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ABSTRACT

The reconstruction of pseudoholograms at high orders is investi-
gated for the first time. The purpose of the work is to demonstrate
the potential and the power of this new technique for obtaining high
resolution x-ray images of imploded pellets in laser pellet-compression
experiments. Considerable insight, to the high order focusing capa-
bility of zone plates, is gained by first studying the analogies between
zone plates and diffraction gratings.

The formal mathematical framework of pseudoholography is then re-
derived, this time including the reconstructioms at high orders. Gen=-
eralized expressions for planar and tomegraphic resolution, transverse
and axial point spread functions are derived, The theoretical study
predictes a practical submicron resolution. The lirdtations and pros-
pects of the technique are discussed, and expressions for determining
the effects of diffraction in the recording step of a pseudohologram
are derived. Unconventional 2one plate designs are introduced and the
possible improvement of the high order reconstructions is discussed.

The effects of speckle noise in the high order reconstructions
are stutied. The granularity of the film as well as the serration in-
troduced in the zone plate in the manufacturing process are treated.
Three computer programs are used to investigate the transverse and
axial performance of zone plates of different designs at various orders,
and to similate the recording and reconstruction of a pseudohologram,
The dependence of the quality of the high order reconstructions on the
object characteristics is demonstrated. Ry controlling the y of the
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film and the zone plate design, we can optimize the quality of the
high order reconstructions of certain classes of objects. The possi-
bility of using different coded apertures when the reconstruction is
to be done digitally is discussed,

An optical simlation of imaging an x-ray source is described,
which demonstrates the increase of resolution at higher orders. An
extensive experimental study is described for investigating the effects
of the y of the recorded pseudohologran and of the imperfections in
the zone plate mask on the quality of the reconstructions at high
orders., The construction of an x-ray zone plate camera for laser
pellet compression measurements is described. Results from some
pellet compression experiments are shown demonstrating an increase
of resolution at high orders. A resolution test for the zone plate
camera is performed, 8um resolution in the first order and Lym reso-
lution in the second order are demonstrated. The resolution in the
third order is typically 3pm. Finally, an optical simulation of an
x-ray experiment is deacribed showing the feasibility of using a one

dimensional gone plate coded aperture to spatially resolved spectra.
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INTRODUCTION
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There are two basic approaches to pseudcholography which is
frequently called incoherent holography in the literature ([1.1],
1.2], [.3], [L.L])s In one approach (described in [1.1] and [1.2})
an optical instrument is used to form two images of every point in the
object. These two images are coherent with respect to each other,
hence they can form interference fringes on a photographic plate.

The pseudohologram is thus built up of an inccherent superposition
of interference fringes originating from all the points of the object.

In the second approach, which is referred to as coded aperture
imaging ([1.5], [1.6), [1.7]), each point in the object casts a
shadow of an aperture (a sone plate, an annular aperture, etc.)
onto a piece of film (see Fig. 1l.1). The pseudohologram in this case
is built up of an incoherent superposition of shadows cast by all the
points of the object.

In both approaches the object (which is illuminated by an inco-
herent® source, or is an incoherent source itself such as a plasma or
a flame), is considered as a colleetion of point sources which are
incoherent with respect to each other, Furthermore, in both methods
the pseudohologram is sensitive to the distance of the object from the
aperture, or the appropriate optical instrument, and therefore depth
information is recorded as well as intensity information. Both
methods are two step procedures in which the second step, the recon-
struction step, may be performed either optically or digitally. So

*we will use the term incoherent source although it is rigorously a
non physical entity
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far, there has not been any practical application using the first
method because of the limitation of being sble to record only a small
number of points. An improvement has been proposed (Ref. [2.2.11])

to increase the number of points considerably using, instead of the
usual two beam interferometer, a lensless Fabry Perot interferameter.
Further investigations should be carried out in order to determine
whether high qQuality pseuacholograms can be obtained using this method.
Since optical elements such as a beam splitter or a Pabry Perot
etalon cannot be constructed for the x-ray region this technique is
useless for x-ray investigations.

The second method, on the other hand, is not limited to the
visidble region; in fact, it is most useful in the x-ray region and
with nuclear particles where no efficient imaging instrument exists.
A useful application of this technique is imaging laser produced
plasmas, At the University of Rochester there is a large progran
devoted to the laser Fusion Peasibdility Project. The experiments
reported in this work were performed with a four beam Nd’B:gl-ass
laser system (DELTA) that was in operation for four years for the
purpose of producing high energy density plasmas by compressing gas
filled microballoons. On typical shots, the laser delivered 7-10j)
on the target and the pulse width was typically 30 picoseconds. When
the intense laser light hits the glass ahell the surface evaporates
immediately and the ablated material speeds outward. The associated
reaction force drives the remainder of the shell and the gas fill

inward and causes campression,



In proposed laser driven pellet compression experiments using a
miltibeam multi-kilojoule laser it is anticipated that the dimension
of the high temperature compressed core will be of the order of lum.
Three types of instrmments are now being used to get spatial informa-
tion on the x-ray radiation emitted from the core in such experiments:

(a) The pinhole camera

(b) The x-ray grasing incidence microscope

(c) The Fresnel sone plate.

(a) The pinhole camera (Pig. 1.2) is a standard diagnostic tool in
laser produced plasma research because it is simple, insensitive to
alignment, has a large field of view, is achromatic and relatively
inexpensive. The resolution of the pinhole camera is of the order of
the pinhole diameter. 5um seems to be the smallest practical diameter.
For a smaller diameter, in order to employ the pinhole optimally, see
Tables 1.1 and 1.2, the pinhole would have to be located so close to
the microballoon that it will interfere with the target illumination
system, Purthermore, for imaging x-rays, the thickness of the foil,
in which the pinhole is made, has to be of the order of Sum and even
thicker for hard x-rays to be sufficiently opaque. Por high resolution
such pinholes are not planar masks; for example lum pinhole in a Sum
thickness sheet of gold would be a very long tunnel, which will cause

ghadowing and scattering problems.

(b) The grasing incidence x-ray microscope is an extremely expensive
instrument. It employs either two orthogonally oriented cylindrical
mirrors [1.8] or a system of confocal coaxial ellipsoidal and hyper-
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Table 1.1
PINHOLE CAMERA: OPTIMIZATION

(Notation as in Fig. 1.2)
from ref [2.2.7]

09\ (Z:fgz)

opt

R set by resolution of recording medium,

R2 25um
S
_E- 7 -5-12- = M, magnification
SYYAY
OP' -09)\51(]"’52/5])
M
‘09)‘51(1+M)

Typically, M2 5 so

2

opt
oo 09\
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boloidal mirrors [1.9]. The resolution of this system seems to be
limited by surface roughness. For reflecting surfaces with 502 s
roughness, calculations show that the resolutiom is about l-2ym [1,101,
A practical device {1.10], however, is reported to have 3-5um reso-
lution. The instrument is also limited to wavelengths >28 » hence no
hard x-ray image or o=particle image can be obtained in thie way. The
grazing incidence angle is of the order of 1° at this angle the aber-
rations become so severe that the field of view becomes exceedingly
small and the alignment becomes very difficult, A summary of different

x-ray grazing incidence microscopes is given in Table 1.3,

(¢) The sone plate is being used in two modes of operation: 1. imaging
mode and 2. shadowgraphy mode,
1. The imaging mode {see Pig. 1.3).

The sone plate has been used as a focussing device for imaging
stellar xeray sources [1.11]. In Ref. [1.12] a description of the use
of a sone plate as an x-ray lens is given. Currently sone plates are
made for imaging soft x-rays with resolution of the order of 0.5um with
quasi monochromatic radiation like synchrontron radiation [1.13]. They
can be manufactured by an interferometric technique with extremely high
number of sones (1000-2000) and can be corrected for spherical abere
ration by using an aspheric wavefront in the interferometer [1.lL].
Furthermore, we do not need to make the sanes corpletely opague [1.15],
because the phase shift introduced by partially transparent metallic
sones will always improve image forming efficiency. We can also hlase
the sones in an analogous manner to that of a grating,and get high



Table 1.3
STATUS OF GRAZING REFLECTION MICROSCOPES un "

LLE

LIMITING PRACTICAL PRACTICAL

FOCUSING SYSTEM ABERRATION RESOLUTION FIELD OF VIEW
ONE MIRROR :
1. Spherical Asfigmatism - -
2 Ellipsoidal (Wolter) Spherica! 104 x 40u —
TWO MIRROR :
1. Kirkpatrick-Baez Spherical 3u 200u
2. Aspherical (Wolter) Coma N.A 3004
3. Wolter-Schwarzschild Field Curvature N.A. N.A.
COMPOUND MIRROR :
1. 3-Mirror N.A. N.A. N.A.
2. 4-Mirror N.A. N.A. N.A.

8/77
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Fig. 1.3

FORMATION OF HIGHER ORDER
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efficiency at a specific order, Laser produced plasmas emit a broad
spectrum; and since the sone plate focal length is inversely propor-
tional to the focal length (as will be discussed later) the dispersion
is so great that direct imaging is impractical. In addition, it is
not useful for particles or hard x-rays, it is sensitive to alignment
and kas a limited field of view. In spite of a few claims for im-
proving the resolution in higher order imaging 0.14], N.16], it
will be shown that this is not possible in the imaging mode and the

resolution is determined by the width of the outermost sone.

2. Coded aperture mode, Merz [,19] was the first to use the sone
plate in the coded aperiwre mode for imaging stellar x-ray sources.
This technique was then applied to nuclear medicine {1.20] by H. H.
Barrett. However, the latter results were not very attractive because
the imaged object was too large for the sone plate, (The lirmit on the
object sise is of the order of the sise of the innermost some,) Ceglio
[1.21] applied this technique to the investigation of laser produced
plasmas, the application of concern to us.

In our study we have analysed various features of coded aperture
imaging including the resolving power in higher order reconstructions,
and the limitations of the method including grain noise in the film,
diffraction effects, and fabrication defects in the sone plate mask,
We find that improved resolution is achieved in high order recon~
structions, and that contrary to a previous report [.18] diffraction
effects are not, in principle, the limitation in resolution vhen

recording a soft x-ray spectirum,
Ta Table 1.l a comparison between all the methods reviewed here
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is given.

We will first present an analogy between sone plates and gratings.
Then the coded imaging technique will be analysed stressing its
potential at higher order reconstructions, Also, the possibility
of using different coded apertures when the reconstruction is to be
done digitally will be discussed. 4n optical simulation of imaging
an x-ray source is then described, which demonstrates the increase of
resolution at higher orders. The construction of an x-ray sone plaie
camera for laser pellet compression msasurements is described, Results
from some pellet compression experiments are shown demonstrating an
increase of resolution at higher orders. The potential of one dimen-
sional sone plate coded aperture is then discussed. Finally, an
optical similation of an x-ray experiment is described, showing the
feasibility of applying the idea to spatially resolved spectra.
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2.1 The analogy between sone plates and diffraction gratings.

Consider the system in Fig. 2.l.1. A spherical wave is diffracted
by a mask A(X,, ¥,). Using the Fresnel Kirchhoff integral (see Ref.
[2.1.1] page 382) we can write the amplitude at any distance Z from
the diffracting aperture. Assuming small angles (less than 30°) we
can neglect the obliquity factor in the integral. Also, for a fixed
2 the change in 1/ry and 1/r, over the range of integration is negli~
gible compared to the change of the phase, so we replace these terms
by the axial values 1/R; and 1/Ry of 1/ry and 1/r, respectively and
write them outside the integral., The amplitude G(X,,Y,) is then:

Y, X
, ic b P iK(r1+r2)
G(X,,Y,) = Ry ! i AlXy,Yq) € dX,dY, (2.1.1)
a a
where r, is the distance between a point an the plane (X T,) and a

point on the plane (ll, !1) » T, is the distance between a point on the
plane (xo, I,) and a point on the plane (11, I,), K is the wave number,
and ¢ is a constant. Expanding Ty and Ty in the exponent we get

) 42, 1 o2

1}

)2 (2.1.3)

1 21
o = Ry + 55 (X X)) *ﬁ;(yo"’z

2
Using planar polar coordinates in each of the three planes we have

Xotpacose; )(1 = H cos a; Xz-ocos¢

Yo = pa sin 6; Y, = H sin a; Y, = o sin¢ (2.1.4)
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Fig. 2.1.1
Difiraction of a spherical wave through a zone piate.
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dX dY = a® pdpdb; u = a'2(‘ + 0
oo T e et TR

where (pa,8), (H,a) and (o,¢) are the coordinates in the mask, source

and film planes respectively; a is the aperture radius and p is the

fractional radius. Using (2.102), (2.103), (2.10)4) in (201.1) we get:

. 2 L 2
2 |K(R1+R2) i KH /2R1 i Ko /2R2.

iAa
6(o,¢8) = - e e e
AR1R2
(2.1.9)
1 . 2 (-iKoap/R,)cos(6-¢) -~ (iKHap/R,)cos(6-a)
ﬂ A(p) e2mive” ¢ 2 ! pdedp
0
Consider the terms that involve angles:
-Kpa Ri cos(B~¢) + Rl cos(8=a) §= (2.1.6)
2 1

1 Ry 2
~-Kpav cos(8-x)

. . )
'Koagcos el:H—‘:;’s—ﬁ+°C:s 2:[+sine I:H sina | osRm e];,
2

where

R1 R2

sin y = [HsRma +c:rsRing:l/v ,
2 2

cos x = [Hcosu 4 gcosé IV s (2.1.7)

v o= (H/R‘)2 + (CJ/RZ)2 + 2H0/R1R2 cos (¢-a)

let H/I’(--l be the object field angle and c:v/R2 be the image field angle,

Let us change variables: pz = ¢; pdo = 4dt. '
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Until now the discussion was general and could be applied to
gratings as well as to sone plates. We now limit the discussion to
rotationally symmetric apertures, i.e. A(p) is rotationally symmetric.

Then A'(o2) » A{(t)s Using an identity for Bessel functions [2.12]

27
1 - s(8-
n | ikoa v cos(8-x) do = Jo(KpaV), and considering only the inte-

0
gral in 2q. (2.1.5) we get:

1 omi
6'(0s6) = | A Py (D) e
0

(2.1.8)

The prime denotes that all the constants were omitted from the formula.
Eq. (2.1.8) is the most general expression for the field diffracted
from an axially symmetric circular aperture on which a spherical wave
of radius Rl is incident.

Consider the intensity on axis when a point source situated on
axis is illuminating a zone plate. In this case Heo=0; therefore

v=0 and Jo(Koav)-l and we get from (2.1.8)

1 .
6'(u) = J A(t) e2miut g¢ (2.1.9)
0

This is_exactly the Fourier transform of the aperture written in the t-
domain rather than in the p~domain,
We thus see that the on axis intensity distribution of rotationally
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symmetric, two-dimensional, apertures is completely analogous to the
far field intensity distribution diffracted by a one-dimensional
aperture. Therefore, any result derived in one domain can be imme-
diately transferred to the analogous domain,

We will consider a special class of rotationally symmetric
apertures: Fresnel sone plates and a few of their derivatives. The
terr Fresnel zone plate refers only to a special class of apertures
as shown in Fig. 2.1.3. Other general apertures which have some
similarities to Fresnel sone plates will simply be called sone plates.,

Since we deal with apertures derived from the Fresnel sone plate,
let us clarify the notation by first considering Fig. 2.,1.2. A
cosinusoidal sone plate may be produced by recording the interference
from two coherent sources on axis. Let Al’ A2; ¢y b3 P‘l’ RZ be the
amplitudes, phases, and distances of sources 1 and 2, respectively,
fror the screen, and assume that Al/Rl . Az/R2 = A. let us use the

. o~ 1
following definitions: u = [W-RL] 1; 5 86 % Ryg = Rog + 61 = o3

x » distance on the screen. From Fig., 2.1.1 and 2,1.2 we then have

2 xzu
1 = 2A l:1 + cos[T-o- A¢}:[ . (2.1.10)

In Pig. 2.1.3a Eq. (2.1.10) is plotted for four differeant source phases.
The corresponding Fresnel sone plates that are derived from them are

2
also shown. All plots are in the e-‘r_ﬁ‘. coordinate, Zone plates of

type (c) and (d) are most commonly employed. (c) is called a posit.i';e
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Fig. 2.1.2
Formation of a zone plate by interference of two spherical
waves.
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«26-

zone plate and (d) is called a negative zone plate. (They differ by
a phase of n.) In Fig. 2.1.3 b positive sone plates in real space
are shown., From Fig. 2.1.3 8 we see that positive sone plates always
have an odd number of gones (transparent and opaque)., The number of
open zones exceeds by one the number of opaque sones, ‘The negative
zone plate hac an even number of gones.,

In Table 2.1.1 (1) we list the location of the tone edges (in
the 8-coordinate for the four cases in Fig, 2.1.3 a. In (2) we
list the boundaries of the open gomne in each case. Finally we
generalize in (5) these expressions in order to obtain an expression
for an arbitrary zone plate width and shape. From Table 2,1.1 it is
possible to write an expression from which all the four cases in
Table 2.1.1 can be derived. The range of ¢ that belongs to the jth

open zone denoted by ej is:
(2 -9)n + 86 < 0 < (2j +9)7 + a¢ (2.1.11)

where A¢ =4, =¢, = (0, my /2, 31/2) according to Fig. 2.1.3 a.

In a computer calculation bof the diffracted intensity distributions
from various zone plates we find it convenient to define RPEVEN,
RPODD; RNEVEN, RNODD to be the radii of an even numbered or an odd
numbered gone edge respectively in a positive or negative zone plate
respectively, and EPS1 and EPS2 to be the fractional width of the
zone plates as in Fig. 2.1l.4 b. Q is the sone plate constant (i.e.
Q = 1//NZNE), and NZONE is the total number of zones. Using these
definitions and Table 2.l.1 we can write the following results:

1, Positive zone plate (NZONE = odd number; open center)
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RPEVEN = [(4M+1)/2- EPST1I¥Q; RPODD = [(4M+1)/2+EPS2]iq  (2.1.12)

where ¥ = 0, « o o ,(NZONE-1)/2

2. Negative zone plate (NZONE = even number; opaque center)

RNODD = [{4M+3)/2 - EPsni’Q; RNEVEN = [(4M+3)/2+EP52]*Q (2.1.13)

where EPS1, EPS2 < 0.5 but for a Fresnel sone plate EPS1 = EPS2 = 0.5.
As an example we calculate (2.1.9) for a positive zone plate.

Since the equation is in the form of a Fourier transform, we may

consider the analogous case of the Fraunhofer diffraction patterm

of a grating. We derive it explicitly because of misleading results

in the literature 2.1.4 , [2.1.5], [2.1.6] and [2.1.7]. Denote by

N the total number of sanes (both clear and opaque) From (2.1.9)

we have:

G'(u) = J L 6(t-2nq-%) * Rectt;q] 432'"“"t dt . (2.1.14)

Using the convolution theorem and the fact that

JRect[t;q] eZMUt dt = -s—i—'-‘if-‘ﬂ
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we have;
oy - 2mifugr2) /2, i
6'(u) = e g J e’"iZnqu sin mug (2.1.15a)
n=0 U ’
or
6'(u) = MiNqu sin(rug(N+1)] sin[ruq] (2.1.15b)

sin(2nqu) U

From (2.1.15 b) and (2.1.5) we get for the amplitude (neglecting the

phase factors):

1 ﬂAa2 sin[nqu(N+1)] 1

2)R\R, 2cos (rqu) mu o (2.1.15¢)

G"(u) -

Assume Ry > (collimated light); A/Rl-r E = constant., Substituting

for u from (2.1.L) into (2.1.15 c) we have the remarkable result:

o - E sinlrqu(n+1)] ‘
6'"(u) >~ cos(rqu) . (2.1.16)

From 2,1.16 it 4s obvious that all the foci have the same peak on-axis
intensity. The locations of the foci are found by taking the limit of
(2.1.16) as cos(nqu)-+0, or u—»(?.ul)%a and by using (2.1.4) for u
the locations will be found later, Substituting for u we get the
Limit:

i sinlnqu(N+1)] _ (N#1 L=l
- u+(2;m)1/zq cos (rqu) (1) . (2aan
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From (2,1,5) and (2.1.7) we write the total phase fimction using R >

ando=0 as: ¢ - .;f + szo - ."I(l':l_) - 72 « Hence successive odd
2

order foci have successive phase changes of n, (Not inglud:z.ng the

phase due to distance KRZO') From mqu = (a!»l)g, u't.-a—- and q-;ql- we
2)R
T2

get, denoting the order number by p, the locations of the foci:

LI i (2.1.18)

Let us explore more specific examples of the analogy between sone
plates and gratings.,

2.1.1 Spread of the principal orders.

Eq. (2.1.15 b) is the formula for the oneaxis intensity of a zone
plate but it is also the expression of the intensity in the Fraun-
hofer plane of a diffraction grating. The only difference is the
coordinate u. In the sone plate case, u » a2/2AR2 while in the
i where X is the distance on a transverse

2’q
plane; d is the slit sise width; q-!%. For a given N the spread of

grating case, v = (dx/2)R

the principal orders is constant in the u domain., This is true in

the grating case and also in the sone plate case in u domain, However
it is not true for zone plates in real domain where, as we go to higher
orders, the spread on axis gets smaller, From (2.1.15 b), using the

two definitions of u, we get the spread of principal orders (using

small angle approximatians).



For ruled gratings: AX = %
2
For zone plates: AR, = A RZ
: ' 2 N+1) 2
z 9@

2,1.2 Chromatic Resolving Power.

Both gratings and zone plates can be used as spectrometers.
While the dispersion in gratings occurs in transverse plane, a gone
plate can be used as an axial spectrometer. In both cases the
important quantity is the chromatic resolving power., From Ref. [2.1.1]

P.L0f (let ¥ be the order number) we have for gratings that

1
S < W (2.1.19a)
The same calculation for a zone plate gives
A 1
- = (2.1.19b)
A N2 (2041)

which is analogous to (2.1.19a).
2.1.3 Dispersion.

In a grating the dispersion along a one~dimensional coordinate
X is given in Ref. [2.1.1]. p.106:

In a zone plate the dispersion along the optical axis is:

ARZ = R22/q32 . AA/_(_N:.D_
2
or B om
R2 A

Hence, if we want to use the zone plate in the imaging mode only,



quasirmonochromatic radiation must be used.

2.1k, Ilumination with a Finite Source.

Assume at first that the source is planar and perpendicular to
the optical axis, Spherical waves fram different points are incident
on a grating at different angles and give rise to grating pattems
slightly displaced with respect to each other, Note that this is
true either in the Fraunhofer plane or at the image plane of the
point source when a lens is used » Thus if the source is inco-
herent then the diffraction pattern will be & convolution-
of the source with the diffraction pattern produced by collimated
light. The direct analog in a zone plate will be a longitudinal line
source. The convolution is exact in 1/z coordinates but in z coor=

dinates the axial spread of higher orders will shrink. 4 transverse

source, however, will be imaged to a transverse source as with a lens.

2.1.5 The Effects of Changing the Zone Shape or the 5lit Shape.

For this discussion we will work with the analogy between ampli-
tude gratings and zone plates. In Pg. 2.1.L a few examples of
different zone plates are shown. We can describe the on-axis intensity
distributions using the same procedures as before. let Ba(t) be the
individual amplitude slit shape (or the zone shape in the r? domain).
The aperture function of the grating (or the wzone plate) can then be
written:

Alr) = Eﬁ(t-2nq-%)'kect[t-92!;!§-] *Ba(t) . (2.1.20)
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plate with slanted edges, (e) edges smoothed with a Gaussian
function, (f) narrow Gaussion zones, (g) zone plate with two
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cosinusoidal zone plate recorded with 7= 2.
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Neglecting constants and phases, the diffraction pattern is, therefore:

Gu) = SESnaEﬂ[qnuq(u%H)]'éa(u) o (2.1.21)

The B,(u) and the corresponding G(u) are calculated in Table 2.1.2.
There are two methods of normalisation, In the first we normalize
the intensity of the diffraction pattern with respect to the zero order.
This is a useful procedure when the energy diffracted in the zero ordszsr
is measuradble as in the case of amplitude gome plates flluminated with
collimated light, However the gero order can be eliminated in phase
gratings, and in the case of zone plates illuminated with a collimated
beam, the energy in the zero order is not focussable. In these cases
we normalize the diffracted intensity with respect to the first order.

Exarples of a few normalized expressions are given in Table 2.1.3.

2.1.6 Conclusions fram the Calculations of the Diffraction Pattemrns
for Gratings and Zone Plates (Fig. 2.l.L and Table 2.1.2).

1. The on-axis intensity in higher orders in zome plates,
depends strongly upon the shape of the individual zones,

2. It is not possible to eliminate the sero order with only an
amplitude modulation in the grating. The presence of the sero order
causes background prodlems both when imaging with zone plates and in
reconstruction in pseudcholography.

3, If the zone plates have very sharp edges, as in Pig. 2.l.L.a,
the peak on-axis intensity will stay the =2ame at all odd orders, If

the zones are made narrower as in Mg. 2.1.4 b even numbered foci
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appear. Some high even and odd orders may also have a peak intensity
corresponding to the ideal case EPS=0,5 depending on the number EPS
(see Table 2.1.2.LDb).

L. Smoothing of the edges tends to decrease the efficiency at
higher orders., For a triangular zone shape (Fig. 2.l.L.c, 2.1.4,d) the
decrease is the worst of the examples picked. In case of a Qaussian
shape, the decrease is less severe (Fig. 2.1.L.e, 2,1.L.f). There
may even be an increase in on-axis intesity at higher orders as may
be seen by substituting for in Table 2,1,2,.Lf the value 1/N where
N is the number of zones,

5. Processing the original recording with y¥1 changes the apparent
shape of the gzones. Therefore, the efficiency at higher orders depends
very much on the type of processing. Processing may also cause arti-
facts in pseudoholography as will be discussed later on.

6. Because of the finite dynamic range of the recording medium
it is preferable to use gone plates with narrow sones, (as will be seen
later on) therefore a zane plate as in Fig. 2.1.L.g seems attractive.
The inner zones are much narrower compared té their usual width.

This, in addition, will tend to increase the light scattered into
higher orders.

7. If the ampilitude modulation in the grating is an exact
cos? function ACos? A/2(14c082 ) then only 0,1 orders appear
and in the case of zone plates only one real focus exists.
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2.1.7 Phase Gratings and Zone Plates, '

In this case there are two modes of operation: (1) transmission,
where changes in index of refraction cause diffraction, and (2) reflec-
tion, where the relief structure on the surface causes the daiffraction.
The sinusoidal phase grating was analyzed by Goodman [2.1.2].

In Fig. 2.1.L4 a few other examples are listed., Only the sinu=
soidal example has a simple closed form solution, the others are
extremely involved. Xirtz [2.1.8)] has calculated a gemeral expression
for the example 2,1.L d (where the vertical axis is now phase), His
treatment includes absorption effects as well. He mentioned only
gzone plates but all his results apply equally well to gratings. Also,
he assumes working only in transmission (the analog being transmission
gratings).

However, in Ref, [2.1.9] and [2.1.10 the efficiency of Teflection
gratings is considered with different groove shapes, These results can
be applied directly to zone plates working in the reflection mode,

Bleaching of pseudoholograms may be a useful technique to enhance
higher order reconstruction. Also reconstruction in reflection should
be investigated both with and without aluminum coating on the processed
pseudohologram, Coating with Ag or Al will enhance the surface struce
ture while reconstruction without a coating will take advantage of
volume effects as well. Using zone plates in reflection introduces
new problems such as polarization effects, These were not treated
before because the usual use of zone plates was in the transmission
mode on axis, This mode of operation may provide an easier way to
blaze the pseudohologram to achieve high efficiency at high orders,



The main advantage of phase gratings (or zone plates) over the
amplitude counterpart is the possibility of conveniently eliminating
the gero order and hence increasing the signal to noise ratio, both
in imaging applications as well as with the reconstruction of pseudo-
holograms, As an example, consider a phase grating or zone plate of
the type shown in Fig. 2.1.4 a. Calculating the B (u) which corres-
ponds to B,(u) in Eq. (2.1.20) and Table 2.1.1, we get:

0 q
Bp(u) = J ei¢ dt + J dt = q(ei¢+ 1)

-q 0
This will determine the efficiencies at all the orders as we have seen
in section 2.1.L. The condition for ép(o)-o is that ¢=n. Pig. 2.1l.L a
shows this blazed phase grating (when ¢ =) in which the gero order is
elirinated and higher orders are more intense on-axis.

In Fig. 2.1.5 we see the condition for blazing a transmission zone
plate for a specific order in analogy with blazed reflecting gratings.
In practice we may cantrol the phase modulation by the exposure in the
case of reconstructing a pseudohologram. Also, by controlling the
magnification of the pseudohologram we may find the right focal length
that exactly matches the given modulation to obtain blaezing. This
technique is completely analogous to gratings and has been used so
far only in the far infrared regions [2.1.11 a]. A group at Lawrence
Livermore Laboratory has recently announced [2.1.11 b] ite intention
to blaze zone plates for the x-ray region for use in the imaging mode.
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Blazing of the zone plate occurs when both the diffracted and the refracted beams have
the same direction, in complete analogy with diffraction gratings. r,, is the nth radius of
the zone plate. F is the focal length where the 2one plate is blazed. If nzis the refractive

index of the material of which the zone plate is made, nz sina= sin



2.1.8 PFluxes at Higher Orders.

For the example in Fig. 2.l.L.a we have seen that the peak on-axis
intensity is the same at all the odd numbered foci.At high orderls we ap-
proach closer to the zone plate and have a larger cone angle of illumination.
This means that incident collimated 1ight will be focussed to a smaller Airy
disc. If ) is the cone angle at the primary focus, p{zl is ghe cone
angle at focus number p, The area of the Airy disc is then _;' where
S, is the area of the Airy disc at the primary focus. Sincepthe peak
intensities are equal but the areas are related as 1=p2, the number

of scattered photons must also be related as 1:p2.

2.1.,9 Scattering and Noise in Gratings and Zone Plates.

We may distinguish between two kinds of scattering which lead to
speckle patterns in the reconstruction of a pseudohologram and to back-
ground noise in case of imaging an incoherent source. In the case of
a pseudohologram which is recorded on film, the film grains will cause
a speckle pattern when we illuminate with ccherent light exactly in
the same way as a ground glass produces speckle when illuminated with
laser light. This can be treated as a Gaussian random process for
which a fairly large literature exists [2.1.17].

The second source of scattering is the gzone edges which are not
ideally smooth but are really serrated apertures, Little has been
done concerning the diffraction pattern of such apertures. (See a
recent paper Ref. [2.1.13].) The mathematics becomes exceedingly
involved because symmetry is destroyed, and the formalism employed

before cammot be used,-



If we consider one~dimensional gratings as shown in Fig. 2.1.6,
the grain noise contribution can be seen but the serration is not
easily visualized., In order to include the serration contribution to
the one-dimensional model, we hawve to consider an ensemble of one~
dimensional zone plates (or gratings) with grooves that vary randomly.

To make such a treatment we let rn-rz'fén(rn); rp is the radius of
a certain zone rg is the radius of an ideally smooth zone; én(rn) is
a random variable. In general, if the aperture function for one member
of the ensemble is Z(t), and that for the ideal zone plate is Zo(t) then
we may write 2(t)®2°(t)+E(t) where E(t) is a random process with spaces
of randor width. (In two dimensions the problem is more complicated
because rp(¢) is also a function of the angle (Fig. 2.1.7) i.e.,

r (8) = rovs (r,,6))

Consider the one-dimensional case. E(t) 3is illustrated in Fig.

2.1.,8,c. This is a stochastic process with a few restrictions:
1, E(t) can have only 2 values =1, +1. 2. The spikes have a randor
width lying between zero and /L. 3. One edge of the function is
always located at tenq. In Fig. 2.1.8.d we see that this random
process can be described as a series of impulses. Let tj be the

solution of the equation:

Sinzﬂ [';'t+ ¢(J)q)1£ = 0 or ¥ [‘taj"" ¢(J-Q)] = jw

where j=1,2,3,... and vhere ¢(J,q)is a discrete random process satis=
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Fig. 2.1.6
Grain noise in a zone plate recorded on flim or surface roughness fiuciuations in a

refiection diffraction grating. t is the distance square coordinate for a zone plate or the real
distance coordinate for gratings.

Fig. 2.1.7

A representation of a zone plate (only 2 zones) with
the serration introduced in the manufacturing
process.
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fying - % < 6(3,q) :% and for every Jj, 4(J,q) is a uniformly
distributed random variable in the interval [ﬁ, E:[ Also let N(J)
be another discrete random process which assumes with probability
1/2 for odd or even integral values. With these definitiens the
randor process in Fig, 2.1.8 d can be written as:

E(t) = ] G(t-tj)-cos[N(j)"—zr-

Consider the diffraction pattern of 2(t): Z(u) = Z (u) + E(u).

The serration acts to produce an additive noise. Calculating
<:E(u1):z:(u2)> and <|§'(u)|2> in terms of E(t) is possible by assuming
stationarity. From <f'(u1) f(u2)> we may also find the power spectrum
[2.1.1L] and hence find the characteristics of the scattering on axis
for a zone plate, (and on the plane where the diffraction is observed
in the case of gratings). Using a one-dimensional model means that
the errors are assumed symmetric in the zone plate, This is, of
course, not a fully realistic model but it still gives a feeling of
shat to expect.

The grain noise, on the other hand, acts as a multiplicative
noise so that Z(t) = 2°(t).g(t). Again assuming symmetrical noise
we get Z(u) = Z°(u)#g(u). The grain noise spectrum thus convolves
with the noise free pattern.

In Fig. 2.1.9 a comparison between the grating and zone plate
cases is shown., In the grating case, Pig. 2.l.9.2, the speckle
pattern is essentially the same at all orders because the orders
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Z°(t) 1
(a) ey
Z(t) 1
(b) et
E(t) 1"* o= P paay
(c) —t
.1 L
19 A T
(d) T - . Ad Al L ;’t
b Ia N A *
.14 \
Distance square coordinate (for zone plate)
or distance coordinat: (for grating)
Fig. 2.1.8

Modeling the noise introduced by random flucuations in the zone radii orimperfections
in the siraightness of the diffraction grating grooves. (a) Z°(t) is the ideal Fresnel zone
plate, (b) z(t) is the real zone plate, (c)E(t) = Z°(t) - Z(t), (d) random process that
describes the deviation from an ideal zone plate.
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(a)

Fig. 2.1.9

Noise effects. (a) The noise convolves with the diffraction
pattern in the case of gratings, (b) the noise convolves with
the on axis intensity distribution in the case of zone plates.
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are equally separated. But in the case of zone plates the orders
are not equally spaced and the convolved pattern at higher orders
must shrink. Hence the appearance of the speckle pattern changes
along the axis., (This discussion does not say anything about the
transverse distribution of speckle in the different orders. This
will be done when Fresnel transformations are considered in a later
section,) If we want to examine the fainter high orders it may be
useful to ermploy a converging light beam rather than a collimated
light bearm. This can reverse the relative axial location of the
foci, making the grain noise contribution less severe,

The serration contributes background noise. The only way to
reduce this type of noise is to manufacture a better quality zone

plate with: less serration.

2.1.10 Aberrations in Zone Plates,

Third order contributions to the aberration function were
calculated by Young [2.1.15]. The aberrations arise because of the
error introduced in the derivation of (2.1.1 ), where the square
root in the exponent was approximated only to first order.

The first remarkable feature about zone plates in this context
is that there is no diatortion term as with a regular lens since
the chief ray does not deviate as it passes through the gone plate.
The second interesting feature is that it is possible to correct for
spherical aberration in the production process. One of the methods
for manufacturing zone plates is by interfering a plane wavefront
and an sspherical wavefront (or 2 spherical wavefronts), In Ref,



«50=

[1.1L] a method is described, in which an aspheric wavefront is pro-
duced and interferes with another spherical wavefront so that the
correction is built into the zone plate, 1In fact, we can always
choose radii for two spherical wavefronts (i.e. you don't need an
aspherical wavefrant) such that by interference will produce the
required correction. We thus get an optical device free of both
spherical aberration and distortion. Furthermore, if we use the
zone plate in the imaging mode, and if it is manufactured in the

way which is discussed in an earlier section to enhance hLigher order
efficiency, then by shifting an eye piece from order to order we can
get a zooming effect without any additional element. The dast two
features have not yet been fully realized but it may become practical
in the soft x-ray region.

Higher order reconstruction is important in the pseudoholography
technique, At higher orders the F/# is smaller, hence the aberrations
become more pronownced. In Ref. [2,1,15] the condition for image
quality of better than »/L is N2 < 2F/i; where N is the number of zones,
F is the focal length, and A is the wavelength of the reconstructing
light beam, For f=10cm, A-SOOQR, N<600 zemes. In Fig. 2.1.10 we
see an explanation for the fact that at a higher order p there are
effectively PN zones., If we think of reconstructing at the sixth order
we should not use & zone plate with more than 100 gones.

Chromatic aberration is also dependent on the number of gones,

The pinhole camera - the simplest zone plate - is free of lateral color.
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At higher orders, the zones get narrower and the effective number of zones gets larger.
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2.,1,11 Computer Simulations.,

In order to get a better feeling for the performance of the
various zone plate designs, it is useful to plot the intensity dis-
tribution of the light at the different foci as a function of zone
plate parameters such as N{the number of zomes), EPS(the width of the
individual zone: see Fig. 2.1.4.b) and the zone shape (see Fig. 2.l.k).
Two kinds of plots are of interest to us: 1, the axial intensity
distribution and 2. the transverse intensity distribution.,

2.1.11.1 Axial Intensity Distribution.

2.1.11.2.1., A discussion regarding a computer program that calculates
the axial intensity distribution.
The axial distribution is given by BEq. (2.1.9)

1
6' (W) = JA(t) e2mivt g (2.1.9a)
0

If one is only interested in plotting this distribution in the u domain,
then ane can use the Fast Fourier Transform (FFT) algorithm to plot

- G'(u)., This distribution is observed in the case of the Fraunhofer
diffraction from a grating. However, if we are interested in the

axial intensity distribution from gone plates so we have to replot
G(u), scaling the coordinates in such a way as to get G(Z), where Z

is proportional to 1/u., This is a subtle problem which it will be
useful to discuss briefly.
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We first obtain the discrete form of Eq. (2.1.9 a), the Discrete
Fourier Transform (DFT):

N
G(mAu) = Z A(nAt) exp 2ni nN—m-At (2.1.9b)
n=1

Eq. (2.1.9.b) is obtained using the following definitions:

TOTD . N-1 1

Au = 070 N (2.1.22)

where N is the number of samples used, m and n are integers, and TOTD
is the size of the space in the input plane, (The size of the aperture
itself may be only a fractian of TOTD as will be discussed later,)
From Eq. (2,1.15), (2.1.9 b) and (2.1.22) we may write the intensity

distribution I(miu) as:

N 2
I(msu) = ESCALE | ] A(not) exp 2mi =% (2.1.9¢)
n=1
a2 707D | 2
vhere ESCALE ® (= =+ 7 - ——Z] . To find su from st we use:
AZ N-1

ausUSCALEat where USCALE -[E'_l_]z. i, I(miu) is thus calculated
TO0TD N

by the FFT algorithm and can be plotted using the scaling factors

ESCALE ard USCALE,

However, we would also like to plot the distribution in real
space, i.e. Z space. I1f Z is the distance in an on axis from the
zone plate and TOTIX is the extent of Z space then it is useful to
define a quantity by Z= [TOTIX. We usually choose TOTDI=F where F
is the primary focal length. From Bq. (2.1.k), u=(a2/2)z) for

collimated light. But a°=(NZONE))F and Z= F, therefore, u = -_._-.NZ?E .1
4



-Sl-

1
where NZONE is the number of zones., Let T -Z ¢ If now we want to

plot I(ms7) we have to scale AL = USCALE(Z) - At

where USCALE(Z) =

T space is merely a scaled version of u space., To get the intensity

distribution in terms of Z s ;F = g we plot I(ma7) as a8 function of
4

.

wif

The interpolation of sampled data is an important problem in such
calculations, As an example suppose that TOTD is the extent of the
input space, and A is the width of the aperture function. The

TOTD

sampling interval is A = Nl in the input space., Therefore, in

the transform space the sampling interval will be ¢ = — or

s = i cm. From this the total width of the transfo'f-gﬁs)pace is
TBD/.TEQ'D_N-E (see Fig., 2.1.11 for a visualization of these quan-
tities).TOTIIf)‘ A is comparable with TOTD then the corresponding width
in the Fourier domain will be very small with respect to the total
spaee size N/TOTD (Fig. 2.1.11.B). To exhibit the pattern we scale
down the space coordinate and interpolate between the values of
I(msz). I the scaling factor is too large we may get erroneous
results, Therefore, if we choose A to be a small fraction of TOTD
then the width in the transform plane will be large compared with
the total space size and we will not need to scale and interpolate.
However, to do that we will need many more data points so that a
compromise must be made,

One of the interpolation procedures is the polynomial inter-
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Fig. 2.1.11

Relation between the extent of the input function (A) and the
extent of the output function (B) when using the FFT aigorithm to
compute the Fourier transform of a sampled function.
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polation where we fit a polynomial through four successive data
points, and then calculate from this polynomial the intermediate
data points (see Ref. [2.1.17]). The main problem with this pro-
cedure is that it tends to give erroneous results when we scale the
plote by a facteor larger than 2. To reduce the error we may fit the
polynomial through more than four data points but with greatly
increased computing time.

Another procedure is described in Ref, [2.1.17]. It is based
on the sampling theorem (see Ref. [2.1.14)) by which every band
limited function can be fully reconstructed from an infinite series
of sampled data values, provided that the sampling frequency is not
less than twice its bandwidth, Here errors arise from the fact that
we cannot obtain an infinite series of points. However, it tums
out that if the parameters are chosen carefully this procedure may
be better than the previous one for equivalent computing times,

A computer program based on the remarks mentioned above was

writter and is listed in Ap. 1l.

2.1.11.1.2 Conclusions from the plots obtained by the computer
progran,

The distribution in the 1/z domain is the familiar Fraunhofer
diffraction pattern of & grating and we will not plot it here,
However, the distribution in the real space z is of considerable
interest to us here. The different cases are swmarized in Table
2,1.L. EPS1, EPS2, Bl and B2 are defined in Fig. 2.1.12. In Pig,
241,13 a the case of an idealized Fresnel sone plate is plotted,
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Fig. 2.1.12

Definitions of all the relevant quantities used to represent a zone plate in
the computer program. (t is the square distance coordinate.)
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Only odd foci appear and all have exactly the same on axis intensity
as predicted by Eq. (2.1.17). In order to show the different orders
the plot had to be scaled up at higher orders. The case 37 zones
was depicted since this is the number of zones in the zone plate
used in the x-ray experiment. In the first order the width of the
spike is quite large: about 3em. This limits seriously the tomo-
graphic capability of the system, No attempt was made to calculate
higher orders than the lhith order. In Fig. 2,1.13.b the case of the
same zone width but with slanted edges is plotted. Even orders
appear but they are strongly attenuated. The odd orders are also
attenuated. The decrease in the width at higher orders is clearly
demonstrated enabling higher tomographic resolution at higher orders.
Although the effect of slanted edges is to attenuate the higher
orders we may still find orders with appreciable on axis intensity
in this case. In Fig. 2.1.1L two cases with narrow zones are plotted.
In Fig. 2.1.1L a the edges are straight, while in Fig. 2.1l.1l.b they
are slanted. Comparing Fige 241.1keb with 2,1,13.b we see that when
the 2ones are narrover, slanted edges do not cause as much attenuation
as with zones which have the ideal width of a Fresnel zone plate.
This suggests that we may be able to design a zone plate where high
orders have still an appreciable on axis intensity in spite of the
fact that diffraction effecte are present in the recording step of
the pseudohologram.

In Pig. 2.1.15 the case of 11 gones is shown, to demonstrate
the critical dependence of the width of the orders as function of
the nunber of sones in the sone plate, In this case the first order
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extends over 18em while in Fig. 2.1.1k, over 3em,

.2.1.11.2 'I‘x"ansverae Intensity Distribution,

For a fixed Z Eq. (2.1.1) gives the transverse intensity distri-
bution, Using the small angle approximation (e.g. (2.1.2) and (2.1.3)),
Eq. (2.1.1) can be written as a Fresnel transformation. A computer
program is avaiable to calculate this integral (see Ref, [2.1.17]).
This program was modified to suit our needs and used to plot the
transverse intensity distribution as a function of N, EPS, and zone
shape. The calculation was done for the case where a plane wave is
incident on a zone plate and is brought to a series of foci.

The different cases are summarized in Table 2.1.5

2.1.11.2.1 Effect of the zone shape on the intensity distribution
of the various orders.

In Fig. 2.1.16 we plot two cases: (a) the ideal Fresnel zone
plate (EPS = 0,5), (b) zone plate with narrow zones. In the case
(a) the even orders are very weak, about two orders of magnitude
weaker than the odd orders. In theory they should be zero but
since we are sampling the aperture with finite number of points, an
error is introduced and the even orders are not identically zero.
All the odd orders are of equal height as predicted by Eq. (2.1.17).
The width reduces from about 200um in the first order to about 20um
in the 9th order. In the case (b) even orders appear and can become
quite _stmng. In this case some higher orders are even sironger
than the first order (for example, 2nd order and fifth order). Hence,



Parameters describing the plots in section 2.1.11.2

Table 2.1.5:

#  NZONE EPS? EPS2 BI B2 F N

1 37 0.5 0.5 0.5 0.5 150 2048
2 37 0.3 0.3 0.3 0.3 150 2048
3 1 0.5 0.5 0.5 0.5 150 2048
4 33 0.5 0.5 0.5 0.5 50 2048
5 1 0.5 0.5 0.5 0.5 50 2048
6 lens === === --= --- 50 2048
7 11 0.5 0.5 0.5 0.5 150 6144
8 37 0.5 0.5 0.5 0.5 150 6144
g 61 0.5 0.5 0.5 0.5 150 614k
10 11 0.5 0.5 0.5 0.5 150 6144
1 37 0.5 0.5 0.5 0.5 150 6144
12 61 0.5 ©0.5 0.5 0.5 150 6144

PoS/
_Fig. # NEG Order Dim.
2.1.16a pos 1-10 2
2.1.16b Pos 1-10 2
2.1.17a8 POS 3 y3
2.1.17b POS 1 2
2.1.17¢c POS 1 2
2.1.17d --- = 2
2.1.18a pos 1,3,5 1
2.1.18b pos 1,3,5 1
2.1.18¢ Pos 1,3,5 1
2.1.19%a NEG  1,3,5 1
2.1.19b NEG 1,3,5 1
2.1.19¢ NEG 1,3,5 1
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narrowing the zones has sometimes the effect of blazing the gzone plate

directing more light to higher orders at the expense of lower orders.

2.1.11.2.2 The effective number of zones increases at higher orders.

In Fig., 2.1.17,8 we plot the transverse intensity distribution
of a zone plate, of 11 zonee and 150cm focal length, at the third
order. In Fig, 2.1.17.b we plot the transverse intensity distribution
of a zone plate, of 33 zones and 50cm focal length, at the first
order., Since the F/# is smaller in the latter case we get higher
intensity but the shape of the curve and the width of the pattemrn
are very similar. There is a little difference in the secondary
lobes, In the case of 2.l.17.a the intensity of the secondary lobes
does not decrease as fast as in 2,1.17.b. This causes background in
imaging and in reconstruction at high orders of a pseudohologran.
However, for larger number of zones this effect becomes negligible.
We thus see that the effective number of 2ones at the third order
of 2,1.17.a is the same as the number of zones at the first order of
24141700

Also it is interesting to compare the itransverse intensity
distribution of a zone plate and a lens of comparable focal length
and aperture, From 2,1.17.c and 2,1.17.d we conclude that the
efficiency of a 2one plate is appraximately 124, Also the third
lobe in 2.1.17.c is higher than the second while in 2,1.17.d the
intenaijcy of the secondary lobes decreases fast as a function of the
distance from the center. This again demonstrates the problem when
using a zone plate with small number of zones, i.e.: the secondary
lobes contribute to the background and decrease the signal to noise ratdo.
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Transverse intensity distributions focused by zone plates and a lens.



2.1.11,2,3 Comparison between one-dimensional and two-dimensional
gone plates,

In Fig. 2.1.18 the transverse intensity distributions of light
focussed by one-dimensional zone plates are shown. By comparing
Fig, 2.1,18 with 2.1.16 and 2.1.17 we conclude that two-dimensional
gzone plate pseudoholography is much more efficient than one-dimensional
zone plate pseudoholography. First of all the on axis intensity
decreases at higher orders while for the two-dimensional case it
does not change. And secondly, the background problem is much more
severe in the one-dimensional case. In order to achieve satisfactory
results, we must use a one=dimensional zone plate with at least 100
to 150 zones. In the two-dimensional case, on the other hand, LO
zones will give reasonably good reconstruction., In Fig. 2.1.19 the
case of negative one~dimensional zone plate is illustrated. It can
be seen that as long as the object' is smaller than the innermost
zone then the one-dimensional 2one plate is still useful for pseudo-
holography.

If higher order reconstructions are needed then the object size
is further limited as can be seen in Fig. 2.1.19 at DIST = 50 or
DIST = 30, which correspond to third and fifth orders respectively.
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Transverse intensity distributions of light focused by one
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62 zones zone plate cases respectively.
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2.2 limitations and Prospects of Pseudcholography.

The technique was introduced by Merz and Young [2.2.2]to astro-
nomy, applied to nuclear medicine by Barrétt{2.2.3]and to laser produced
plasmas by Ceglio[2.2.4]'Although a theoretical treatment of- pseudoholo-
graphy has already been given (Ref. [2.2,1] and Ref, [2.2.114]) these
authors overlooked the reconstructions at higher order foci. For
certain x-ray imaging applications the importance of pseudoholography
relies heavily on the fact that a significant increase of resolution
occurs in the higher order reconstructions. It thus seems appro-
priate to rederive the relevant relations in pseudoholografzhy, this
time including the high orders as well.

The main liritation of this method is the fact that for an
extended continuous source the signal to noise ratio in the reconstruc-
tion decreases significantly. This disadvantage is alleviated somewhat
if the object is smaller than the innermost zone. Also, it has been
assumed ([2.2.1], [2.2.2], [2.2.3], [2.2.l] and references therein)
that the shadow casting process can be described strictly by geometri-
cal optics. In practice the system is partially coherent and diffrac-
tion carmot generally be neglected. These effects will be included
in our treatment of the propagation of the mutual intensity for
describing the coded aperture shadowgraphy technique, This will
allow us to discuss enhancement techniques in cases where diffraction

effects contribute to the deterioration of the pseudohologram,
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2.2.1 Propagation of the Mutual Intensity,

‘ Consider a plane view of the system. The coordinates are denoted
as one=dimensional quantities but they represent two-dimensional

vectors in some cases (this is done to simplify the notation). The recor-
ding of the shadowgram is illustrated in Fig. 2.2.1. From geometrical
considerations (based on similarity between triangles and proportional
relationships), the projections of the mask onto the film from any
point in the source plane gives a magnified version of the mask.

This is illustrated in Fig. 2.2.2.

Let E(a) be the monochromatic field radiated from the point source
in the plane o and let vN(E) be the amplitude transmittance of the
mask in the plane ¢ (¥(f) being the intensity transmittance). Treating
the one-dimensional drawing for simplicity, we propagate the spherical
wave from the plane o to the plane £, After multiplying by -the mask
function we propagate to the plane X, Using the Fresnel Kirchhoff

integral and neglecting the obliquity factor we get

. ™ iKr(£,a)
E(g) = %j E(a) -‘ir—(—g—;;— da (2.2.1)
Behind the mask we have:
EY () =« E(g) YH(ED) (2.2.2)

Ve let the field at the plane ¢ propagate to the plane X. Using the
Fresnel Xirchhoff integral oncemore snd substituting for £'(¢) and E(E) |

from (2.2.1) we get:
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Fig. 2.2.1

The geometry for recording a pseudohologram.



F
F \
)
E
FIiLM PLANE b e
\
v ol
e
52 \\\
S
MASK PLANE
sl
sl
SOURCE PLANE
Fig. 2.2.2

Explanation of how 2 projeclions from two point sources S,
S', of the same aperture produce the same shadows.
AS'BA~AS'E'D’; ASBA~ASED but AB is common to both
cases so DE - D'E’".



=81-

ik{r(g,a) +r(g,x)]
E(x) = A—;—J J E(a) /M(E) 2 TTEo) - r(Ex) dodt (2.2.3)

Let us use the following assumptions:

(1) r(¢,a) r(£,X) in the denominator change slowly compared to the
exponent and can be taken outside the integral, and written as
8 and Sy .

(2) The paraxial approximation is valid and for r(:,.) and r(f,X) we
retain only the first order temrm,

We then can write (2.2.3) as:

2 2
E(x) = c'J j E(@) VM(E eiKl-;Tl+%_[§1T+5_jz')'E[§%+%]] dade

(2.2.4)
2
where c! = [phase factole 1o\ slsz.
We are interested in the intensity in the plane X:
1(X) = <E(X) E*{x)> (2.2.5)

where < > denotes ensemble average,

(2.2.%) is a special case of the general mutual intensity function:

T(Xg.X)) = <E(X;) E¥(x,)> (2.2.6)

and I(X) = r(X,X). Substituting for E(xl) and E(X,) from (2.2.L)
into (2,2.6) we can find the rule for the propagation of the mutual

intensity in terms of its value at the source
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I‘(a],az) = <E(a‘) E*(a2)> (2.2.7)

Although in general r(al,az) may have a finite width we will simplify

the derivation by assuming:

I‘(at,az) = | (a) d(a]-a (2.2.8)

5)
This is a nonphysical assurption even for a black body source (where
the widtr of the coherence function is of the order of the average
wavelength of radiation emitted from this source) and it is used
only to facilitate the calculation. Using (2.2.L) - (2.2.8) we can

write the intensity as follows:
. 171 14,2 X 2
1(x) = C'J ({a) [J VHZE; e Z(Sl SZJ (Sl SZJ dg:l da

(2.2.9)

The quantity in the square brackete is the diffraction pattermn of the
mask from a point source o« We are interested in the geometrical

optics limit which is expressed as the limit

A+ 0 or K + = (2.2.10)

In this case the stationary phase method (Ref. [2.2.5]) can be used
to evaluate (2.2.9). The phase term is:
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) uz XZ
+ S +S, e = (2.2.11)
1 ) 1 2 ZS] 252

1

>

¢(g) =

u£2 - E[ga-+

~)
]

where | = (1_ + -1—). The term in the brackets in (2,2,$) is written
S S
1 2

ase
1(K) = Jg(&) eiK¢(£) dg (2.2.12)

vhere g(¢) »¥(f) and ¢ is a one-dimensional quantity. From Ref,

[2.2.6] we may approximate (2.2,12) by

T iKe(E ) +i T
(k) - E;%%?‘j glg) e ° & v,
o
%L'(bb) JKeb) g eiK¢(a)]+ (2.2.13

where ¢'(E°) = 0; ¢%(€,) ¥ 0; ¢'(a) $0; ¢'(b) # O and vhere ¢'(go)
and ¢'(g°) are the first and second derivatives with respect to ¢,
evaluated using the leading terms in the expansion for the phase
(2.2.11). We take the + sign for ¢"(t,) > O and the - sign for
$"(£o) < O. a and b are the boundaries of the aperture,

The first term in (2.2.13) describes the geometrical shadow
vhile the second term denotes the contributions from diffractien,
We will now evaluate the first term explicitly.
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From ¢'(go) = 0 we get

2 . X 2.2.14)
(sl s2) (

|-

E =

(+]

Also cp"(Eo) = 1, Let us denote the one-dimensional intensity by I1
and the two-dimensional intensity by Iz. From (2.2.9), (2.2.12) and
(2.2.13) we have

x) = §ﬁ-[ 1 (a) M(g,) do (2.2.15)

2
In the two-cimensional case the constant outside the integral is ( /ﬁi)

and so, substituting for ¢! from (2.2.L), we get

2 -
2 1 (27 1 2
1) == (=) ——— | 17(a) M(g ) d
AZ (KuJ (SISZ)ZJ" a o’/ 9¢
- — | 1) M(g_) da (2.2.153)

This is the result used in Ref. [2.2.1] p. 33.

This result is often quoted in pseudoholography: the intensity
on the film plane is given by the convolution of the source function
and the mask function. However, the condition ) + QO is usually true
only for nuclear radiation, nuclear particles and very hard x-ray
radiation. The x-rays emitted from laser produced plasmas are typi-
cally in the region 1 = 8% and therefore diffraction effects may not
be negligible. Let us now examine the second term in (2.2.13). To
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simplify matters the calculation will be one-dimensional.

Consider the simple case of a slit on axis as in Fig. 2.2.3. The
symmetry in this example allows us to get g(a) = g(=b) where a, b are
the slit boundaries, Also, from (2.2.11) we get:

2 2 2
- va a JL a X
¢la) = Sy 48, + S a4 + 3re * 5g
i 2 i 2
2 2 2
X a X
¢(-a) = S, + S + B2 +a(-‘l-+—] + e ot ——
1 ¥ 2t 5 SR T U T8
(2.2.17)
X
$'(a) = pa - {&+ )
51 35,
X
' (-a) = -pa - (T + =)
5105

Using the above approximation the second term in (2.2.13) can be

written as:
_1K 4)'(aa) LI C I N 39;(% e‘K[‘f’('a) - ¢(a)] (2.2.18)

shere g(r) = /E(z) and the factor 1/(r(f,x) r(f,x) was taken
outside the integral as before. Since ¢'(a) # O and ¢%(-a) ¥ O,
(2,2.18) does not hold at the boundary of the geometrical shadow,
Assuning o = O for simplicity and using (2.2.17) we get
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o(-a) - ¢la) = &2
2
(2.2.19)
-— = pa
e@ Ty,
¢'(-a) X 4
>

Let us divide the discussion into the two regions in Fig. 2.2.3.
Region I is the geometrical shadow region and region II is the illu-~

minated region,

'
In region II, Lia—)) << 1 near the boundary. We thus can neglect
(a2

this term, From (2.2.13) and (2.2.18) using the fact that g(a) - g(&,)

near the boundary and that ¢'(g°) = ,, we have in region II

iK$ ()

o

i"@(_a) -«Eo)]

2T !
HK) - e(5g) i e X"
/m"‘a“'§>

(2.2.20)

Using (2.2.17), o = O, Substituting for Eo from (2.2.1k) and denoting

1
R'E;) - » the intensity in region II near the boundary
i)

ot k(a, -§'2-)

can be written from (2.2-9) as
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Notation for stationary phase calculation of the diffraction
pattern from a slit. Y y
r(E.a) = [(E-a+ 87 T (k) = [(§-x) + 8,77
In a typical experiment:
Max {a{<10-%cm; Max {a}<5 » 10~‘cm; S ~1 cm;

S;~16 cm.
I(K)
| ......
—
K-4K K, K +AK K
- Fig. 2.24

An approximation for the spectrum of x-rays emitted from
laser produced plasma. K = wave number, I(K) =
normalized intensity distribution.
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LX) = ' (1K) 17(K)) (2.2.21)

where c', c* are constants independent of X.
In region I the first order of (2,2.13) vanishes identically
and we are left with the second order terms in (2.2.18). We then

have:

H(x) = C—%E + Bz(x) + 2B(X) cos (z'sf—zx):[ (2.2.22)

The constante and the power of X used in (2.2.21) and in (2.2.22) are
for the two-dimensional case although the expression (2.2.20) is for
the one-dimensional case. This is a simplification that will give us
some indication of the real case,

Until now only monochromatic light was assumed. In a real plasma
the spectrum is very complicated and contains characteristic lines
as well as a continuous spectrum. Again, to simplify we assume a
spectral distribution as shown in Fig. 2.2.L. Expressions (2.2,21)
and (2.2.22) must be integrated over the range [k, - K, X, + K].
The terms involving Cos function are difficult to integrate and to
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put in closed form. While they can be written as an infinite series,
they are difficult to visualize. However, from (2.2.21) and (2.2.22)
we see that integrating the cos function will tend to smooth out

the fluctuations so that the shadow will be smoother than the typical
Fresnel diffraction pattern of a slit (as in Ref. [2.2.7] for example).
Hence the shadows cast by a broadband source will approximate the

masy more faithfully than those cases with monochromatic radiation.

The expressions (2.2.21) and (2.2.22) could be computed numeri-
cally. The results would give us the shape of the recorded zones
and, by Fourier Transform, the efficiency st higher orders could be
calculated. We might then determine which configuration would still
give ar appreciable efficiency at higher orders.

4 soccond method would be to numerically propagate a spherical
wave through the mask to a film plane and to compute the intensity
transmittance. We would then nmericaily reconstruct the pseudoho-
logram with an incident plane wave and compute the intensities at all
crders. We could thus determine the configuration with which higher orders
are still useful, However, as will be explained later, this is a very
difficult calculation because we need to perform operations with vec-
tors with mch more than 30,000 elements., To simulate the experi-
mental conditions we would need to simulate polychromatic radiation
in the calculation, This means repeating the above procedure for
different wavelengths, These procedures must be employed if an
accurate criterion is needed for closing the width of the outermost
2ome in a given pseudoholographic configuration.

Instead, we may develop a rough rule of thumd for determining the
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maxima wavelength which is useful in a given setup. From the geometry

illustrated in Fig. 2.2.5 we may define a quantity av,

3
v = rB‘i:] (2.2.23)
1,1

_ where p® — + = and r is the slit width, From Ref. [2.2.7] p. 19k

S S
2
(Av)2 - 1 %s an acceptable criterion to avoid diffraction so that

-1
wen y ® T .L. 1er  we get from (2.2.23)
Sy Sp
r2
A < TX (2.2.24)

where r is in um. The criterion (2.2.2L) is more stringent for
recanstruction at higher orders than in the first order. For each

- order p, 4v must be chosen so that the reconstructed intensity at

- this order will be appreciably larger than the noise. For third
order reconstructions (Av)2 = 16 seems to be acceptable by considering
Ref. [2.2.7] P 194, and so we require ) < -;3 % for third order recon-

struction.

2.2.2 High Order Reconstruction of a Pseudohologram,

Using the zone plate in the coded aperture mode in first order
reconstruction gives a resclution comparable to that of the pinhole
camera, where the pinhole diameter is approximately equal to the
width of the outermost zone. It has been shown (see Ref. [2.2.1L])

that for simple objects, there is a net gain in signal to noise ratio
in the zone plate coded aperture mode, However, this gain is not
critical for imaging laser produced plasmas because the x-ray in-

tensity is so great that it does not represent an exposure limitae-
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lilustration of recording depth information with a coded aperture.
i (a, s) = intensity source distribution
-M () = mask function at
I (x) = infensity distribution in the fiim piane in no. photons/area
A poinl closer to the coded aperture (P,) forms a larger shadow than
that from P,.
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tion in the pinhole camera. Furthermore, as will be discussed

later, this net gain in pseudcholography decreases as the number of
resolvable elements increases., There is a limited usefulness to the
tomographic capability of pseudcholography. Finally, it is a two-

step process. It thus seems that in view of the simplicity of the pin-
hole camera there is no point in using pseudoholography. However, we
find that a strong justification for using this technique is the possi-
bility of achieving a resolution in higher order reconstructions which
is not achievable with other techniques such as the pinhole camera,

zone plate imaging, or the x-ray microscope. To display this impcr-
tant advantage it is, therefore, necessary to rederive all the quan-
tities previously given in Ref, [2,2,1] for first order reconstructions,
Tris will enable us to calculate the efficiencies and the effects of noise
at higher orders.

Consider the syster in Fig. 2.2.6. In a real situation the problem
of recording a pseudohologram is a three-dimensional problem since depth
information is registered, too. To simplify the treatment, we assume a
plane source. From Eq. (2.2.9) we have for the intensity at the recording
film plane (here the coordinates a,f and X are symbolically two-dimen-
sional)

1(X) = ¢ J I{a) 6(a + dX) da (2.2.25)



where

b2 b2 2
-i(-u.) iK(g+-)

Gla + dX) = e J/M(g} e Mot (2.2.26)

3 3

h = 51 + g— X and d = —S— .
2 2
In the case A~ 0, (2.2.26) is given by:

G(a + dX) = M(a + dX) (2.2.27)

¥(r) is the intensity transmittance of tie zone plate mask. In the 2
domain it is a periodic function, and therefore G(gz)is a periodic funce-
tion. We can therefore use a Fourier series to express this fimction. let
I be a normalized coordinate (i.e. ¢ = &'/51 where £!' is the unnormalized

coordinate and 51 is the radius of the innermost zone); we can write:
2 e -ipne?
ME") = p}_m ¢, e P ecirefeigy] (2.2.28)

Let 6mi%; then

2n
c, = J 6(s) e'P™® 4o (2.2.29)
0

These are the same integrals we dealt with in section 2,1, and examples

are given in Table 2,1.1, and Fig. 2.l.L. We now substitute (2.2.28) in
(2.2,25) using (2.2.152) to get (for two-dimensional coordinates)



(2.2.30)

where ¢, is the radius of the innermost zane, p = ;— 1

1 1 5’

Cire

is a circle of radius Ex? and the coordinate

f o

X

is &= % T+ 5 ) and ¥ is the number of zones. I(X) of (2.2.30) is
l 2

recorded on the film and processed with a certain vy. (The slope of H&D

curve, see Ref. [2.2.9].) The amplitude transmittance of the pseudoholo-

gram is therefore

T =1 1(x7? (2.2.31)

The reconstructed field is given by the Fresnel integral where (2.2.31)
is the input function. let X, be in the reconstruction plane; then:

IAZ

2
. -v/2
4‘(2 © - "p"(f‘a Y
E(Xr) = J{ 2& Cp J 1(a) e Circ[&o; EN] da}

1K 2
_ == (X -x)
2z *r dx : : (2.2.32)

Only the case y==2 will be considered here. For all the other cases



v = =2 +d and the expression in the large brackets in (2.2.32) can be

written as a product of

[g cpJ da:l-Y/z . [Z cpJ da:l-d/z

p

Since the Fresnel transformation of products is equal to the convolution
of the transforms, Eq. (2.2.32) will be written in the general case as a
convolution., Rearranging (2.2.32) we can see that the terms containing

X2 will vanish if Z has the following form:

2
El [51 + 52)2

zp = ot (2.2.33)

These are the locations of the pth order images. From (2.2.32) and (2.2.33)

after algebraic manipulations we get

E(X,)

[}
~1
o
o
>
N
©
t
a
Q
P
Q
g
™
L3

(2.2.34)

changing-variables to t = % ['Sﬂl' + 5~ ) the integration over X is recognised

U)'H

2
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as the Bessel function of order 1. Denoting the integral over X by
h(a3Xp;p) We can thus write:

27S,u S
2 2
"ip [X + -S—]aJ
(2.2.35)
(2,2.3L) can then be written as:
T C eiKZp B
E(x) = ] —E;\-Z-p—-—jda 1{a) * h{a,X_,p) (2.2.36)

But 2p = Z,/p; therefore, from (2.2.35) we get the important result for
the point spread fimction h(e,X.,p) that it becomes narrower abt larger
values of pe (i.e. at higher orders).

It is important to note that the present discussion is useful only
if the contributions from other focl can be neglected when we deal with
a specific focus, Because the field is an infinite sum as is seen in
(2.2.3L), the expression for the point spread function in Eq. (2.2.35)
is only an approximation. In a different derivation (see Ref. [2.1.18])
an expression is derived from which it is clear that the point spread
function is not a Bessel function, Only in the 1imit N+= can we re-
place it by a Bessel function (or sinc function in case of a one-dimen-
sional zone plate). In our experiment N - LO and so this approximation

is quite good.



2.2.3 Transverse and Axdial widths of the Point Spread Function.
It is sometimes required to demagnify the pseudochologram before

reconstruction to get a convenient focal length, Let 1 be the demag-
m

nification in Eq. (2.2.30). I(X) changes to I(mx); this will change

2

Zp to Z(p, m) = -g . The new expression for the point spread function
m

includinz demagnification is therefore

h(a,Xr,p,m) = (2.2.37)

Using the fact that the first zero of the Bessel function is at

ar. argument of 3.817 we gets

3.817 M4

i R

SIS (2.2.37a)
2.2.
27 52 pm EN 37a

AX =
r

for the transverse width when o=0,
For- the axial width we assume I(a)=I 8(a) and X.=0 so that (2.2.32)

can be rewritten as:



-9 8-

(2.2.38)

1 -
where U 2 +-—- and t= X%+y2 . In this expression x=(x,y )

(£1152)
is 2 twe-dimensional quantity. From (2.2.38) we have:

1] = (2.2.39)

mu

sin(nugﬁ) '2

The foci are again at u=0 or Z=Zp, Alsou = -]; (Jz'—p - %) so that near

the focus -]-'— -3 = A2 | Hence u = Az _ and (2.2.39) can be written
Zp Z Eg_ Asz

as:

(2.2.40)

The depthzof focus is found using the quarter wave criterion. From
. yA ul henc
(2.2.10) 5 (p)zs-2 ence

2
AZp = %[-Z-B] (2.2.41)



«99-

If demagnification is introduced then (2.2,30) changes from I(X) to
I(mX). Eg. (2.2.38) will change also yielding a new expression for u:
2

= 1 pm A 1
u 3 -———-——( . )2 -Z-] (2.2.42)
1432
and finally:
A 1Zp 1 2 Alp AZ .
2Z(p,m) = 7 | -E? = mz = pzmz . (2.2.43)

Let EN be the radius of the outermost zone; r the width of the
outermost zone, N the number of zones, E.l the radius of the innermost
zone, and Z1 the primary focal length., We know

£, = /N‘g1 = /N21A

= 2Nr for N > 10 (2.2.4k4)
&)

&, = ¥
Using (2.2.44), (2.2.33) and (2.2.L3) we obtain the widths of the

points spread function:

S.+5
_ 17°2) 1
AX_ = 1.22r[ 3 )-—pm (2.2.45)
2 (5115, 2 1
AZ = 0.5 5‘ [——S-—] "3 (2.2.46)
1 p m N

2.2.L The Transverse Resolution in the Zone Plate Pseudoholographic
Technique.
In the first step of the coded pseudoholography technique, which

-
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is illustrated in Fig, 2.2.7, every luminous point in the source (i.€e,
in the plasma), casts a shadow of a Fresnel zone plate onto a piece of
photographic film, In the second step, which is illustrated in Fig.
2.2.8, the exposure is processed, conveniently reduced, and illuminated
by a coherent beam of light. A reconstructed image is produced at a
series of foci, !'p.

In order to derive an expression for the definition of the two-
step pseudoholographic procesé, consider the system described in Figs.
2.2,7 and 2.2.8, Let T=AB be the finest resolved element in the ob-
ject, Sl the distance from the object to the mask, which is a Fresnel
zone plate, and S, the distance from the mask to the film,

In the first step the shadow of the zone plate is cast on the film
by each point source, and hence produces two zone plates separated by
the distance T' = A'B! on the pseudohologram, When the processed
pseudohologran is reduced to yield a convenient focal length, the
separation is T¥, as shown in Fig. 2.2.9. In the second step each
zone plate focuses the reconstruction beam to a series of foci. If we
choose T® to be such as to cause the corresponding reconstructed point
sources to be resolved according to the Sparrow criterion, we have from
Ref, [2.2,10] that

™ = 1.462(1/9) (2.2.47)

svhere ) is the wavelength of the reconstruction beam and © is the cone
angle of_ the focussed beam at the primary focus., lLet us denote by EN
and r the radius and the width of the outermost 2one, respectively, of

the original zone plate, We will denote by E}; and rt! the corresponding



"Smopeys ajejd 3uUoz OM} JO $1ajudd aIe
.8 .V "9u0z Jsouuajno ay} s| 3 "anbjuyde) sydeibojoyopnasd ay) jo deys Buipiodas ayy

LTe bid
W aivid !
JIHdVUYD0LOHd aNOZ |
q J3NS3NHd _
4
z - S
-« S > - dWV
v a _ N3L1SONNL
’
1
(@]
~
]

a | v _

NSYW ./ HILLAHS

_ , Hasndidia




«10z-

PSEUDOHOLOGRAM

LASER
BEAM

b6—y—

MICROSCOPE

SPATIAL .
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- F.

Figure 2.2.8
The reconstruction of a pseudohologram.F1 and Fa are the first and third order foci respectively.
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COLLIMATED PSEUDOHOLOGRAM RECONSTRUCTION
LASER BEAM CONTAINING PLANE
TWO ZONE PLATES
Figure 2.2.9

Explahation of the reconstruction step. Each zone plate recorded on the pseudohologram focuses
the light at its own focal point.
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quantities on the recorded pseudchologram, and by Eﬁ and r* those on

the reduced pseudohologram. From (2.2.LL) we have:

g = 2N (2.2.48)

Also, fror geometrical considerations it can be shown that
(s,+5,)

iy = EN—-—51—— (2.2.49)

Denoting the demagnification by 1/m, then

EN 5,;/m (2.2.50a)

TII

T'/m (2.2.50b)
Fror. Figs. 2.2.7 and 2.2.9 and from Eq. (2.2.50) we get

0
T = T[S—]['-“-] (2.2.51)

Since for zone plates employed as a lens in the visible Eﬁ = /N¥ ,
2
then Fs= Et': /N and, therefore,

F "
1/a = iq = gN/zm (2.2.52)

From Eqs. (2.2.L7) = {2.2.52) we get
S

-t

S. + S
m= 1.‘46r[ 15 2]
2

T = 1.46X(1/0) - (2.2.53)

w

2
From (2.2.53) we see that the demagnification, 1/m, has no effect on
the transverse resolution.

Now consider the reconstruction at higher order foci., At the pth

order focus,
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= “2 l.
F, (EN /N ) 5 (2.2.54)
Eence
(v/)p = E“/ZpN (2.2.55)

But the distance between the reconstructed points T¥, remains the same;
only the cone angle of the reconstructed beam gets bigger. Therefore,
the orly quantity in (2.2.47) that changes is 1/2, Hence:

S.+6§

1.46r ] 2
T = . .2.56
p > s, (2.2.56)

Thie remarkable result means that by going to higher orders the definition
improves significantly. The geometry can be arranged so that 82 >> Sl’

and so with a practical value for r of about 3um we get:

T.I = 1.46+3 = L4 38um
T, = ——-———]'“2’3 = 1.46um

T, = 1.6 »%- = 0.87um

2.2, Tomographic Resolution in the Zone Plate Pseudoholographic
Technique,
Fror Fige. 2.2.10 we obtain the following relationships:
5
BEy = =S (2.2.57a)
2

S = L tgs (2.2.57b)
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Fig. 2.2.10

Derivation of the tomographic resolution of the pseudoholographic
technique.
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tge = EN/(S)+L) T oEyS, (2.2.57¢)
. F = F/p = 12 2, 2
For zone plates: P P £} /pi = £, /mpa (2.2.574)
28 AE!
AF
Therefore LFp = > - ]2 ! ' (2.2.57e)
m pA
2
S, +§
- 0.5 217 2
From 2Zgq. (2.2,L6) 4&Fp = — E,[ 3 ] (2.2.57f)
p MmN ]
sI+sz
Fror: Figs 242.10 & = 5 (2.2.57g)
By equating (2.2.57e) and (2.2.57f) and from (2.2.48) we get:
S
. 05 1
L S, (s, +5,) (2.2.58)

The itomographic resolution increases with the number of zanes and with

the order number,

2.2.6 Efficiency of Reconstructions at Higher Orders,
From Eq. (2.2.34) and (2.2.15a) the factor that determines the effi-

ciency at the different orders is

27
¢ 1
- 7 M(e) e ™P® g (2.2.59)
(S] +5,) azp
0

We have already seen a few examples for M(6) in the previous section in

= S
Fig. 2.1.4, For the case of Fig. 2.1l.La c:'p = B (u) = _i%-:lq .
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Substituting for wuq -% (2p + 1) we get

o . 1 (-n)P*!
MP (s, +5,)"2p [(2p41)/2q)

Zy
But Zp = -(_—me so that

Lp . __ 1 ___ 29 gndependent of p!  (2.2.60)
(S1 + 52)2 4
Hence the ei‘ficiehcies are equal in all orders in this case., However,
as has been shown in section 2.1.8, the flux at higher orders goes as
l/pz.

The efficiency in higher orders is very sensitive to changes in
the zone shape. In Fig., 2.1.L there are examples where the efficiency
at various order is not given by Eq. (2.2.60).

2.2.7 The Effects of Zone Width on the Effective Dynamic Range.
In Fig. 2.2.11 the effect of narrowing the zones is demonstrated.

In Fig. 2.2.11 A and B, cosinusoidal zones allow only for a small number
of zone systems to be recorded before the film is completely darkened.
In Fig. 2.2.11 C and D narrow tones allow for a much larger number of
zone systems to be recorded. Hence by narrowing the zones the effective
dynamic range (or the number of point sources which can be recorded) in-
creases, In order to be more quantitative it is useful to define a qQuane
tity C, the contrast, which is the standard deviation of the intensity

fluctuations on the recording divided by the average intensity. 4lso it
is useful to-}compare Cech for a usual hologram made with a reference beam
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Fig. 2.2.11

(A) cos?6 tringes, 6 - quadratic distance coordinates, T = transmission, (B) Y =
distance perpendicular to the 1-D zone plate; black stripes on a high contrast
processed film, (C) narrow fringes, (D) narrow stripes on the processed film.
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interfering with the light scattered from the object, and Cinc for the
pseudchologran.

let Iin o and I be the intensity distributions on the pseudo-

coh
hologram and on the usual hologram respectively, Let a; and ¢; be the
arplitude and the phase, respectively, of the field at the hologram due
to the point i. It is reasonable to assume:
1. Ijnc and I,y are stationary and ergodic random processes as
a furction of space coordinates,
2, aj and ¢3; a; and ay; ¢; and ¢, are wcorrelated for all i £ .

ay are Gaussiarn distributed random variables with gzero mean.

It i: then possible to show that

ccoh = /2

where N is the number of points to be recorded. We thus see that in the
usual holography the signal to noise ratio is independent of the number

of object points. Therefore, holograms of continuous objects can success-
fally be recorded. The signal to noise ratio in pseudoholography on the
other hand is limited very strongly by N, the limiting number being approx-
imately 200 (see Ref., [2.2.12]). Therefore discrete objects will yield a
better pseudohologram than continuous objects.

Suppose, instead of having cosine shadows, we have very sharp sha-
dows of the form of Fabry-Perot fringes associated with each point. It
is possible to show in this case (for a one-dimensional calculation)
(Ref, [2.2,13]) that
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' 7
.= (/W /—2%1(32“{—:—17 (2.2.61)

To get this result it was necessary to assume that the zones have the

form:

(X+xw)w'; “x,/2 < x<0
1(x) = (2.2.62)

w
(x xw), 0>x>x /2

where w determines the sharpness of zone (w = 1 means a triangular zone,
etc.) x, is the width of the zone, 8 accounts for the fact that the
separation between the gones 1is not constant, R is the distance between
two peaks; and 4R is the width of the peak at half maximmm., On the
average we can write: M/8 = R/AR.

Using practical nunbers the increase in signal to noise ratio in
ZqQ. (2.2.61) may reach one order of magnitudel

For a two-dimensional calculation C c is proportional to the

in
square of (2.2.61) so that narrowing the zones increases the signal to
noise ratio appreciably. Also, from Table 2.1.2 we can see that when
the zones are narrow, efficiencies at higher orders increase. O0f course
by narrowing the zones we let less light through so that a reasonable

conpromise, that depends on the application, should be made in practice.
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2.2.8 Noise,

In section 2.1.9 the axdal distribution of the noise was discussed
using Fourier transforms. Here the transverse distribution of the
noise will be described at the various foci, using Fresnel transforms,
The grain noise will be considered as a multiplicative noise and the
mask serrations as an additive noise., Let x be a two-dimensional vector,
Z(x) the zone plate function recorded on the film, F(x) the ideal zone
plate function, Ng(x) the grain noise function, and S(x) the serration

functionn, We thus can write:
Z(x) = [F(X)+S(X)]-Ng(x) - F(X)-Ng(x) + S(X)-Ng(x) (2.2.63)

From £q. (2.2.32)

- iK 2
- (X_-X)
E(Xr) = C j F(X)-Ng(x) ezz r dx +
- iK 2
ad =5 (X_<=X)
J S(x) N, (X) 22 T dx (2.2.64)

If we substitute for F(x) its Fourier series representation in the 52

domain and use I(a) = I, 8(a) in (2.2.28), we get for the first term:

b A X -ip'n-x-g— :1“{-(1 -X)2
szpJ Ng(X) Csrcl;?;EN]e sgpzig 27 T dX (2.2.65)

p=- e

At Z = Zi) this is reduced to:
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2 .
io(X%) w % 2mi XX
r R X
e p=z-m Cp J Ng(X) Circ [SZ—U’ EN:[ e AZp r dx
27
. 2 %
|¢(Xr) ; N X, JIEAZp (SZHXrgN)]
= e Cp*N [—~——] * 2.2.66
pa-c q Szu)‘Zp ZTrSZuXr ( )

AZp

wvhere §_(u) = F.T. N (x)J.
ere g(u) g( )
Hence, the grain noise convolves with the image at every focus,
If Ry(7) is the correlation function of the grain noise, the power
spectrun is given (Refs [2.1+14) p. 347 Eqs. 10-38) for a linear system

by
Wiw) = s, (u) « [hu,p,0) ]2 (2.2.67)

where Sy(u) = FT {RN(T)} $ h(u, p, o) = PT {Circ[goggﬂ]} and

h(xy, p, @) was defined by Eq. (2.2.35) as the point spread function,
Hence the power spectrum changes at higher orders, i.e. the speckles
became smaller and smaller because the Bessel function gets narrower at
high orders. If we assume that the grain noise is a white noise the
power spectrum is in the same form as the intensity point spread function
(as is seen from (2.2.67). In imaging, at higher orders the image is
demagnified; therefore the appearance of the speckle will not change.
However, in pseudoholography since the reconstructed image is not de-
magnified at higher orders the appearance of the speckle pattern (i.e.
with a narrower power spectrum) changes appreciably. Indeed, we cbserve



this experimentally. The second term in (2.2.6L) represents an additive
noise, It is in the form of the Fresnel transform of the product of two
finctions. According to a theorem (analogous to the Fourier Transform
Convolution Theorem) the Fresnel transform of a product of two fimctions
is equal to the convolution of their Fresnel transforms, We write the

second term as:
FRN{S(X)} =* FRN{Ng(x)}

where FRN{ } denotes the Fresnel transform. Both FRN{ S(X)} and
FR{ Ng(x)} are nonstationary random processes: FRN{ S(X)} econsiste
of contributions from discrete rings; and Ng(x) is signal dependent.
Very little has been done in connection with serrated apertures and a
complete discussion is beyond the scope of this work. Qualitatively
gspeaking, the additive noise as seen through a microscope looking at
the reconstruction of a pseudohologram will appear as a complicated
speckle pattern consisting of circular structures modulated by random
fluctnations,

The intensity and the contrast of the speckle pattern does not
change appreciably when we move from distance Z from the 2one plate to
Z' (see Ref. [2.2.21])) and so if the efficiency at higher order de-
creases we experience & net decrease in the signal to noise ratio.
Experimentally, as we observe closer to the zone plate than a certain
distance we see only speckles; no further focusing effects are apparent,



2.2.8.1 Quantun Noise Considerations.

It has been claimed (ref. [2.2.4] and references therein) that there
is a considerable gain in using zone plate pseudoholography instead of &
pinhole camera by a factor of the ratio between the corresponding collec~
tion solid angles. However, we see in Ref, [2.2.1l;] that the advantage
in the signal to noise ratio for zone plates compared with the pinhole
camera decreases as a function of the number of picture elements. In
fact this calculation is only for two-dimensional objects while in
reality there are contributions recorded from a three-dimensional volume.
This will tend to decrease the advantage even further. Suppose a pic-
turc element is defined as the area (or volume in case of three=dimen=-
sional object) covered by one point spread function of the system. In
the case of laser pellet compression experiments thare are at least
1000 (100 = 10x10 in transverse plane and 10 in axial direction) picture
elements in the volume, Therefore, there is no net gain over the pinhole
camera in terms of signal to noise ratio. Furthermore, as will be seen
later on, there are artifacts introduced in the pseudoholographic tech-

nique which tend to further decrease the signal to noise ratio,
2.2.9 MHethod of Reconstruction,
We can distinguish between optical, digital and hybrid optical

and digital reconstruction techniques.

2.249.1 Optical Methods.
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2.2.9.1.1 The Direct Reconstruction.

This method is illustrated in fig. 2.2.8. We can distinguish
between two variants according to whether optical filtering is used or
not.
la, A collimated laser beam is incident on the pseudohologram as in

Fig. 2.2.12a. Every recorded 2one plate focuses the light to a

series of foci, hence the image is multiply reconsiructed. Posi-

tive or real foci are to the right of the zone plate in Rig. 2.2.12a
and negative or virtual foci are to the left.

The direct reconstruction has the advantage of permitting easy in-

vestigation of the images at the variox;s orders. By looxing at

different orders,artifacts which arise and which are introduced in
only some orders, may be identified irmniediately. This method was

used in this wWwork and results are discussed in Chapter 3.
1b. Filteringz the pseudohologran.,

The pseudonologram is illuminated with a converging beam as in

Fig. 2.2.12b. The background is focussed at the Fourier plane

and a D.C. block is used. The size of the D.C. block is very

critical because the objects may have low frequency components.

In Ref. [2.2.15) the same technique is applied to off axis zane

plates,

2.2.5.1.2 Optical Correlations.

2a, In one method the pseudohologram is correlated with the coded
aperture using an incoherent system as shown in Fig. 2.2.13.

2b, The second method may be performed using a coherent system as in
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Fig. 2.2.12
Methods of optlical reconstruction of pseudoholograms.
{a) Direc! reconstruction using collimated light
(b) Direct reconstruclion using converging light hence sliowing the filtering out of
DC. (The pseudohoiogram can be placed in front of the lens also.) (After [2,2.15])
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Fig. 2.2.13

Optical correlation using incoherent light. By correlating the coded aperture with the
pseudohologram, the object is reconsiructed. (After [2.2.15))
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Fig. 2.2.14
Coherent optical system for reconstructing pseudohoiograms (Atter [2.2.15])
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Fig. 2.2,1L and discussed in Ref, [ 2,2,16] Figs, 2 and 6. The
basis of the correlation method is the fact that in cases where
diffraction effects are truly negligible (such as in recordings
with v rays, o particles, or very hard x-rays) the recorded in-
tensity on the film is given by

1(x) = M(X) * o(x) (2.2.68)
as it was derived in Eq. (2.2.15a). By correlating (2.2.68) with
M(x) we get

1R(x) = M(X) * [M(X)*0(X)] (2.2.69)

which we write

IR(X) = [M(X) *M(X)] * O0(X) (2.2.70)

Thus if M(x) is a mask such that its autocorrelation is a sharp
fimction then (2.2.70) represents a reconstruction of the source
0(x). This correlation can be performed incoherently as in Fig.
2.2.13 or coherently as in Fig., 2.2.14. In the latter case we

have in the Fourier plane the Fourier transform of (2.2.68) or

[(u) = M(u) 0(u) (2.2.71)

If we can fabricate a filter which is the Fourier transf{orm of the

mask we may put it in the Fourder plane and get:
1'(w) = 0(u) - M(u) M(u) (2.2.72)

Going back to the image plane we get:
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HX) = 000+ DX ) R KX )] (2.2.73)

This technique has inherently less resclution than the direct recon-
struction, because the width of the point spread function is always
larger than twice the width of the smallest detail in the coded aper-
ture. (In an annular aperture, as an example, the point spread funce
tion is larger than twice the width of the annulus.) Hence this method

is not useful for applicatdons where high resolution is needed,

2¢2+49.1¢3 Oplical Deconvolutions,

This method may be the most promising technique for achieving high
resolution reconstructions of pseudoholograms. In fact, even pinhole
camera pictures may be enhanced and improved with this technique, which
is illustrated in Fig. 2.2,15 and discussed in Ref. [2.2.17]. Although
it is a simple method conceptually it is very difficult to apply experi-
mentally. As in (2.2,68) the intensity is given by a convolution., How=
ever, this time we do not need to assume that we have only very hard

radiation and we can write the convolution in a more general form:

LX) = 0(x) * 6(X) (2.2.74)
where 3(X) is given by:
T et [l
6(x) = [J«‘“(n T e 1 72 12 dE] (see (2.2.9))

(It was ‘shown in (2,2,13) that G(X) = M(X) when A+0,) Using a coherent
optical system, in the Fourier plane, we get:
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Fig. 2.2.15
Optical deconvolution of pseudoholograms.
(a) recording pseudohologram of a point source with spectrum similar to the real
experiment, (b) amplitude part of the filter, (c} phase part of the filter, and (d)
reconstruction system (Atter [2.2.17])
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() = 0(u) + 6(u) (2.2.75)

We thus need to produce a filter in the form 1/G(u). Then clearly

['(w) = [0(u) » 6(u)] 1/6(u) = 0(u) (2.2.76)

Which gives us the reconstructed object in the image plane. The main
problem is producing the filter. This problem is discussed Ref. [2.2.17].

To apply this technique to our case we need an extremely small x-ray
source, (These sources may became available soon as there is now a
growing interest in this subject., See Ref. [2,2.18].) The resolution
will depend on the source size,

Using the same configuration a5 in the laser pellet compression
experiment we take a pseudochologram of the point source. We now produce
1/G(u) optically, see Pig., 2.2.15a, b, ¢ and d and put it in the Fourier
plane., We can place the pseudohologram of the object in the input of a
ccherent system (see Fig. 2.2.15e) and observe the recanstructed image.
The ultimate resolution will depend on the test source size,

To obtain tamographic resolution we need to produce several filters
by slightly changing the source to zone plate distance with each filter
(see Fig. 2.2,15a)

For sources with very hard radistion this method should resolve
details on the order of the point source which was used to produce the
filter. For softer radiation where diffraction effects are present the
limitation will be the fact that the spectrum of the point source is
siguﬁcanm% different from that of the plasma and so the characteristic



diffraction effects will not match exactly when performing the decon-
volution. However this effect can be shown not to limit the usefulness
of the technique, and we may still get higher resolution than in any
other method.,

2.2.9.2 Digital Reconstructions.

Except for similation with one-dimensional pseudoholograms this
method was not used in this work. IDirect digital reconstruction may
be performed by digitizing the recorded pseudshologram and performing
a Fresnel transformation on it, This can be done by multiplying each
data element by the appropriate quadratic phase factor and then per-
forming an FFT to each of the foci. A correlation may be performed by
digitallyr correlating the sampled data with the coded aperture. Another
way would be to perform a Fast Fourier Transform (FFT) on the digitized
data. The filter fimction may be computed either by performing an FFT
on the coded aperture function itself or om one of its derivatives
(see Ref, [2,2,16]), After rmultiplying the filter function by the
computed Fourier Transform of the object fimction, an inverse FFT is
performed and the recanstructed image is obtained.

While in the direct method the coded aperture has to be a sone
plate, in the correlation method a zone plate 45 not necessary and
ammular apertures have been used [2.,2.15]. It seems that ammular
apertures are suitable for this method but it remains to be shown
that these are indeed the most effective forms,

Deconvolution is also feasible with any type of coded aperture.

Fere we digitize the pseudohologram of a point source, perform an FFT
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to get H(u) and form l/ﬁ(u) digitally. We take the FFT of the real data
and multiply by the calculated l/ﬁ(u) and finally take the inverse FFT
to get the reconstructed image. Also, one might envision recording the
data digitally with an array of xeray detectors rather than with xeray

film; then reconstructions may be obtained on line,

2.2.9.3 Hybrid Digital Optical Reconstruction,
For both the correlation and the deconvolution methods the filter
may be produced digitally and then used in the Fourier plane of the

optical system,

2.2.10 A Comparison of the Resolution at Higher Orders Between Imaging
with a Zone Plate and the Zone Plate Pseudoholographic Technique.

In Pige 2.2,16 there is a comparison between the two methods. In at
least two papers published recently [2.2.19], [2.2.20] it is claimed that
the resolution increases in higher order imaéea formed with zone plates.
That this cannot be true is seen in Mig. 2.2.16a. At higher orders the
Alry disc becomes smaller but the image does also by the same factor;
therefore the resolution in object space cammot increase. On the other
hand in pseudoholography, illustrated in Fig. 2.2.16b, at higher orders
the Airy disc is smaller but the image has exactly the same size (using
collimated light) so there is a net increase of resolution. Looking at
higher orders eimply allows one to observe the recomstructed image with
& higher numerical aperture,
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Fig. 2.2.16
Cc?mparison between imaging with zone plate at higher orders and reconstruction
of a pseudohologram.

(a) TheAiry disc scales with the image

(b) The image stays the same, the Airy disc becomes smaller
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2.2.11 Comments on One-Dimensional Zone Plates.

2.2,11.1 Axial Distribution.

Starting with Eq. (2.1.1), using one-dimensional coordinates we can
derive an equation which corresponds to the previous two-dimensional case
Eq. (241.9) (see discussion in section 2.1 for notation).

t) 2miut
e

6'(u) = JA dt (2.2.77)
t
0
or
6'(u) = I.A(u) * FT ]:7%] = ;\(u) * [-anJ:[ (2.2.78)
But
A(W) = B (u) 1 §(u-29) » sin(rgNu) (2.2.79)

n

Ty
So that G'(u) = B_(u) z 5(u-2_q".)* sin ﬂqNu) ':1, u:|:|

So the new point spread function in the axial direction is

in(mqNu) 2
sin(rghu) L/JJ (2.2.80)

This causes a broadening of axial intensity distribution (see Fig. 2.2.17.,

a compariscn between the sinc and 1/vu functions between two foci) and
therefore increases the background and noise, To improve this we can
apodize with the function AP(X) ® |X| (see Pig. 2.2,18), This will cause
Eq. (2.1.1) to reduce to:
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Fig. 2.2.17
Comparison between the sinc function and the 1/VU function in the case of one-dimensional zone plate.

{1) is the the 2 /T u function, (2} is the sin (4) / u function,
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Fig. 2.2.18

Apodization of a one-dimensional zone plate In
order to achieve on axis intensity distribution lke
the two-dimensional zone plate.




127~

1

G (u) = JA(t) e2miut 4o (2.2.81)

0
exactly as Eg. 2.1.9.

2.2,11.2 Transverse Distribution,

It is possible to apply all the derivation in section 2.2.2. The
only difference is in Eq. (2.2.35). We get a sinc function and not a
Bessel function. Nothing in this derivation was special to two dimen-
sions. We can then write from Eq. (2.2.36)

T eiKZp -
E(Xr) = _ETZ-— Jdu I{(a) « h'{a,X_,p) » (2.2.82)
pl:—w p o0 r

where h'(®,X.p) is defined in (2,2,35) with sinc instead of J.. Hence

1.

the transverse distribution resembles the two-~dimensional curve ,
We will see in the next chapter that pseudoholography with one~

dimensianal zone plates may be useful in some investigations of laser

produced plasmas,

2.2.]-2 Gaﬂputer Smtimn
A computer progran was written and is 1Ssted in Appendix 3, where the
reébrdi.ng of a pseudohologram was similated. The source function and the
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mask function are represented by vectors. The number of a vector element
is proportional to its location. The value of a vector element is the
intensity function.in the case of the source function, and the trans-
mittance intensity in case of the mask., G(iven the source size, the dis-
tance between the source and the 2one plate, the distance between the
mask and the film plane, the outermost 2ane width, and the number of
zones, the film size is determined in such a way as to allow all the

rays from the source through the zone plate mask to fall on the film

(see Fig, 2.2.19). A ray is traced from each point in the source to

all the mask points. The location of point of incidence with the film
is calculated only for those rays which hit a clear area and the location
is stored in a vector in the following way. Assume, for example, that

a ray hits the film at a distance 3mm above the optical axis, This is
normalized with respect to the calculated film size to 0.1015 say.

This number is multiplied by the number of points we chose for the film
vector, This is now to the nearest integer the element number., The
value of this element will be used to represent one photon absorbed in
this location. The intensity increases by the value of 1 for each ray
hitting the same cell, The rays are traced from every object point
through every point in the mask, If at a certain point, the mask is
opaque, the ray is not traced further and another ray is traced through
another point in the mask, After the pseudchologram is recorded on the
disc we use the propagation program (see Ref, [2.,2.22] and listing in Ap-
pendix 2) which wasmodified to suit our needs. We read the pseudchologranm
from the disc and calculate the Fresnel integrals for several distances
along the axis, We then plot the transverse intensity disiribution at
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Fig. 2.2.19

Determination of the film size for the computer simulation. The

limiting rays are traced from the edge of the source to the edge of
“the mask to determine the film size.
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the various foci, The different cases are sumarized in Table 2.2.1l. The
notations are explained in Pig. 2,2.20, r denotes the width of the outer-

most zone,

2.2.12.1 Corments on using the propagation program for the investigation
of diffraction effects in the recording step oi‘ a pseudchologran,
From section 2.1.11.2 we have that:

TBDM = NAZ/TOTD (2.2.83)

where TOTD is the width of the input space, TEDM is the width of the
output space, N is the nmumber of sample points, A is the wavelength,

2 is the propagation distance. For an x-ray experiment TOTD is of the
order of 3mm, * is about 10R, z is about 10 em., If we require that

TDEV is of the order of 1 cm we get from (2.2.83) that N >> 3,10 points,
This number is too large for use on the computer. An alternative approach
would be to calculate the diffraction effects from the expressions derived
in section 2.2.1, e.g. (2.,2,20) and (2,2.22) using the stationary phase
method, By Fourier transforming the pattemn we get the efficiencies at

higher orders,

2.2,12,2 Conclusions from the Camputer Simulations,

In Fig. 2.2.21 the reconstructions of a simulated pseudohologram of
two point sources are shown, We note that both first and third order
reconstructions are not sensitive to change in v (the slope of H&D curve).
The secand order however is exitremely sensitive to change in v. In
theory the even order recomstructions should be identically zero, since
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Parameters of Different Computer Runs

Calculating the Reconstruction of a Simulated Pseudohologram

Zone Plate

Object 5 Width F_ NZONE POS/NEG  y N Fig. #
PNTS r 150 37 POS 1 2048 2.2.19
PNTS r 150 37 POS 2 2048  2.2.19
PNTS r 150 37 POS L 2048  2.2.19
FIN SRCS r/2 150 37 POS 1 4096  2.2.20a
FIN SRCS r r/2 150 37 POS 2 L4096  2.2.20a
FIN SRCS r x/2 150 37 POS L ko9t  2.2.20a
FIN SRCS r 0.8r 150 100 POS 1 L096  2.2.20b
FIN SRCS T 0.8r 150 100 POS 2 koot 2.2.20b
FIN SRCS r 0.8r 150 100 POS 4 4096  2.2.20b
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Notation for the source function used in the computer simulations. (a) Two
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we use a Fresnel gzone plate as a coded aperture. However, when we record
a pseudohologram of more than one point source we no longer have an ideal
Fresnel zone plate. The interaction between the two ideal 2ane plates
produces an even order reconstruction., Since the origin of the even

order reconstruction is an interaction between two patterns, it will
depend on the v with which the film is processed., In Fig. 2.2.21 we

see that for Y = 1 the second order reconstruction is negligible but

at ¥ = |, is of the order of the third order reconstruction. The object

is not resolved in the second order for v = L but we observe some modu-
lation at the top of the pattern. The intensity at the third order recon-
struction is much lower than at the first order reconstruction, but the
object is clearly resolved in the third order and not in the first order.
The high intensity of secondary lobes in the third order recomstruction
represent & disturbing effect. A way to avoid this problem is to use a
2one plate with larger number of gomes. The reconstructions of a pseudo-
hologram of two finite sources using 37 and 100 zones gone plates for 3
different v are plotted in Fig. 2.2.,22a and 2.,2.22b. While in Fig. 2.2.21
the third order reconstructions were insensitive to v here, for finite
source, the third order is very sensitive, Wwhile in 2,2,22a the resolution
seams to decrease at high v, in 2.2.22b the resolution seems to increase
at high Y, We thus see that the process is object dependent and it may
be possible to find the optimm y for certain types of objects. Also

we see that by using a gone plate with large number of sones the secondary
lobes decrease appreciably.
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EXPERIMENTAL INVESTIGATION
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3. BExperimental Investigation.

3.1 Demonstration of Resolution Improvement at High Order Reconstruce-
tions.

We have already seen that at high order reconstructions, the reso-
lution improves according to Eq. (2.2.56).

To verify the usefulness of the predicted improvement in resolution
in the higher order foci, an optical simulation experiment was performed.
The recording system is shown in Fig. 3.1. A tungsten l;ght source
illuninated the diffuser through a shutter. 4 mask with a pair of 1lmm
holes separated by 3.1lmm between centers was (see Fig. 3.2a) placed in
contact with the diffuser. A Fresnel zone plate with L0 2onmes and a
f£ilrm cassette were free to move on the rail along the optical axis.,

The desired ratio S,/S; was obtained by moving both the zone plate
and film to the appropriate positions. Using the same mask, by changing
S2/Sy we could simulate different separations between the two holes. Two
films were tried: Tri-X developed in D=76 for 6 min., and Contrast Pro-
cessing Ortho developed in D-11 for L.5 min,

The recorded shadowgram was reduced approximately 20 times with a
35mm camera fitted with a SOmm focal length lens set at £/5.6, The
finest detail was not less than S0,m and so the pseudohologram was
completely resolved by the camera lens., Kodak 50253 high resolution
£ilm, developed for L.5 min, in D-165 at a concentration of 1lik was
used. The shadowgram is shown in Fig. 3.3a.

_ The complete reconstruction system is shown in Pig. 3.L. The
laser beam was focussed through a spatial filter, Then it was colli-
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Figure 3.2
Two masks used in the optical simulation experiment.



(a)

(b)

Figure 3.3

Shadowgram of the two point sources in Figure 3.2.
(a) very small separation, (b) Large separation,
(photographs a & b reduced three times).
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Figure 3.4
The reconstruction step. Fy, F,, etc. are the first, third, etc. order foci.
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mated by a lens and used to illuminate the demagnified pseudohologram
A microscope was used to look at the reconstructed image. (The dis-
tance from the zone plate to the 1st order reconstructed image was
typically 30 cm). The microscope could move along the rail, allowing
us to observe the different foci. The results were photographed with
a Polaroid camera situated behind the eyepiece.

The improvement in resolution obtained in higher order reconstruc-
tions is demonstrated in Fig. 3.5. For the photographs the recording
geometry (Sl = 63.L cm, Sy = 18.9 cm) was chosen so that the recon=-
structed sources were barely resolved in the first-order reconstruce
tion Fig. 3.5a. In Fig. 3.5c the fifth-order reconstruction shows the
sources clearly resolved. The ratio of the hole diameter to the sepa-
ration between the two holes in the mask is equal to that in the recon-
struction in Fig. 3.5¢. While fifth-order reconstruction is clearly
feasible, the background light from scattering and other order recon-
structions will ultimately limit the highest order reconstruction that
yields a useful signal to noise ratio,

For an ideal Fresnel zone plate only odd numbered foci exist.
However, for a practical zone plate there are always even numbered
foci due to imperfections in the zone plate, the development process,
and the shrinkage of the emulsion after development. In Fig. 3.5b
the second order image is shown, in which the two point sources are

resolved,

3.2 Limitation on the Object Size.

The moire fringes produced by two overlapping zone plates are



(a)

(b)

(c)

Figure 3.5

Experimental results of the optical simulation
experiment. Figures a, b, and c are reconstructions at
the first, second and fifth order foci respectively.
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shown in Fig. 3.6. When the separation exceeds the diameter of
innermost zone the moire fringes are in the form of a zone plate.
The focal length of this zone plate can be ecalculated using the
derivation in Ref. [3.2]. It is shom that for T > 25_,1, vhere T is
the separation between the centers of the two zone plates and 2¢; is
the diameter of the innermost zone, we get moire formed zone plate
whose focal length is given by: F_ = FOZP

M 2
step light cannot distinguish between real and mo1ré formed zone

. In the reconstruction

plates and we get an additional reconstructed point in the middle.

Since Fy = FZZP the additional point will reconstruct only in even
order reconstructions. This effect tends to decrease the signal to
noise ratio in even order reconstructions. It is therefore preferable
to choose a zone plate with an innermost zone that is larger than the
object. In the case of pellet compression experiments the microballoon
is of the order of 70ym. In our x-ray experiments, to be described we
used a2 zone plate with 200um innermost zone diameter. At higher orders
the individual zones are narrower, i.e. each actual opening in the zone
plate contains several zones (recall Fig. 2.,1.10). The effective dia-
meter of the innermost zone is now 2¢3//p where 2¢y is the diameter
of the actual innermost zone and p is the order number. Therefore in
order to avoid spurious points at the 2pth order the size of the inner-
most zone must be vp times the size of the object. In our case then
the second order reconstruction will still be in the range where no

artifacts should be noticeable,
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3.3 Studies of the High Order Reconstructions,

Although in principle, the pseudoholographic process is a two-
step process, in practice, the pseudoholographic technique used in
our optical sirmlations was a three-step process, as described in Fig.
3.7. PFor the purpose of a detailed inv;stigatim of high order re-
constructions we used the mask of Pig. 3.2b in step 1 of Fig. 3.7.
The pseudohologram was recorded on an 8x10" tri-x piece of film in
step 1 of Fig. 3.7. The pseudshologram was then reduced in step 2
in Fig. 3.7. This reduced pseudohologr;m was recorded on 35 rm type
Kodak S0=-253 film and developed using four different methods:

(1) The filr was developed in D=165 at a concentration of 1l:L for L
min., The y was in this case about 2 approximately.

(2) The film was developed in D=19 for 6 min, The y in this case
was L=C approximately. .

(3) The center of the pseudochologram obtained in step 1 of Fig. 3.7
was blocked with a circular disc. The diameter of this disc was
1.2 times the diameter of the innermost zone recorded on the
pseudohologram, The psgudohologram with the central block was
then reduced in step 2 gf Pig, 3.7 and developed in D=19 for 6
min, This center block:’has a similar effect of a DC block, as
described in Ref. [3.3].

(L) In the reduction step (step 2 in Fig, 3.7) the 35 mm film was
underexposed but was developed for 6 min, in D-19. This is
equivalent to developing with very low y. The reduced pseudo-
hoiogram thus obtained had a very low contrast.

In the reconstruction step (step 3 4in Fig. 3.7) we illwninated the
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ZONE PLATE
ASK

M

LAMP l

STEP 1 1
RECORDING U i

|
l
l
|
PSEUDOHOLOGRAM (1)

PSEUDOHOLOGRAM (1)

LENS
STEP 2
REDUCTION
PSEUDOHOLOGRAM (2)
STEP 3
RECONSTRUCTION
COLLIMATED —> MICROSCOPE [-ﬁ 35mm
LASER T 1 CAMERA
LIGHT —» —— LH BODY

PSEUDOHOLOGRAM (2)

Figure 3.7

Pseudoholography as a three stage process.
1) Recording, 2) reduction of the pseudohologram, 3)
reconstruction of the reduced pseudohologram.
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reduced pseudohologram with collimated laser light. Pictures of the
different order reconstructions were taken using a 35 mm camera body
placed at a predetermined distance from the microscope to allow for
the desired magnification.

It is worth noting that for the investigation of the effects of
y on high order reconstructions we should in principle take a few
exposures in step 1 of Fig. 3.7. Each of these shadowgrams thus
obtained should be now developed in different conditions. However,
it was easier experimentally to record just one pseudohologram in
step 1 of Fig. 3.7, and to do a series of different exposures in step
2 of Fig. 3.7,

3.3.1 Analysis of Fig. 3.8.

3.3.1.1 Effects of Imperfections in the Zone Plate Mask,

Let us compare the first order reconstruction in Fig. 3.8 with the
object mask, of which the pseudcholograms were made, in Fig. 3.2b, We
notice that although the object is symmetric about a vertical axis the
reconstructions are asymmetric. This may be attributed to imperfections
in the zone plate mask itself, In Fig. 3.3b we see that the shadowgram
is not symmetric about a vertical axis. The righthand side of the
pseudchologram has a lower contrast than the lefthand side. We thus
expect that the reconstruction will show some asymmetric features.

If the contrast is reduced as in case 4 in section 3,3, there is not
a real difference between the righthand and lefthand sides and therefore

the first order reconstruction is symmetric in Fig. 3.8d. The asym-
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metry shows up mainly in the secondary lobes in the first and second
order reconstructions. At higher orders these secondary lobes are
weaker and so the reconstruction of the source looks symmetric as is
shown in the 6th and 7th order,

3.3.1.2 Artifacts,

Probably the most distrubing feature in the reconstructions in
Pig. 3.8 is the existence of artifacts, which appear in all the recon-
structions. We even can say that the success of the whole method de-
pends on whether it is possible to extract information {rom the recon-
structions without being misled by the artifacts. One way to avoid
false interpretation is to notice that there is no consistency between
artifacts of adjacent orders, This is clearly shown in Fig. 3.8. For
example, in case b there is only one outer ring in the first order
reconstruction, while three outer rings are present in the second order.
Also, the third order has a different appearance than the second order.
We may then argue that consistent appearance of a feature from order to
order is evidence of true object content. The zppearance of new feature
in higher orders which could ;ccur due to improved resolutiom, should
be present in successive orders and should only represent subdivision

of features present in lower orders,

3.3.1.2.1 Comparison between the Odd and Even Order Recomstructions.

We have seen in section 3,1.1 that spurious points may be produced
in the even foci when we reconstruct a pseudchologram where the sepa~-
ration between the centers of two gzone plate shadows exceeds the diameter
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of the innermost gzone. This effect is not seen in the reconstructions
in Fige. 3.8. The separation in the case of Fig. 3.8 was of the order
of 251/10 where 2¢; is the diameter of the innermost zone and so moire
formed zone plates were not formed. Here, however, the odd foci show
a strange artifact (see F/3 and F/5 in Fig. 3.8). While in F/2 the
two disc source is reconstructed at F/3 there is an inner structure
within each disc, This effect disappears st higher orders.

3.3.1.3 Effect of vy.

Consider cases a and b in Mg. 3.8, The signal to noise ratio
at high order reconstructions (8th order and up) is appreciably betier
in b, Hence the important conclusion that by developing the shadow-
grams with high y high orders are enhanced. From comparing cases a
and b (10th order and up) we may conclude that high v developed pseu~

doholograms have less speckle noise,

3.3.1.L Central Block

The first order reconstruction in case ¢ is better than in cases
a and b because it is more symmetric than these two cases, However,
higher order reconstructions are weaker and therefore the usefulness

of this technique is limited.

3.3.1.5 Reconstruction at Very High Orders.
Using the high contrast pseudohologram we find that the original
object is not faithfully reconstructed above 9th order, although the

two points seem well resolved, Instead of reconstructing two discs
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we observe two points. It is not clear why at these high orders the
pseudohologram fails to reconstruct the area of the disc.

In case a at F/12 we clearly see that the speckle noise is the
real limitation on the observability of the reconstruction.,

3.3.1.6 Effects of Underexposure. _

We have already noticed the enhanced symmetry in éa.se d in the
first order, Now consider the second order. Instead of two points
we get one central point., In Pig. 3.9 two rings overlap_each other,
These overlapped rings produce a third ring with twice the density
as the original ones., Therefore if the development is nonlinear,
the overlapped region may be enhanced too much in comparison with
the non-overlapped region. And so one Set of rings will give rise
to one point in the middle instead of two.

3.L Requirements on the Zone Plate Camera.
We will now summarize the relevant equations and requirements
frorm previous sections,

l. The transverse resolution, 'l'p, is given by:

(3.1)

S.+5
Tp = l:hér [1 2]

P 2

See Ref, [2.2,11] or Eq. (2.2,56) and related discussion in section
2,2.,4, To achieve an appreciable efficiency at high orders the zone
edges have to be very sharp, Also in the recording step of shadowgranm
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giffr ; effects should be kept to a minimunm,

2. T wographic resolution, Lp, is given by:

S
0.5 71 :
Lp = —NP—E(S]‘*SZ) (3.2)

See Eq .2.,58) and the relating discussion in section 2.2.5. It
is thy: - :ferable to use zone plates with large number of zones

and t: snstruct at higher orders.

3. T id diffraction effects in the recording step of a shadow-

gra-. pper limit on the wavelength which is emitted {rom the
plas a4d be:
2. 2
A[g] < 2-r° [um ]-;[1/cm] (3.3)
(av)

See T+ - ,2,23) and relating discussion in section 2.2.1.
be T ser 1limit for the innermost zone radius is given by:
g, 2d 7 (3.4)

whi . .5 the innermost zone radius,2d is the object size
or .. meter of the plasma and 2p is the highest order at which

we wi~ - reconstruct (see discussion in sectiomn 3.2).

S. & ler that the signal to noise ratio will not decrease by more
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than the amowmt that is predicted by Eq. (3.6) (see Ref. [3.L] page 1LO).
The lower limit on the thickness of the gold materizl in which the zene
plate is manufactured should be:

inf

t i'm (3.5)

The notation here is as follows: 1t is the thickness of the gold material,
a(\) is the absorption coefficient of gold at a wavelength i, f is the
transmission of the parts of the mask that should be completely opaque.
let us denote the signal to noise ratio on the pseudohologram in the

case where the 2one plate is made of truly opaque zones by 1. If the
zcnes have transmission £ then the signal to noise ratio decreases ac-

cording to the forwula:

1~-f
7 (3.6)
(1+€)

(see Ref. [3.L]).

6. In order to avoid spherical aberration (see Ref, [2,1,15]) the upper
limit on the number of 2ones in the zone plate mask is given by:

N fE (3.7)

P is the focal length of the zone plate, N is the number of zones and
is the wavelength of the coherent beam used in the reconsiruction step.
For F - 1n and A = 6300% we need N < 1761, Hence in the first order
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reconstruction N is not a limiting factor, However, in the 10th order

reconstruction Fl

limiting facior only at high order reconstructions.

0" 10 cm and now N < 563, Therefore N may be

7. Llet us denote the aspect ratio of a 2one by I' and define it by

thickness of zone
width of zone

In Fig. 3.10 we illustrate a few of the problems that may be introduced

by hizh aspect ratio zones in an x-ray 2one plate fabricated in gold:

(1) Rays may pass through the gold material partially attenuated and
give rise to false information.

(2) Ray may be reflected and scattered from the chamel walls in the
open zones.,

(3) The effective beam vidth changes and this may cause diffraction
effects,

let us define the F/# of a zone plate by

FI4 = 5,728,

where S is the distance of the zone plate from the source, and 25y
is the diameter of the 2one plate., To minimize the effects that are
mentioned above we should have
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Figure 3.10

Effects of high aspect ratios.
(1) A ray passes through the wall, (2) rays reflect and scatter
from the walls, (3) effective beam width gets smaller.
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ro< i%ﬁ (3.8)
or
S
1 1 1

where t is the thickness of the gold material and r is the width of the

outermost zone (see Ref. [3.L]1).

8, The magnification must be such that the grain size of the x-ray film
will be smaller than the smalilest magnified detail, If the smallest de-
tai) we are interested in is of the order of lum, and the grain size is

of the order of 10um we thus need at least a 10x magnification.

3.5 Calculatioun of the Zone Plate Parameters for X-Ray Pseudoholography
of Pellet Compression Experiments.

Some typical spectra which are emitted from compressed microballoons

are shown in Ref. [3.5) and [3.6]). From these figures we can conclude

that most of the radiation is in & region 8- 3,58 with a weaker continuum

extending to well below 18. When more powerful lasers will be used the
spectrum will change and will contain larger amount of hard x-rays. In
our case however a 5Sun thickness was chosen, which corresponds to a de-
crease of 157 in signal to noise ratio according to Eq. {3.5) for a
wavelength of 1.LE (see Table 3.1). Since the aspect ratio should not
exceed 1 (from (3.9) using S; = 10 mm; :-;N;i #m ) then
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r = 5Sum by (3.9)

According to Eq. (3.3) and Ref [2.2.7] diffraction effects will not
be severe if A < sf and r- Sum,

The size of the microballoon is typically 80.m and so according to
Eq. (3.L) we need for lith order reconstructions gy > 112um or 225,m
diameter innermost zone. From Eq. (2.2.Ll;) we find:
g, =2rN =N - (51/2r)2 = (122/10)% = 125 , According to Eq. (3.7)
this is acceptable for 1lst, 2nd, 3rd, Lth and Sth order reconstructions.
In our case we use a Buckbdee Mea.rs* zone plate which has 37 zones. The
innermost zone diameter is 200um., The outermost zone is calculated to be
8um, However, the actual width is about l-2um, The openings are thus
mach narrower than the expected values calculated according to ‘/NEON_E
formila for the zone plate. Finally the magnification was chosen to be

S.48
52/51 = 16 and therefore according to Eq. (3.1)_];552_ = 1 and the reso-

lution is given by Tp = 1.Lér

3.6 The Construction of the Zone Plate Camera,

A description of the 2one plate camera is shown in Fig. 3.1la and
in Table 3.2. The carousel housing (1) is a light tight box which con-
tains a six-sided carousel (7). A piece of x-ray film can be mounted
on each side of the carousel (9). The carcusel can be rotated by a
stepper motor. The stepper motor is situated inside the carousel. A

*Buckbee Mears, Inc., St. Paul, MN.



-165-

(Z'¢ 9198} u)} suojeuR|dxa) Biawed 38id duoz ay) jo ubisap ayy eLL'c unbyy

SIS 19)
oV I =orns-e,

.z,
orvg .o,
00 Z, BIWVA
VIS
\§} LO®-D, (%) O1161
NUQILs 9, ® NWI0P ¥y

SorG 12) oY
O * O v,

ol

o.i-.P.\
NOE, udnavd
GG (r) wo
os*Porwnze-, )
adne S () OV 2w T IWIzE-D,
¥) DVIY "o 269, wsen,

SNNWTUDL Ona L D
4RO OreeDIC 3130

40A & v0oO0l,
03 MNOGAYH MV
DOV BI0edLE

PLES

»2

m!vOu (9)
7 iz
-t Oy 2120 e
SO
o) .U.L.ﬂuﬂ -
i,
- D o S
v
/, e
*
L
o vospooy
e ress
L2l S
()
oS
o \ S .
* 2wnoev, envt-0n

(rZ) Sruria \
D7 B4°" N WIQy-p 4

E2600-Q , M0 am <J
SBJ00-3 o Twa s <J



~166~

Au:v>v 433114

bujiesg

3p1LS A, 432€dS Xo0|g

auejd wild

[E2{43291] -- NIYIpady

dwe |3 3sea|3y 433INYS

ap1LS .2, 1eds ‘abuejy

|asnoue)

3PS «Zy IUNOK *]Ejd

nayypasay abuejy

9HOGIVH X3WiaA ‘3pLIS 12

493de-y Ijel4g

:—lﬂﬂiu—m mew .O_n;—m vwAn

31qe) 91q1%3}4

wioM d49 1-G0HIId IUNOK WAOM

@]

wiy Bupping

WIOM dH9 |-80#I1d IUNOK WIOM

abue| 4 wnnoep

QIO LIEIe IR eI

3PLIS WX

@]

sy Buypiny

19ssny 3421

24njaady Iuo)

3assng Jybiry

ap{ng bu|ysng

OO|®
Al1A 1A

3)ejd 43A0)

Buisnoy asnouae)

©

NO 1 1VNV1dX3

# Ldvd

NO1LVNV1dX3

# Lavd

ey g b1y 0} suojjeue|dxy

iT°t 2qey



~167-

cone aperture (2) is mounted on the carousel housing. The carousel
housing is mounted on a plaie adaper (5). The plate adapter is canne
ected to three turning lmobs on a vacuum flange (3) by two telescopic
Jjoints and a slide[1>(23). Such a configuration permits a three axis
motion of the camera head (carousel housing). The vacwum flange is
mounted on a vacuum tank (see a diagram of the tank in Pig. 3.,11b).

Tne vacuun tank has several parts, Four of these contain f/1.L lenses
that focus the laser beams on the microballoon target. The other ports
contain various diagnostics instruments. The microballoon targets are
mounted on a special fixture which places the microballoon at the center
of the tank. To prevent interfering with the target illuminating beams,
the target mounting fixture and the various diagnostics instrmments,

the camera aperture size is set to be 8 mm, The outer diameter of the
carousel housing is set to be 140 mm which is 2 bit smaller than the

6" tank port diameter (1L2 mm). The zone plate used in the experiment
was manufactured by Buckbee Mears, St. Paul, M., It is a free standing
zone plate (see Fig. 3.12(5) and 3,13) made in Sum thick gold foil. The
zone plate was centered on a 6 mm in diameter Be disc 25um thick. The
Be foil was placed on the cone's tip, and aligned in such a way that the
center of the zone plate would coincide with the optical axis. A shutter
release is used for aligning the zone plate camera, The shutter release
clamp (B8) is mounted on the carousel housing {1), A LOum diameter needle
is glued to the tip of the pin of the shutter release, The flexible
cable ('h) is connected to a knob on the vacuum flarge, To align the
camera t.t;e knod is tumed all the way and the cable moves forward until
the tip of the needle reaches the optical axis 8 mm from the zone plate,
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Figure 3.11b

Diagram of the DELTA tank including the various ports.
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The camera can now be moved with the apprgpriste knobs until the tip of

the needle coincides with the center of the microballoon,

3.6.1 The Zone Plate Used in the X-Ray Experiments,

In Fig. 3.12 we show five zome plate'ﬁzésters. The parameters of
these zone plates are listed in Table 3.3. The experiments reported
here were done using zone plate # in Fig. 3.12. The actual zone plcte
is shown in Fig. 3.13. It is a free standing zone plate made in Sum
thick gold foil. Unfortunately, the zone plate was damaged, as can be
seen in Fig. 3.13. Another deficiency of this zone plate is shown in
Hg.' 3.13b., The outer zones are extremely narrow. They are on the
order of 1-2um instead of being 5,3un wide, as designed by the mamu=~
facturer. This is due to manufacturing problems, Such narrow zones
as in Fig. 3.3c will cause diffraction and hence limit the usefulness
of the 20ne plate. Also the defects in the zone plate will cause arti-
facts and lower the signal to noise ratio of the reconstructions, In
spite of all these difficulties, it is remarkable that we were able to
get reconstructions even at third order,

We note that the innermost zone is opaque. This will cause the
pseundohologram to have a clear center, When we recanstruct, the recon-
structed object will be superimposed on this bright background,  We thus
have to copy the pseudohologram on to another piece of film, We can
save this step either by using a zone plate with clear center (such as
#2 in Fig. 3.12) or by bleaching the pseudohologram.

Tn Fg. 3.1l the actual camera is shown. (a) is a general view
of the camera. In (b) the six-sided carousel is shown as well as the



(1)

(4) (5)

Figure 3.12
Zone plate masters (the parameters are given in table 3.3).
Magnification about 20x.
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Figure 3.14
The zone plate camera. (a) General view, (b) the six-sided carousel, (c) the
alignment pin



(b)

Figure 3.13

(a) The Buckbee Mears zone plate is glued to a Be foil, to be
mounted on the zone plate camera. (Magnification is about
100x.) (b) Combined reflection and transmission picture of the
outer region of the Buckbee Mears free standing zone plate. The
narrow opening is a result of fabrication problems. (Magnifi-
cation is about 500x.)
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conical aperture., The aligning pin is shown in (c).

3.6,2 Sensitivity of the Zone Plate Camera to Misalignment.

F‘ig.’ 3.15 is used to illustrate the sensitivity of the instrument
to misalignment. If the microballoon is shifted a distance &, then the
shadowgran will shift a distance 6! = 62_:. e & is typicaily not larger
than 100wr and 82/51 = 16, Therefore &' < l,6mm. The size of the pseu-
doholograr is given by: 24! = (24¢D) :—i 4 24 for a mask of 1.25mm and
52/51 e 15; 24t -~ 20m, Each side of the carousel in Fig. 3.11 is about
5 cm long,therefore the 2¢0ne plate camera is not sensitive to movement

of the rieroballoon,

3.7 The Protlem of the Destruction of the Zone Plate by Extremely High

Intensities in Laser Fusion Research.

The experiments to be reported in this work were done on the Delta
syster: ir the University of Rochester. The energy delivered by this
laser was typically 7 = 10 joules in about 30 - 100 psec. With this
syster. there is no problem placing the zone plate 1 cm {rom the target.
However, the proposed Omega system, which will have 2 beams, will

deliver 101J joules in about 1 nsec. If a rone plate 2 mm in diameter
will be placed 1 cm from the target, the amount of energy incident on
it will probably be 500J/cm® which i€ an enormous amownt of energy
considering most of it will be absordbed by a 25 - 75um thick foil of
Berylliumonvhich the zone plate is deposited. An obvious way to over-
come this prbblem is to work on a single shot basis, namely, to replace

the zone plate after every shot. The fabrication procedure of a zone
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plate can be made efficient and relatively inexpensive so
that this mode of operation seems feasible. Another solu-
tion is to place the zone plate further away, c¢ay 10 cm, from the target.
This will force us to use under outermost zones(of the order of 10um)
and decrease the resolution. With hard x-ray radiation 5th order recon-
structions may still be feasible so that 2-3um resolution can be
achieved,

Furthermore, if optical deconvolution or hybrid optical digital
deconvolution procedures are developed, we should still get high reso-
lution even with the zone plate placed at distances larger than lem

from the target.

3.8 The Resolution of the System.

To determine the resolution of the instrument we used a mesh® of
Sur square holes separated by 20um (see Fig. 3.16d). Instead of a
diffuse source we placed the mesh as close as possible to an x-ray
source, In Fig. 3.17a we seethe configuration used in this experi-
ment and how a broad source can be used.as long as the mesh is placed
close enough to the source., We used an x-ray machine which emits Iron
Ka line radiation and produces a line source 15 mm by 1 mm. The resul-
tant pseudohologram is shown in Fig. 3.16a. In spite of the fact that
the source was too narrow in one direction and that the radiation was
too hard for the thickness of the gold material, we were able to
reconstruct the mesh, In Fig. 3.16b the first order reconstruction is

shown, The distance between the holes is 20um and the reconstructed

#The mesh was supplied by Perforated Products, Inc., Newton, Mass.
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] | (b)
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(\ FILM

X-RAY
SOURCE

Figure 3.17

Configurations for performing the resolution test.
(a) -Transmission method, (b) fluorescence method:
the nickel in mesh fluoresces when x-rays are incident
on it.
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hole width seems to be about 10um, as shown in Fig. 3.16b. Taking
into account that the holes are Sum wide, we may conclude that the
resolution is about Bum in the first order. In Fig. 3.13c we see

the reconstruction at the second order. The signal to noise ratio
is too low and most of the holes are not reconstructed., HKowever, 2

lines seem to be reconstoucted.

3.9 ZExperimental Results from Laser Pellet Compression zxperiments,
3.9.1 EIxperimentisl] Determination of the Magnification of the Camera.
In Table 3., we list the parameters of seven shots which were
done on Delta, The reconstructions are shown in Fig. 3.19 to Fig.
3,23, In order to determine the magnification the diameter of the
zone plate and the diameter of the shadowgram were measurec. In Fig.
3.18 we show t’né relationship between the 2one plate diameter, the
pseudoholograr diameter, and the magnification. Let D,z and Dps be
the diameters of the zone plate and the pseudohologram respectively.
let's assume that we have a two point source and the two points are
separated by the distance T, The distance between the centers of the

corresponding 2ome plate shadows on the £ilm is T', By measuring D

jot
and D, we get the ratio TV/T,
From Fig. 3.18 we have the following relationships.
T3 S, +8§
BF A
—- _E - 21 (3.10)
GH GH S

- B = CTD = EF (3.11)



(b) 1st ORDER (c) 2nd ORDER

(a)

PSEUDOHOLOGRAM |

Figure 3.16

Resolution test tor the zone plate camera.
(a) Pseudohologram of the mesh, (b) first order reconstruction,
(¢) 2nd order reconstruction, (d) the mesh. Scale 10 um/div.



-179-

weibojoy-opnasd awes a3yl uo pasodxd (7)

H 4yt wit g7 yoes :ajo0ulooy, (paydea1q) jeod ny M 009 (1) :sa93joN
22/46 z
T AR (z) ] 4 z°s ‘09 --- 09°0 ad 66wz 09.L)
22/46 Z
£T-¢ (2) ] ] £°9 "8 -—- €0 ad TSt 6SLL
20/46 Z
it --- ] h 'y ‘96 --- 964°0 al 9197  gSllt
17"t - ] Z gt 9 {9 69° ‘v 9°8 N oL€z  LELL)
0z°¢ -—- Ul 4 96°9 "0l -—- --- -—- jleiys el
0z'E (1) Y i LL°6 L%9 Inl" "IV 6791 N 904Z  T69LL
61°¢ ~-- L] l 1 R/ 9 gel’ umoudun umowun 61nZ 1694}
# 'Di4 'soloN sweag ,s|10j og (sa(nofl) (wrt) (wr) (22746) Aﬂou 10}) 4 4§
3O §# 40 §# 1obue} uo aejsweig ssawpdiy) Ajlsuadg jet1o3ey  1abaey  joys
Abaauj uoo| | eg 1 1M 10 (-3y) 40 seq
04D | 24NSsSadd )

B]1|3Q U0 udje] sloys Iy} JHO stajaweded

q€ @1qe}



-180~

‘saje|d auoz padde(13A0 Om| 3Y) $| 358D S|y} L weLbmopeys
3y | ‘eidwed eyd auoz ay) jo uopedubew ay) Bupndwod 10) uoyrISNY)|

81'c ainbyy
| 2g

g —

L

_4a
| !
wac .H Ll
3 VWSVId Ni
$10dS 10H OML
—

w4



~181-

Dps = AE + EF (3.12)
from (3.10)
S, +8$S
s w172 1 —_—
Pps = H[ g ]" F (3.13)
52-1»51 _
cz ops = Dz[ S )+EF (3.14)
now T/T = S?./S1 (3.15)
52 _
from (3.13) Dps = Dz [§+1] + EF (3.16)
S D -EF
2
hence T = —p-%——-'l (3.17)

By measuring EF and D, we thus find 52/51.

Dps s
The microballoon is mounted on a glass stalk which is typically
70um diameter., (See Fige. 3.2Lb). When the laser beams hit the micro-
balloon we expect the emission to occur from the shell as well as from
the campressed core in the center. On the other hand if the laser
beams hit the stalk from opposite sides we expect emission to occur
only fron the surface of the stalk. The density of the stalk is so
high that compression cannot occur. The stalk case is therefore suit-
able for measuring the exact magnification since we have two hot spots

in the plasma as is required in Fig. 3.18., We thus use the results from
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the stalk shot shown in Fig. 3.20 (shot #17735). Measuring I, and F ve

get:
b = 2.05cm, EF =0.1cm, Dz = D0.12 cm
2.05-0.1
Therefore, =n=T'/T =5/, = “F=5—-1 = 15.25 (3.9)

In most cases we demagnify the pseudohologram; in our case 1/m = 1/2.

We used a Niromat camera fitt>d with a Nikon 55mm £/5,23 Macrolens.

no= TUT = 122 o 7.2

The error in n

A L A(DLS-FF_)+ADZ Am

—— - + —
Dz m
n -
A(Dps )

m
-

We estimate the errors as follows:

2N - 7% (due to error in setting up the camera)

== - 0.5%

a(d S-ETT‘)
b _-EF
ps

- 2.5%

Therefore 20 ~ 107 when reduction with the camera has taken place,
An "~ 3¢ without reduction.
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The reconstructions were done using the same system descrii>ed in section

3.1.

3.9.2 Discussion of the results.

The increase of resolution in higher orders is demonstrated in
Fige 2.19. In the first order we distinguish between the shell on
the outside and the core. This is consistent with experimental con=-
figuration shown in Fige. 3.2La. The camera is in the plane of the
four beans and is situated at L5° to two of the beams, Therefore,
the shell will consist of two regions where the right and left beams
hit the pellet. The width of the shell at the first order is about
8um. In the second order it is only Lum and in the third, it is
2-3um., The fine structure shown in the second order is consistent
with that in the 3rd order. This suggests according to previous
discussion, that this fine structure is real. This means that as
the material compresses inward, it is heated and it emits radiation.

The actual size of the core is about 3um according to the third
order and not about 10um as it might seem from the first order. The
gas in this microballoon and its pressure were unknown in this case.

In Fige 3.20 (shot #17692), the case of gold coated microballoon
is shown. In this case the energy on target was high and the pseudo-
hologram was overexposed. It was not possible to reconstruct with
this hologram. This pseudochologram was then bleached, The x-ray film
is very thick so that by bleaching we got a white patch due to the
scattering in the bleached silver halide. It was not possible to re-

construd this pseudohologram either. The bleached hologram was then
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fixed, All the silver halides were dissolved and we were left with the
surface relief image on the emilsion. The reconstruction at first order
shows the typical shell and core structure., But, at the second order
we see the inner structure. A4lso, the actual dimension of the shell

is considerably smaller than what it might appear to be in the first
order. The appearance of the inner ring in the second order reconstruc=-
tion in Fig. 3.20 (shot #17692) is wnusual for this kind of experiment. .
In a typical x-ray pinhole camera photograph of an imploded gas filled
glass microballoon, only shell and core structure is observed. Since

in this shot we used only 1 mill of Be foil, it is reasonable to suggest
that the emitted soft x-rays may have been the origin for this structure.
In x~-ray pinhole camera the filters used are usually thicker and so the
photograph represents effects due to harder radiation. Fig. 3.20 (shot
#17735) shows the reconstructions of a stalk irradiated by L laser beams.
The pseudohologram was previously used to determine the magnification of
the system, From Fig. 3.2C (shot #17735) we can determine the thickness
of the hot material at the surface of the glass with a resolution of
about 3um. At the third order it is about 3,5um, In Fig. 3.21 the

case of an 8.6 At Ne filled microballoon is shown. The shell is very
faint and the core is very large. At the third order some indication
of split core is shown.

The last three shots were done on CD, foam. This is a solid micro-
balloon specially prepared to have low density., Since there is no glass
shell we do not expect to see the usual shell-core structure which is
typical of microballoons.

In Fig. 3.22 we see the reconstruction of 0.195 gr/cc CD, micro-
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balloon. Indeed there is no shell; only the core is seen. The second

order is consistent in its shape with the first order. The width of

the core is about 7 um, In Fig. 3.23 the reconstruction of 2 foam targets is
shown.The same film was used for both shots. Although good reconstruc=-

tion at first order is obtained, at the second order we have artifacts

and interaction between the two holograms,

3410 Using 1.D. Zone Plates for Spatially Resolved Spectra of X-Ray

Self-=Luminous Sources.

The basic idea of high spatial resolution spatially resolved
spectra is described in Fig. 3.25. It is essentially an extension to
spatially resolved specira using a slit (see Ref. [3.7]). The radia-
tion from the pellet passes through a linear zone plate and it is diff-
racted by the crystal. At each wavelength a shadowgram of the region in
the source emitting this wavelength is recorded. Our psendohologram is
therefore a collection of linear pseudoholograms, each of which is at a
different wavelength. It is now possible to reconstruct each hologram
separately to gel spatially resolved spectra of the source. If higher
orders are used, it is possible to get high spatial resolution.

An optical simulation of this technique is illustrated in Fig. 3.26.
Here we work in transmissjon rather than in reflection. For an object
we prepared a mask with holes; each hole was covered with a color filter.
This mask was illuminated through a diffuser, The light from the mask
is diffracted by the grating after passing through the zone plate and we
get a shadowgram, as shown in Fig, 3,27b. In the middle the zero order

is recorded, At the + and - orders, the colors are separated and we can
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LASER BEAMS

PELLET

\ ZONE PLATE

CAMERA

L

Figure 3.24a
The zone plate camera is in the plane of the four illuminating beams.
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ONE
DIMENSIONAL PHOTOGRAPHIC
COLOR ZONE PLATE PLATE
FILTERS suT\ ‘ GRATING ﬂ
DIFFUSER l'/
Nl .
' |
I
l i
| !
MASK |

.

10-204

SLIT

GRATING

Figure 3.26

Experimental configuration for optical simulation of recording of a pseudohoiogram of
spatially resolved specira.
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otserve different linear pseudoholograms at different wavelengths., In
ordcr to reconstruct we have to demagnify the helogram to get a con-
venisnt focal length. At the same time we would like to avoid the
demazgnification in the direction of the wavelength information in
orazr not to decrease the spectral resolving power., We thus need a
cylindrical lens that will reduce one dimension while keeping the
other dimension wichanged. The ouly anamorphic system that is commer-
cially availeble has at most 2,5X reaductiou capability. Since we
need ot least 6X reduction, we had to reduce in two steps, as shown
in Mg. 3.27c and 3.27d. Finally, we reduced the pseudohologram by
an additional 2% reduction with a macrolens. This is done to obtain
a couvenient focal length for the reconstruction,

However, the quality of the pseudoholograr deteriorates because
of so many pholographic processes and we expect severe problems in
the reconstruction.

The reconstructions are shown in Fig. 3.28. Fig. 3.28¢c is the
object., Fig. 3.28a is the first order reconstruction and the spectra
of the different holes are spatially resolved. In Fig. 3.28b the 2nd
oxrder reconstruction is shown. The signal to noise ratio is very low
but the two blue holes are resolved.

The reconstruction was done using a He-Ne laser in a configuration
similar to that described in Fig. 3.7(3).

To avoid a decrease in signal to noise ratio, a special cylindri-
cal lens was designed and is being built. This cylindricali lens re-
duces one direction 1ll; times while keeping the other direction wn-

changed. We Lope that with such a lens we will be able to obtain much



(b)

YELLOW GREEN BLUE RED

Figure 3.28

Experimental results of the optical simulation experiment in spatially
resolved spectroscopy. (a)First order reconstruction, (b) second order
reconstruction, (c¢) the original object.
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higher quality reconstructions than those shown in Fig. 3.28. In

Fige 3.29 the possibility of obtaining streaked one-dimensional pseu-
dohologram is illustrated. Instead of using a slit in an x=-ray streak
camcra, we can use a one~dimensicnal zone plate. One=-dimensional
reerishologram is thus formed on the fluorescent screen at a time b
say, and reccrded on a piece of film, At a later time t, the voltage
across the plates will cause the electrons emitted from the gold cathode
to shift and a different pseudohologram will be formed on the fluores-
cent. screen. As in the case of spatially resolved spectroscopy, we can
nov reduce one direction to avoid decreasing the time resolution and re-
constrmact., This technique should enable one to get in 3rd order recon-
cons*tructions, 2-3um spatial resolution while maintaining the high tem=

poral resolution in the x=-ray streak camera.
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FLUORESCENT
SCREEN

DEFLECTION PELLET

PLATES
GOLD-COATED
PHOTOCATHODE
LINEAR ZONE
PLATE
Figure 3.29

Experimental configuration for recording a sireaked pseudohologram. Linear
pseudoholograms will appear at different iocations on the fluorescent screen because
the electrons are deflected during the emission from the peliet.
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Swmnarizing the contributions of this work, suggestions for fur-
ther analysis and experimentation will be pointed out. The potential
of high order pseudoholography using zone plates for obtaining high
resolution x=-rzy images has been demonstrated, The main results from
the study of the analogies bzstween zone plates and diffraction grat-
ings are the following. The oneaxis intensity of light focused by a
rresnel zone plate is equal at all orders. The on-axis intensity in
high orders in 2o0ne plates depends sirongly upon the shape of the
individual zone. Smoothing the zone edges tends to decrease ihe
efficiency at higher orders. Bleaching of pseudoholograms may be a
useful technique to enhance high order reconstructions. One of the
most important limitations on the pseudoholographic technique is the
diffraction effects in the recording step of the pseudochologram. A
rough rule of thumb was found for determining the geometrical con-
figuration where diffraction effects are relatively unimportant. The
stationary phase method was used to derive expressions for the dif-
fraction effects, These expressions need to be evaluated numerically
in order to get a reliable criterion, This problem should be tackled
experimentally in order to find the upper limit on the wavelength of
the soft x-ray radiation that is still useful in producing efficient
pseudoholograms, The formal mathematical framework of pseudcholography
is rederived this time including the reconstructions at higher orders.
The theoretical study predicts practical submicron resolution. The
study o.f_ unconventional zone plate design is initiated in order to
improve the efficiency at high order resolutions. More research has
to be done, however, to obtain an optimal zone plate design.
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Investigations of the speckle noise at high order recemstruc-
tions include the film grain and the serration introduced by mamu-
facturing processes in the zone plate structure. The grain noise
could be modeled and expressions were derived. The speckle noise
introduced by the serration is very hard to model and further re-~
seaxck should be done. Computer simiations are a convenient way to
investigate the various capabilities of various zone plates, 4 come~
Tuter code that simulates the prapagatio;_x of an optical field tkrouwgh
an optical system was modified and the t.{'ansverse intensity distri-
butions were calcuwlated for various zone plates. Two dimensional
zone plates are found te be much more efficient for high order re-
censtructions than the one dimensional z2ane plates. Also, a camputer
progran was written for calculating the intensity distributions along
the optical axis., This program can be used to design a zone plate
with a predetermined high order focusing capability., A third program
was written for simulating the recording of a pseudohologram, The
propagation code mentioned above is then used to reconstruct the
recorded pseudchologram. Effects of the y of the film on the quality
of the reconstruction at various orders were investigated, The inm~
portant conclusion is that by controlling both the y and the zone
plate design we can improve the quality of the reconstructions. A4
detailed study using these programs should be carried on to design an
efficient pseudoholographic process.

Optical simulation experiments demonstrate the increase of reso-
Jution in high order reconstructions. The appearance of artifacts in
the reconsiructions depends strongly on the y of the developed
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pseudohologran, and a fidelity test of the technique is clearly
warranted. Combining resulte of both computer similation and experi=-
mental investigation will probably result in a more successful zone
plate camera design. Results from some pellet compression experi-
ments are shown demonstrating an increase of resolution at higher
orderc, .

The application of 2one plate pseudoholography to imaging of im-
ploded pellets is by no means the only one, In fact, the backlighte-
ing technique, used in this work for determining the resolution of the
system, may turn out to be a useful diagnostic tool for characteriz-
ing multicoated microballoons, where optical methods are impractical.
Also, x-ray microscopy with submicron resolution of backlighted bio-

logizal specimens seems feasible,



