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Abstract 
The transverse modulations: i s s  t ~ b i l l  ty (TMI), or filamentation, of two intense 

light waves in both finite and infinite, cubically nonlinear media is investigated 

using a coupled nonlinear Schroedinger-equation model. I t  is shown that the 

presence of the second laser field increases the growth rate of the filamentation 

instability. Systems of two copropagating waves are convectively unstable and 

systems of two counterpropagating waves are absolutely unstable, even when the 

ratio of backward- to  forward-wave intensity is small. The cooperative TMI of 

two counterpropagating light waves is a hybrid instability caused by the inter- 

action of four electromagnetic sidebands and is shown to  occur in the spectral 

overlap region of single-wave TMI, phase conjugation and Bragg scattering. This 

instability dominates t h e  interaction over a significant range of pump-intensity 

ratios in both self-focusing and self-defocusing media. The absolute phase conju- 

gation instability dominaces only for small pump-intensity ratios in self-defocusing 

media. Having demonstrated the importance of the cooperative Thl I  in nonreso- 

nant media, the analysis is extended to finite Brillouin-active media. This thesis 

provides the first unified treatment of the TR41, near-forward and near-backward 

stimulated Brillouin scattering of counterpropagating light waves. The cooper- 

ative TAII and cooperative Brillouin-enhanced four-wave mixing instabilities are 

shown to  possess larger convective growth rates and smaller absolute instability 

thresholds than conventional single-pump instabilities. Either cooperative TMI 

or its resonantly enhanced counterparts may dominate. This analysis is consis- 

tent with recent experiments and suggests that cooperative instabilities may be 

important in applications of laser-plasma interactions. 
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Chapter 1 

Introduction 

The intensity pattern due to the beating of a strong electromagnetic wave with 

one of its electromagnetic sidebands may induce periodic variations in the index 

of refraction of a host medium. These stimulated material waves act as gratings 

and may scatter pump energy into electromagnetic sidebands. If the linear and 

nonlinear phases of these waves are matched inside the medium, feedback from 

the pump causes phase-matched sidebands to grow. This process is the basis of 

stimulated scattering and modulational instabilities in both plasmas [l - 41 and 

other nonlinear optical materials [5 - 81. 

The ponderomotive force of an electromagnetic field is proportional to the 

gradient of the low-frequency average of the field intensity. In an underdense 

plasma, this force may cause periodic intensity variations in the electromagnetic 

field to drive ion waves by pushing plasma particles from regions of high intensity. 

Since the linear dispersion relation for a light wave propagating in a plasma is 

w2 = w,2 + c2k2 where w,2 = 4 ~ e ~ n , / m ,  is the plasma frequency, e is the electron 

charge, n, is the electron number density and me is the electron mass, it follows 

t,hat the index of refraction of a plasma varies with density and ion waves act as 

gratings. 

Both stimulated Brillouin scattering (SBS) and filamentation, also known as 
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the transverse modulational instability (TMI),  arise in a plasma due to the inter- 

action of an intense electromagnetic pump wave with a low-frequency ion wave. 

.A nonresonant stationary ion wave driven by the fields acts as the grating for 

filamentation. These instabilities require only one electromagnetic pump wave 

interacting with either one or two electromagnetic sidebands. 

A pair of pump waves may coexist in many nonlinear optical systems. In these 

systems, the properties of one light wave may be altered by variations in the in- 

dex of refraction caused by the other. For instance, a pump wave may produce 

a signal sideband by scattering from a grating produced by the beating of a sec- 

ond pump wave with a probe sideband. This process is called four-wave mixing 

(FIYRI) [9, 101. When the signal sideband propagates in the opposite direction 

with respect to the probe sideband the interaction is called phase conjugation 

by FIVR4. The physics of this and other multi-pump systems is richer and can 

be qualitatively different from the corresponding single-pump processes. Compli- 

cated instabilities of multi-pump systems which are caused by the simultaneous 

occurrence of simpler instabilities are called hybrid instabilities. If the result of 

the multi-pump interaction is to introduce a new instability or change the prop- 

erties of single-pump instabilities in such a way that the effect is different than 

the simple superposition of the single-pump instabilities, it will be referred to as 

a cooperative interaction. Cooperative instabilities of two electromagnetic pump 

waves are the subject of this thesis. 

LVhen two waves propagate in media with an instantaneous cubic nonlinear- 

ity, media in which the index of refraction is linearly proportional to the intensity 

of the light wave, their spatio-temporal evolution is governed by two coupled 

~ o n l i ~ e a r  Schroedinger equations; one for each complex wave amplitude. These 

equations include the effect. of convection, diffraction, dispersion and nonlinearity 



on the slowly varying envelopes of the electromagnetic fields. The modulational 

physics embodied by the Schroedinger-equation model is extremely rich, and has 

been studied independently by many authors [I1 - 211. Berkhoer and Zakharov 

[ll], Das and Sihi [12], and Menyuk [13] have shown that the modulational growth 

rate associated with a single, modulationally unstable wave is increased by the 

presence of a second, modulationally unstable wave. Inoue [14], and Som, Gupta 

and Dasgupta [15] have shown that a wave which is modulationally stable in isola- 

tion can be destabilized by the presence of a second, modulationally unstable wave. 

Litvak and Fraiman [16], Gupta, Som and Dasgupta [17], Agrawal [18], Gosh and 

Das [19], and McKinstrie and Bingham [20] have all shown that two waves, which 

are both modulationally stable by themselves, are often modulationally unstable 

in the other's presence! Although the modulational growth rates depend on the 

relative amplitudes of the waves, the existence of modulational instability does 

not. Thus, the evolution of two coupled waves can differ qualitatively, as well 

as quantitatively, from the evolution of a single wave. A tutorial introduction to 

coupled modulational instabilities is to be found in Ref. [21]. 

The linear growth of these instabilities is characterized as convectively or ab- 

solutely unstable. An instability which propagates in such a way that the velocity 

of both its leading and trailing edges have the same sign is said t o  be a convective 

instability. An instability which propagates in such a way that the velocities of 

both its leading and trailing edges have the opposite sign is said to be an absolute 

instability. Thus, an absolute instability grows in the frame of the medium while 

a collvective instability grows as it propagates [22 - 241. 

Most of the work described above is confined to  the longitudinal modulational 

instability of colinear waves with comparable group vc!~ci!ies, which is convective 

in nature. The most recent activity in this area has been due to models of non- 
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linear wave propagation in optical fibers [25 - 281. In addition, Law and Kaplan 

have recently used analogous nonlinear Schroedinger equations to show that coun- 

terpropagating waves can exhibit absolute longitudinal modulational instabilities 

in finite media [29, 301. Much of the work on instabilities of counterpropagat- 

ing light waves was inspired by the early papers of Silberberg and Bar-Joseph 

[31, 321 which showed that distributed feedback resulting from the interaction of 

two counterpropagating light waves leads to complex scalar instabilities. Com- 

plex polarization instabilities [33, 341 and cooperative Brillouin-enhanced FWM 

instabilities in the limit of no transverse effects [35, 361 have been shown to exist. 

Absolute phase conjugation instabilities have also been shown to  exist both in 

plasmas [37, 381 and in other materials [39 - 421. 

Considerably less work has been done on the cooperative TMI in either res- 

onant or nonresonant media. The TMI of two copropagating waves in infinite 

l~omogcneous media has been discussed briefly by Berkhoer and Zakharov [I I] ,  

and bIcI<instrie and Bingham [20]. The TMI of two equal-amplitude counter- 

propagating waves has been discussed for inhomogeneous media [43], for finite 

homogeneous [44 - 551, and for infinite homogeneous media [16, 21, 511. In self- 

focusing media, the TMI growth rates which result from the combined effect of 

two counterpropagating light waves are larger than those of the single-wave case. 

In addition, the coupled-wave instability is absolutely unstable [43 - 541. Thus, 

thermal [43] and ponderomotive [51] filamentation are both absolutely unstable 

when driven by counterpropagating pumps in plasma. In self-defocusing media, 

both a convective and an absolute TMI are introduced by the second counter- 

propagating light wave [46, 21, 50, 51, 53, 541. The relationship between the TMI 

and the dispersive icstability has been discussed in [50, 531. In addition, the effect 

of polarization on the TMI has been discussed [53]. Other work has shown that a 



second copropagating light wave induces convective TMI [20,21, 51,561 and whole 

beam self-focusing effects [57] in self-defocusing media [58], and enhances whole 

beam self-focusing effects in self-focusing media. An extensive review of recent 

work on transverse effects in nonlinear optical systems is contained in Ref. [59]. 

By studying the interaction and evolution of the nonlinear wave processes 

described above using a combination of analytical and computational tools, the 

implicit hope is to understand them deeply enough to suggest practical ways 

of avoiding or suppressing deleterious instabilities in applications or to use this 

knowledge to construct novel devices. 

Direct-drive inertial confinement fusion (ICF) [60 - 621 requires high-gain fu- 

sion pellets to overcome losses associated with initiating the fusion process. Effi- 

cient conversion of laser energy into the plasma kinetic energy used to drive the 

conlpression of the fuel pellet is essential in inertial fusion. This process begins 

in the corona ~vliere the intense laser field must penetrate a dense plasma and 

deposit its energy into the pellet material. Two critical aspects of this deposition 

process are the laser absorption efficiency and the implosion symmetry. 

.4 variety of physical processes can take place due to nonlinear interaction be- 

tween the coronal plasma and the electromagnetic field of the laser. In the direct 

drive fusion process both absorption efficiency and implosion symmetry can be 

adversely affected by parametric and focusing instabilities. Focusing instabilities 

can degrade the uniformity of the laser light as it passes through the corona by 

enhancing modulations of the laser profile and distributing the incident laser light 

into filaments. This nonuniform deposition of laser energy can seed hydrody- 

namic instabilities, such as the Rayleigh-Taylor instability, which further degrade 

the laser-to-fuel coupling efficiency and inhibit the fusion gain. Parametric i-?stl- 

bilities can degrade the absorption of laser light by scattering it away from the 
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pellet and are one source of hot electrons which can divert energy from the abla- 

tion process and preheat the fuel. Filamentation may influence the initiation and 

growth of these parametric instabilities. Though recent studies have shown that 

shorter wavelength lasers and beam smoothing techniques significantly reduce the 

effect of these instabilities, there is still much to be learned about their role in 

reactor size plasmas. 

Counterpropagating pump waves may arise in the context of ICF when the 

incident pump laser is reflected from the critical density surface or is parametri- 

cally backscattered from the underdense plasma region. Burn-through light, which 

penetrates the target after the plasma is formed, may also act as a source for the 

counterpropagating pump. In previous studies [63 - 651, the counterpropagating 

pump wave, when shifted by the sound wave frequency as a result of the plasma 

motion, was shown to increase the amount of backward SBS by seeding the Stokes 

sideband well above the noise level. In contrast, cooperative instabilities can have 

larger growth rates than single-wave instabilities and need not have single-wave 

analogs. 

The counterpropagating waves are applied externally when the laser-plasma 

interaction is used for phase conjugation [3S]. Optical phase conjugation has 

applications in real-time adaptive optics, optical computing and optical commu- 

nications. Generating high-quality conjugate waves by FWhl requires reference 

waves which are uniform in the interaction volume and have sufficiently high in- 

tensity to initiate nonlinear coupling. Both filamentation and resonant absolute 

instabilities of the reference waves could seriously hamper efforts to utilize FWM 

in phase conjugation. Phase conjugation may also play a role in backscattering 

[66] and is being studied for use as a plasma cliagiiostic [37, 671. 

This thesis examines the cooperative TMI and provides the first unified treat- 



ment of filamentation, near-forward and near-backward SBS of counterpropagat- 

ing light waves, showing that cooperative instabilities are an important part of 

the counterpropagating-wave interaction. In Chapter 2, the nonlinear Shroedinger 

model of two counterpropagating light waves in a homogeneous plasma are derived. 

In Chapter 3 the stability analysis of these equations shows that convective TMI 

of a single light wave is transformed into an absolute instability by the presence of 

a second, counterpropagating light wave. In Chapter 4, the linear four-sideband 

analysis of the cooperative TMI is presented. The four-sideband instability is de- 

con~posed into three F?VM interactions which form the two-sideband limits of the 

four-sideband interaction. The cooperative TMI is shown to occur in the spectral 

overlap region of the three limiting two-sideband interactions. The linear convec- 

tive gain spectrum and the threshold for absolute instability are calculated for the 

four-sideband system. 111 Chapter 5 the work on nonresonant TMI is extended to 

include effects due to the resonant ion-acoustic response of a plasma. In Chapter 

G recent experimental observations are discussed and a summary is provided of 

the n~a jo r  results of this work. 
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Chapter 2 

The Coupled Nonlinear 
Schroedinger Equations 

In this chapter the equations that govern the evolution of a pair of electromag- 

net,ic waves in a plasma are obtained. The evolution of the fields is governed by 

Maxwell's equations driven by the  charge and current densities of the  plasma; 

thus 

is the velocity field of species s, ns is its number density and q, is its charge. 
4 

In equilibrium, niO) = 2njo) = no where Z is the ionization number and K(O) = 

c 0  = 0. The evolution of 1?, and n, may be modeled by the fluid equations 
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which have the form 

dtns + V .  ( n s g )  = 0 ,  

where Ps = nsT, is the pressure. From Eq. (2.7) it can be seen that the first-order 

electron motion is in the direction of the applied electric field. Thus, 

-. 
where A' is the transverse component of the vector potential. 

Assuming that the low-frequency plasma evolution is quasi-neutral, then n!f) = 
~n j') and the following set of equations governing the evolution of fL and (n) = 

n$ ' /no  arise from the root equations [4] 

where ( ) denotes an average over the high frequency components, ca = ZTJO)/mi 

is the ion sound speed and TJO) is the equilibrium electron temperature. Equation 

(2.9) is J4axwell's wave equation for the electric field driven by the nonlinear 

current. Equation (2.10) is the sound wave equation driven by the low-frequency 

variations in light pressure. Equations (2.9) and (2.10) are the starting point for 

the analysis that follows. 

In the presence of a second field, the ponderomotive force depends on the 

intensities of both fields and couples the wave evolution. The total field, PL can 

he cllosen as 

-. 4 

V' = ? { R ( f . t )  exp[iC1(P, t)]  + l/;(i, t )  e ~ p [ i q 5 ~ ( f ,  t)] + c.c.} 



where 
4 4.  - EVJ) . - w;o)t 

3 -  3 

and the wave amplitudes vary slowly in space and time. By substituting this form 

of FL into the equation for ( n )  and averaging over the fast time scale, the following 

equation for the density perturbation is obtained: 

The last two terms on the right side of Eq. (2.13) will not appear for Iwl -w21 >> w;, 

'(0) or for waves with orthogonal linear polarizations. If wp a wf and zp) a - k1 , 
then the cross terms will drive a short-wavelength density grating. 

When the instability growth time occurs on a time scale long compared to the 

time associated with the natural ion motion (w2 << c?E2), an algebraic equation 

for ( n )  is obtained. This condition implies that the ion-acoustic wave is driven 

nonresonantly and, hence, that there is little indirect absorption of laser energy. In 

Chapter 5 this restriction will be relaxed. By substituting the algebraic expression 

for (17) in Eq. (2.13), and neglecting the second-order temporal derivative and the 

second-order longitudinal spatial derivative of the slowly-varying wave amplitude, 

the equations 

are obtained, where v, is the electron thermal speed, it is understood that wjO) and 

'(0) Ej  satisfy the linear electromagnetic dispersion relation, and c is either ! or 2, as 

explained above. An extra factor of 4 has been incorporated in the denominators 
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of the nonlinear terms so that  the V,'s now represent the peak electron quiver 

velocities. 

Equations (2.14) can be written in the canonical form 144 - 46, 22, 481: 

where 

and bj[ is the Iironecker Delta. These scalings yield a convenient form of the 

coupled nonlinear Schroedinger equations, (2.15), where v j  is the group velocity, 

pj, is the diffraction coeffiecient, and the X j l  are the self nonlinearities when 

j = 1 and the cross-coupling nonlinearities when j # I .  Although they have been 

obt.ained by considering the interaction of intense laser radiation with a uniform 

plasma, these equations are sufficiently general to  apply to  a host of relevant 

problems in which a small amplitude expansion of the governing equations applies. 

In particular, these equations describe the filamentation and nonlinear focusing 

of laser beams in media with instantaneous Kerr nonlinearities. In the field of 

nonlinear optics the X j l  are generally given in terms of the third order nonlinear 

suceptibility. It is also more common in the nonlinear optics literature to write 

the convective terms in such a way that  the partial derivative with respect to  

time is multiplied by the inverse of the group velocity and p and X are redefined 

accordingly. 

The  coupled nonlinear Schroedinger equations model the propagation of two 

counterpropagating light waves thrnugh a medium in which the index of refrac- 

tion may either increase or decrease as a linear function of the total local field 



intensity, has no natural resonances, and responds to  intensity variations on time 

scales much shorter than the time scales associated with variations in the enve- 

lope amplitudes of the fields. If the medium is homogeneous, these equations are 

independent of translations and rotations. In Chapters 3 and 4 these equations 

are studied in detail. In Chapter 5 the restrictions of the nonlinear Shroedinger 

model are relaxed so that the effects of sound-wave resonances can be considered. 
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Chapter 3 

Colinear Waves in Infinite 
Homogeneous Media 

In this chapter, the transverse modulational instability (TMI) of two colinear 

waves propagating in media with instantaneous cubic nonlinearities is investi- 

gated using the coupled nonlinear Schroedinger-equations (2.15). No restrictions 

are made on either the relative amplitudes of the waves, or on the signs and mag- 

nitudes of the group velocities of the waves. The outline is as follows. In the first 

section. analytic solutions of the linearized version of the governing equations are 

obtained for two waves propagating with equal group velocities in a semi-infinite 

medium. Then the linear stability analysis for two colinear waves propagating 

with arbitrary group speeds in an infinite medium is used to show how the con- 

vective and absolute nature of the TMI depends on the relative amplitudes of the 

waves. A summary of the chapter is provided in the final section. 

To make the physical content of the results more transparent, i t  is assumed 

that X22 M All and ~2~ M pll = pl. Strictly speaking, these approximations only 

apply to waves of comparable frequency or to different polarizations of the same 

wave. However, with the single exception of the study of wave-damping effects in 

Sec. 3.1, none of the results will depend sensitively on these approximations. 
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3.1 Copropagation in Semi-Infinite Media 

ll'hen the waves have equal group velocities, the linearized equations can be solved 

explicitly using the method of characteristics. To illustrate this method, the single- 

wave instability is considered first. In terms of the characteristic variables 

the nonlinear Schroedinger equation can be written as 

[ ivd,  + P ~ V :  + X111A112]A1 = 0 (3.2) 

and is to be solved for 2 > 0. Since the operator d, does not appear in Eq. (3.2), 

the wave amplitude Al can depend only parametrically on T. Equation (3.2) has 

the equilibrium solution 

where. without loss of generality, the equilibrium parameter A l ( r )  can be taken 

to be real. The stability of this plane-wave equilibrium, with respect to small 

perturbations in wave amplitude, can be studied by substituting the ansatz 

into Eq. (3.2) and retaining only those terms which are linear in the perturbed 

wave amplitudes. If 4 is assumed to  satisfy the Helmholtz equation 

in whatever coordinate system is appropriate, the linearized equation is 
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This complex equation is equivalent to  the real equations 

where the subscripts r and i denote the real and imaginary parts of the perturbed 

wave amplitude. It follows from Eqs. (3.7) and (3.8), together with the boundary 

conditions 

A(,;)(T, 0) = 0 , (3.9) 

that 

A!:)(t! z) = A\:)(T, 0) cosh(y z lv)  , (3.10) 

where 

y 2 ( ~ )  = ~ 1 k : ( 2 h l l A 1 ( ~ ) 1 ~  -  PI^:) . (3.11) 

The corresponding solution for A!:) follows from Eqs. (3.8) and (3.10). If the 

product , L L ~ X ~ ~  is positive, equilibrium (3.3) is modulationally unstable with re- 

spect t o  perturbations whose wavenumbers satisfy 0 < Jplk:l < 21X11 Ai(r)l .  

The amplitude perturbations grow as they convect, with a maximal temporal 

growth rate of A l l  ( A l ( r ) ( 2 ,  corresponding to an optimal transverse wavenumber 

of ( A l 1  / , L L ~ ) ' / ~ ~  A1 (T:I 1. Notice that,  since c$ is any  solution of the Helmholtz equa- 

tion, the perturbations in wave amplitude need not be planar. 

From Eqs. (2.16) and (3.1 I ) ,  the maximal growth rate and optimal transverse 

wavenumber for the single-wave instability of wave 1 are given by 

respectively, where 
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Using these results, the exponent of the single-wave convective gain 

and the corresponding measure of the transverse wavenumber 

where kl  is the vacuum wavenumber of the incident wave and the critical electron 

density 

n , [ ~ m - ~ ]  % 1.1 x 1 0 ~ ' ( A [ ~ m ] ) - ~  . (3.16) 

For the experimental parameters of Young et al. [6S, 691 ( A  z 1 pm, 1 z 300 

pm, n, = 0.112, and Te FZ 0.8 I<eV), it follows from Eqs. (3.13) and (3.14) that 

I [ \b '~ rn -~]  z (-yll/v) x 1014. 

NOK consider the evolution of two coprnpacating waves. For such waves, Eqs. 

(2.15) have the equilibrium solution 

where, without loss of generality, the equilibrium parameters A1(r)  and A2(7) 

can both be taken to be real. Small perturbations of this plane-wave equilibrium 

are governed by the equations 

for wave 1, together with corresponding equations for wave 2. Equation (3.18) 

and it,s analog for wave 2 can be written in the matrix form 
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where A is the column vector (A!',), ~ i ' , ) ) ~  and M is the matrix 

Let E*(r) denote the eigenvectors of M and let F*(r) denote the inner ~ roduc t s  

(E*(r), A(r,O)). Then the solution of Eq. (3.20) can be written in the form 

where the functions G*(r, Z )  satisfy the auxiliary equations 

together with the boundary conditions 

Equations (3.23) are identical in form to Eq. (3.7), with driving terms 

which now depend on the equilibrium amplitudes of both waves. The solutions of 

Eqs. (3.23) subject to the boundary conditions (3.24) are simply 

where 

ri(7) = P L ~ ? ( ~ A *  (7) - p h i )  

are t,he eigenvalues of the matrix A l .  

Suppose that A l l  and pL  are positive, so that waves 1 and 2 are both unstable 

b?. themselves. Then, p l A + ( ~ )  is positive, and it follows from Eqs. (3.25) - (3.27) 
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F igu re  3.1: The temporal growth rate of sinusoidal perturbations in wave ampli- 
tude is plotted as a function of transverse wavenumber for the case in which p1 A l l  
is positive and X12/X11 is equal to  2. The lower curve corresponds to  the TMI of a 
single wave. while the upper curve corresponds to  the TMI of two equal-amplitude 
copropagating waves. The temporal growth rates are normalized to  IXllA:I and 
the transverse wavenumbers are normalized to  ( ~ ~ 1  /pI)'12 IA1 1 ,  their optimal val- 
ues for the single-wave instability. 

that equilibrium (3.17) is modulationally unstable with respect to  perturbations 

\vllose wavenumbers satisfy 0 < plk: < ~ A + ( T ) .  The amplitude perturbations 

grow as they convect, with a maximal temporal growth rate of A+(T)  correspond- 

ing to an optimal transverse wavenumber of ( A + ( ~ ) / p ~ ) l / ~ .  The  temporal growth 

rate is plotted as a function of transverse wavenumber in Fig. 3.1, for the common 

case in which IA2(r) ( = ( A ~ ( T ) I  and X12 = 2Xll. The lower curve corresponds to 

the single-wave instability, while the upper curve corresponds to the coupled-wave 

instability. Notice that the optimal transverse wavenumber for the coupled-wave 

instability lies outside the range of unstable wavenumbers for the single-wave in- 

stability. Let the components of the eigenvectors E*(T) be denoted by ef (7) and 
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e;(r). Then, it follows from Eqs: (3.18), (3.23) and (3.25) that 

For the common case in which A l l  and X12 have the same sign, this amplitude 

ratio is positive and the maxima of waves 1 and 2 are aligned. This alignment of 

the local maxima allows the self-nonlinear and cross-nonlinear wavenumber shifts 

to add constructively and enhance the phase-front curvature responsible for the 

TMI. 

Conversely, suppose that A l l  is positive and , u ~  is negative, so that waves 1 

and 2 are both stable by themselves. Then, in this case, ,ulA+(r) is negative. 

However ,ulA-(r) is positive whenever 

and equilibrium (3.17) is modulationally unstable with respect to perturbations 

whose wavenumbers satisfy 0 < I,ul k: 1 < 2lA- ( T )  1 .  The amplitude perturbations 

grow as they convect, with a maximal temporal growth rate of /A-(r ) l  correspond- 

ing to an optimal transverse wavenumber of ( A - ( T ) / ~ ~ ) ' / ~ .  For the common case 

in which A l l  and X12 have the same sign, the amplitude ratio 

is negative, and the maxima of wave 1 are aligned with the minima of wave 2. It is 

this misalignment of the local maxima which allows the cross-nonlinear wavenum- 

ber shift to compensate for the self-nonlinear wavenumber shift and produce the 

concave phase-fronts required for the TMI. (Although the geometry is different, it 

is the same addition of self-nonlinear and cross-nonlinear wavenumber shifts that 

makes possible the longitudinal modulational instability [18, 201 .) Similar remarks 
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apply to the other choices of signs for A l l  and pl; whenever inequality (3.29) is 

satisfied, one of p lAi ( r )  is always positive and the waves are modulationally 

unstable [20]. 

The collisional damping of the waves is often important in experiments, and 

can be modeled by the inclusion of the terms ivlAl and iv2A2 in the first and 

second of Eqs. (2.15), respectively. In many applications involving light waves, 

the damping coefficients of the waves are approximately equal. The equality of 

damping coefficients will he~ceforth be assumed. Usually, one neglects the effects 

of damping on the plane-wave equilibrium (3.17) and retains the effects of damping 

only on the perturbed wave amplitudes. The changes in the characteristic analysis 

necessitated by this idealized approach are vd, - vd, + v in Eq. (3.20) - (3.24), 

and, hence, Gi( r ,  z )  - Gi(r ,  z )  exp(-vz/v) in Eqs. (3.26). Consequently, one 

expect, tlLG rc;iturbati~ns in wave amplitude to grow as they convect whenever 

However, Eq. (3.20) can be solved exactly, even with the effects of equal pump- 

urave damping taken into account. The exact solutions can then be used to gauge 

the accuracy of the usual idealized approach. 

In the presence of damping, Eqs. (2.15) have the equilibrium solution 

The characteristic analysis of the linearized equations proceeds as for the conser- 

vative case, with the exception that the functions G* now satisfy the auxiliary 

equat,ions 
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together with the boundary conditions 

Equations (3.32) can be solved by defining new dependent and independent vari- 

ables [70] 

Hk = G* exp(vz/v) , C* = exp(-vzlv) , (3.34) 

respectively. The functions H* satisfy the auxiliary equations 

where 

a = mk:/v , = ( ~ ~ L ~ : A * ) ' I ~ / Y  , . (3.36) 

together with the boundary conditions 

Since Eqs. (3.35) are just variants of Bessel's equation, their solutions, consistent 

with the boundary conditions (3.37), can be written as 

.4lthough the solutions specified by Eqs. (3.34) and (3.38) are explicit, the effects 

of damping can be seen more easily from the numerical solutions of Eqs. (3.32) and 

(3.33), which are displayed in Fig. 3.2. The solid lines represent the exact solutions 

of Eqs. (3.32) and (3.33), while the broken lines represent the idealized solutions 

which neglect the effects of pump-wave damping. The transverse wavenumber 

was taken to have its optimal value throughout the Figure, so that y* = A*. 

It can be seen from Fig. 3.2(a) that the two solutions are approximately equal 

for the case in which v = 0 . 0 1 ~ ~ .  Although the two solutions differ considerably 
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Figure 3.2: The filament amplitudes G* are plotted as functions of position 
for three different values of the wave-damping coefficients. (a)  v = 0.01 y*. (b)  
v = 0.057*. (c) v = 0.10y*. The solid line represents the exact solutions, 
while the broken line represents the idealized solutions which neglect the effects 
of pump-wave damping. 

when Y = O.O5y*, the exact solution does exhibit significant gain, as shown in Fig. 

3 .2 (b ) .  The case in which v = 0 . 1 0 ~ ~  is displayed in Fig. 3.2(c) .  Not only do the 

two solutions differ considerably, but the exact solution also exhibits negligible 

gain. Thus, the true instability threshold in the presence of damping exceeds the 

naive estimate by a factor of about 20. In this chapter and in Chapter 4 damping 

will be neglected, with the understanding that the analysis and physics is modified 

substantially in those applications for which damping is significant. 

3.2 Colinear Waves in Infinite Media 

When the waves are colinear, with unequal group velocities, the evolution of small 

perturbations in wave amplitude is dispersive and the method of characteristics 

cannot normally be used to solve the linearized equations. Consequently, in this 

section, Fourier - Laplace transform techniques are used to  study the wave evolu- 

tion. By definition, there are no boundaries in infinite media, so an initial-value 

problem is formulated. 
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Equations (3.15) have the equilibrium solution 

where the equilibrium parameters A1 and A2 can be taken to  be real and, hence- 

forth, are assumed to  be constant. Small perturbations of this plane-wave equi- 
+ 

librium, with transverse wave vector kl, are governed by the equations 

together p 4 1 ~  ,,ull LI. bllLlr .: complex conjugates. Subject to  the initial conditions 

the solution of Eqs. (3.40) for wave 1 can be written in the form 

A p ( t ,  z )  = 1 / s1(W7 4 1 7  k l )  exp [ i (kIIz  - wt)]dwdkll , (3.42) 
F L Dc(W,kll,kl) 

where F and L denote the usual Fourier and Laplace contours [22 - 241, respec- 

tively. The source function 

depends on the initial conditions chosen for both A!') and A Y ) ,  
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is the single-wave dispersion function of wave 2 and 

is the coupled-wave dispersion function. By interchanging the subscripts 1 and 2, 

the corresponding solution for A$:) can be obtained. The analysis of Eqs. (3.42) 

- (3.45) can be simplified by making the substitutions 

w 'jkll +vjkI l  , CLI~: 2 
+ W ,  + k, , (3.46) 

1\11 IA1 l 2  A11 /A1 l 2  A l l  lA112 

which correspond to measuring all frequencies relative to the maximal growth 

rate of the single-wave instability of wave 1, assuming it to be unstable, and all 

transverse wravenumbers relative to the optimal transverse wavenumber of wave 

1. These substitutions result in the dimensionless dispersion function 

wllere the sum and difference velocities v, and vd are equal to i ( v l  + v2) and 

3 ( v 1  -v2) respectively, a, is the sign of the product , u I A l l  and determines whether 

or not the waves are modulationally unstable by themselves, E is the ratio X12/X11, 

and r is the pump-wave amplitude ratio IA2/All. The pump-wave intensity ratio 

r2 will also be denoted by the symbol R. 

For the special case in which the perturbations in wave amplitude are initially 

sinusoidal in the z-direction, Eq. (3.42) shows that they remain so with a temporal 

growth rate w; which follows from the coupled dispersion function (3.47). 
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When vd is equal to Lero, the solutions of the coupled dispersion equation are 

given by the simple expression 

where 

112 
26* = ( 1  + r 2 )  z t  [( l  - r2)2  + (2er) ']  (3.49) 

is the driving term for the coupled-wave instability. Eqs. (3.48) and (3.49) are 

dimensionless versions of Eqs. (3.25) and (3.27), respectively. If JEJ is greater than 

unity, one of a16* is always positive and equilibrium (3.39) is modulat,ionally 

unstable with respect to amplitude perturbations whose transverse wavenumbers 

satisfy 0 < k: < 2a16*. The maximal temporal growth rate is equal to a16* and 

corresponds to the optimal transverse wavenumber (a16*) 'I2.  It is a noteworthy 

feature of the modulational instability of copropagating waves that the region of 

kl-space corresponding to unstable amplitude perturbations is bounded. 

IVhen vd is nonzero, the solutions of the coupled-wave dispersion equation can 

be ivritten in the simple analytic form 

only for the special case in which R is equal to unity. The imaginary part of 

the dispersion surface w ( k l l ,  k I )  is displayed in the upper graph of Fig. 3.3. The 

maximal temporal growth rate is equal to 1 + ( € 1 ,  corresponding to an optimal 

transverse wavenumber of ( 1  + ) e ( ) ' l 2  and a longitudinal wavenumber of zero. 

These results are identical to the results described in the preceding paragraph for 

two copropagating waves of equal amplitude. When ( v d k l l (  is much larger than k:, 
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Figure 3.3: The imaginary part of the dispersion surface w(k l l ,  k l )  is displayed 
as a function of the longitudinal and the transverse wavenumber for two values of 
the pump intensity ratio R. In the upper figure R = 1.0, and in the lower R = 
0.1. The instability branch due to  the cooperative action has the largest growth 
rate for both values of R. 
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the solutions of the coupled-wave dispersion equation reduce to 

This single-wave limit can be obtained more easily from Eq. (3.47) than from 

Eq. (3.50). However, the most striking feature of the dispersion surface is that 

instability exists for transverse wavenumbers which are larger than [2(1 + I C / ) ] ' / ~ ;  

the region of kl-space corresponding to  unstable amplitude perturbations is un- 

bounded. For large values of the transverse wavenumber, equilibrium (3.39) is 

modulationally unstable with respect to  amplitude perturbations whose longitu- 

dinal wavenumbers satisfy 

For each value of the transverse wavenumber, the maximal temporal growth rate is 

approximately equal to ; c (  and corresponds to an optimal longitudinal wavenum- 

ber of approximately (k: - al)/vd.  The range of longitudinal wavenumbers cor- 

responding to  modulational instability has a width of approximately 21C/2ld(. The 

instability of amplitude perturbations with large transverse wavenumbers has been 

established for the special case of counterpropagating waves by Vlasov and Ta- 

lano\- [44], and Firth and Par6 [46]. However, it should be emphasized that this 

phenomenon is more general; it occurs for two colinear waves of unequal group 

velocities, regardless of their relative directions of propagation. It  is, of course, 

essential t o  know how large vd must be in order for the  branch of the modula- 

tional instability a t  large transverse wavenumbers to  exist. The coupled nonlinear 

Schroedinger equations (2.15) were derived under the assumption that the lon- 

gitudinal envelope wavenumbers are much smaller than the transverse envelope 

wavenumbers. The requirement that this assumption be self-consistent, together 
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with Eq. (3.52), leads to the restrictions 

on the physical variables. The condition 

must be satisfied simultaneously, in order that the transverse wavenumber lie out- 

side the range of wavenumbers corresponding to the modulational instability of 

two copropagating waves. Conditions (3.53) and (3.54) are consistent with the 

intuitive notion that the difference in group velocities can be neglected when the 

dispersive portions of the convective terms are much smaller than the nonlinear 

terms which make possible the instability. The imaginary part of the dispersion 

surface is displayed for the case in which R = 0.1 in the lower part of Fig. 3.3. No- 

tice that the branch of the modulational instability at  large transverse nTavenum- 

bers still exists, albeit with reduced strength. It is shown in the Appendix that, 

for large values of the transverse wavenumber, the longitudinal wavenumbers cor- 

responding to modulational instability satisfy the inequality 

approximately. When R is equal to unity, conditions (3.52) and (3.55) differ by 

terms of order ky2, which are small by assumption. The maximal temporal growth 

rate is approximately equal to Jc( r  and corresponds to an optimal longitudinal 

wavenumber of approximately [k: - $ul(l  + r2)]/vd. 

In practice, however, the initial perturbations are rarely sinusoidal and a pre- 

dictive capability must be developed for the spatio- temporal evolution of arbitrary 

initial perturbations. Fortunately, if the response of a linear system to a point 
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Figure 3.4: The impuise response of a linear system is plotted as a function 
of position, at several successive times. (a) The linear system is convectively 
unstable. (b) The linear system is absolutely unstable. 

source is known. the response of that system to an arbitrary source can be con- 

structed by convolution. In general, a linear system can respond in two different 

ways to a source which is localized in both space and time, as shown in Fig. 3.4. 

If the leading and trailing edge of a growing response travel in the same direction, 

the system is convectively unstable. If the leading and trailing edge of a growing 

response travel in opposite directions, the system is absolutely unstable. Clearly, 

the distinction between the two types of instability depends on the reference frame 
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from which the instability is observed. However, in any particular situation there 

is always a privileged reference frame from which the instability is to be stud- 

ied. For the applications which mc87ivated this paper, the nonii- -LI ~aedium that 

makes the TMI possible is at rest in the laboratory frame. While adsolute instabil- 

ities are generally considered more harmful to the underlying optical application 

than convective instabilities, because they grow in time and do not convect out of 

the affected region, there may exist convective instabilities whose trailing edges 

travel so slowly that they are effectively absolute. In general, one must carefully 

evaluate the nature of the impulse response on the space and time scales relevant 

to the underlying optical application. 

The absolute or convective nature of the instability can be determined by in- 

vestigating the singularities of the transformed Green function, even when the in- 

tegrals in the expression for the inverse Fourier-Laplac, t;~;;;farm are intractable. 

These singularities generally occur for the zeroes of the dispersion function, and, 

as usual, the existence of complex values of the frequency for real values of the 

~vavenumber implies that the solution can be unstable. In cases where there are 

no branch-point singularities or other pathological properties of the integrand, the 

Laplace inversion contour can be analytically continued to the real axis. Unstable 

systems for which the Laplace contour can be analytically continued are convec- 

tively unstable; the perturbations in wave amplitude convect more quickly than 

they grow and no temporal growth is observed in the laboratory frame. During the 

process of analytically continuing the Laplace inversion contour, double roots in 

wavenumber space can pinch the Fourier inversion contour. These pinching roots 

map into branch points in frequency space and prevent further analytic continua- 

tion of the Laplace contour. Unstable systems in which these pinching poles occur 

are absolutely unstable; the perturbations in wave amplitude grow more quickly 
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than they convect and temporal growth is observed in the laboratory frame. This 

element of linear stability analysis is documented by several reviews in the fluids 

and plasma-physics literature [22 - 241. 

Hall and Heckrotte [71] derived a set of ordinary differential equations that 

determine the path of pinching poles as the velocity parameter of a Galilean 

transformation is varied. This technique was subsequently extended, to allow 

for relativistic observation-frame velocities and Lorentz transformations, by Bers, 

Ram and Francis [72]. Typically, the Hall-Heckrotte technique is used to plot the 

temporal growth rate of the most unstable mode as a function of the observation- 

frame velocity. By scaling both axes with time, such a plot can be interpreted 

as the asymptotic response of the system t o  a point source. [To be precise, the 

asymptotic impulse response is the product of the cumulative gain and the source 

function (3.43) on which it acts.] An absolutely-unstable impulse response is 

characterized Ly a finite temporal growth rate in the laboratory frame. These 

impulse-response curves can be constructed for a series of values of the pump- 

wave intensity ratio R, to study how the stability properties of the coupled-wave 

system depend on this parameter. 

For the TMI of a single wave (or two copropagating waves), the impulse- 

response curve is a 6-function of unit height centered on the (common) linear 

group velocity v,. This result has a simple physical explanation. Consider the 

evolution of a filament with a specified kl and initial depth profile. Since the 

temporal growth rate is independent of Ell,  all Fourier components of the source 

are amplified at the same rate. Furthermore, since w and I;(( only enter in the 

characteristic combination w - v,kI l ,  the longitudinal evolution of the filament 

is dispersionless; a n y  initial profiie, and not just a point source, will propagate 

isomorphically with velocity v,. This is why the linearized equations could be 
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Figure 3.5: The impulse response curves of the TMI due to two colinear waves 
are displayed for several values of the backward to forward pump intensity values, 
R. where al = 1, E = 2 and l;d = 10. The observation-frame velocity is measured 
relative to 23,. 

solved using the method of characteristics in Sec. 3.1. 

Consider the TMI of two unstable waves for which al = 1 and E = 2. The tem- 

poral growth rate of the impulse response is plotted as a function of observation- 

fraine velocity in Fig. 3.5, for several values of R. When R is equal to unity, 

the impulse response is centered on the average group velocity v, and has a peak 

growth rate of 3.0, corresponding to an optimal transverse wavenumber of 1.7. 

Thus, the growth rate of the cooperative process 7, is 37 and XI, = X1/1.7. As 

R decreases to  zero, the peak growth rate decreases monotonically to  its single- 

wave value of 1 .O, the optimal transverse wavenumber decreases monotonically 



3.2. Colinear Waves in Infinite Media 

to its single-wave value of 1.0 and the impulse response becomes skewed towards 

the group velocity of wave 1, as shown in Fig. 3.6. However, the coupled-wave 

impulse-response curve does not tend to the single-wave impulse-response curve, 

which is a &-function centered on the group velocity of wave 1, as R tends to 

zero. This curious behavior warrants further investigation. An inspection of the 

coupled-wave dispersion function (3.45) shows that pinching poles exist when R 

is exactly equal to zero. However, the source function (3.43) contains a factor 

of the single-wave dispersion function (3.44) which eliminates the spurious root 

from the integrand of Eq. (3.42). Thus, the predictions of Eqs. (3.42) - (3.45) 

are correct when R is equal to zero. When R is small, but finite, pinching poles 

still exist. Figure 3.7 shows the pole structure in an observation frame moving 

with velocity v,, for the case in which R = 0.01. This saddle-point structure 

is typical for pinching poles. Since the poles do pinch tl;; Faurier contour, the 

temporal growth implied by the corresponding impulse-response curve in Fig. 3.5 

is genuine. However, the true impulse response is the product of the cumulative 

gain and the source function on which it acts; the common practice of character- 

izing the impulse response of a linear system solely by the 'associated temporal 

growth rates is inadequate for this particular wave interaction. The dispersion 

function of wave 2, evaluated at the saddle-point frequencies and wavenumbers 

of Fig. 3.5, is plotted as a function of R in Fig. 3.8. It  follows that the source 

function (3.43) tends to zero as R tends to zero. Thus, although temporal growth 

is observed in a frame moving with velocity v,, the time taken for the impulse 

response to  grow to an appreciable magnitude tends to  infinity as R tends to zero. 

In this sense, the coupled-wave impulse response does tend continuously to the 

single-wave impulse response as R tends to zero. An important feature of Fig. 

3.5 is that the coupled-wave impulse response is confined to  the region bounded 
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Figure  3.6: The growth rate (a),  velocity (b), and transverse wave number (c) at 
the peak of the impulse response curves are plotted as functions of the intensity 
ratio R for the parameters given in Fig. 3.5. The velocity of the peak of the 
impulse response is measured relative to v, and normalized to vd = 10. 
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Figure 3.7: The pole structure in the complex plane of the longitudinal wavenum- 
ber is shown for an intensity ratio R of 0.1 and a reference-frame velocity of v,. 
Seven fixed values of the real part of the frequency are mapped into this complex 
wavenumber space by the coupled dispersion equation as the imaginary part of 
the frequency is varied between zero and twice the maximally unstable value. The 
imaginary parts of the frequency are zero at the annotated ends, and their real 
parts increase in equally spaced steps starting with the lines labeled 1. The lines 
labeled 4 contains the pinching pole. The paths for the other pair of roots are not 
shown. 
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F i g u r e  3.8: The modulus of the single-wave dispersion function D z ( w ,  kll, kl), 
evaluated a t  the pinch-point frequencies and wave vectors in an observation frame 
moving with velocity v,, are plotted as functions of R. It  follows that the source 
function (3.43) tends to  zero as R tends to  zero, for arbitrary initial conditions. 
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by the uncoupled group velocities vl  and v2.  Thus, the coupled-wave system is 

absolutely unstable whenever the product vlvz is negative. 

Now consider the interaction of two stable waves for which a1 is equal to  -1 

and e equal to 2. The imaginary part of the dispersion surface can be inferred 

from Fig. 3.3 by omitting the single-wave features located a t  small values of 

the transverse wavenumber. Equations (3.52) and (3.55), and the discussion of 

their implications, are also relevant to  the interaction of two stable waves. In 

particular, perturbations in wave amplitude are modulationally unstable for large 

values of the transverse wavenumber, with a maximal temporal growth rate of 

( € 1 ~ .  The temporal growth rate of the impulse response is plotted as a function 

of observation-frame velocity in Fig. 3.9, for several values of R: A typical trans- 

verse wavenumber of 5.3, at  which the peak temporal growth rates are near their 

maximal value, was used throughout the figure. Notice that the impulse response 

is no longer finite as R tends to zero, because the single-wave branch of the mod- 

ulational instability no longer exists. The unstable impulse response is due solely 

to tlie coupling between the waves and is centered on the average group velocity 

z!,. ( A  similar component of the impulse response exists for the case in which 

CTL = 1. However, it is not the dominant component and was, therefore, omitted 

from Fig. 3.6.) Once again, if the product vlv2 is negative, the coupled-wave sys- 

tem is absolutely unstable for all nonzero values of R. However, in contrast, to the 

case studied previously, the peak temporal growth rate of the impulse response 

tends to  zero as R tends to zero, as shown in Fig. 3.10. 

In both cases discussed above, the values of the maximal temporal growth rate 

and optimal transverse wavenumber of the coupled- wave instability are larger than 

the corresponding single-wave values: even when the pump-wave intensity ratio 

R is small. Thus, the coupled-wave instability always grows more quickly and 
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Figure  3.9: The impulse response curves of the TMI for two colinear waves are 
displayed for the case in which ol = -1, E = 2 and v d  = 10. The dimensionless 
transverse wavenumber kl = 5.3, for all values of the intensity ratio, R, and the 
observation-frame velocity is measured relative to v,. 
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Figure 3.10: The peak temporal growth rate of the impulse response is plotted 
a.s a, function of the intensity ratio R, for the parameters given in Fig. 3.9. 
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supports narrower filaments than does the single-wave instability. 

Finally, the effects of equal wave damping on the perturbations in wave am- 

piitude can be inferred from   he preceding results by making the substitutio~l 

ij, + ~v',  - V .  However, as noted in Sec. 3.1, this substitution gives only a crude 

estimate of the effects of wave damping. 

Summary 

In this chapter, the TMI of two colinear waves was studied. In general, the waves 

are modulationally unstable with a maximal temporal growth rate which is larger 

than that of either wave alone and a range of unstable transverse wavenumbers 

~vhich is broader than t,hat of either wave alone. Moreover, waves which are mod- 

ulationally stable bj. themselves are often unstable in the other's presence. This 

is true for b o ~ h  copropagating and counterpropagating waves. The TRII of co- 

propagating waves is always convective. The TMI of counterpropagating waves 

in infinite media is absolute for arbitrary values of the pump-wave intensity ratio, 

althougll the instability growth rate does depend on this ratio. Because of its 

novelty and its potential for adverse effects in applications, the analysis in the fol- 

lon-ing chapters will be focused on understanding the TMI of counterpropagating 

\\-a\'es. 

Appendix 3:  Four-Wave Interactions in Infinite 
Media 

The linearized versions of Eqs. (2.15) describe implicitly the interaction of the 

+ and - sidebands of wave 1, corresponding to  transverse variations in per- 

turbed wave amplitude of e x p ( f  i k L x ) ,  respectively, with the + and - sidebands 
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of wave 2. The sideband evolutioli can be made explicit by making the substitu- 

tions 

in the perturbation ansatz and linearizing Eqs. (2.15) accordingly. The  interaction 

of the + and - sidebands of wave 1 is known as the transverse modulational insta- 

bilit,y of wave l and is nonresonant. For large values of the transverse wavenumber, 

this interaction and the corresponding interaction for wave 2 are weak and can be 

neglected. However, providing that  vl is not equal to  v2, the interaction of the + 
sideband of wave 1 with the - sideband of wave 2 is resonant for arbitrary values 

of the transverse wavenumber (as will be demonstrated shortly) and must always 

be retained in the stability analysis. This four-wave interaction is governed by the 

equations 

where the frequency-mismatch coefficients 

61 =  PI^: - X ~ ~ ( A I ( ~  , 62 = p ~ k :  - X221A2I2 , 

and the coupling coefficients 

and is linearly independent of the corresponding interaction of the - sideband of 

wave 1 with the + sideband of wave 2. For the special case in which the pump 
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waves propagate in opposite directions, the four-wave interaction described by 

Ecls. (3X.3) is known as phase conjugation. 

Subject to the iniiiial coriclitions 

A!+)(O, z) = F+(z)  A;-)*(O) z )  = F- (z)  ) (3A.6) 

the solution of Eqs. (3A.3) for the + sideband can be written as 

where the source function 

the dispersion function 

and the coupling term 

2 
Y = c 1 2 c 2 1  

The expression for A\-"(t, z )  is similar. Henceforth, the subscript 1 will be omit- 

ted.  

It follows from Eqs. (3A.7) and (3A.9), that perturbations in wave amplitude 

\vhich are initially sinusoidal in the z-direction remain so, with a temporal growth 

rate given by the formula 

Thus, the longitudinal ~vavenumbers corresponding to unstable perturbations in 

wai.e amplitude satisfy the inequality 
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For a point source and the dispersion function (3A.9) ,  the integrals in Eq. 

(3A.7)  can be evaluated exactly in terms of Bessel functions. However, it is 

sufficient, for the purposes of this paper, to determine the time-asymptotic impulse 

response. For exact frequency matching, Eqs. (3A.3)  reduce to the standard 

wave-coupling equations. Thus, the determination of the time-asymptotic impulse 

response requires only minor modifications of the standard analysis described by 

Briggs (221. Regarded as a function of frequency, the longitudinal wavenumber is 

given by the formula 

The longitudinal wavenumber is a double root of the dispersion equation whenever 

the discriminant in Eq. (3A.13) is equal to zero. This occurs for values of t.he 

frequency given by 

W* = - v162 + v261 * ~ Y ( v I  v2)'I2 
2'1 - V2 

(3A.  14) 
v1 - v2 

The corresponding values of the longitudinal wavenumber are 

To obtain the saddle-point frequencies and wavenumbers in a Galilean frame of 

observation, moving with constant speed relative to the source. one simply has 

to replace w,, k., vl and v2 in Eqs. (3A.14) and (3A.15) by their transformed 
- 

counterparts Z., k,, El and z2, respectively. It follows, from Eq. (3A.14) ,  that 

C. \rill have a positive imaginary part whenever y is nonzero and the product 

T J ~ F ~  is negative. Moreover, as the imaginary part of 55, tends to infinity, the two 

solutions r* of Eq. (3A.13) lie on opposite sides of the real x-axis. Thus, as a 

approaches the saddle-point frequencies, the roots %* pinch the Fourier contour 

between them and do contribut,e to the impulse response. In terms of the sum 
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and difference velocities 

the observation-frame frequencies and wavenumbers can be expressed as 

respectively, where v is the velocity of the observation frame measured relative 

to  the average group speed of the waves. In particular, notice that 

There are a number of interesting features to  solutions (3A.17).  First, the 

imaginary part of G, is maximal in a frame moving with speed v, and decreases 

to zero parabolically as v tends to  f vd. Thus, the impulse response grows most 

rapidly in a frame moving with the average group velocity v, and is bounded 

by the uncoupled group velocities vl and v2. Second, the imaginary part of x. 
corresponding to  the unstable component of the impulse response has the same 

sign as v. This reflects the fact that the impulse response is a decreasing function 

of position ahead of its peak and an increasing function of position behind its peak. 

Third, the real parts of sj, and x, adjust themselves to  compensate completely 

for the initial phase mismatch and, consequently, the imaginary parts of G, and 
- 
k. are independent of b1 and b2. Thus, the interaction of the + sideband of wave 

1 with the - sideband of wave 2 is resonant, as stated earlier. 

The  corresponding results, for the interaction of the + sideband of wave 2 with 

the - sideband of wave 1, can be inferred from the results described above by 

interchanging the subscripts 1 and 2. One consequence of this exchange is that 
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the term vl - v2 changes sign and inequality (3A.12) becomes 

Thus, one sideband interaction is unstable for positive values of the longitudinal 

wavenumber while the other sideband interaction is unstable for negative values of 

the longitudinal wavenumber. By rescaling all variables according to  Eq. (3.46), 

Eqs. (3A.12) and (3A.19) can be rewritten in the form of Eq. (3.55) of the main 

text. 
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Chapter 4 

Counterpropagating Light Waves 
in Finite Media 

In Chapter 3 it was shown that the transverse modulational instability (TMI) 

of coupled colinear waves need not act as the superposition of the associated 

single-wave instabilities. Instead, the cooperative TMI arises having both quali- 

tat ively and quantitatively different characteristics. In either the copropagat ing 

01. t,he counterpropagating case the growth rate spectrum acquires a branch due 

to the cooperative interaction of the pumps. In the counterpropagating case the 

maximum growth rate is larger than twice the single-wave growth rate and the 

cooperative instability is absolute. This absolute instability is of particular impor- 

tance in finite media since its growth need not be restricted by the length of t he 

medium. In media of finite length, cooperative absolute instabilities have nonzero 

intensity thresholds, even in the absence of damping. In this chapter we ana- 

lyze the cooperative TMI of counterpropagating light waves in a finite cubically 

nonlinear medium. 

Several mechanisms by which counterpropagating waves interact may be un- 

derstood in terms of four-wave mixing (FWM) processes which occur between 

counterpropagating pump waves and their electronlag~letii sidelsdnds. Small ani- 
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plitude electromagnetic sidebands may arise as a result of noise or by injection 

from an external source. These sidebands may beat with either of the counterprop- 

agating pump fields driving refractive index gratings in the medium. The pump 

fields may then scatter from these gratings, enhancing the sidebands. Through 

this process these gratings couple the counterpropagating pumps and allow them 

to exchange energy with their sidebands. The sidebands that exchange energy 

most efficiently with the pump fields satisfy the optimal phase-matching condi- 

tions. These conditions require that the geometric orientation of the wave vectors 

of the sidebands and the magnitude and sign of their frequency shifts balance the 

nonlinear phase shifts. Thus, of all the possible combinations of modes, a distinct 

set of sidebands which satisfy the optimal phase matching conditions will be se- 

lected by the system of interacting waves. In many cases, these favored sidebands 

are described as FWM interact~ons and correspond to instabilities. 

The introduction of a second counterpropagating light wave increases the num- 

I~er of couplings among the pumps and their sidebands, allowing several distinct 

FIYII interactions to coexist. If two simultaneously phase-matched F\VM inter- 

actions drive the same grating [73], hybrid instabilities may arise and single-wave 

instabilities may be enhanced. A hybrid TMI branch is formed through the inter- 

action of three FM'M interactions [51:1] which are simultaneously phase matched in 

the presence of a second counterpropagating light wave. Since this hybrid branch 

requires the interaction of more than one pump and manifests itself as more than 

simply the superposition of the three simpler interactions, it is a cooperative in- 

stability. 

Let a pair of intense, counterpropagating light waves, of frequency wo and wave 

vector f zo irradiate opposite ends of a uniform plasma of length L. The amplitude 

of the intense pump wave injected a t  the left (right) end of the plasma shall be 



Figure 4.1: The wave vector matching diagram for the four-sideband interaction. 

go (&). Each pump wave has two sidebands: one Stokes shifted with frequency 

uo - 4' and wave vector f Go - c, and one anti-Stokes shifted with frequency 

do + w and wave vector kco + $. Thus, a small-amplitude anti-Stokes sideband 

F+ which has frequency wo + LJ and wave vector + zL couples most strongly to 

the three other coplanar sidebands shown in Fig. 4.1. It couples with the Stokes- 

shifted sideband F- as a result of a forward FWM process, which gives rise to the 

sii~gle-wave TLII. It couples with the Stokes-sliifted sideband B- as a result of a 

l~acli~vard F\Vll mixing process which is a phase conjugation interaction, and it 

couples with the anti-Stokes sideband B+ as a result of a second backward FIVM 

interaction ~vhich is Bragg reflection. 

In general, this four-sideband interaction includes forward, side and backward 

scattering. By requiring that all six waves be linearly polarized in the same di- 

rection and that the transverse perturbation wave number satisfy the inequality 

lcL(/(iol (< 1 only the most important near-forward and near-backward scattering 

instabilities are treated. An  investigation of the three-dimensional instabilities of 

cou~~te~propagat ing  waves which includes side scattering and arbitrary polariza- 
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tion vectors has confirmed the validity of this approximation and can be found in 

Ref. [74]. 

' 1 1  The phase-matched interaction ol ihe two counterpropagatiug piiriipj V V ~ L I ~  

these four sidebands gives rise to a cooperative, four-sideband, TMI. This four- 

sideband interaction occurs in a localized region of the parameter space spanned by 

the transverse perturbation wave number and the frequency shift of the sidebands 

[ 5 5 ] .  As it is detuned from its optimal phase matching condition, three two- 

sideband interactions are recovered. In the limit where the frequency shift of the 

sidebands is large, only forward FWh4 interactions are phase matched. In the 

limit where the transverse component of the wave vector of the sidebands is large, 

only phase conjugate interactions are phase matched. Finally, in the limit where 

both parameters are large, only Bragg scattering by FWM is phase matched. The 

four-sideband instability occurs in the spectral overlap reg!-- -f these three two- 

sideband interactions. The four-sideband instability can have a larger convective 

growth rate and a lower absolute instability threshold than any of the instabilities 

\vhich occur in these two-sideband limits for either self-focusing or self-defocusing 

media. Thus, the four-sideband TMI can dominate the interaction of the two 

counterpropagating waves. 

When the growth of a finite set of sidebands is favored, the system of interact- 

ing modes governed by the coupled nonlinear Schroedinger equations can be trun- 

cated. This truncation yields the four-sideband model of the counterpropagating- 

wave system. It is obtained by perturbing an equilibrium solution of the nonlinear 

Schroedinger equations with four sidebands. One equilibrium solution of the cou- 

pled nonlinear Schroedinger equations is independent of time and the transverse 



sp-atial dimension, 

A?) = Foexp(iAri)  : 

A$ = Boexp(-iAs(r - L))  , 

where 

and ko = kiO) = -lip), v = vl = -v2, X = A l l  = X z 2 ,  ,421 = X12 and c = X 1 2 / X .  

\Vhen these solutions are perturbed by a set of four sidebands, 

+ 

A, = [Fo  + F+(z,  t )  exp (ikl 6) 
4 

SF-(%, t)  exp (-l;il . G)]  exp (iAFz) , (4.5) 

A2 = [Bo + B+(z, t )  exp ( i l l  .%) 
+ 

+B-(z,  t )  exp (-ikl . < ) I  exp (-iAB(z - L ) )  , (4.6) 

where IFo(, I Bo( >> IF* 1 ,  1 B* 1, and each sideband has a wave number shift perpen- 

dicular to the pump axis such that kl/ko < 1. The intensity-dependent phase 

shifts due to the pump fields cause a phase retardation of the sidebands F* and 

B* [73] with respect to the pumps. 

The  four complex amplitude equations which govern the  linear evolution of 

the four sidebands are obtained by applying the expansion in Eqs. (4.5) and (4.6) 

to the coupled nonlinear Shroedinger equations Eqs. (2.15). The  depletion of the 

pump due to interaction with the sidebands and terms which are quadratic or 

cubic in the sideband amplitudes are assumed to  be small. By taking the Laplace 

transforms of the resulting linearized equations, the set of four sideband equations 
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become linear ordinary differential equations 

where the pump envelopes are taken to be real, p = pl and a = a l .  The terms 

nonlinear in the sideband amplitudes which have been neglected consist of a set 

of second-order processes which couple two sidebands and one pump to drive a 

pump and a set of third-order processes which couple three sidebands to drive 

a sideband. These higher-order terms should be retained in the pump depletion 

regime or when the weaker of the two pump fields is of the same order as the 

probe. Neither of these cases will be discussed here. 

The four-sideband interaction is mediated by the refractive index gratings of 

the perturbed system which have components (bn)(w, 2ko f kl), (bn)(w, f kl) 

along with their conjugates. The  scattered fields may have frequencies shifted 

by f w with respect to the pump-wave frequency. When high frequency material 

modes are of interest gratings at  2wo become important. 

By inspection of Eqs. (4.7)-(4.10) it is clear that the growth of instabilities 

in this four-sideband int,eraction depends only on the five parameters pk:, w, 

cXIFoBoJ, XlBo12 and XIFo12. The  terms pk: and w give rise to the linear phase 
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shifts in Eqs. (4.7)-(4.10). The transverse wave number parameter is related 

to the scattering angle of the sidebands as O2 = 2pk:/vk0. The other three 

coupling terms are proportional to the pump strengths and give rise to nonlinear 

phase shifts. Note that neither the coupled nonlinear Schroedinger equations, 

Eqs. (2.15), nor the four sideband equations, Eqs. (4.7)-(4.10), depend on the 

initial phase shift between the pumps. As a result, the efficiency with which 

sidebands can couple to the pumps to exchange energy is a function only of the 

five parameters stated. In the remainder of this paper, these five quantities will be 

redefined such that w = wL/v, r = IBo/Fol, UP = XIFo12L/v, and k: = pk:L/v = 

02koL/2. The sign of X is parameterized by a. When p is positive, as is the case 

for light waves in plasmas, c is positive for self-focusing media and negative for 

self-defocusing media. The position variable will be scaled to the length of the 

medium: [ = z / L .  

4.1 Two-Sideband Limits of the Four Sideband 
Equations 

In this section, each of the two-sideband limits of the four-sideband interaction is 

identified as a limit of the four sideband equations, Eqs. (4.7)-(4.10), by trans- 

forming t,he envelopes according to 

This transformation creates a set of envelopes from which the linear wavenumber 

shifts have been removed. The governing equations for this set of transformed 



Chapter 4. Counterpropagating Light Waves in Finite Media 

wave envelopes contain terms on the right hand side due only to nonlinear effects 

and have the form 

Equations (4.15)-(4.18) are no longer autonomous, having phases f 2 k : t ,  f 2wt  

and f 2 ( u  f k:) t  in their coupling terms. In the limits where these phase terms 

become large, the coupling terms become unimportant and the equations decouple. 

These are the two-sideband limits of the four-sideband system. 

In the limit of large c, at fixed k:, Eqs. (4.15)-(4.18) decouple into two pairs 

of equations which govern the forward F\YM interaction of f+ with fl and b+ 

n-it11 6:. As illustrated in Fig. 4.2(a) ,  the F+ sideband can couple to the pump 

Fo to drive a grating at ( w ,  k l ) .  The Fo pump may then scatter from this grating 

to create the F- sideband. This set of light waves must satisfy the matching 

conditions 

\\:here the subscripts denote Stokes and anti-Stokes sidebands. These two sideband 

equations are also obtained in the single-pump-wave limit where the cross-coupling 
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Figure 4.2: Each two-sideband interaction is shown: (a.) forward FWM, (b.) 
pliase conjugation from the short wavelength grating, (c.) phase conjugation 
from the long wavelength grating, (d.) Bragg reflection from the long wavelength 
grating, (e.) Bragg reflection from the static 2ko grating. 
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coefficient c goes to zero at  arbitrary w and k:. Though the non-autonomous form 

of these equations facilitates the understanding of the limits in which the two- 

sideband interactions are recovered, solutions will be obtained using the envelopes 

of the original autonomous four sideband equations, Eqs. (4.7)-(4.10). 

As the two pairs of sidebands propagate with their respective pumps, energy 

from the pumps may be transferred to the sidebands. If the F+ sideband is seeded 

with an initial amplitude 6, 

where k = k1 (2oP-  k:)3, and equivalent results can be obtained for the backward 

propagating pair of sidebands. Note that w enters these solutions only as a phase 

factor. A band of unstable transverse wave numbers exists for a > 0 when k: 

is in the interval (0 ,2P) .  The  transverse wave number with the greatest gain 

occurs when k: = P ,  so kept = P .  This well-known result [75] yields the value 

of the linear phase mismatch which balances the nonlinear phase shift. At this 

optimal wave number F + ( I )  cx cosh(P) and F f ( 1 )  cx sinh(P) ,  so both sidebands 

grow exponentially at  the optimal growth rate P. As the two pairs of sidebands 

propagate, t,hey conserve the quantities 

so that their gain is restric:ed only by the length of the medium. If a < 0, the 

strongest interaction occurs for 0 < k: < [P2 + (q)2]t + P, energy exchange is 

periodic as a function of P ,  and the interaction is stable. Note that for kfL/2ko = 

0 the interaction of F+ with FT yields no net gain and F+ + F' = 6, where 
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IF+(].)/&( = d m  and (F-(l)/SI = P: 

Taken together, this pair of sidebands is equivalent to a transverse spatial 

modulation of the light-wave intensity profile, so in a self-focusing medium the 

modulations grow as the interaction proceeds. This near-forward scattering in- 

stability is the TMI, and is associated with filamentation and self focusing in its 

fully nonlinear manifestation [76 - 831. In plasmas, ponderomotive [4], thermal 

[82], and relativistic [ll] effects are known to cause nonlinear focusing and fila- 

mentation. Extensive reference lists of work on the filamentation instability in 

laser-generated plasmas can be found in the review article by Sodha, Ghatak and 

Tripathi [82] and in the recent work by Kruer [4, 831. In self-defocusing media, 

the index of refraction decreases as the intensity is increased, so transverse mod- 

ulations in the intensity profile of a single light wave tend to be dispersed rather 

than enhanced. 

The TMI has a dominant band of unstable transverse perturbation wave num- 

bers. As a result, the transverse spatial Fourier spectrum of the scattered light will 

contain sidebands centered on the optimal transverse perturbation wave number 

or equivalently at the optimal cone angle. These sidebands are a signature of the 

instability. Since this interaction is invariant with respect to rotations about the 

collinear pump axis, a probe sideband injected at any point on the circle deter- 

mined by the optimal cone angle will result in the appearance of a signal sideband 

located exactly opposite the probe signal on a similar circle at the output. When 

this convective instability is seeded by noise, all orientations of the sidebands are 

seeded equally and conical emission occurs. 

In the large k: limit for finite w ,  the four sideband equations separate into 

t.wo sets of c011p1ed eqila.t.ions t.ha.t govern the backward FWM or phase conjugate 

interaction of f+ with b*_ and f: with b+ [9, 101. In Figs. 4.2(b) and 4.2(c) the 
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wave vector diagrams for this interaction are shown. A probe beats with a coprop- 

agating or counterpropagating pump to form a grating a t  (w, kl) or (w ,  2ko f kL), 

respect~veiy. The  opposing pump can then scatter from eithr ,railng to  produce 

a sideband that propagates in the opposite direction with respect to the probe 

and has the opposite frequency shift. This interaction must satisfy the matching 

conditions 

and occurrs in either self-focusing or self-defocusing media. 

In this case, the two-sideband equations possess the conserved quantities 

The fraction of pump energy that can be diverted to  the sidebands is not limited, 

since a probe entering the medium with intensity h2 a t  J = 0 having a companion 

sideband with zero intensity at  J = 1 must satisfy the condition 

For the linear model, growth of the convective instability is limited only by the 

lengt,h of the medium, and the growth of the absolute instability is limited only 

by the temporal extent of the pump. 

Below the absolute threshold, the sidebands evolve such that [9, 10, 841 

[k cos(k(1 - J))  - i sin(k(1 - J))]  e x p ( i r 0  
F+(J> = 6 [k cos(k) - i$ sin(k)] I (4.29) 

Bf ( J )  = i 6c raP  sin(k(1- 0 )  e x p ( i r 0  
[k cos(k) - i$ sin(k)] 

' 

where k2 = $ 2  + ( c T P ) ~ ,  q = w + a P ( 1  - r2)/2,  7 = a P ( r 2  + 1)/2 - k: - and 

6 is again the amplitude of the injected probe sideband. The  gain spectrum of 
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this interaction is independent of kf and occurs predominantly over the band of 

frequencies 

At the peak of this band of frequencies, 4 = 0, so k = crP.  The gain at this value 

of k is faster than exponential, since F+(l) oc sec(crP) and B:(O) oc tan(crP).  

As the pump intensity is increased, the modes near this peak become absolutely 

unstable. Note that the convective gain is independent of r for this interaction 

when P is measured in terms of a constant fraction of the threshold intensity. 

Analogous solutions may be obtained for the other pair of sidebands. 

The absolute instability intensity threshold for phase conjugation, Ppco, is 

~ ( 2 n  - 1)/2cr, n = 1 ,2 ,3 , .  . ., and the associated oscillation frequency shift of 

the absolutely unstable sidebands at threshold is w,,- = - aP(1  - r2)/2. This 

frequency shift has the opposite sign for the other pair of sidebands, so either sign 

of the frequency shift may occur in the four-sideband system. Near the absolute 

instability threshold, the temporal growth rate is small and 

where u, is the imaginary part of w and the p, are small corrections which can 

be obtained by solving the equation k = -w; tan(k) when k2 = wy + ( c ~ p ) ~ .  Well 

above threshold wi approaches the infinite medium limit c r P  with w, ;d  = wpco 

[S5] since w, x - ( n ~ ) ~ ] * ,  n = 1 , 2 , 3 . .  . for c r P  >> n r .  Thus, the absolute 

instability threshold increases as l / r  and its temporal growth rate decreases as 

r decreases. These results for the characteristic frequencies and ulavenumbers of 

the unstable eigenmodes are consistent with Eqs. (3A.18). 

In the limit of large w and ki with fixed LJ - k:, Eqs. (4.15)-(4.18) reduce to a 

pair of coupled equations which govern the Bragg reflection interaction [84] of f+ 
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with b+. An equivalent limit is obtained for f- and b- at  large -w and I;: when 

w + k: is held fixed. Each interaction is mediated by either the (w, kl) or the 

(u, 2 k o )  grating. Their wave vector ciiagrams are shown in Figs. 4.2(d) and 4.2(e). 

A pair of interacting anti-Stokes sidebands must satisfy the matching conditions 

where similar conditions hold for the Stokes sideband pairs. Again, note that both 

pairs of equations are independent of the quantity over which the limit is taken. 

These equations possess the conserved quantities 

rvhich imply that z F;GZ: entering the medium with intensity b2 at J = 0 and hav- 

ing a companion sideband with zero intensity at J = 1 must satisfy the condition 

Thus, the sidebands exchange energy with each other but not with the pumps, 

and the gain is limited by the size of the probe. As a two-sideband process, this 

interaction is stable. 

If the input probe field has amplitude 5, the evolution of the sidebands is given 

by: 

[k cos(k(1 - J ) )  - iv sin(k(1 - J))]  exp(i0J)  
F+(J )  = 6eraP  

[k cos(k) - iv sin(k)] , (4.37) 

rvherc k = v = w - k: + o P ( 1  + r2)/2 and R = o P ( 1  - r2)/2. In 

this case, the two sidebands exchange energy primarily in a band of (w, k:) space 
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where 

For a given w, the peak of this band corresponds to the transverse wave number for 

which the interaction is strongest and is given by v = 0, or k: = w + a P ( 1  +rZ) /2 ,  

making k,,, = ierP.  At this peak the linear phase shift balances the nonlinear 

phase shift, and the optimal mode evolves such that F+(l) cx sech(erP) and 

B+(O) m tanh(erP). Thus, the two sidebands exchange their energy only once 

as a function of 6rP and remain stable. In the k: + w limit, the band of (w, k:) 

space where the two sidebands interact most strongly is located between 

These modes are also stable and have solutions similar to those of the w - !;: 

limit. 

In each of the limits discussed above, a single two-sideband interaction is phase 

matched. The regions within which these two-sideband processes occur most 

strongly are plotted in (w, k:) space in Fig. 4.3. For small w and k: these 

regions overlap. In this overlap region, each of the two-sideband processes can be 

phase matched simultaneously, allowing a four-sideband interaction to occur. In 

addition, the four sideband equations possess the conserved quantity 

so no restrictions are imposed on the linear growth of the sidebands. These two 

points suggest that it is necessary to consider the complete four-sideband interac- 

tion. In the next section, the four-sideband interaction is analyzed. 
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Figure 4.3: The primary bands of the gain spectra for the two-sideband inter- 
actions are plotted in the plane of the real part of the perturbation frequency, 
Re(wL/v), and the transverse perturbation wavenumber parameter, k:L/2ko. 
The  cooperative instability occurs in the region of overlap for small k: and small 
W.  
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4.2 The Four-Sideband Interaction 

In this section, the properties of the linearized four sideband equations are dis- 

cussed and solutions are obtained for the convective gain spectrum and the ab- 

solute instability threshold. In matrix form the linear four sideband equations, 

Eqs. (4.7)-(4.10), become 

d(R = IMR , (4.42) 

where 2 = (F+, F', B+, B r ) T  is the column vector of complex envelopes, and M 

is the following coefficient matrix: 

While each of the off-diagonal matrix elements of M is real, the diagonal self- 

interaction terms contain the complex variable w, so that the propagation matrix 

is nonhermitian. The antisymmetric part contains the couplings for the forward 

FiI7l,I pairs and for the Bragg reflected pairs. The forward FWM coupling terms 

are antisymmetric because the F- and B- equations are con.jugated. The conju- 

gation operation also reverses the sense of the wave vectors. The Bragg-reflection 

cross-coupling terms are antisymmetric because the sign of the group velocities is 

included within M. This operation also effectively reverses the sense of propaga- 

tion in the B-equations, Eqs. (4.9) and (4.10). The phase-conjugation couplings 

are symmetric because they are subject to both the effect of conjugation and 

counterpropagation. The combination of these operations produces the coupling 

matrix M, which governs the equivalent system of four copropagating sidebands. 

Since the medium is homogeneous, Eqs. (4.7)-(4.10) are invariant to the ex- 

change of B with F, kl with -kl, and ( with -(. In addition, the transformation 
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LL: to -w* causes a plus sideband to become a minus sideband. These symmetry 

properties are reflected in the coupled nonlinear Shroedinger equations and in the 

soiutions presented below. When the pumps have unequai intensity, it is of inter- 

est to  compare the gain spectrum due to a seed sideband which is injected from 

the strong-pump side of the medium with that due to a seed sideband which is 

injected from the weak-pump side of the medium. This is accomplished by making 

the transformation P' = TP, T' = l l r .  

The unique solution of Eq. (4.42) is written formally as 

where the matrix Ad can be exponentiated using the relation 

with U the matrix of eigenvectors of M ,  and Q the diagonal matrix of its eigen- 

~,alues. The four sideband equations are solved as a two-point boundary value 

problem. so Eq. (4.44) is rewritten as 

rvl~ere S maps input sidebands to their scattered sideband counterparts. The new 

sideband envelope vectors can be written in the form 

and S is given formally by 
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where, 

Here, I2  is the two dimensional identity matrix. In the discussion that follows the 
-+ 

input amplitude vector will be A;, = (6,0,O, o ) ~ .  This single probe-sideband with 

amplitude 6 is injected into the nonlinear medium at z = 0 and scatters into four 

sidebands. The gain spectrum is given by iOut or equivalently by Sjl. In practice, 

it may be easier to calculate S by assuming that the eigenfunctions have their 

usual exponential form 

where Cis a constant vector, U is the matrix of eigenvectors of M, and the k; are 

its eigenvalues. By applying the boundary conditions, A;, , Eqs. (4.51) can be 

reduced to  the form of Eq. (4.46). 

As the pump power is increased, the convective gain of the scattered sidebands 

increases. The system becomes absolutely unstable when sideband growth occurs 

as a function of time in the frame of the nonlinear medium. When the initial 

condition terms associated with the Laplace transform are retained, the Laplace 

inversion of S(w) is the solution to the initial value problem. The poles of S(w) 

are determined by the condition 

which is simply the determinant of the lower right hand partition of exp(iM). If 

the temporal growth rate of one of these poles is positive, w; > 0, the system 

exhibits an absolute instability. This condition is equivalent to the condition 

that there be a nontrivial solution AOut with Im(w) > 0 when F*(O) = 0, and 

B*(1) = 0. As a result, the poles of S(w) reveal the temporal stability of the 
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system directly, and contribute to the solution of the initial value problem as 

exponential factors which increase with time. 

In the relatively rare case in which a pair of eigenvalues of M merge, the 

set of linear independent eigenvectors defined in Eq. (4.51) may no longer span 

the entire solution space. A new set of linear independent eigenvectors can be 

constructed which does span the entire solution space by generalizing U and Q 

to their canonical forms. With this generalization the above discussion continues 

to hold, but terms are introduced into the general solution which grow secularly 

with position, since at least one of the sidebands is driven at its fundamental wave 

number by one of the coupling terms. 

\\-hen simple analytic expressions for the eigenvalues kj exist, it is feasible to 

find analytic expressions for the envelopes A,. The eigenvalue equation foi M is 

biquadratic tor the cases w = 0 or r = 1. In these two cases, the linear convective 

gain and absolute instability thresholds can be written in a reasonably compact 

form. In the following subsection the A; are calculated analytically for these two 

cases, and numerical techniques are used to obtain solutions for more general 

cases. In the final subsection, the absolute instability thresholds are reviewed, 

and the thresholds for more general cases are calculated numerically. 

4.2.1 Solutions in the Convective Regime 

In the convective regime, where the pump intensity is below the threshold for 

absolute instability, the growth o f  the sidebands is obtained by calculating the 

matrix elements Sil. The eigenvalues, kj, of M are the roots of 
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Given four distinct eigenvalues, the matrix elements Sil can be found by apply- 

ing the boundary conditions, A;,, to  Eq. (4.51). The  analytic solutions for the 

convective gain of the four sidebands have the form 

where crj = [(kj - w ) ~  + K ]  exp(ikj) and K = k:(2oP - k:). The  constants are 

where 

These formulae are the most general form of the solution of the linear four- 

sideband system when the eigenvalues are distinct. 
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In the w = 0 case the eigenvalues given by Eq. (4 .53 )  become 

and the general solutions for the sideband envelopes can be reduced t o  

x { A -  [ ( I  & 1 )  cos ( k + )  - i (2 f 2) sin ( k + ) ]  

- i ( A +  - A - )  [(E 7 2) sin ( k + )  cos ( k - )  

- (5 7 L) sin ( k - )  cos ( k + ) ]  
k- k: 

- ( A +  7 A - )  [(L 9) sin ( k t )  sin ( k - )  
k+ k- 

where (*) is associated with the minus amplitude and 

-8A+A-k+k-  cos ( k + )  cos ( k - )  

. - - 4 ~ + A - ( k :  + k t )  sin ( k + )  sin (k-) , (4 .63 )  

These solutions ext; previous calculations of the convective gain spectrum 

obtained by Vl? ,'alanov [44] to  r < 1 when w = 0 and correct what is 

probably a ty- >a1 error in their solutions, which should by invariant to  the 

transformati + k-. 
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In the r = 1, case the eigenvalues reduce to 

or, < = w2 - K i ,B where ,B = 2 [ ( ~ P k : ) ~  - w 2 ~ ] : .  The general solutions, Eqs. 

(4.54),  then become 

{ 
I f 1  

x 2k:k-k+ [(--2--)(,B - 2wk:) f 2 w k : a ~ ] [ c o s ( k + )  + c o s ( k - ) ]  

+i [wk:(l f 1 ) ( P  - 2 ~ )  - (P - 2w2)(k: F K )  i ( ~ c P I ; : ) ~ ]  

x [k+ sin ( k - )  + k- sin ( k + ) ]  (4.66) 

- 8 6 ~ P  
( 0 )  = - 2  k  ( k  i 1  - cos ( k + )  cos ( k - ) ]  

A,=, 

where (*) is associated with the minus amplitude, and 

+2k+ k- [ ( ~ P k i ) ~  - 2w2n] cos ( k + )  cos ( k -  ) 

+ 2 [ w 2 ~ ( 3 w 2  4- 2 ~ )  - (4w2 + K ) ( c P ~ : ) ~ ]  sin ( k + )  sin ( k -  ) 

-w,Bk+(,B + 2 ~ )  sin ( k - )  cos ( k + )  

-w,Bk-(,B - 2 n )  sin ( k + )  cos ( k - )  . (4.68) 

Vlasov and Sheinina [45] have also obtained analytic expressions for the r = 1  

case. The  two sets of analytic solutions stated above have a common limit at  

u = 0 and r = 1. In addition, for the large k:, w  limits in which only two-sideband 



72 Chapter 4. Coun terpropagating Light Waves in Finite Media 

interactions are phase matched, these solutions reproduce the two-sideband results 

stated in Sec. 4.1. These limits have been verified numerically. 

In general. Eqs. (4.7)-(4.10) may be solved numerically to obtain S. This cal- 

culation has been carried out using a Newton-Raphson shooting routine [86] which 

is generalized to  include complex amplitude equations. The analytic solutions 

shown above have been compared to the numerical solutions of Eqs. (4.7)-(4.10) 

and to the numerical solutions of the nonlinear sideband equations which include 

pump depletion. This exercise shows that the nonlinear terms are only important 

near the absolute instability threshold in the convective regime and above, and it 

provides an independent check for the analytic results. 

In Figs. 4.4-3.9 the values of the four-sideband S,l are displayed as  a function 

of the transverse wave number k: and the real frequency shift w,. These calcu- 

idlions were carried out numerically with pump powers a t  0.95Pth, where P t h  is 

the minimal threshold intensity for absolute instability. The gain spectrum, S,l. 

for each sideband is displayed for symmetric pump fields, r2 = 1, in Fig. 4.4-4.5. 

The gain spectrum in the case of asymmetric pump fields, rZ = 0.1, is displayed in 

Figs. 4.6-4.9. Figures 4.6-4.7 display the convective gain spectrum when Fo is the 

strong pump, and figures 4.8-4.9 display the convective gain spectrum when Bo is 

tlie strong pump. Each case is considered for both self-focusing and self-defocusing 

media. 

\\?hen the pump intensities are equal, the maximal gain occurs over a distinct 

region in (w,, k:) space. This region is centered at w, = 0 and is slightly shifted 

from the pump axis, k: = 0. It  corresponds to the overlap region in Fig. 4.3. For 

each sideband in Figs. 4.4-4.5, this peak is the dominant feature. It occurs in the 

same location for each sideband. This peak is due to gain of the fonr-sideband 

Tl I I .  
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F igure  4.4: The linear convective gain spectrum for the four-sideband interaction 
is plotted in the plane of the real part of the perturbation frequency, Re(wL/v), 
and the transverse perturbation wavenumber parameter, k:L/2ko, for the case in 
which o = 1, E = 2.0, r2  = 1.0 and P = 0.95Pth = 0.428. The forward anti-Stokes 
sideband was seeded by F+(O) = 6 = 0.001. Shown are the (a.) F+, and (b.) F' 
sidebands. 
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Figure  4.4: (continued) The linear convective gain spectrum for the 
four-sideband interaction is plotted in the plane of the real part of the perturbation 
frequency, Re(wL/v), and the transverse perturbation wavenumber parameter, 
k:L/2ko, for the case in which a = 1, c = 2.0, r2 = 1.0 and P = 0.95Pth = 0.428. 
The forward anti-Stokes sideband was seeded by F+(O) = 6 = 0.001. Shown are 
the the (c.) BI ,  and jd.) B+ sidebands. 
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Figure  4.5: The linear convective gain spectrum for the four-sideband interaction 
is plotted in the plane of the real part of the perturbation frequency, Re(wL/v), 
and the transverse perturbation wavenumber parameter, k:L/2ko, for the case 
in which a = -1, e = 2.0, r2 = 1.0 and P = 0.95Pth = 0.643. The forward 
anti-Stokes sideband was seeded by F+(O) = 6 = 0.001. Shown are the (a.) F+, 
and (b.)  Ff sidebands. 
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F igure  4.5: (continued) The linear convective gain spectrum for the 
four-sideband interaction is plotted in the plane of the real part of the perturbation 
frequency, Re(wL/v), and the transverse perturbation wavenumber parameter, 
k: L/2ko, for the case in which a = -1, 6 = 2.0, r2 = 1.0 and P = 0.95Pih = 0.643. 
The forward anti-Stokes sideband was seeded by F+(O) = 6 = 0.001. Shown are 
the (c.) B I ,  and (d.) B+ sidebands; 
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In the remainder of the w,, k: surface, three other types of gain can be ob- 

served. In Figs. 4.4(b)  and 4 .5 (b )  gain is seen to occur for k: z 0. This fea- 

ture is independent of the frequency shift and has the same form as the gain 

of the two-sideband forward FWM interaction. In fact, this feature is exactly 

the forward FWM interaction having width 2P in self-focusing media and width 

(P2 + (:)z]$ + P in self-defocusing media. It was shown that  the gain for this 

two-sideband interaction is exponential for self-focusing media, but oscillates for 

self-defocusing media. 

In Figs. 4 . 4 ( c )  and 4 .5 (c )  gain occurs along w = 0. This feature is due to  the 

phase-conjugate coupling between F+ and B: and at large k: it has the same 

gain spectrum as the corresponding two-sideband interaction. Its width is given 

by  Eq. (-2.31). Note that the gain due to  the phase conjugate coupling is nearly 

half the gain due to four-sideband coupling for self-defocusing media, while the 

phase-conjugate gain is less than one third of the four-sideband gain in the self- 

focusing medium. Relative to  the four-sideband instability, the phase-conjugate 

coupling has a more important role in self-defocusing media than it does in self- 

focusi~lg media. The last feature can be seen in Figs. 4 . 4 ( d )  and 4 . 5 ( d )  where 

gain appears along the w + kt line. This feature is due t o  Bragg scattering by 

backward FIVA1. It is a stable interaction and it  has the same gain spectrum as 

the two-sideband interaction. The width is predicted by Eqs. ( 4 . 3 9 )  and ( 4 . 4 0 ) .  

From Figs. 4.4-4.5 it is clear that the four-sideband interaction is optimally 

phase matched about a point that  is not frequency shifted but has a small trans- 

\-erse wave number shift. Away from this point, the four sideband interaction 

js detuned, and further gain is due to two-sideband interactions which have the 

properties discu5sed in Sec. 4.1 .  This four-sideband instability dominates the gain 

of tlie two-sideband instabilities. 
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Figure 4.6: The linear convective gain spectrum for the four-sideband interaction 
is plotted in the plane of the real part of the perturbation frequency, Re(wL/v), 
and the transverse perturbation wavenumber parameter, k:L/2ko, for the case in 
wl-hich a = 1, c = 2.0, rZ = 0.1 and P = 0.95Pth = 1.290. The forward anti-Stokes 
sideband was seeded by F+(O) = 5 = 0.001. Shown are the (a.) F+, and (b.) F* 
sidebands. 
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F igure  4.6: (continued) The linear convective gain spectrum for the 
four-sideband interaction is plotted in the plane of the real part of the perturbation 
frequency, Re(wL/v), and the transverse perturbation wavenumber parameter, 
k : L / 2 k o ,  for the case in which a = 1, c = 2.0, r2  = 0.1 and P = 0.95Pth = 1.290. 
The forward anti-Stokes sideband was seeded by F+(O) = 6 = 0.001. Shown are 
the (c.) B f ,  and (d.) B, sidebands. 
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5 . 0  7 

Figure 4.7: The linear convective gain spectrum for the four-sideband interaction 
is plotted in the plane of the real part of the perturbation frequency, Re(wL/v), 
and the transverse perturbation wavenumber parameter, k:L/2ko, for the case 
in which a = -1, E = 2.0, r2 = 0.1 and P = 0.95Pth = 2.360. The forward 
anti-Stokes sideband was seeded by F+(O) = 6 = 0.001. Shown are the (a.) F-+, 
and (b.) F: sidebands. 
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Figure  4.7: (continued) The linear convective gain spectrum for the 
four-sideband interaction is plotted in the plane of the real part of the perturbation 
frequency, Re(wL/v), and the transverse perturbation wavenumber parameter, 
k:L/2bo,  for the case in which a = -1, c = 2.0, r2 = 0.1 and P = 0.95Pth = 2.360. 
The forward anti-Stokes sideband was seeded by F+(O) = 6 = 0.001. Shown are 
the (c.) Bf, and (d.) R+ sidebands. 
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The four-sideband instability can also dominate the two-sideband instabilities 

when the system is pumped asymmetrically. In Figs. 4.6-4.9 the pump fields have 

different intensities, and r2  = 0.1. While this introduces several interesting differ- 

ences, the major features displayed in Figs. 4.4-4.5 remain intact. In Figs. 4.6-4.7 

the seed sideband is injected at the input face of the strong pump field. Figures 

4.6 show that the four-sideband instability continues to  dominate in self-focusing 

media even when r2  # 1. Figures 4.7 show that the four-sideband instability for 

self-defocusing media is dominated by the phase conjugate gain when r  << 1. At 

the same time, Fig. 4.7(c) shows that this phase conjugate gain is increased and 

the peak is frequency down-shifted. This shift is expected for phase conjugation 

and is also given by Eq. (4.31). These shifts also occur in the self-focusing case, 

but they are not visible in Figs. 4.6. As discussed in Sec. 3, for k : L / 2 k o  = 0 

the interaction of F+ with F: yields no n e ~  gain despite the appearance to the 

contrary in Figs. 4.7. 

Finally, in Figs. 4.8-4.9, Fo is the weak pump, so the interaction is seeded at 

the input face of the weak pump. The four-sideband gain has the same location, 

but it is reduced. The phase-conjugate gain shown in Fig. 4.9(c) is nearly the 

same as in Fig. 4.6(c) where the instability was seeded from the input face of the 

strong pump, but as expected, the frequency shift has the opposite sign. As the 

pump intensity ratio r2 approaches zero, the four-sideband interaction is detuned, 

leaving only the forward FWM interaction of the two uncoupled pump waves. 

In this small r2  limit the depletion of the weak pump becomes important, so 

nonlinear coupling terms must be retained. 

In the convective regime a four-sideband instability exists which dominates 

the \\yell known two-sideband instabilities in both self-focusing and self-defocusing 

media. This instability continues to dominate for a large range of the backward 
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Figure 4.8: The linear convective gain spectrum for the four-sideband interaction 
is plotted in the plane of the real part of the perturbation frequency, Re(wL/v), 
and the transverse perturbation wavenumber parameter, k:L/2ko, for the case 
i n  which a = 1, c = 2.0, rt2 = 10.0 and P = 0.95r2Pth = 0.129. The forward 
anti-Stokes sideband was seeded by B + ( l )  = 6 = 0.001. Shown are the (a.) F+, 
and (h.)  F>idebands. 
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F igure  4.8: (continued) The linear convective gain spectrum for the 
four-sideband interaction is plotted in the plane of the real part of the pertur- 
bation frequency, Re(wL/v), and the transverse perturbation wavenumber pa- 
rameter, k:L/2ko, for the case in which a = l, E = 2.0, rt2 = 10.0 and 
P = 0.95r2Pih = 0.129. The forward anti-Stokes sideband was seeded by 
B + ( l )  = S = 0.001. Shown are the (c.) Br, and (d.) I?+ sidebands. 
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F i g u r e  4.9: The linear convective gain spectrum for the four-sideband interaction 
is plotted in the plane of the real part of the perturbation frequency, Re(wL/v), 
and the transverse perturbation wavenumber parameter, k: L/2ko, for the case in 
\vhich a = -1. c = 2.0, rt2 = 10.0 and P = 0.95r2Pth = 0.236. The  forward 
anti-Stokes sideband was seeded by B+(1) = 6 = 0.001. Shown are the (a.) F+, 
and (b.)  F' sidebands. 
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F igure  4.9: (continued) The linear convective gain spectrum for the 
four-sideband interaction is plotted in the plane of the real part of the pertur- 
bation frequency, Re(wL/c), and the transverse perturbation wavenumber pa- 
rameter, k:L/2ko, for the case in which a = -1, € = 2.0, rr2 = 10.0 and 
P = 0.95r2Pth = 0.236. The forward anti-Stokes sideband was seeded by 
E+j!) = 6 = 0.001. Shown are the (c.) B', and (d.)B+ sidebands. 
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to  forward pump intensity ratio, r2. In addition, the gain spectrum of the four- 

sideband TMI is displaced with respect t o  the single-wave TMI. At small r2, the 

phase conjugate interaction dominates in self-defocusing media. 

4.2.2 The  Absolute Instability Threshold 

The absolute instability threshold condition is given by A = 0. In the two cases 

where the eigenvalue relation for M, Eq. (4.53), is biquadratic, the threshold 

equation, Eq. (4.59), can be written in a simpler form. When w = 0, A = AwZ0 

of Eq. (4.63). This equation was reported by Grynberg and Paye [48], and an 

equivalent equation was given in Refs. [50, 511. When r = 1, A = A,=1 of Eq. 

(4.68). Vlasov and Sheinina [45], Firth and Penman [53], and Luther, hIcI<instrie 

and Gaeta [54] each obtained analytical threshold equations for the r = 1 case. 

\\-hen both r = 1 and w = 0, the result stated by Vlasov and Talanov [G) LJ. 

Firth and Par6 (46) is obtained. 

\4'hen multiple eigenvalues occur, Eq. (4.59) is identically zero even if no in- 

stability exists, so the threshold condition must be calculated using Eq. (4.52) 

ivith the canonical forms of U and Q. This is not merely a mathematical point, 

for in complicated systems these multiple eigenvalues can arise. Gaeta [87] has 

encountered such difficuli ies in studies of combined polarization-diffraction insta- 

bilities. 

\\'hen w = 0, there are tis1o ways in which degenerate eigenvalues occur. Recall 

that the eigenvalues for this case were given in Eq. (4.60). That  equation allo~vs 

only one pair of eigenvalues to  become degenerate at once. Thus, when either k+ 

or k- is zero. 
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While A = 0  is no longer the threshold condition when these repeated eigenvalues 

occur, 

and the modified threshold condition is A:=, = 0  [46 ] .  When r  = 1 there are 

three ways in which degenerate eigenvalues occur. The eigenvalues for this case 

are stated in Eq. ( 4 . 6 5 ) .  All four eigenvalues become zero when w2 = K and 

r 2  = ( K I E P ~ ? ) ~ .  One of the two cases k: = 0 occurs when 

Finalljr, k+ -+ k-  # 0  when k? = 2 P w 2 / [ w 2  + ( E ~ P ) ~ ] ,  and the tivo degenerate 

pairs of eigenvalues take the values k: = w 2  - K .  At these points, the occurence 

of degenerate eigenvalues must be taken into account. 

In general, the threshold for absolute instability in the four-sideband system 

ma!, be calculated numerically based on the eigenvectors in Eq. (4 .51 ) .  Typical 

examples of this technique may be found in [32,  331. An alternate scheme which 

treats multiple roots properly is discussed in the Appendix. 

Solutions for 4u=o = 0  are displayed in Figs. 4.10 - 4.12, for a equal to 1 

and sel-era1 values of r 2 .  Each curve corresponds to the threshold condition for a 

different eigenmode. Whenever aAlFo12L/v exceeds its minimal threshold value, 

at least one of the spatial eigenmodes is unstable. Figure 4 . 1 0 ( a )  corresponds to 

the case in which r 2  = 1.0. The minimal threshold value of aAlFo12L/v is 0.45,  

corresponding to a value of k:L/2ko equal to 3.0,  and the threshold intensities for 

the two lowest-order spatial eigenmodes tend to the phase-conjugate oscillation 

threshold for large V ~ E P S  9f the transverse wavenumber, in complete agreement 

with the results of \'lasov and Talanov, and Firth and Park. Notice that, for 
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Figure 4.10: The static absolute intensity threshold aXIFoJ2L/v in a finite 
medium is plotted as a function of the transverse wavenumber k:L/2ko, for the 
case in which a = 1, and c = 2. (a) r 2  = 1.00. ( b )  r2 = 0.67. (c) r 2  = 0.33. ( d )  
r2 = 0.10. 
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counterpropagating waves, the range of unstable transverse wavenumbers is un- 

bounded, in contrast to the results of Sec. 3.1 for copropagating waves. 

It can be seen from Figs. 4.10(b) - 4.10(d), for which r2 is equal to 0.67, 

0.33 and 0.10, respectively, that the topology of the threshold curves is rather 

complicated. However, for values of r2 less than about 0.10, the ellipsoidal struc- 

tures disappear and the static threshold is characterized by the presence of disjoint 

"lobes" a t  small transverse wavenumbers. Since the threshold value of aXI Fo12L/v 

corresponding to phase-conjugate oscillation is equal to n/2er,  the absence of 

such a feature in Fig. 4.10(d) implies that the TMI is oscillatory for large val- 

ues of the transverse wavenumber. However, the minimal static-threshold value 

is aXIFolZL/v = 1.3 in Fig 4.10(d), which is significantly less than the phase- 

conjugate oscillation threshold of 2.5. 

Solutions are displayed for a wider range of r2  in Fig. 4.11. \Vhen r2 = lo-' 

and the point corresponding to the minimal static-threshold intensity is lo- 

cated on the leftmost lobe. \When r2  is equal to the lowest points on the left- 

most and middle lobes correspond to comparable static-threshold intensities and, 

when r 2  = the point corresponding to the minimal static-threshold intensity 

is located on the middle lobe. Throughout this range of r 2 ,  the lowest point on 

the leftmost lobe corresponds to a value of k: L/2ko which is approximately equal 

to 3.0 and the lowest point on the middle lobe corresponds to  values of k:L/2ko 

which are reasonably close to  9.0. The  static-threshold intensities corresponding 

to these specific values of the transverse wavenumber are plotted as functions of r2 

in Fig. 4.12. Although the static-threshold intensity increases as r2 decreases, it 

does so much less rapidly than the threshold intensity for phase-conjugate oscilla- 

tion, which increases as l lr .  A more general acalysis, which allcws for nonzero s(?, 

[SS], shows that there exists an oscillatory branch of the instability with threshold 
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Transverse Wave Number 

Figure 4.11: The static absolute intensity threshold aX(Fo12L/v in a finite 
medium is plotted as a f~lnction of the transverse wavenumber k :L /2ko ,  for the 
case in which a = 1 and c = 2. ( a )  r 2  = lo-'. ( b )  r2  = ( c )  r2  = ( d )  
r2 = 
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Figure  4.12: The static absolute intensity threshold a X I F o J 2 L / v  is plotted as a 
function of the pump-wave intensity ratio r2,  for the case in which a = 1 and e = 2. 
Curve 1 corresponds to a transverse wavenumber k i L / 2 k o  of 3.0, while curve 2 
corresponds to a transverse wavenumber k:L/2ko of 9.0. The static threshold 
intensity is the envelope of these two curves, denoted by the solid line. 
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- 
intensities which'are lower than the static-threshold intensities for r2  less than 

about the threshold intensities obtained from Fig. 4.12 should therefore be 

regarded as upper bounds on the true threshold intensities. Hence, when a = 1, 

the threshold intensities for the static branches of the TMI are significantly lower 

than that  for phase-conjugate oscillation [89]. 

Solutions of Aw,o = 0 are displayed in Fig. 4.13, for a equal t o  -1 and several 

values of r2.  The topology of the threshold curves is qualitatively similar to that 

of Fig. 4.10. When r2  is close to 1.0, the lowest point on the threshold curves is lo- 

cated at small wavenumbers, although the difference between the static-instability 

threshold intensity and the threshold intensity for phase-conjugate oscillation is 

smaller than in the previous example. As r2 is decreased, the ellipsoidal structure 

disappears and the static instability is again characterized by disjoint lobes at  

small wavenumbers. However, for values of r2 less than about 0.10, the static- 

threshold intensity exceeds the threshold i n  tensity for phase-conjugate oscillation 

and, hence, the ThII is of less importance than in the previous example. 

The Th[I of two counterpropagating waves has been studied independently by 

Grynberg and Paye [4S]. Grynberg and Paye derived an equation for the static 

threshold which allows for unequal wave intensities. The  threshold curves they 

obtained for r equal to  1.0 and 0.85 agree with the corresponding threshold curves 

determined from Aw=0 = 0, to the displayed accuracy. In comparing Figs. 4.10 

and 4.13 to the corresponding figures of Grynberg and Paye, the reader should note 

that Grynberg and Paye use JFoBol as their measure of wave intensity, whereas 

(FoI2 is used throughout this thesis. 

In Sec. 3.1, it was shown that the effects of linear wave damping can alter 

the evolution of two copropagating waves significantiy. Likewise, the intensity 

threshold for the instability of counterpropagating waves in a finite medium de- 
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Figure 4.13: The static absolute intensity threshold aXIFo12L/v in a finite 
medium is plotted as a function of the transverse wavenumber k:L/2ko,  for the 
case in which a = -1, and c = 2. ( a )  r2  = 1.00. ( b )  r 2  = 0.67. ( c )  r 2  = 0.33. ( d )  
r 2  = 0.10. 
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pends sensitively on the wave-damping coefficients. In the presence of linear wave 

damping, IAl(z)l -+ JAl(O)l exp(-vz/v) and IA2(z)l -+ Id42(r)l esp[v(z - I)/c].  

The self-nonlinear terms in Eq. (3.43) are no longer independent of position, 

which makes the determination of the threshold intensity more difficult. Hotrr- 

ever, a crude estimate of the threshold intensity in the presence of linear wave 

damping can be made by replacing IAl(z)l and JA2(z)I by their average values 

JAl(0) ( exp(-vl/2v) and IA2(l) 1 exp(-vl/2v), respectively. When vllv is much 

less than unity, the effects of wave damping are less important than the boundary 

effects and the threshold intensities found previously should approximate the true 

threshold intensities. \Vhen vllv is much greater than unity, the boundary effects 

are less important than the effects of wave damping and the threshold intensities 

can be estimated from the infinite-medium results of Sec. 3.2. It follows from Eq. 

(3.31) that the threshold condition is 

where ylt are the temporal growth rates determined in terms of IA1(0) 1 and ( .A2(/)  1 

by Eqs. (3.25) and (3.27). 

These results show clearly that the threshold intensity of the TAII depends 

sensitively on the static or oscillatory nature of the instability, the transverse 

wavenumber of the perturbed wave amplitude, and the linear wave-damping coef- 

ficients. The  threshold intensity can also be reduced by reflective boundaries [go]. 

In the remainder of this section the behavior of the absolute instability threshold 

when w, is not fixed at zero is illustrated. 

In Figs. 4.14 and -1.15, the threshold for absolute instability of the four- 

sideband interaction is displayed. The topmost curves are the threshold curves 

for self-focusing, a > 0. Below these threshold curves, but in the same half 
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F igu re  4.14: The threshold intensity for absolute instability of the four-sideband 
system is plotted as a function of the transverse perturbation wavenumber param- 
eter for both self-focusing, u = 1 (upper), and self-defocusing, a = -1 (lower), 
media, where r2 = 1.0 and E = 2.0. The  line a t  w L / v  = 0 indicates that the 
frequency of the absolutely unstable sidebands a t  threshold is the same as that of 
the pumps for both self-focusing and self-defocusing media in this case. 
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plane, the corresponding values of the frequency shifts at  threshold are plotted. 

Similar data  is included in the lower half plane for self-defocusing media. Xote 

that,  for each sign of a, the frequency shifts are actually symmetric about the 

zero-frequency-shift line, though only the upper or lower half of the curves are 

shown. Pump intensities which have absolute value equal to  or larger than the 

threshold curve make the system absolutely unstable. Below the threshold curves, 

the system can only be convectively unstable. For both signs of a ,  these curves 

tend to the correct phase-conjugate threshold and frequency shift in the large k: 

limit [54]. 

The lowest threshold in self-focusing media is located near k: L / 2 k o  = 3.0 for 

both values of r2 shown in Figs. 4.14 and 4.15. No frequency shifts arise at these 

minimal thresholds. For self-defocusing media, the lowest threshold is located 

below k : L / 2 k o  = 3.0 when r2 = 1.0 with w = 0, but when r2 = 0.1 the lowest 

threshold occurs at  large k : L / 2 k o  with w, # 0. The absolute thresi~olds at  low 

k : L / 2 k o  are due to  the four-sideband TMI. This is precisely what is expected 

based on the near-threshold convective gain. Note that the range of transverse 

perturbation wave numbers for which this absolute instability dominates is broad, 

even though the gain spectrum narrows as the power is increased through the 

convective regime. This result suggests that the spectrum in kl should appear to 

broaden a t  threshold. 

In Fig. 4.16, the minimal absolute instability thresholds are plotted as func- 

tions of r2 for both the four-sideband TMI and the phase-conjugate instability 

limit. In self-focusing media, the absolute instability threshold for the TMI re- 

mains below the phase-conjugate threshold. As r2 is decreased in self-defocusing 

media, the value of k : L / 2 k o  corresponding to the minimal threshold first de- 

creases. As r2 continues to  decrease, the original minimum rises above the next 
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Figure  4.15: The threshold intensity for absolute instability of the four-sideband 
system is plotted as a function of the transverse perturbation parameter for both 
self-focusing (-), a = 1, and self-defocusing (- - -), a = -1, media, where 
r 2  = 0.1 and c = 2.0. The two lines nearest w L / v  = 0 indicate that the values of 
the perturbation frequencies at threshold become finite when the pumps intensities 
are unequal. 
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Figure 4.16: The minimum absolute instability threshold is plotted as a function 
of the pump intensity ratio r2, for (-) a = 1 and k : L / 2 k o  z 3.0, ( 0 0 0 )  a = 1 and 
k : L / 2 k o  z 20 ,  (- - -) a = -1 and k : L / 2 k o  z 2 . 5 ,  and ( o  - - o) a = -1 
and k : L / 2 k o  20 .  
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relative minimum at a larger b:L/2ko. This process continues as r 2  is decreased 

until the absolute threshold for the phase-conjugate interaction is the minimal 

threshold [MI. This transition takes place near r 2  = 0.25 as shown in Fig. 4.16. 

The threshold for absolute phase conjugation instability is a r /2e r .  Over a sig- 

nificant fraction of r 2  in both self-focusing and self-defocusing media, the four- 

sideband TMI is dominant. As r2 becomes small this instability remains abso- 

lutely unstable, but in self-defocusing media the absolute instability of the the 

two-sideband phase-conjugate limit dominates. 

4.3 Summary 

It has been shown that the system of counterpropagating light waves studied here 

has a four-sideband TMI in the spectral overlap region of forward FIVAI, phase 

conjugation, and Bragg scattering. In the limits where the sidebands have large 

transverse wave number, k i ,  large frequency shift, w,, or large w, f k:. the four- 

sideband instability is detuned and its three limiting two-sideband interactions 

are recovered. Solutions for the linear gain spectrum and the absolute instability 

threshold of the four-sideband problem have been provided both analytically and 

numerically. These solutions show that the four-sideband instability dominates for 

a significant range of backward to forward intensity ratios, r2, both as a convective 

instability and as an absolute instability in both self-focusing and self-defocusing 

media. The phase-conjugate instability becomes important as r 2  is reduced and 

is the dominant absolute instability for r 2  < 0.25 in self-defocusing media. The 

analysis of the four-sideband interaction reveals the properties of the four-sideband 

instability and its relationship to  three distinct two-sideband interactions which 

are based on FIVM processes. 



4.3. Summary 

Both four-sideband and single-wave TMI have a distinct band of transverse 

wave numbers for which their gain is optimized. As a result, the spatial distribu- 

tion of light in the far field can contain a ring that is a signature of the instability. 

The phase-conjugation instability is independent of the transverse modulational 

wave number and, by itself, is not responsible for structure in the transverse in- 

tensity profile. Recent observations of conical light emission in sodium vapor 

[47, 49. 52, 911 are consistent with the theory of the TMI of counterpropagating 

waves described above. in addition, the competition between the phase-conjugate 

gain and other convective or absolute instabilities is important for high-gain phase- 

conjugation applications, since the four-sideband TR4I can dominate the phase 

conjugation interaction. 

Appendix 4: Numerical Calculation of the Abso- 

lute Threshold 

There are several ways to obtain the absolute instability threshold numerically. 

One relatively quick way is to assume that the eigenfunctions are exponentials. 

The zeroes of the solvability condition for the coefficients are then obtained using 

a multidimensional Newton-Raphson routine. This method will, of course, yield 

erroneous results when multiple eigenvalues become important. A scheme which 

accounts for multiple eigenvalues is described below. Though this scheme is more 

computationally intensive, it is useful for local investigations. 

The solution of the eigenvalue problem has the form 

where a' is the set of coefficients which are defined by the boundary conditions. 
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By specifying a complete set of linearly-independent initial conditions, 

Ajaj = E ( o ) ~ ' ,  ( 4 ~ ~ 2 )  

which map into the solution space and span that entire space, i ( 1 )  can be calcu- 

lated by integrating the equations over the length of the medium. Thus: 

where i ( 1 )  spans the entire solution space. A new matrix Et is then defined by 

where :\fc is the matrix of coefficients determined by the initial conditions. Kow. 

since the terms in the right hand side of Eq. (4A.4) have been calculated, 

and 

Ihfzl # 0 , 

the condition that IEtM,-I = 0 is equivalent to 

Therefore, the zeroes of JEfM,-1 = 0 give the absolute instability threshold. 



Chapter 5 

Resonant Instabilities of 
Counterpropagating Light Waves 

During the interaction of high-power laser fields with plasmas, the plasma den- 

sity responds to intensity variations. Gratings in the index of refraction form as 

the laser fields interfere and drive variations in the plasma density. IVhen these 

gratings are driven nonresonantly, the light waves are governed by the nonlinear 

Schroedinger equations analyzed in the earlier chapters, where a > 0 for plasmas. 

However, the ion-acoustic modes in a plasma can also be driven by the counter- 

propagating wave system. This process is analogous to  the interaction of light 

Xvaves with acoustic waves in other Brillouin-active media. In this chapter the 

gratings are allowed to be driven at their natural frequencies. This modification 

yields a comparison between the cooperative transverse modulational instability 

(TMI) and resonant single-wave and cooperative instabilities [92]. 

The fact that  several distinct four-wave mixing (FLVM) interactions can coex- 

ist in coupled-wave systems is ubiquitous. In the nonresonant system, the four- 

sideband interaction was the only one requiring more than two sidebands, but 

in media in which the coupling of the waves has resonant frequency dependence, 

there may be several situations in which single- and multiple-sideband interac- 
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tions are simultaneously phase matched forming hybrid interactions which may 

have characteristics different from those predicted by non-hybrid models. These 

coupled-wave interactions increase the number of channels by which pump energy 

can be scattered into sideband modes, making them more virulent than single- 

wave interactions. 

We begin by substituting the expansion of the total field, Eqs. (4.5) and (4.6), 

into the electromagnetic wave equation (2.9) and the sound wave equation (2.10). 

The nonlinear current term couples the total field to the plasma and the ion-sound 

lvave equation, Eq. (2.10), governs the motion of low frequency density perturba- 

tions in the plasma. These plasma waves are taken to vary on scales no faster than 

the beat frequency, w, and no longer than the beat wave number, id. As in the 

analysis of nonresonant media, linearization yields a set of equations that govern 

the evolution of the sideband envelopes. In this case however, the response of (n)  

is more complicated. By Fourier-Laplace transforming the linearized equations, 

the ion-acoustic wave equation becomes 

ivhere fL is the series of linearized terms which arise due to the ponderomotive 

nonlinearity. We make the -1sua1 simplifying assumption that the response of the 

plasma to the field is local in z [37]. In a homogeneous plasma this approximation 

is valid when the spatial growth rate of the instability is much smaller than Iql 

and the ion-acoustic damping rate is much larger than Iql. 

The grating Green's function, r, then parameterizes the linear resonant re- 

sponse of the ion-wave gratings to the fields. This response, at the beat frequency 

and wavenumber, is characterized by 



when ( k X D ) 2  << 1 and v; << w / k  << v,. The parameter v;, is a phenomenological 

ion-acoustic damping coefficient. A D  is the electron Debye length. v,(v;) is the 

electron (ion) thermal speed. More generally, if one takes the beat ponderomotive 

force to have the same effect as the linear response of the plasma to the force 

of the charge separation field, the response function is generalized in terms of 

the electrostatic dielectric function which can be given in terms of the plasma 

dispersion function [37]. 

By collecting resonant terms, the coupled mode equations for the four sideband 

envelopes in a Brillouin-active medium are obtained. They have the form [93] 

where = ( F + ,  F f ,  B+,  B L ) ~  is the vector containing the envelope amplitudes of 

the waves, L  is their linear propagation matrix, and N  is their coupling matrix. 

The propagation matrix is diagonal having the entries 

\\here v = c2ko/wo. The entries L33 and L44 are obtained from L11 and L22, 

respectively by the substitution v + -v. The coupling matrix has the entries 

were cr = - Z m e w f / ( 8 r n ; w ~ c ~ ) .  The remaining terms are Ni j  = X;,, Nz2 = Nil, 

11'23 = N24 = N131 N33 = N44 = Nll((F01 t+ IBol), and N3q = NI2(FO t+ Bo) .  
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The terms in each entry of N correspond to the low frequency response of 

the plasma to the linearized ponderomotive force of the beating of the fields. 

The coupling matrix contains two resonant gratings. There is a short wavelength 

grating, rll = r ( w ,  f 2 s  + L), having a wave vector which lies nearly parallel 

to that of the pumps, and a long wavelength grating, rL = T(w, E ) ,  having a 

wave vector which lies perpendicular to that of the pumps. Terms which are 

independent of either r arise due to the static pump-pump grating. 

Single-wave backward stimulated Brillouin scattering (SBS) is mediated by 

a sound-wave which couples each sideband to its respective counterpropagating 

pump. Terms in :V proportional to ( r l l  - 1)  characterize t,his interaction. Back- 

ward SBS grows as -yL/v = J a l ~ ~ l 2 L / v  J k o ~ ( c , / c ) ( c / v )  [ I ,  31. Single-ivave near- 

forward SBS is mediated by the rl grating, coupling a pump wave to both its 

Stokes and anti-Stokes sidebands. For significant gain of the Stokes sideband a 

finite wave vector mismatch is required to detune the strong mutual interaction of 

the Stokes and anti-Stokes sidebands. The single-wave filamentation instability is 

also mediated by the rl grating, but both sidebands grow and the peak growth 

occurs when the grating is driven off resonance a t  w  = 0. Its peak growth rate is 

a.(Fo12 ( a ( B o I 2 )  for the forward (backward) pump. 

Cooperative instabilities are driven by the action of both pump waves making 

the cross terms of matrix N necessary. The two phase conjugation interactions 

couple Stokes shifted sidebands to their counterpropagating anti-Stokes shifted 

sidebands through the r l l ,  r l ,  or the static grating. Two Stokes or two anti- 

Stokes shifted sidebands couple through either the rl or r ( 0 , 2 l 0 )  grating due 

to Bragg scattering by FWM. Though this interaction may be stable by itself, 

its proso-r , ,,,,e is required t c  correctly model four-sideband instabilities. The  co- 

operative filamentation of counterpropagating waves is the four-sideband analog 



of single-wave filamentation. The simultaneous action of the phase conjugation, 

Bragg scattering, and single-wave filamentation couplings drives the r ( 0 ,  kL)  grat- 

ing producing a four-sideband instability. Resonant four-sideband instabilities in 

the one dimensional limit have also been found 135, 361. 

These single-wave and cooperative instabilities can be identified in the linear 

convective gain spectrum of the four sidebands. In Figs. 5.1, the single-pass 

convective gain of each sideband is plotted as a function of k:L/2ko, which is 

related to the scattering angle, O2 2(k: L/2ko)/koL, and Re(wL/v), which is the 

real part of the perturbation frequency. The intensities are symmetric, 1 Bo12 = 

JFo12, the ratio c,/c = 0.001, koL = 1000 and v,,/R,, = 0.2, where R,, is the 

ion-acoustic frequency. The pump power is alFo12L/v = 0.43, which is 0.95 of the 

minimal absolute threshold intensity for cooperative filamentation. These spectra 

were calculated by numerically integrating the coupled mode equations (5.3) - 

(5.9) with Bf (L)  = 0, F--(O) = 0 and F+(O) = 6, where F+(O) seeds the interaction 

and 6 << 1. The peaks in the gain occur where the sidebands are oriented and 

spectrally tuned such that their linear and nonlinear phase shifts are optimally 

matched inside the medium. They occur at  frequency shifts corresponding to 

t!ie frequency degenerate gratings, the resonant rL gratings or the resonant ril 
gratings. At large kL the pure phase conjugation interaction of F+ with B- due to 

both resonant and nonresonant gratings is recovered, as seen in Fig. 5.l(d).  Near 

k: = 0 for Re(wL/v) near neither zero nor one of the ion-acoustic resonances, 

the single-pump filamentation between F+ and F- is recovered and can be seen in 

Fig. 5.l(b). For k:L/2ko - Re(wL/v) >> 1 in Fig. 5.l(c),  the nonresonant Bragg 

scattering interaction between F+ and B- is recovered [55]. 

For smaller values of k:, where Re(wL/v) is near zero or one of the ]on-acoustic 

resonances, the simple one- and two-sideband instabilities overlap causing hybrid 
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Figure  5.1: The linear convective gain spectrum of the resonant four-sideband 
interaction is plotted in the plane of the real part of the perturbation fre- 
quency, Re(wL/v), and the transverse perturbation wavenumber parameter, where 
IBoJ2 = IFo12, C,/C = 0.001, koL = 1000, via/Ria = 0.2, and alFo12L/v = 0.43, 
which is 0.95 of the minimal absolute threshold intensity for cooperative filamen- 
tation. The spectra for the seeded sideband ( a . )  and its forward FWM pair (b.) 
are plotted here. 



Figure 5.1: (continued) Linear convective gain spectrum of the resonant 
four-sideband interaction is plotted in the plane of the real part of the pertur- 
bation frequency, Re(wL/v), and the transverse perturbation wavenumber pa- 
rameter, where )Bo12 = IFoI2, c,/c = 0.001, koL = 1000, u;,/n;, = 0.2, and 
crJFoJ2L/v = 0.43, which is 0.95 of the minimal absolute threshold intensity for 
cooperative filamentation. The spectra for the Bragg scattering (c.) and the phase 
conjugate jd.jsideband are piotted here. The resonances in rl and rll have the 
frequencies Re(uL/v) = c3kLko/v M 0.17 and Re(wL/v) = 2k0Lc3/v M 2.0, re- 
spectively. 
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instabilities [55, 931. The !argest convective gain in Figs. 5.1, located near 

Re(wL/v) = 0 and k:L/2ko = 3.1 for each sideband, is due to cooperative fila- 

mentation [55]. Peaks in the convective gain spectrum such as this indicate that 

the scattered light will have important transverse structure. At larger values of 

k: these three two-sideband processes may overlap interacting through the TI 

grating. Backward SBS is detuned as w deviates from the ion-acoustic frequency 

since the ion wave is no longer driven resonantly. In matrix N, (rll - 1) -P 0 

when w -P 0 at fixed kl implying that none of the gain near LJ = 0 is due to 

backward SBS. Backward SBS shares the rll resonance with the two phase conju- 

gation interactions. Their spectral overlap is clearly illustrated in Fig. 5 . l (d)  at 

k: = 0 and the rll resonance. Recall that the pure phase conjugation interaction 

is independent of kl and the backward SBS interaction is largest for kl = 0. 

This convective gain analysis suggests that cooperative instability growth rates 

can exceed single-wave instability growth rates by a significant margin and that 

transverse effects can be important. 

IYhile single-pump backward SBS is known to become absolutely unstable 

when the pump intensity is above (cu(Fo12L/v)sss = v,2,L/4vwo(cS/c)' (31, the 

counterpropagating pump wave introduces several cooperative absolute instabil- 

ities which may have thresholds below those for the single-pump convective or 

absolute instabilities. Intensity thresholds for cooperative absolute instabilities 

predicted by Eqs. (5.3) - (5.9) are plotted in Figs. 5.2 and 5.3 for two values 

of the ion damping rate, via/flia = 0.2 and 0.05, respectively, and JFoJ2 = JB0I2. 

In the upper graphs of Figs. 5.2 and 5.3, the threshold intensity is measured 

in units of the single pass convective gain of the filamentation instability of 

the forward pump. The  threshold intensity corresponding to  ~Il$l~L,'2: = 1 

is I[Wcm-l] - (4.42 x 1013Tev[l - (no/nc)]/koLA~(no/nc)} where no/n, is the 



Figure 5.2: In the upper graph the lowest resonant (- - -) and non-resonant 
(-) absolute instability thresholds are plotted for the resonant four-sideband sys- 
tem. In the lower graph the frequency shifts corresponding to these thresholds 
are plotted. Both graphs are plotted as a function of the transverse perturba- 
tion wavenumber parameter, where (Bo12 = (Fo12, c,/c = 0.001, koL = 1000, 
and vi,/Q;, = 0.2. The frequency shift corresponding to the I?,( resonance is 
Re(wL/v) = 2c,koL/v z 2.0 and to the nonresonant mode is Re(wL/v) = 0. 
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Figure  5.3: In the upper graph the resonant (e l e) and non-resonant (-) 
absolute instability thresholds are plotted for the resonant four-sideband sys- 
tem. In the lower graph the frequency shifts corresponding to these thresholds 
are plotted. Both graphs are plotted as a function of the transverse perturba- 
tion wavenumber parameter, where lBo12 = IFo12, cs/c = 0.001, koL = 1000, 
and v;,/fl;, = 0.05. The frequency shift corresponding to the rll resonance is 
Re(wL/v) = 2c,koL/v x 2.1 and to the nonresonant mode is Re(wL/v) = 0. 



number density of the plasma divided by its critical value. For c,/c = 0.001, 

koL = 1000, no/n, = 0.25 and A, = 1.06p, L = 170p, and T = 940eV, so 

I = 1.1 x 10'~\1rcrn-~. For these parameters ( ~ r l F o l ~ L / v ) ~ ~ s  = 20.0 and 1.25 for 

v,,/R;, = 0.2 and 0.05 respectively. The real part of the perturbation frequency 

at these thesholds, &Re(wL/v) is plotted in the lower graphs of Figs. 5.2 and 5.3, 

where Im(wL/v) = 0. The ion-acoustic frequency of the short wavelength grating 

is R;,L/v E 2koL(c3/c) = 2. 

The dashed curves ia Fig. 5.2 correspond to the minimal resonant absolute 

intensity thresholds for yi,/Oi, = 0.2. The lowest nonresonant threshold is plot- 

ted as a solid line and has wL/v = 0. The minimal intensity threshold occurs 

on the nonresonant branch at  crl Fo12L/v = 0.45 for k: L/2ko = 3.1 and is due 

to cooperative filamentation. In the linear regime light scattered bv this coop- 

erative filamentation instability has frequency wo and forms a hollow cone with 

0, = Jf i .?/ l ; ,  L. This and other signatures of cooperative filamentation have been 

observed in atomic gas experiments [47]. In the large-kL limit the nonresonant 

phase conjugation threshold is recovered where a1 FoJ2L/v  scales as xl Fol/41 Bol, 

and Re(wL/v) oc a((Bo12 - (FoI2). These results show that the cooperative fila- 

mentation instability can be important even when cooperative resonant absolute 

instabilities occur. 

The curves labeled with dots in Fig. 5.3 correspond to the resonant absolute 

instabilities having the lowest intensity thresholds when r;,/il;, = 0.05. Their 

frequency shift corresponds to that of the rll grating. The  solid curves correspond 

to the nonresonant branch as in Fig. 5.2. The resonantly unstable modes have 

finite frequency shifts of the order of the acoustic wave frequency of the grating. 

Keither sign of the acoustic frequency shift in either figure is favored since the 

Stokes and anti-Stokes sidebands are free to switch roles as w -t w* and the 
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system is invariant to rotations about the pump axis. While the resonant absolute 

instability thresholds approach the phase conjugate threshold at large k L ,  they 

have a hybrid character near kl  = 0 [93]. The cooperative absolute instability 

intensity thresholds can be much lower than single-pump thresholds, as stated 

previously. 

The minimum values of the absolute instability thresholds and some of their 

phase conjugate limits are plotted as a function of l n ( J B o / F o ( 2 )  in Fig. 5.4 follow- 

ing the labeling convention of Figs. 5.2 and 5.3. In the limit I Bo/FoI2 + 1 the min- 

imum thresholds found in Figs. 5.2 and 5.3 are recovered. At J B o / F o J 2  = 1 the lo~v- 

est three threshold curves are due to the resonant modes at yia/Ria  = 0.05 where 

a.1 Fo12L/v = 0.24,0.28,0.33 for k i  L /2ko  = 0.0,20.0,0.0, respectively. The non- 

resonant thresholds are crlFo12L/v = 0.45,0.72,0.79 for k: L / 2 k o  = 3.1,20.0,20.0 

and the resonant threshold for yia/Ria  = 0.20 is alFo12L/v  = 0.S0 at k:L/2ko = 

0.0. Note that the cooperative TMI threshold given by the cr(Fo12L/v = 0.45, 

k:L/2ko = 3.1 curve remains degenerate with w = 0 and is below the degenerate 

phase conjugation threshold over the entire range of r2  shown. The phase con- 

jugation thresholds for the a J F o J 2 L / v  = 0.72,0.79, k:L/2ko = 20.0 are allowed 

to become nondegenerate as shown by the small frequency shift they acquire as 

r is decreased. Near r = 1,  this frequency is in qualitative agreement with the 

expected frequency shift of the phase conjugate signal, ( I  Fo12 - I Bo I2 ) /2 ,  stated 

in Chapter 4. However, as 1 Bo12 approaches zero the graph shows a shift having 

a smaller limiting value than expected from the degenerate phase conjugation in- 

stability. Notice that the limiting value of this frequency shift is w, = 0.2 which 

is the value that is expected for the resonant kl grating. In addition, these two 

thresholds have the same r 2  dependence as that of the resonant large-k grating as 

r becomes small. Both of these facts suggest that the resonant and nonresonant 



Figure  5.4: The variation of the minimal absolute intensity thresholds and 
their associated frequency shifts are plotted for several modes of the resonant 
four-sideband system as a function of the pump intensity ratio, where c,/c = 0.001, 
koL = 1000. The solid curves (-1 arrise due to nonresonant modes at rZ = 1.0. 
The dashed curves (- - - ) arise due to resonant modes with vi,/Oi, = 0.2, while 
the dotted curves (e l e) arrise due to modes with v,,/fli, = 0.05. The resonance 
for is Re(wL/v) = kLLc,/v = 0.17 and for is Re(wL/v) = 2koLc,/v z 2.0. 
See text for the values of k: L/2ko associated with each mode. 
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branches overlap and that these two degenerate thresholds take on a resonant 

instability character as r is decreased, forming still another hybrid cooperative 

instability. Observations consistent with the k:L /2ko  = 0.0 r.:sults are described 

in [36]. The cooperative absolute instability thresholds are lower than the single- 

wave or phase conjugate thresholds even when the pump intensity ratio is small. 

This work can be extended to treat the three dimensional instabilities of coun- 

terpropagating waves [74], the effects of inhomogeneity of the plasma, the motion 

of the plasma and the motion of the critical surface. A mode which is reflected 

from the critical surface and is Doppler-shifted with respect to the pump has been 

shown to enhance the backward SBS signal [63 - 651. The analysis presented here 

may be extended to include this effect by retaining the pump depletion terms 

and allowing a frequency difference between the pumps of the order of the sound 

frequency. 

In summary, cooperative instabilities can have larger convective gains and 

lower absolute instability thresholds than single-wave instabilities when two coun- 

terpropagating electromagnetic waves interact via ponderomotively driven ion- 

acoustic waves in a finite homogeneous plasma. The intensity thresholds of coop- 

erative absolute instabilities increase slowly as a function of the ratio of the pump 

intensities. The presence of the counterpropagating light wave introduces both 

cooperative filamentat ion and cooperative Brillouin-enhanced FWM instabilities, 

both of which can be attributed to the combined effect of one- and two-sideband 

instabilities. Because some cooperative instabilities scatter light at a finite angle 

to the pump axis, they cannot be adequately modeled in one dimension. 



Chapter 6 

Discussion 

In this thesis, it has been shown that a family of hybrid cooperative instabilities 

exist in counterpropagating-wave systems and a description of their character and 

mechanism has been given. A thorough investigation of the cooperative transverse 

modulational instability (TMI) in cubically nonlinear media has been carried out 

showing its stability properties and its basic relation to the constituent four-wave 

mixing (FLl'hl) interactions. The extension of the stability analysis to  Brillouin- 

active media suggests that the cooperative TMI continues to be important and 

that other new and interesting hybrid and cooperative instabilities also arise. 

These results are of interest in both the field of laser-plasma interactions and 

in the more general context of nonlinear optics. Realizations of Fll'hl and phase 

conjugation in laser-plasma interaction experiments are likely to show the effects 

of cooperative instabilities. Unfortunately, no published work dealing with these 

issues has appeared. Laser-produced plasma experiments have been performed to 

investigate scattered light with frequency near that of the pump [68, 69, 94, 951. 

These studies have provided data  which is consistent with the idea that back- 

reflected light can enhance filamentation [69] and backward stimulated Brillouin 

scattering (SBS) [94, 931. 

The theory presented in this thesis predicts thresholds which are at the level 
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of current experiments. For example, direct observations of ponderomotive fila- 

mentation in laser-driven plasmas have been made recently by Young et al. [6S]. 

In these experiments, a single laser pulse was passed through a preformed un- 

derdense plasma and the transverse intensity profile of the laser was intentionally 

modulated to produce a striated intensity distribution of known periodicity. These 

initial modulations in the incident laser intensity were rather large. Consequently, 

Young et al. argued that the laser filaments could be observed with only a single 

exponentiation in laser intensity. On this basis, the convective threshold intensity 

for the single pump was predicted to be approximately 5 x 1013 W C ~ - ~ .  The ob- 

served threshold intensity was approximately 3 x 1013 W C ~ - ~ .  Thus, filamentation 

has been observed at the intensities predicted by the single-wave analysis. 

Suppose now that one was to redo the experiment of Young et al. with two 

counterpropagating laser beams rather than a single laser beam. \\'i th laser 

beams of equal intensity in a finite plasma typical of this experiment, the pre- 

dicted threshold intensity of the absolute filamentation instability is approximately 

4.5 x 1013 J i ' ~ m - ~ .  With a backward-to-forward intensity ratio of 3%, the predicted 

threshold intensity of the forward laser beam is approximately 1.8 x 1014 W C ~ - ~ .  

Since typical laser intensities are in the range of 1013 - 1015 W C ~ - ~ ,  it should be 

possible to observe the absolute filamentation instability in current plasma-physics 

experiments. It might also be possible to observe the absolute filamentation in- 

stability with a single laser beam if back-scattered radiation from the density 

maximum of the plasma is sufficiently intense. 

The preceding analysis shows that it is possible for the cooperative filamenta- 

tion instability to occur in current inertial-confinement fusion experiments. What 

is more: this work suggests that cooperative resonant instabilities may a l s ~  be im- 

portant and may lead to transverse structure resulting from resonant instabilities. 



A definitive conclusion on the likelihood of such occurrences must await a more 

detailed theory which takes absorption and plasma inhomogeneities into account. 

In the field of nonlinear optics both experimental and computational work 

exists which supports this analysis. Conical light emission, which is a far-field 

signature of the TMI, has been observed in several recent experiments on phase 

conjugation in sodium vapor [91, 47, 49, 521, In these experiments, the range of 

incident laser wavelengths encompassed regimes in which sodium vapor is both a 

self-focusing (a = 1) and a self-defocusing (a = -1) medium, and the incident 

laser intensities were approximately equal. Conical emission near the critical angle 

corresponding to  the most unstable linearly growing mode was observed to occur 

spontaneously whenever the incident intensities exceeded certain threshold values. 

In the experiments cf Grynberg et al. [47], no conical emission was observed 

during single-wave illumination of the sodium vapor. \Vhen the sodium vapor was 

illuminated with two light waves, bidirectional conical emission was observed in 

the self-focusing regime. 

In most of the experiments of Pender and Hesselink [49,52] no conical emission 

was observed during single-wave illumination of the sodium vapor. However, in 

one set of single-wave experiments in the self-focusing regime [49], they did observe 

unidirectional conical emission. This observation is consistent with the l~ypothesis 

that noise-level radiation is amplified convectively and can be detected when the 

incident intensities exceed a certain value. When the sodium vapor was illumi- 

nated with two light waves, bidirectional conical emission was observed in both 

the self-focusing and self-defocusing regimes. Unfortunately, however, no infor- 

mation on either the relative intensity thresholds in these two regimes, or how the 

observed conical-emission thresholds compared to  the theoretical phase-conjugate 

oscillation thresholds, was given. 
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Both sets of experiments were completed before the properties of the cooper- 

ative TMI and its relation to the two-sideband processes were well understood. 

However, the importance of the cooperative TMI has now been realized and work 

is now being carried out in which the full system of partial differential equations 

is integrated numerically and the analysis is being extended into the nonlinear 

regime 1961. A new set of experiments using simple nonlinear optical media might 

now be carried out to confirm the predictions of these theoretical works. 

It should be of particular interest to continue the work discussed here. In the 

field of laser-plasma interactions further understanding of cooperative instabilities 

could have important implications both for the understanding of FWM and phase 

conjugation and for the understanding of indirect absorption of laser light in 

applications of laser-plasma interactions. The ideas presented here are directly 

applicable and of central importance to the understanding of transverse effects in 

both cubic and Brillouin-active media. 
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