Figure 4.3.5 a) Three and b) two dimensional plots of the real part of the isotropic generalized 
Fresnel reflection coefficient for the TM mode as a function of k, and frequency o as indicated. 
Inhomogeneous plane waves are incident upon the interface separating two lossy. dispersive me- 
dia. The angle of the incident local coordinate system is fixed at Oi = 50°. This example utilizes 
the double resonance Lorentz model with parameters taken from Table 4.1.1. 
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Figure 4.3.6 a) Three and b) two dimensional plots of magnitude of the isotropic generalized 
Fresriel reflection coefficient for the TM mode as a function of k,, and frequency o as indicated. 
Inhomogeneous plane waves are incident upon the interface separating two lossy, dispersive me- 
dia. The angle of the incident local coordinate system is fixed at Oi = 50". This example utilizes 
the double resonance Lorentz model with parameters taken from Table 4.1 .l. 
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Fresnel reflection coefficient CrM mode) 

the double resonance Lorentz model with parameters taken from Table 4.1.1. 

- 0 4  - ' I  

' I  
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-0.6 I I I I I I I I 

-2 -1 5 - 1 -0.5 0 0.5 1 1.5 2 

ku x lo6 
Figure 4.3.7 a) Three and b) two dimensional plots of the real part of the isotropic generalized 
Fresnel reflection coefficient for the TM mode as a function of and frequency o as indicated. 
Inhomogeneous plane waves are inc~dent upon the interface separating two lossy, dispersive me- 
dia. The angle of the incident local coordinate system is fixed at @, = 20°. This example utilizes 
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Figure 4.3.8 Plots of the real part of the isotropic generalized Fresnel reflection coefficient for 
the TM mode as a function of k, and frequency w as indicated for the angle of the incident local 
coordinate system fixed at a) Oi = lo0 and a) Oi = 0". Inhomogeneous plane waves are incident 
upon the interface separating two lossy, dispersive media. This example utilizes the double reso- 
nance Lorentz model with parameters taken from Table 4.1.1. 



Table 4.3.1 The angles of the incident propagation vector that correspond to the critical values 
of the transverse wavenumber. The angle of the incident local coordinate system Oi = 20". This 
example utilizes the double resonance Lorentz model with parameters taken from Table 4.1.1. 

a 

(1014 radlsec) 

1.7379 

3.0201 

of the incident propagation vector that is nearly equal to Brewster's angle OB. Notice that 

the quantity k,, fans out as a function of the angular frequency w .  Some values of e! are 
[ B  

tabulated in Table 4.3.1, Table 4.3.2 and Table 4.3.3. 

In Figure 4.3.5 b), a significant dip is observed in the plot of the quantity %{r,)  for 

k,  > 0 where the minimum is reached near the critical transverse wavenumber k,  = kuc 

as defined in 34.2.2. The value kuc corresponds to the angle B! = of the incident propa- 
1 

e! 
lc 

(degrees) 

57.0494 

56.8071 

gation vector that is nearly equal to the critical angle O,. If kuc < ku < kucy then the 

e! 
~ L S  

(degrees) 

90.0000 

90.0000 

approximation given in Eq. (4.3.21b) is valid in the spectral regions removed from any reso- 

nance. In this situation, near total internal reflection occurs as illustrated in Figure 4.3.6 b) 

for w = 933.26THz. Notice that the quantity kUc fans out as a function of the angular fre- 

quency w .  Some values of e! are tabulated in Table 4.3.1, Table 4.3.2 and Table 4.3.3. 
L C  

Attention is now drawn to the secondary dip or ripple that is observed in Figure 4.3.5 a) 

and b) for k,  < 0. The secondary dip is caused by the critical transverse wavenumber for 

the longitudinal complex wavenumber k,,, as defined by Eq. (3.1.16). If k,  < -k,, then 

the approximation given in Eq. (4.3.22) is valid since Oi > 

For some values of Oi the effect of this secondary dip is strong enough to cause a second- 

ary Brewster's critical transverse wavenumber kUB2 as observed in Figure 4.3.7 b) for 



Table 4.3.2 The angles of the incident propagation vector that correspond to the critical values 
of the transverse wavenumber. The angle of the incident local coordinate system Oi = S O 0 .  This 
example utilizes the double resonance Lorentz model with parameters taken from Table 4.1.1. 

o 

(10 l4 radlsec) 

1.7379 

3.0201 

9.3326 

1 3.4675 1 "ptiCa@ n'a I none I rare -c dense 

@ 
lc 

(degrees) 

57.7703 

56.8186 

57.9920 

o 

(1014 radlsec) 

e? 
~ L S  

(degrees) 

90.0000 

90.0000 

90.0000 

Table 4.3.3 The angles of the incident propagation vector that correspond to the critical values 
of the transverse wavenumber. The angle of the incident local coordinate system Oi = SO0.  This 
example utilizes the double resonance Lorentz model with parameters taken from Table 4.1.2. 

e? 
1c 

(degrees ) 

4.0740 

o = 302.01THz. As Oi decreases towards normal incidence, the secondary dip becomes 

symmetric with the primary dip and a strong near total internal reflection can occur as de- 

scribed by the approximation given in either Eq. (4.3.21b) or Eq. (4.3.21~) depending on the 

e? 
~ L S  

(degrees ) 

value of kuc or k,, relative to Ik,,l. These effects are illustrated through the series of plots 

64.4794 

in Figure 4.3.7 b) and Figure 4.3.8 a) and b). Notice that the effect of near total internal re- 

none 

flection is not maintained over a large span of k,  because, eventually, both of the quantities 
7 - 
kin(w) and ktn(o)  represent strong attenuative factors. The reflection coefficient is then de- 

scribed by Eq. (4.3.21d) and near total internal reflection is lost. When Oi = 0,  the primary 

near total internal reflection happens when k, > kuc and the secondary near total internal 



Table 4.3.4 The critical values of the transverse wavenumber for the frequency 173.79THz. 
The angle of the incident local coordinate system varies as indicated. This example utilizes the 
double resonance Lorentz model with parameters taken from Table 4.1.1. 

Table 4.3.5 The critical values of the transverse wavenumber for the frequency 302.01THz. 
The angle of the incident local coordinate system varies as indicated. This example utilizes the 
double resonance Lorentz model with parameters taken from Table 4.1.1. 

Oi 
(degrees) 

20.0 

10.0 

0.0 

reflection happens when ku < kUC2. The primary near total internal reflection is lost when 

ku > + kucy and the secondary near total internal reflection is lost when ku < - kucy. This 

situation is then described by the approximation given in Eq. (4.3.22).  Substitution of the 

double resonance Lorentz model parameters from Table 4.1.1 into Eq. (4.3.22) yields 

r, = 0.20005. Some values of the critical transverse wavenumbers for various angles of the 

incident local coordinate system are tabulated in Table 4.3.4 and Table 4.3.5.  

ku- 
(10' radlm) 

17.315 

18.197 

w 

kucy 
(lo5 radlm) 

k- 18.408 

k- 18.408 

k- 18.408 

kuc 
(lo5 radlm) 

11.030 

13.422 

15.407 

k~C2 
(10' radlm) 

- 17.950 

- 16.926 

- 15.407 

k,LS 
(10' radlm) 

17.315 

18.197 

w 



CHAPTER V 

Reflection and Transmission 

Pulsed Electromagnetic Beam Field 
at a 

Planar Interface Separating 
Two Lossy Dielectrics 



An analysis of pulsed electromagnetic beam field reflection and refraction at a planar 

interface is examined within a framework of the angular spectrum representation. The re- 

sults of inhomogeneous plane wave reflection and refraction from Chapter 3, may be applied 

to each of these inhomogeneous plane waves. Then the inverse spatio-temporal Fourier- 

Laplace transforms are applied to yield the integral equations that represent pulsed electro- 

magnetic beam field reflection and refraction from a planar interface separating two lossy, 

dispersive dielectrics. 

5.1 Angular Spectrum Representation of Pulsed Electromagnetic Beam 
Fields When the Field is Known at a Planar Boundary Surface 

In this section, the angular spectrum representation of pulsed electromagnetic beam 

fields is developed. The spatio-temporal frequency domain form of Maxwell's equations 

is solved as a set of homogeneous vector Helmholtz equations in terms of some known source 

that generates the electromagnetic fields. Once the solution is derived, it is returned to the 

space-time domain via the inverse spatio-temporal Fourier-Laplace transform. The solu- 

tion is then referred to as the angular spectrum representation which effectively decomposes 

the electromagnetic pulsed beam field into a sum of inhomogeneous plane waves, each with 

its own characteristic complex wavevector. Since each one of the inhomogeneous plane 

waves of the decomposition is itself a solution to the homogeneous vector Helmholtz equa- 

tions, they can be treated individually in the solution of complex problems and then appropri- 

ately superimposed to yield the more general pulsed beam field solution. 

In many cases the details that describe the current sources that generate the electromag- 

netic fields are not explicitly known with exception of the sources which are contained with- 

in a region of space, e.g. (w I < Win the (u, v, w) rectangular coordinate system. The ra- 

diated electromagnetic field is often known on a specified planar boundary surface located 

beyond the source region, e.g. on the plane w = W o  2 W. In this situation, one has a planar 

boundary value problem for Maxwell S equations that is valid in the source-free half space 

w > W o  as depicted in Figure 5.1.1. The prescribed planar boundary values act as a pseu- 
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I I 'a Planar Boundary: 
Acts as pseudo-source term 
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Figure 5.1.1 Schematic diagram of an unknown isolated current source imbedded within the 
dielectric region PV < I WI. The current source is solely responsible for the electromagnetic 
energy propagating in the region w > I WJ. The electromagnetic field is known on the planar 
boundary w = Wo which then serves as a pseudo-source term for the Maxwell's equations in 
the source-free half space w > Wo. 

do-source term which effectively drives the electromagnetic fields. The spatio-temporal 

frequency domain form of the source free form of Maxwell S equations developed in 92.2.5 

then applies in the the half space w 2 wo. 

For the situation depicted in Figure 5.1 . l ,  let the position vector and the transverseposi- 

tion vector 

be defined in an arbitrarily oriented rectangular coordinate system (u ,v ,w)  with corre- 

sponding unit vectors (c, c, 6). The complex wavevector and the transverse wavevector are 

similarly defined with respect to the same coordinate system,respectively, as 



k  kuû  + kvv  ̂+ kwG , 

kT = kuc + kvv̂  , 

where the transverse wavenumbers ku and k,  are real-valued. 

Let the prescribed boundury conditions of the pulsed electromagnetic beam field be giv- 

en in the space-time domain as 

The forward temporal Fourier-Laplace and two-dimensional spatial Fourier transforms, 

as defined in Eqs. (2.1. la) and (2.1.22a) respectively, of these equations yield the prescribed 

boundary conditions in the mixed space and spatio-temporal frequency domain as 

and 

which will be referred to as the pseudo-source terms or spectral amplitudes. 

The cross product of the complex wavevector ik with FaradayS Law given in Eq. 

(2.2.37a) yields 

ik x ik x E ( k , o )  = Il$liopik X H ( k , o )  + ik x ; x ~ ~ ( k , o ) e - ~ ~ ~ ~ ~  . (5.1.7) 

Application of the vector identity a  x b  x c  = (a  . c)b - ( a  . b)c to the left hand side of 

this equation yields 

ik x ik x E ( k , o )  = (ik . E(k,o))ik + k 2 ~ ( k , o )  

= i k ~ , , ( k ,  w)e-*wWo + k 2 ~ ( k ,  w  ) , (5.1.8) 

where Gauss' Law given in Eq. (2.2.37~) was applied. Here the complex wavenumber k  is 



defined as 

k 2 k . k .  (5.1.9) 

A rearrangement of Amp&-e S Law given in Eq. (2.2.37b) results in 

where evaluation of Faraday's Law given in Eq. (2.2.24a) at the planar boundary yields 

~ , ( k ,  w  ) = [!$ [ik,, $61 x ~ ( k ,  w,  w )  1 .  
w = w, 

Substitution of Eq. (5.1.11) into Amp2re's Law given in Eq. (5.1.10) then yields the expres- 

sion 

ik x H ( k , w )  

Substitution of Eqs. (5.1.12) and (5.1.8) into Eq. (5.1.7) then yields the expression 

E ( k , w )  = 

where Ew0(k,  w )  is the 6 component of the prescribed boundary condition given in Eq. 

(5.1.6a). While an analogous derivation for the magnetic field vector gives 

where Hw0(k,  w )  is the 6 component of the prescribed boundary condition given in Eq. 

(5.1.6b). Here 

k ( w )  = i ( w ) k o  (5.1.14) 

is the complex wavenumber of the electromagnetic disturbance with angular frequency w  



that is propagating in the medium with conzplex refractive index 

where kO = $is the vacuum wavenumber and c E &is the vacuum speed of light. 
& 

The numerators appearing in Eqs. (5.1.13a,b) may be greatly reduced by using the vector 

identity a x b X c = (a . c)b - (a b)c. The first term appearing in the numerator of 

Eq. (5.1.13a) may be expressed as 

while the second term may be expressed as 

ik x ; x E0(k,  w )  = [ik . E O ( k P o ) ] ~  - i k s o ( k ,  a )  . (5.1.17) 

Notice that the second terms appearing on the right hand sides of the above two equations 

will be the only terms remaining after they are combined with the third term appearing in 

the numerator of Eq. (5.1.13a). This fact is best illustrated by expanding these terms in com- 

ponent form as 

[ik . E0(k,  a)]; = ikuE,,(k, w ); + ik&,,(k, a); + ik,JZwo(k, o); , 



which, when summed, yield 

This identically vanishes by virtue of the mixed space and spatio-temporal frequency do- 

main version of Gauss' Law given in Eq. (2.2.24~) evaluated at the pseudo-source planar 

boundary, viz. 

This simplification reduces Eq. (5.1.13a) to 

An analogous simplification for the magnetic field vector given in Eq. (5.1.13b) yields 

The solution of the homogeneous vector Helmholtz equation for the electric field intensi- 

ty vector in terms of the pseudo-source term E0(kT, w )  is now derived. The inverse one- 

sided spatial Laplace transform with respect to the w dimension as defined in Eq. (2.1.26b) 

operates on the electric fields vector E(k ,o )  given in Eq. (5.1.19) to yield 

The contour of integration C appearing in this equation denotes the Bromwich contour which 

is the straight line path from k, = - a, + ia to kw = 03 + ia, with a being a real constant 

that lies within the region of convergence. Due to the e-ikwwo term in Eq. (5.1.19), the inverse 

192 



Figure 5.1.2 The contour of integration in the complex k,,.-plane. The shaded region indicates 
the Region of Convergence. 

kw = - y  , '  * 

Region of Convergence 

one-sided spatial Laplace transform can be rewritten as 

3 {k,) 

;t: 
k w = y  

, 

R{kw) 

* 
C 

~ ( k ~  w, o )  = -'[E(k, o)}  = ~ ' ( k ,  o)eiikw(w-w~)dkw , (5.1.22a) 

where 

a 
X J ( k P  w,  )Iw ,wo + i k 3 0 ( k ,  ) 

E 1 ( k , o )  = - -2 (5.1.22b) 
k2 - k ( o )  

The numerator of Eq. (5.1.22b) is a polynomial of degree one with respect to the integration 

variable k,, and is therefore an entire function or regular in the entire complex plane. The 

denominator of Eq. (5.1.22b) is a polynomial of degree two with respect to the integration 

variable k ,  and is also an entire function. These two facts mean that any singularities of the 

integrand must be due to any zeros of the denominator which are located where 

Hence Eq. (5.1.19) has two simple poles located whenever k ,  satisfies 



k, = * k ( w )  - k, . i-' ~ 1 %  
This is a multivalued function where the domain of the square root is defined on a Riemann 

suq5ace that consists of two sheets joined together at the branch cut19 and where 

k$ -- k! + kz. The location of these simple poles determines the region of convergence 

since, by definition, a one-sided Laplace transform must be regular in the entire region be- 

low the abscissa of absolute convergence. Therefore the pole with the smallest imaginary 

part determines the abscissa of absolute convergence. Let the longitudinal complex wave- 

number y be defined as the principle branch of the expression 

where branch cut in the domain of the square root is defined on the positive real axis. Let 

the first Rienzann sheet be defined as 

-2 
k ( w )  - k$ = re ie  ; 0 1 8 < 2 J t ,  (5.1.24) 

where Tis  a positive real-valued quantity, and when substituted into the previous expression 

yields 

The valid angular range in Eq. (5.1.25) causes s [~}  2 0, which restricts the pole located 

at k, = y to the upper half of the complex k,-plane, and similarly restricts the pole located 

at k, = - y to the lower half. Therefore, the upper abscissa of absolute convergence is 

yb = - S[y] and the region of convergence is - m < B{kw} < y b  Figure 51 .2  depicts 

the complex plane of integration and the simple pole locations for the present case where the 

shaded region indicates the region of convergence. As long as the Bronzwich contour C re- 

19. See LePage [62] $6-2 pp. 170-1 74. 



mains within this region, the integral Eq. (5.1.22a) is convergent and uniquely determines 

E(kP w, @)[621. 

Since Eq. (5.1.22b) is a rational function with respect to the integration variable k ,  for 

which the degree of the numerator is less than the degree of the denominator, then 

lim { ~ ( k ,  o)} = 0 Vargikw) , (5.1.26) 
lkwl-.w 

uniformly with respect to arg.(k,) where arg{) denotes the argument or phase of the com- 

plex quantity appearing in the braces { } 20. Jordan S lemma then applies by virtue of condi- 

tion given in Eq. (5.1.26) which means that the integration of Eq. (5.1.21) vanishes along 

the semicircle C+ of radius R -+ coin the upper half plane if w > Wo, and vanishes along 

the semicircle C- of radius R -+ co in the lower half plane if w < Wo. This fact allows 

the integration along the original Bromwich contour C to be equated with integration around 

either closed path C + C, as the semicircle's radius R - co (where either C+ or C- is 

used depending on the sign of'the quantity w - WO). Each closed path C + C, facilitates 

the evaluation of the inverse one-sided transform Eq. (5.1.2 1) by virtue of the Cauchy S Resi- 

due ~ h e o r e m [ 7 1 ] ~ ~ .  Both paths are illustrated in Figure 5.1.3. 

The inverse Laplace transform Eq. (5.1.22a), for the positive half-space w > Wo, is due 

to the two pole contributions at k ,  = y and k ,  = - y which are encircled by the closed path 

C + C + .  Since 

application of Cauchy 's Residue Theorem then yields 

20. See LePage [62] $10-20 pp. 324-326, Theorem 10-1 1. 
21. See LePage [62] $10-19. 



Figure 5.1.3 Construction of the closed path of integration in the complex k,-plane. 

for w > ?yo . The inverse Laplace transform of Eq. (5.1.22a) for the negative half-space 

w < ?yo, vanishes because the closed path C + C- does not encircle any poles. Applic- 

ation of Cauchy 's Residue Tlzeorem then yields 

E(kF w, w ) = O 

for w < ?YO. 



Within the positive half-space to the right of the pseudo-source boundary w > W o  each 

inhomogeneous plane wave I T ~ U S ~  decay in the positive G direction so that the solution re- 

mains bounded in that half-space. Inhomogeneous plane waves are guaranteed to decay in 

the positive G direction for the exponential factor e i y ( ~ -  wo) based on the angular range given 

in Eq. (5.1.25). However, Eq. (5.1.28) also contains the unbounded e -iy(w-wo) exponential 

factor. Therefore, to eliminate the unbounded exponential factor, the following auxiliary 

boundary conditions must be applied: 

These conditions are equivalent to defining a secondary boundary condition for the field at 

the pseudo-source boundary. Substitution of the auxiliary boundary condition given in Eq. 

(5.1.30a) into Eq. (5.1.28) then yields1591 

~ ( k , w , o )  = ~ , ( k ~ w ) e ~ ~ ( ~ - ~ o )  , for w > w o ,  (5.1.31) 

and similarly for the magnetic field vector one obtains[59] 

~ ( k ,  w, w )  = ~ ~ ( k ,  w)ei~(w-wo) , for w > W o  . (5.1.32) 

The space-time domain f~orm of the electric and magnetic field intensity vectors is ob- 

tained by applying the inverse two dimensional spatial Laplace and temporal Fourier-La- 

place transforms, as defined by Eqs. (2.1.22b) and (2.1. lb) respectively, which are rewritten 

here as 



The angular spectrum representation of the pulsed electromagnetic beam field is then ob- 

tained by substituting Eqs. (5.1.31) and (5.1.32) into the above expressions, with the result 

m 

for w > W o  1 W[59]. The integrands of Eqs. (5.1.34a,b) are inhomogeneous plane waves 

with spectral amplitudes ~ ~ ( k ,  w )  and ~ ~ ( k ~  w )  respectively, with forward complex wa- 

vevector [cf. 52.51 
- 
k ( w )  = k,; + k,; + y(w); , 

- 
where k is constrained the relation 

- 
where k ( w )  is the complex wavenumber as previously defined in Eq. (5.1.14). As a result 

of Eq. (5.1.36), the longitudinal complex wavenumber y ( o )  given in Eq. (5.1.25) is a func- 

tion of the real-valued transverse wavenumbers k,  and k,  and of the angular frequency w. 

If the electromagnetic fields were specified on a planar boundary on the opposite side 

of the true current source - W o  5 - FV, then all of the former analysis would result in angu- 

lar spectrum representations identical t'o Eqs. (5.1.34a,b) valid in the negative half-space re- 
- 

gion w < - W o  I - W when the fo:llowing is substituted for k 

-- 
k ( w )  r kU; + k,; - y(w); . (5.1.37) 

Let the complex wave vector be defined in terms of two real vector quantities [cf. $2.51 

as 



Here thepropagatio~ vector p ( o )  - % ! k ( w ) ]  specifies the direction of propagation of the 

planar phase front while the attenuation vector a ( w )  = 3 k ( o )  specifies the direction of [ -  I 
propagation of the planar amplitude front. The propagation vector B ( o )  is normal to the 

surfaces of constant phase such that 

/?(a) . r = constant , 

while the attenuation vector a!(o) is normal to the surfaces of constant amplitude such that 

a ( o )  . r = coiustant . 

The propagation vector may be written as 

B ( o )  = k,; + k,,; + %!{y(w)}@ (5.1.38) 

and the attenuation vector ma.y be written as 

a ( w )  - 3{y (w)}@ (5.1.39) 

which are both illustrated in Figure 2.5.2. Thus, the inhomogeneous plane waves that com- 

prise the angular spectrum representation of the radiation field only decay in the @ direction. 

This is merely a consequence of the imposed dependency of the k ,  integration and has no 

real physical interpretation[59]. Further, the direction cosine representation developed in 

$2.5.2 is seen to directly apply to the angular spectrum representation of the electromagnetic 

field. 

Assuming for the moment that the frequency w  is real-valued, the complex range of the 

longitudinal wavenumber y(o9)  given in Eq. (5.1.25) divides into two regions depending on 

the sign of the frequency [cf. Eq. (2.5.20)] as 

which are both illustrated in Figure 5.1.4. As shown in $2.5, the surfaces of constant phase 



Figure 5.1.4 The first sheet of the Riemann surface and the range of the longitudinal wave- 
number y given that the imaginary par.t of the frequency a = 0. The sheet divides into two dis- 
tinct regions depending on the sign of the real-valued angular frequency w' as indicated by the 
differently shaded areas. 

propagate along the positive ;-axis as a consequence of Eq. (5.1.40), regardless of the sign 

of the frequency o. 

This result is based on the assumption that the angular frequency o is real-valued. If 

this condition cannot be met because of a positive abscissa of absolute convergence for a par- 

ticular radiation problem, one can alwiays split the &integration given in Eqs. (5.1.34a,b) 

into two parts. Let the angular frequency o = o' + ia where o' = R{o) and a = 3{o). 

The *integration can be broken into ihe two parts a I o' < oo and - < w' 5 -a ,  

then taken to the limit a + 0 after coinpletion of the integration[59]. In either event, the 

inequality given in Eq. (5.1.40) is assumed to be satisfied while evaluating the k,-integra- 
- 

tion of Eq. (5.1.22) so that k can be appropriately labeled as the forward propagation vector. 

5.2 Reflection and Refraction of a Pulsed Electromagnetic Beam Field at 
a Planar Interface Separating Two Lossy Dielectrics 

The results presented here are concise integral expressions that describe pulsed electro- 

magnetic beam fields incident upon a planar interface separating two lossy, dispersive di- 

electric half-spaces. They are achieved by simply applying the inverse Fourier-Laplace and 

two-dimensional spatial Fourier transforms to the angular spectrum representations of re- 



flected and refracted pulsed beam fields. Some of the material from 33.1 is repeated here 

for completeness because the design of this problem is similar. 

The incident and transmission dielectric media are described by the frequency dependant 

complex refractive indexes 

and 

respectively. The interface coordinate system is the standard rectangular x, y, z coordinate 

system with corresponding unit vectors (;, 6, n^) chosen to delineate the tangential and nor- 

mal components of the field vectors with respect to the interface.. The xy plane (i.e. where 

z = 0) defines the separation between the two media and therefore represents the interface. 

The xz plane defines the reference plane containing the incident attenuation vector and the 

normal vector to the interface. With this choice, the in-plane tangential component is in the 

;direction, the out of plane tangential component is in the $ direction, and the normal com- 

ponent is in the direction for any given field vector with respect to the interface coordinate 

system, as illustrated in Figure 5.2.1. 

The orientation of the inc:ident pulsed electromagnetic beam field is defined in the inci- 

dent local rectangular u, v, w coordinate system with corresponding unit vectors u, v̂ , w . -1 
The incident position vector .ri is given by 

ri = ui + vv^ + ww . (5.2.3) 

The incident pulsed electromiagnetic beam field vectors defined in the incident local coordi- 

nate system are given by the following angular spectrum representations [cf. Eqs. 

(5.1.34a,b)] 
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Figure 5.2.1 Planar interface separating two lossy, dispersive half spaces with complex refrac- 
tive indexes nl for the incident medium and n2 for the transmission medium. 

where the incident spectral amplitudes are defined on the boundary plane w = W o  = 0 [cf. 

Eqs. (5.1.6a,b)] as 

where t )  and x o ( r p  t )  are the prescribed boundary values given in Eqs. (5.1.5a,b). 

The incident inhonzogeneous plane wave spectra 



satisfy the homogeneous vector Helmholtz Eqs. (2.5.2a,b) and are defined only in the inci- 
- 

dent medium (i.e. for z 5 0). The incident complex wavevector k i ( o )  satisfies the relation 

[cf. Eq. (2.5.12)] 

where 

and i l (o)  is given by Eq. ( 3  1.1). Here ko r :is the vacuum wavenumber. In general, 

the frequency w = o' + ia is complex, where of  and a are both real-valued. As mentioned 

at the end of $5.1 it is assumedl that a = 0 whenever possible otherwise the limit a --, 0 will 

be taken after completion of the integration. 

The incident complex wa~~evector is defined within the incident local coordinate system 

[cf. Eq. (5.1.35)] as 
- 
ki(w)  k,; 4- kvG + yi(w)& , (5.2.9) 

where the incident longitudinal complex wavenumber is defined as 

where the branch cut of the domain of the square root is defined as the positive real axis and 

k: = k: + k:. Let the incident complex wavevector be defined in terms of two real vector 
- 

quantities as ki(w)  = pi(@) + ia i (o) .  Here the incident propagation vector 

pi(u)  5 32 ki(w) specifies the direction of propagation of the planar phase front while the I -  I 
incident attenuation vector a i (w)  = 3 k i (o )  specifies the direction of propagation of the I -  I 



planar amplitude front. The incident propagation vector equates to 

pi(o)  = k,G + k,; + ah(,)]" 
and the incident attenuation vector equates to 

ai(w)  = + e[yi(~)]n? . 

The complex components of the incident complex wavevector are presented and defined in 

matrix form while in the incident local coordinate system as 

In this problem the incident local unit vector n? is directed towards the interface and is 

defined to make an angle Oi with respect to the interface normal n^. The origin of the inci- 

dent local coordinate system is situated the distance wo away from the interface along the 

w-coordinate axis as illustrated in Figure 3.1.3. The angle Oi is confined to the quadrant 

The transverse unit vector G is then chosen to coincide with the out of plane tangential unit 

vector $ of the interface coordinate system. The origin of the interface x, y, z coordinate sys- 

tem is defined as the point where the w-axis of the incident local coordinate system intersects 

the interface as depicted in Figure 5.2.2. 

The resultant reflected and refracted fields are defined in their own local coordinate sys- 

tems in an analogous manner to the incident field. The reflected field is defined in the re- 

, I  I 

jlected local rectangular u , v , w ci,ordiizate system with corresponding unit vectors 

( G ' ,  <, w ') . The unit vector n?' is directed away from the interface and defined to make an 

angle n - Or with respect to the interface normal n̂  . The origin of the reflected local coordi- 

nate system is situated the distance wbaway from the interface along the wl-coordinate axis 

and lies in the incident medium. The w'-axis intersects the interface at the interface's origin. 
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Figure 5.2.2 The incident, reflected and transmitted fields and complex wavevectors are de- 
fined on their respective incident, reflected and transmitted local coordinate systems. The w- 
axis, w'-axis and the w "-axis aire defined to make angles Oi, n-0, and et, respectively with 
respect to the interface normal. 

, I  I !  , I  

The refracted field is defined in the transmitted local rectangular u , v , w coordinate sys- 

t , 
tern with corresponding unit vectors . The unit vector 6 is directed away from 

the interface, and defined to rnake an angle Ot with respect to the interface normal 6 .  The 

origin of the transmitted local coordinate system is situated the distance w i  away from the 

interface along the wf'-coordinate axis and lies in the transmitted medium. The wl'-axis 
, , 

intersects the interface at the interface's origin. The out of plane local unit vectors v̂  and v̂  

are oriented parallel to the unit vector v^. This situation is depicted in Figure 5.2.2. 

Following the development of $3.2, defining Or = Oi intuitively makes sense based on 

the spherical component rel.ations of the generalized laws of reflection given in Eqs. 

(3.1.111~). Let the angle of the transmitted local coordinate system O, be the angle 



@t = BPIkU = kV = 07 i.e. the refracted angle of the attenuation vector for an incident homoge- 

neous plane wave. 

The reflected position vector is given by 

As a result of the generalized law of reflection, the reflected complex wavevector within the 

reflected local coordinate system in terms of the given wavenumbers k ,  and k,  is given 

by[cf. Eq. (3.2.1)] 

The transmitted position vector is given by 

I I , I  
I ,  h I l h  

I I ,, h 

r t = u u  + v v  + w i w  . (5.2.17) 

As a result of the generalized law of refraction, the transmitted complex wavevector within 

the transmitted local coordinate system in terms of the given wavenumbers k ,  and k ,  is given 

by [cf. Eq. (3.2.2)] 

where the complex wavenumber yi(w:l is a function of k ,  and k,  as defined in Eq. (5.2.10) 

,T 
and the definition of Rott given in Eq. (3.1.58). 

The electric reflected spectral amplitude within the reflected local coordinate system is 

given by [cf. Eq. (3.2.10)] 

~ ~ ( k ,  w ) e i ~ 8 ( m ) ( w ~  +wb) . (5.2.19a) 

Substitution of this equation into the transversality condition given in Eq. (2.5.24) yields the 

- - 
k ,  cos Oi + yi(w)  sin Oi  

kv 
% , (5.2.18) 

2 [ - (k ,  cos O~ + y i (w)  sin 0,) - k: 
- 

k , (w)  = 

-i,,,(4- 
ptvt, 

i tw , , (w)  
- - 

,T 
= Rot, 



magnetic reflected spectral amplitude 

The inverse temporal Fourier--Laplace and two-dimensional spatial Fourier transforms de- 

fined in Eqs. (2.1 .lb) and (2.:1.22b) respectively, of these spectral amplitudes yield the re- 

flected fields as 

and 

where R" is defined in Eq. (3.2.9), rr is the position vector defined in the reflected local coor- 
- 

dinate system given in Eq. (5.2.15) and the reflected complex wavevector kr (a )  is given by 

Eq. (5.2.16). Eqs. (5.2.20a,b) represent the reflected angular spectrum representations in 

terms of the pseudo-source terms Ei(kT, a )  and ~ ~ ( k ~  a ) .  

Similarly, following the development of $3.2, the electric transmitted spectral ampli- 

tudes within the transmitted. local coordinate system [cf. Eq. (3.2.18)] is given by 

- 
F ~ ~ ( k ,  a jei~i(a)woe*L..(a)wo (5.2.21a) 

Substitution of Eq. (5.2.21a) into the transversality condition given in Eq. (2.5.24) yields the 

magnetic transmitted spectral amplitude 

The inverse temporal Fourier-Laplace and two-dimensional spatial Fourier transforms of 

these spectral amplitudes yields the transmitted fields as 



and 

U 

where T is defined in Eq. (3.2.17), r ,  i:; the transmitted position vector defined in the trans- 

mitted local coordinate system given in Eq. (5.2.17) and the reflected complex wavevector 
- 

k,(o)  is given by Eq. (5.2.18). Eqs. (5.2.22a,b) are not the transmitted angular spectrum 

representations in their standard form since the angle of the transmitted attenuation vector 

8; given in Eq. (3.1.112~) varies as a function of the transverse wavenumbers k, and k,  as 

discussed in $4.2.1. 

If the temporal conditions of the incident field Gi(rt, t )  permit the use of a Fourier trans- 

form, then the contour of integration C, in Eqs. (5.2.20a,b) and (5.2.22a,b) denotes the 

straight line path along the real axis in the complex wplane. However, if the temporal 

conditions of the incident field Gi(r,, t )  require the use of a h p l a c e  transform, then the con- 

tour C, is the Bromwich contour which is the straight line path given by o = o' + ia, with 

a being a real constant that resides withiln the region of convergence and where o' = Re(@)  

ranges from negative to positive infinity. 



CHAPTER VI 

Modal Analysis of Asymmetric 
Dielectric Slab Waveguides 



Dielectric waveguides types are widely varied. They are generally distinguished from 

one another by the design of their cross-sections and by the types of media used to build 

them. Some common types are rectangular, circular, elliptical and slab. These four types 

are designed so that their cross-sections remain constant with respect to one direction, e.g. 

the propagation axis. In addition, the core region has a higher refractive index than the sur- 

rounding regions. The purpose of dielectric waveguides is to guide light down the propaga- 

tion axis with high fidelity and as little loss or dispersion as possible. 

The dielectric slab waveguide is the most fundamental of the waveguide structures. Con- 

sequently, developing the means to evaluate dielectric slab waveguides provides insight into 

other waveguide types. The dielectric slab waveguide has two planar interfaces which act 

as two independent reflecting surfaces. The results of Chapter 3 then apply to this problem. 

When the proper condjtions are met, near total internal reflection is achieved and the guid- 

ance of light is made possible. This development can be applied to any type of linear dielec- 

tric medium. The most common dielectric medium for these waveguides is glass. 

6.1 Electromagnetic Field Equations in 66Two-Dimensional" Dielectric Re- 
gions 

Consider the propagation of electromagnetic energy in a bounded dielectric region of 

space. A region is considered to be bounded if the refractive index is homogeneous over 

some finite range of at least one dimension. For the purposes of this chapter, the dielectric 

region is bounded in only the: x  ̂ direction of a right handed (x,y,z) rectangular coordinate 

system and the refractive index remains constant along both the and the ẑ  directions. 

In particular, the core of the dielectric slab waveguide is a bounded dielectric region of 

space. The dielectric slab waveguide is comprised of three distinct regions: the substrate, 

core and cladding dielectrics IIcf. Figure 6.1.11. The substrate and cladding dielectric regions 

are two semi-infinite slabs which are parallel to each other and are separated by a finite dis- 

tance. The core dielectric re,gion fills the gap between the substrate and cladding. 
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A necessary condition 
for guidance: 

R { r l , ( ~ ) }  > R{fiz(w)} 2 R{fi3(w)} 

Figure 6.1.1 Diagram of a finite section of a dielectric slab waveguide, depicting three separate 
and distinct dielectric regions: the substrate, core and cladding dielectric materials. The sub- 
strate and cladding are both semi-infinite slabs that are abutted to the core region. The core re- 
gion is infinite in two directions (in y and z )  but of a finite thickness (in x ) .  In general, all three 
regions are composed of different dielectric materials and as a consequence have different di- 
electric constants at a given frequency. 

The source-free form of Maxwell's equations in the temporal frequency domain form 

given in Eqs. (2.2.12a-d) apply to this situation and are rewritten here as 

V x E(r,w) = II;lIiw~(r,w) , (6.1. la) 

V x H(r, w) = - ( ( ~ l l i w . ~ ( r , o )  , (6.l.lb) 

V - D(r ,o )  = 0 .  (6.1. lc) 

V - B(r,w) = 0 . (6.1.ld) 

The constitutive relations given in Eqs. (2.2.13a,b) are rewritten here as 

D(r, w) = E(w)E(r, o )  , 

B(r, 1 = pH(r, 1 , 



where the complex valued dielectric permittivity response function is given as 

The chosen axis orientations are such that the z-axis defines the propagation axis and the 

normals to the corelsubstrate and corelcladding interfaces are collinear with thex-axis. The 

6 variation along the y-axis is neglected so that the operator - = 0 simplifies the problem 
6Y 

to two dimensions. 

Writing the Gaussian field equations given in Eqs. (6.1.lc,d) in component form and ap- 

6 plying - = 0 yields 
6v 

6 Writing Faraday S Law given in Eq. (6.1.1 a) in component form and applying - = 0 yields 
6~ 

6 Writing Ampere's LAW given in Eq. (6.1 .lb) in component form and applying - = 0 yields 
6~ 



By definition, TE fields do not have an electric field component in the z  ̂ direction. 

Therefore, Eqs. (6.1.4b), (6.1.5a,c) ant1 (6.1.6b) relate to TE fields which are summarized 

It should be noted that Eqs. (6.1.7a-d) are over-specified in that Eq. (6.1.7a) is an immediate 

consequence of Eqs. (6.1.7b) and (6.1.7~). 

Traditionally, the wave equation is derived in terms of the field quantity, E,,(r, o ) .  How- 

ever, it could also be solved in terms of H,(r, o ) ,  as is traditional for metallic waveguides. 

The wave equation is formed by substituting Eqs. (6.1.7b) and (6.1.7~) into Eq. (6.1.7d), 

which yields 

Solving Eqs. (6.1.7b,c) for Hx(r, w) and Hz(r, o) in terms of Ey(r, o )  yields 



By definition, TM fields do not have a magnetic field component in the ẑ  direction. 

Therefore, Eqs. (6.1.4a), (6.1.5b) and (6.1.6a,c) relate to TM fields which are summarized 

as 

It should be noted that Eqs. (6.l.lOa-d) are over-specified in that Eq. (6.1.1Oa) is an immedi- 

ate consequence of Eqs. (6.1.10~) and (6.1.10d). 

Traditionally, the wave equation is derived in terms of the field quantity, Hy(r, a ) .  The 

wave equation is formed by substituting Eqs. (6.1.10~) and (6.1.10d) into Eq. (6.1.10b) 

which yields 

Solving Eqs. (6.1.10c,d) for EX(r, o )  and E,(r, a )  in terms of H,(r, o )  yields 

6.2 Guided Modes of the Asymmetric Dielectric Slab Waveguide 

The containment or guidance of electromagnetic energy in the optical portion of the elec- 

tromagnetic spectrum is the ultimate goal of any type of dielectric waveguide. Guidance 

occurs when the condition of near total internal reflection is satisfied. Therefore, a necessary 

condition for guidance is that the real part of the complex refractive index of the core region 



must be greater than that of the substrate and cladding dielectrics. In other words, the core 

must be optically more dense than the outer regions, i.e. 

%{ii,(o)) > %(ii2(0)] t %[ii3(o)]. H:owever, this is not a sufficient condition since it does 

not guarantee that guidance can occur for lossy dielectrics. An example in 54.2.2 shows that 

the critical angle Oc does not occur e:ven though the guidance condition is satisfied [cf. 

Table 4.2.2 and Table 4.2.4 for o = 9122.5THzI. If %(ii2(o)} # %[ii,(w)] then the dielec- 

tric slab waveguide is labeled asj~nmzefric and if %(ii2(o)] = %[ii,(w)] then the dielectric 

slab waveguide is labeled symnzetric. 

If the guidance condition is satisfied. then some of the electromagnetic energy can be con- 

tained (or guided) within the core region. Energy containment results from the fact that the 

majority of the energy will be reflected continually back into the core region by repeated re- 

flection from the core/substrate and cosre/cladding interfaces. Typically the core region is 

where guidance takes place, even though a certain amount of electromagnetic energy is 

leaked into the substrate and cladding .regions. This assumes that the dielectrics are lossy. 

If the dielectrics are lossless then all e:lectromagnetic energy can be completely contained 

within the core and no energy propagates normal to the interface in the substrate or cladding 

regions. 

6.2.1 Guided TE Modes in an Asymmetric Dielectric Slab Waveguide 

Let the i? dependence of the modal fields be given as e + iiz(o)z where i z (o )  is the longitu- 

6 dinal component of the complex wavevector. The operator - then yields 
6z 

Application of this operator to the wave equation given in Eq. (6.1.8) yields 

where 



where k(o) is the complex wa.venumberof the electromagnetic disturbance with angular fre- 

quency o that is propagating in the medium with complex refractive index 

0 .  where ko 7 1 s  the vacuum wavenumber and c - &is the vacuum speed of light. The 
JiFO 

general solution to the Eq. (6..2.2) is of the form 

EJr, = Eat? * iix(u)x . 

Substitution of this solution into Eqs. (6.1.9a,b) yields 

where 

-2 -2 -2 
kx(o) k (w) - k , ( ~ )  , 

since 

ky(o) = 0 . 

The solutions given in Eqs. (6.2.5) and (6.2.6a,b) may then be written for each region 

of the dielectric slab waveguide: the core, cladding and substrate. The nature of the fields 

outside of the core are assumed to be primarily attenuative, i.e. near total internal reflection 

is assumed to occur inside the core region. The transverse component of the complex wave- 

vector in the ; direction is then redefined as 5(0) = ik,(w ) for the substrate or cladding re- 

gions. A two dimensional diagram of the dielectric slab waveguide is illustrated in 

Figure 6.2.1 which shows the origin of the x-axis in the center of the core region and the real 

parts of the complex wavevectors of the solutions within each dielectric region. 
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Figure 6.2.1 Two dimensional cross; section of the dielectric slab waveguide. indicating the 
directions of the propagation vectors at a xy-plane in all three dielectric regions: the core, clad- 
ding and substrate. 

d The field components for the guided modes within the core region Ix I r - are given 2 

where 

d The field components for the guided modes within the cladding region x 1 - are given by 2 

4: (w)x  E,(r,o) = C(o)e 4 , (6.2.10a) 

k,(o) 
Hx(r, o )  = -Ilcll-- C(o )e f ,(w)x 

PO) 
(6.2.10b) 



where [cf. Eq. (3.1.141b)l 

d The field components for the guided modes within the substrate region x r -are given by 
2 

Ey(r, o )  = ~ ( w ) e + & ( ~ ) ~  , (6.2.1 la) 

kz(o) 
H.x(r7 13) = -IIcII B, + t 2 ( ~ ) ~  , (6.2.11b) 

C2(o) 
Hz(?-, o )  = llclli- D(o)e +e2(a)x , 

Po 

where [cf. Eq. (3.1.141b)l 

The Ey and Hz field components must satisfy the tangential boundary conditions [cf. 

d Eqs. (3.1.68a,b)] at the corelcladding and corelsubstrate interfaces (i.e. at x = f -). Ap- 2 

plication of these boundary conditions yields 

- d 
A(o)e -lir(a$ + B(@)e +".(a4 = C(o)e - t 3 ( a $  , (6.2.12a) 

- d 
ikx(a$ + B(o)e-ik~(a$ = D(o)e+tz(@$ , (6.2.12b) 

kx(w)A(o)e -ikl(a$ - t ( w ) ~ ( w ) e  +".(a$ = -if3(w)c(o)e - i 3 ( ~ $  , (6.2.12a) 

& ( o ) ~ ( o ) ~  +iix(a$ - Lx(w)~(o)e -ik~(a$ = i t2 (o )~(o)e  + 52co$ . (6.2.12b) 

For a given angular frequency o ,  Eqs. (6.2.12a-d) form a homogeneous linear system of 

equations which may be rewritten in matrix form as 

.+ .+ 

A homogeneous linear system of equations can be written as Ax = 0, where A is a n x n 

square matrix. A non-trivial solution exists if and only if rank A < n which implies that ( -) 



(3 CI 

det A = 0, i.e. A is singular. Therefore, a non-trivial solution to Eq. (6.2.13) exists when 

The solutions to this determinate equation yield what are called the modes of the system. 

Taking advantage of the zeros in E:q. (6.2.14:) yields 

Dividing out the common factors and talung advantage of the zeros in the 3 x 3 determi- 

nants yields 

Dividing out the common factors and regrouping yields 



Using Euler S formulae22 and regrouping yields, 

Using the definition for the tangent function results in the dispersion relation 

Solution of this dispersion relation yields the modes of the dielectric slab waveguide when 

the left-hand side equals the right-hand side. Substitution of the quantity [cf. Eq. (6.2.9d)l 

-2 -2 
k,(o) = n:(o)kg - kx(w) into Eqs. (6.2.10d) and (6.2.1ld) yields 

- 7 

These equations are now are: functions of kx(o). Let kx(o) Px(o) + iax(o) where 

The condition of near total internal reflection can be lost in the region of cutoff of the 
- - - 

complex plane of kx(o). In this region, at least one of the quantities c2(0) and c3(0) are 

primarily attenuative which occurs when ?J? < 0 andlor 9 

-2 -2 
The branch cuts of c2(0) and c3(o) occur when Eqs. (6.2.16) and (6.2.17) are satisfied and 

22. S e e  Abramowitz and Stegun [73] p. 74. 



Figure 6.2.2 The region of cutoff is depicted as the shaded area. 

3 C2(w) = 0 and 3 C3(w) = 0, viz. ( " 1  r21 

The quantities el.(w), e1(w), e2.(w), e2,(w), e3.(w) and e3(w) are the real and imaginary 
I I 

parts of E1(w), E2(w) and E3(w), respectively [cf. Eq. (2.2.1411. An illustration of the region 

of cutoff is given in Figure 6.2.2. In the region of cutoff any solutions of Eq. (6.2.15) repre- 

sent leaky modes which are highly attenuative along the propagation axis inside the core re- 

gion. 

6.2.2 Physical Connection for the Guided TE Modes in an Asymmetric Dielectric 
Slab Waveguide 

The solution given in Eqs. (6.2.9a.x) represents the superposition of two inhomoge- 

neous plane waves. A single inhomogeneous plane wave propagating within the core region 

after repeated reflections from the corelsubstrate and corelcladding interfaces is a physical 



interpretation of this solution. The modal solutions must possess a self-repeating structure 

as a function of the propagation axis. Consequently, the single inhomogeneous plane wave 

effectively generates multiple reflection that must constructively interfere such that they are 

indistinguishable after every other reflection. If this physical interpretation is correct then 

the dispersion relationship given in Eq. (6.2.15) must be equivalent to that derived from the 

assumption of the constructive interference of two inhomogeneous plane waves propagating 

in the core region. 

The dispersion relation given in Eq. (6.2.15) can be cast into a form that reinforces this 

notion. The sum of two arctangent functions of a complex variable is given by23 

where 

 an-'(z) = tan-'(z) + kn , z2 Z - 1 , (6.2.23) 

and z, z2 and z3 are complex numbers and kis any integer. The arctangent of the dispersion 

relation given in Eq. (6.2.15) yields 

Application of Eq. (6.2.22) to this dispersion relation yields 

52(o) 1 f 3 ( 4  i,(o)d + kn = T a n - )  + T a n  [-] , 
kx(@ 1 kx(o ) 

f2(0) f 3 ( 4  where the upper sign is used and z2 -and z3 - . 
kx(o > k.r(o 

23. S e e  Abrarnowitz and Stegun (731 p. 80. 



The inverse tangent function may be separated into real and imaginary parts as24 

where z is a complex number and x = R{z) and y = 8{z). Application of Eq. (6.2.26) 

to the dispersion relation given in Eq. (6.2.25) yields relationships for the real part 

2p,(o)d f 2k7t = tan-' 2x3 , (6.2.27a) 

and the imaginary part 

where x2 = %[z2], y2 = 8[z2], x3 = 8[z3] and y3 = 8[z3]. 

The complex wavevector of an inhomogeneous plane wave may be defined in terms of 
- 

two real vector quantities as k(o)  B(o)  + i a (o ) .  The propagation vector 

B(o)  = !R k(w) specifies the direction of propagation of the planar phase front while the [-  I 
attenuation vector a (@)  = 8 k(o)  specifies the direction of propagation of the planar [-  I 
amplitude front. The uniqueness of these two types of fronts permits a restatement of the 

physical interpretation. Both the planar phase front and planar amplitude front must be indis- 

tinguishable from every other reflection. The schematic of the modal solution for either type 

of front (phase or amplitude) is illustrated in Figure 6.2.3 where the angle 8 represents the 

angle of incidence for either B! for a phase front or 8: for an amplitude front. 
I 

The planar phase front or the planar amplitude front of an inhomogeneous plane wave 

accumulates an exponential factor not only due to propagation in the core region but also 

because of the reflections from the corekladding and corelsubstrate interfaces. The pro- 

24. See Abramowitz and Stegun [73] p. 81. 



extra length to be traversed in 
the extended core to match the front line from se- 

cond reflection or 

X = - -  
Substrate 

I 

I 

fi2(u) I 

I 

I 

Figure 6.2.3 Two dimensional cross section of the dielectric slab waveguide, indicating the 
modal solution for either the planar phase front or the planar amplitude front. 

posed physical interpretation equates this exponential accumulation to that of an imagined 

inhomogeneous plane wave propagating an extra distance in an imaginary extended core re- 

gion. This extra distance traveled in the extended core region is computed as 

d while the length traveled in the true core region is - 
C O S ( ~ ) '  

The exponential phase accumulation of the planar phase front after two consecutive re- 

flections is given by 

where B(o) is the magnitude of the propagation vector /?(o). The quantities Q2(0) and 

Q3(u) represent the phase delay suffere,d by the reflection from the core/substrate and core/ 

cladding interfaces, respectively. The exponential phase accumulation of the planar phase 

front traveling in the extended core region is given by 



where the term 2 . h ~  is included to be consistent with the cyclic nature of the planar phase 

front. 

The exponential accumulation of the planar amplitude front after two consecutive reflec- 

tions is given by 

where a ( o )  is the magnitude of the propagation vector a ( o ) .  The quantities Y2(0) and 

Y,(o) represent the attenuation suffered by the reflection from the core/substrate and core/ 

cladding interfaces, respectively. The exponential accumulation of the planar amplitude 

front traveling in the extended core region is given by 

For constructive interference, Eqs. (6.2.29a7b) are equivalent, viz. 

2dp(0) cos(e{) f 21a = Q,(o) + ~ ~ ( 0 )  . (6.2.3 la) 

and Eqs. (6.2.30a7b) are equivalent, viz. 

~ ~ ~ ( w ) c o s ( B ~ )  = -[Y~(w) + y3(0)]  . (6.2.3 1b) 

The x-component of the propagation vector is /3,(w) = p ( o )  cos eB so that Eq. (6.2.31a) ( 1 )  

becomes 

2@,(w) f 21a = Q2(0) + Q3(0)) , (6.2.32a) 

and the x-component of the attenuation vector is a,(o) = a(w)cos(ep) so that Eq. 

(6.2.3 1b) becomes 



The generalized Fresnel reflection coefficient for TE fields is given as the ?,component 

of the matrix given in Eq. (3.1.144), 

r,, = 
E x ( @ )  + it(@) 

k,(o) - i t ( @ )  ' 

The reflection coefficient can be rewritten as 

a@> where z = - , x = % { z )  and y = 3 { z ) .  Conversion of Eq. (6.2.33) into apolar repre- 
L(@, 

sentation yields 

where arg{) =   an-'{). Utilization of the trigonometric identity given in Eq. (6.2.22) 

yields 

Further manipulation yields 

- - 
5 2 ( @ )  Substitution of the definitions z2 = x2 + iy2 = 7 

5 3 ( @ )  and z3 = x3 + iy3 = - 
k X ( 4  kx(@ ) 

into Eq. (6.2.34) gives two reflection coefficients which represent reflection from the core1 



substrate and corelcladding interfaces, respectively, viz. 

The phase delays suffered by the reflection from the corelsubstrate and corelcladding inter- 

faces, respectively, are given by the exponential factors in Eqs. (6.2.35a,b), viz. 

The exponential attenuation suffered by the reflection from the corelsubstrate and corelclad- 

ding interfaces, respectively, are given by the natural logarithm of the magnitude of Eqs. 

(6.2.35a,b), viz. 

Substitution of Eqs. (6.2.36a-d) into the real and imaginary parts of the dispersion rela- 

tion given in Eqs. (6.2.32a,b) yields identical results to those given in Eqs. (6.2.27a,b) there- 

by proving the supposition of the physical interpretation. 
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