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Abstract

In this thesis, we introduce a different and simple approach to controlling
quantum systems. We show that the quantum-control problem can be greatly
simplified by simply limiting the duration of the driving force to less than one
characteristic period of the system. (For an atomic-electron Rydberg wave packet
this would be the Kepler period, for example, or the vibrational period in the case
of a molecule.) If the target state is a bound state of the system, then for times
less than the characteristic period, the particle does not have the opportunity to
reach the system’s boundary and acts essentially as a classical free particle. Such
a restriction on the duration of the driving field allows an analytic solution to be
found, even in the nonperturbative regime. This analytic solution helps clarify
some of the differences between the perturbative and the nonperturbative regimes
of excitation. We also show that our solution is nonunique, and the quantum
controller has a multiplicity of solutions to chose from.

We will discuss the technique with respect to the hydrogen atom and diatomic
molecules, but it can be readily extended to a variety of systems consisting of a

lower and an upper manifold of eigenstates.
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In particular to the case of molecules, in the nonperturbative regime, pop-
ulation may get trapped in the lower manifold due to the large bandwidth of
the exciting pulse. We show that population trapping is avoided by choosing
among the many possible solutions one with the longest possible duration, and
yet, shorter than the vibrational period of the systeﬁ.

The validity of our solution is tested by comparison with a direct numerical
integration of Schrédinger’s equation, and it is found to yield the target state and
population transfer with very high accuracy in both regimes of excitation.

We also report on the experimental detection of cold molecules, formed in a

magneto-optical trap, with ultrashort-optical pulses.
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Chapter 1

Introduction to Quantum Control
of Wave Packets and to Ultracold
Molecules

1.1 Introduction

One can probably say that, ultimately, everything in nature is quantum mechan-
ical. Therefore, to manipulate physical entities at the most fundamental level
means to control the dynamics of a quantum system— such as an atom, a molecule,
or a photon—guiding it from an initial state to a desired final state. In the re-
cent past, several experiments have shown that it is possible to create chosen
quantum states of photons, atoms [1,2] and molecules [3-7], and to characterize
them completely [8-11]. More specifically to the topic of this thesis, the creation
and manipulation of wave packets with specific properties in quantum systems is

important not only from a fundamental perspective, but also in many emerging
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areas of quantum engineering such as quantum computation [12-14] and nanoscale
technology [15,16].

In particular, the control of molecular motion grew out of the desire of chemists
to create new molecules and materials. These goals can only be accomplished ef-
ficiently if one is able to break specific bonds in a polyatomic molecule or to
control a chemical reaction favoring one of its byproducts over another. Control-
ling a molecule seemed easy at first: careful optical stimulation would lead to the
control of the molecule, such as the breaking of a specific bond versus another.
After identifying the resonance frequency associated with a bond of interest, the
molecule would be excited with a laser of appropriate intensity tuned to that
particular frequency. Physical intuition guided the choice for the form of the con-
trol field. However, thirty years of efforts without major successes indicated the
problem was not quite that simple. Eventually, the reason for that difficulty was
identified as the rapid spread of locally deposited energy throughout the molecule,
destroying the specificity of the process.

Later, researchers realized that successful control of the evolution of a quan-
tum mechanical system lies in the manipulation of interferences inherent to the
quantum mechanical description of a system. This is not surprising, after all,
all quantum phenomena are wave phenomena, and as such they are subjected to
interference effects. To achieve successful control within quantum mechanics one

must balance the constructive and destructive interferences of the several possible
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ways a system can evolve from an initial state to the desired final state. Generally,
to achieve such a balance guided only by intuition is practically impossible, and
hence, more solid theoretical grounds are necessary to achieve that goal. Put this
way, quantum control can be seen as an inverse problem where one knows the
objective (to steer a molecule towards a particular quantum state, say) and seeks
the electric field ‘capable of meeting this objective.

Most likely the solution to the quantum-control inverse problem will not be
unique. The nonuniqueness of the driving-field solution comes from the fact that
quantum systems occupy a minimum area of phase space, whereas classical sys-
tems may occupy an area that is infinitesimally small—see Figure 1.1. The extra
phase-space freedom afforded by quantum systems means that there may be sev-
eral classical driving fields, each producing the same final quantum state. This,
however, may be a strength since one of the possible field solutions may be more
easily generated than another in the laboratory. Thus controlling a classical SVs-
tem may in fact be harder than controlling a quantum system, since the precision
in the driving force that is required to achieve a particular target region of phase
space is much greater in the former case. (A classical system does not have to
specified to an infinitesimal precision. But there is no fundamental limit to this
specification, and to this extent the last statement is true.) Formal quantum-
control theories have been developed in the last fifteen years by extending the

control theory of classical systems into the quantum domain. These theories have
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Figure 1.1: A quantum and a classical system in phase space (momentum x position). If the
control field drives the system to anywhere within the fuzzy quantum distribution the target is
considered to be achieved with success. On the other hand, there is no fundamental limit to
which a classical system can be specified.

lead to new insights into the way in which matter can be manipulated that may
have important consequences for chemistry, biology, material science, and possibly
optical communications and quantum computing.

Quantum control is now recognized as a problem of design and manipulation
within quantum mechanics. It is an inverse problem in which one knows the final
solution and wants to figure out how to get to it. Most of the approaches that have
been suggested to quantum control fall within two categories: Coherent Radiative
Control (CRC) [17,18], in which two or more cw fields are used to interfere different
pathways to the final target state; and Optimal Control [19-24], which searches
for the optimal pulse that best steers the system to the chosen target state.

These two schemes have been successfully implemented, for example, in controlling
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molecular dissociation [25-28]; carrier dynamics in semiconductors [29-31]; prod-
uct ratio in chemical reactions [6,32-34]; state-selective vibrational excitation of
molecules [35-37]; and wave-packet dynamics in the gas [5,38—43] and condensed
phases [6,44].

CRC schemes have been very useful for cla.rifyiné the basic ideas of quantum
control and are very effective in appropriate circumstances. However, the number
of control scenarios and possible control targets to which CRC can be applied
seems limited when compared to the variety of quantum systems that can be .
controlled by optical pulses, specially ultrashort pulses. That is because for very
complex problems, a large number of quantum states may have to be manipulated
simultaneously which can be very difficult to do if only a few frequencies are
available. On the other hand, ultrashort pulses have large bandwidths allowing
for a very large number of frequencies to be manipulated simultaneously by a pulse
shaper. As a matter of fact, the recent advances in pulse—shap.ing technology is
partly responsible for the renewed interest in quantum control seen in the last
decade.

Experimentally, the approach is somewhat different: one implements learning
algorithms that gradually refine the target achievement to automatically converge
on a control pulse (2,5,45,46].

Next, we briefly describe one of these approaches: Optimal Control Theory

(OCT). For more details, the reader is referred to the review by Rabitz [47].
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1.2 Optimal Control Theory

Ideally one would like to have complete control over the behavior of a system,
but some objectives for some particular molecular systems, for example, may not
always be subject to control. Given the goals and any constraint to which the
system may be submitted to, OCT aims at finding the best approximate solution
to the control problem that guides the system as close as possible to the desired
final state.

In OCT, the physical objectives are represented by a mathematical quantity
called the cost functional. Typically, a cost functional (J) contains two terms: one
representing the physical objectives (J,), and another representing any penalties
or costs (J). Both quantities may depend on the unknown external driving field
E(t).

One possible physical objective would be to drive the expectation value of an
observable A (which could represent a particular bond length, for example) to a
specific value A at target time ¢ = 7. In this case, a simple choice for J, would

be:
Jo= () Al(r) - 4. (L.1)

The goal would then be to try to find the electric field which would minimize this

difference. Another choice of physical objective could be, for example, maximiza-
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tion of the probability of being in a particular state at the target time. The choice
of target time 7 is left at the disposal of the designer .

At the same time when maximizing a particular bond length, one might want to
leave all the other bonds unperturbed. Or, when maximizing the energy associated
with a bond, it might be desired to minimize the energy dispersal throughout the
rest of the molecule. For this purpose, a penalty functional is introduced; penalties
are then additional constraints that the solution must satisfy. Since the penalty
is to be taken into account during all of the control interval, such functionals
are usually in integral form. A penalty that is usually included independently of
the nature of the system to be controlled is the field intensity, and is some times

written as
Jc,f=/ dt W (t) E%(¢), (1.2)
0

where W(t) is a weight function. This penalty would be introduced whenever
one wants to keep the energy of the optimal field at a finite value. By specify-
ing the weight W (), the designer determines the importance of the finite-energy
requirement.

Uncertainties in the molecular Hamiltonian (due, for example, to collisions
between molecules), or errors in the laboratory implementation of the optimal

fields can be detrimental to establishing control over the system, and to guarantee
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the robustness of the designed field, a2 penalty functional is sometimes introduced
for this purpose.
Finally, since it is usually highly desirable for the system to follow the laws of

physics, a cost functional such as
T ) d R
Tea = [ at 0@ linS ~ HOWO) (1.3)
0

is introduced so that Schrédinger’s equation properly guides the dynamics of the
system towards the final state. Here, A(¢) is a Lagrange multiplier function and
its presence not only assures that the equations of motion are satisfied, but it also
provides a feedback guiding the dynamics to an acceptable solution.

In general, the cost functional J depends or the unknown field E(t), the state
of the system 4(t), and the Lagrange multiplier function A(t). Small variations
of J with respect to these functions produce the corresponding Euler equations,
which when solved should yield the optimal external-driving field. Usually, no
closed solution exists for these equations and an iterative process must be used.
The initial state is known and a guess is made to the electric field. The Euler
equations are then solved iteratively until they converge to a final solution. The
resulting field is considered the optimal driving field since these equations con-
stitute a highly nonlinear set of equations, leading to possible multiple solutions.

It is also clear that the form of the optimal-designed field will depend on the
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choices of cost functionals, target time 7 and weight W (¢) adding a great degree
of flexibility, and possibly uncertainty, to the design problem.

Optimal control theory has been shown experimentally to be useful in designing
light fields to control wave-packet dynamics and chemical reactions. For example,
Kohler and co-workers [5] showed that a negatively-chirped ultrafast pulse can
be used to focus a vibrational wave packet in iodine molecules. There, the pump
pulse was designed in order to overcome the wave-packet spreading due to the
anharmonicity of the molecular potential. Later, the same group applied this idea
of wave packet focusing in order to control the branching ratio of Na*/Na in Nal
photodissociation [48]. Recently, Bardeen and others [6] showed experimentally
that quantum control is possible not only for gases, but also for a condensed-phase
environment.

Two response regimes are distinguished in the quantum-control literature: the
weak and strong regimes of excitation. The weak (strong) regime is character-
ized by a small (large) percentage of population transfer among energy levels.
In the weak-response regime it is possible to find analytic solutions for the driv-
ing field from these equations [49]. Moreover, these solutions—whether numeric
or analytic—can be shown to be globally optimal: They correspond to the best
possible solution to the control problem. The nonlinear strong-response regime,
when significant population transfer from the initial to the final state is specified,

has only been dealt with numerically [39,42,50]. Furthermore, the weak-response
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solutions have been remarkably effective as good initial guesses for iterative solu-
tions to the more general inverse-control problem [39]. This is a very surprising
result in itself for which there was no explanation. Unlike in the weak-response
case, solutions for the driving fields in the strong-response regime of excitation
are in general only locally optimal, and it is not easy to determine if a particular

solution is indeed close to the globally-optimal solution.

1.3 Rydberg Wave Packets

In 1913, Bohr postulated that the hydrogen atom existed in discreet energy lev-
elg and its electron moved around the nucleus in quantized orbits. Today, the
way quantum mechanics describes the hydrogen atom is different, but the basic
underlying idea persists: the electron can take on only a discreet set of energy
values.

Atoms that occupy the higher energy levels, the Rydberg levels, are called
Rydberg atoms. Rydberg levels are characterized by very-small, almost-regular
energy splittings—see Figure 1.2—and a Rydberg wave packet is a coherent su-
perposition of two or more Rydberg levels. Such a wave packet can be excited
in a variety of ways [51]: via short-optical pulses, picosecond free-electron laser
pulses, nanosecond microwave pulses, etc. Regardless of the method of excitation,
the general idea is to transfer part of the initial ground-state population to the

Rydberg levels and add them up coherently. If |¢,) is the eigenfunction of state
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Energy

Co

Figure 1.2: Excitation of 2 Rydbeg wave packet by a short-optical pulse. The carrier frequency of
the pulse is resonant with one of the Rydberg atoms. The excitation pulse has enough frequency
components in its spectrum to simultaneously excite many Rydberg levels.

n, cq(t) is its probability amplitude, and wy, is its eigenfrequency, then the sum

[(2)) = D _ calt) exp(—iwnt)|4n) _ (1.4)

describes such a wave packet. The final shape of the wave packet will depend
on the initial state of the atom and the spectrum (both the power spectrum
and the spectral phase) of the exciting pulse. In this thesis, we are primarily
concerned with short-optical-pulse excitation of these wave packets starting from
the atomic ground state. Because of its short-finite duration, the optical pulse
has a large bandwidth that allows it to be simultaneously resonant with mény '

different Rydberg levels—Figure 1.2. In this case, the final wave packet will
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correspond to a wavefunction localized only in the radial coordinate, since the
excited levels have different principal quantum numbers, but the same angular-
momentum and magnetic quantum numbers. (By combining optical and half-
cycle terahertz pulses, it is possible to excite a three-dimensionally localized wave
packet [52].)

Basically, the short optical pulse transfers the ground-state wavefunction, lo-
calized close to the nucleus, to the more energetic Rydberg levels. The wave packet
then moves radially outwards until it reflects off the Coulomb potential, at the
outer turning point. Much similar to a classical electron in a Coulomb potential,
the wave packet then executes a periodic radial motion. The time it takes for the
wave packet to execute one complete oscillation is called the Kepler period. (If,
for example, the wave packet is centered at the principal quantum number n = 75,
then its Kepler period is on the order of 64 ps.) Because the Rydberg levels are
anharmonic, the width of the wave packet changes as it moves. After a number of
oscillations, the wave packet spreads out (collapse) inside the Coulomb potential,
becoming localized again (revival) after a few more oscillations. The appropriate
way of visualizing the motion of this wave packet is to think of it as a shell that
breathes in and out, and whose width changes as it breathes.

A more detailed review and introduction to radial Rydberg wave packets can

be found in Ref. [53].
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1.4 Vibrational Wave Packets in Diatomic

Molecules

Like the hydrogen atom, and any other quantum system for that matter, molecules '
also exist in quantized-energy levels. However, because molecules can also vibrate
and rotate, their energy spectrum is much more complicated than that of atoms.

In the Born-Oppenheimer approximation [54], the three different kinds of “mo-
tion”, or degrees of freedom, a molecule can undergo (namely, vibration, rotation,
and electronic) are independent of each othe and occur at very different time scales.
So the wavefunction of a molecule can be factored into a product of vibrational,

rotational and electronic wavefunctions:

l'l,/)) = lwelectr) X I¢vibrat) x I¢T0t); (15)

meaning the three degrees of freedom can be treated independently and then
combined at the end.

Figure 1.3 shows a potential-energy diagram of a hypothetical homonuclear-
diatomic molecule X,. At very large internuclear distances, the two atoms are very
far apart, ignoring each other. As they are brought closer together, several forces
come into play (nuclear-nuclear and electron-electron repulsion, nuclear-electron
attraction) giving rise to the bound-electronic surfaces shown in the figure. Sev-

eral other surfaces may exist as well, including repulsive ones, but for simplicity
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Figure 1.3: Diagram showing the electronic and vibrational energy levels of a hypothetical
diatomic molecule (X2). The exciting ultrashort-optical pulse has a spectrum wide enough to
simultaneously excite many vibrational levels in the excited-electronic state. “X” corresponds
to a ground-state atom, and “X*” to an excited-state atom of the hypothetical molecule.

X+X

Internuclear Distance

we assume only these two exist. Because electrons are many orders of magnitude
lighter than the nuclei, these potential surfaces only depend on the nuclear co-
ordinates. Inside each potential level, there is a multitude of other levels—more
or less uniformly spaced—corresponding to the vibrational and rotational energy

levels.

The frequency of the vibrational-energy levels can be expressed as

W(V) = we(v + 1/2) — weze(v + 1/2)? + weye (v +1/2)3 + - -+ | (1.6)

where w,, w,z,, and so on, are the spectroscopic constants of a molecule measured
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in a particular state. Typically the vibrational frequency w. is on the order of
100 cm™*, corresponding to a vibrational period of 330 fs. The other terms (wez.,
WeYe, etc.) are usually very small, and the vibrational levels are almost regularly
spaced; this is true at least for the lowest vibrational levels.

A vibrational wave packet is created by coherently superposing many different
vibrational eigenstates. Let us assume that initially the molecule is in its equilib-
rium state: v = 0 of the ground-electronic state. Applying an ultrashort pulse to
this molecule transfers the ground-state wavefunction to the excited state, where
it will not be in equilibrium. If the pulse is short enough (typical widths being
in the order of < 60 fs), then the excited-state wave packet will be narrow and
well localized after the excitation is over. Excitation follows the Franck-Condon
rule, which states that electronic transitions must happen along a vertical path,
that is, the internuclear distance remains constant during excitation. That is be-
cause electrons move much faster than the nuclei, and they adjust their orbits
almost instantaneously compared to vibrational motion. Furthermore, because
it is not in equilibrium anymore, the wave packet will also oscillate inside the
excited-potential well and exhibit collapses and revivals [54], similar to Rydberg
wave packets.

Rotations occur on a time scale ten times longer than that of vibrations, so

if we restrict ourselves to a couple of vibrational periods, rotations can then be
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ignored. They can however modify the potential through centrifugal terms, but

that would be just a matter of re-evaluating the spectroscopic constants.

1.5 Ultracold Molecules

A very exciting application of some of the duantum control techniques we men-
tioned previously could be in the production of ultracold molecules.

Ultracold molecules are currently a very hot topic and have being receiving
considerable attention [55-61]. That is because of the variety of applications they
promise [62]: precision spectroscopy, ultracold collisions studies such as atom-
molecule and molecule-molecule collisions, frequency standards, molecular optics,
molecular BECs, and molecule lasers, to name a few.

A cold molecule is one with a small translational velocity and occupying a sin-
gle, preferably the lowest, vibrational-rotational level. The spectrum of a molecule
is a lot more complicated than that of an atom, due to the vibrations and rotations
the molecule can undergo. It is this spectral complexity that makes it very hard to
make these molecules cold: Standard laser-cooling techniques can not be applied
to molecules because they lack a closed two-level cycling transition on which laser
cooling of atoms relies. The challenge is then not only to produce cold molecules,
but also to cool a large quantity of them. A number of methods have been
proposed to cool molecules [55,62], some of which being nonoptical: supersonic

beams which reduce the internal (rotational and vibrational) temperature of the
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molecules, but not their translational temperature; the electrostatic method which
slows molecules down via time-varying electric fields and produce translationally-
cold pulses of molecules; buffer-gas cooling by interacting the molecules with a
buffer gas; photoassociation, where one starts from translationally cold atoms and
uses a laser beam as a “catalyst” to induce the forrﬁation of cold molecules; and
three-body collisions between translationally cold atoms.

To date, starting off from atoms trapped in a magneto-optical trap (MOT)
is the only way to obtain ultracold (submillikelvin-temperature range) molecules. .
This idea has already been applied to produce ultracold cesium [56,57], potas-
sium [59], and rubidium [61] molecules. The two mechanisms proposed so far for
turning cold atoms into cold molecules are photoassociation (PA) and three-body
collisions.

The general idea behind PA is show in Figure 1.4. The ultracold atoms,
initially at large internuclear distances, are optically promotea to an excited-
electronic state. These atoms are photoassociated just below the dissociation
limit, and as such, they can be viewed as a very large molecule. At shorter inter-
nuclear distances, the molecule decays to a bound state of the ground-electronic
surface forming a stable, ultracold molecule which could then be trapped, for ex-
ample, in a far-off-resonance trap (FORT) for further studies. The first observa-
tion of cold molecules formed in this way was done by Fioretti and co-workers [56]

who illuminated trapped Cs atoms with a cw PA laser and ther observed cold
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Figure 1.4: Photoassociation of diatomic molecules. At large internuclear distances a photoasso-
ciation laser transfers the colliding atoms to the excited state. At shorter internuclear distances,
the atoms decay to the ground state.

Csy in the metastable-triplet state of the ground state. This observation was
later confirmed by Takekoshi and others [58] who also reported on trapping these
molecules in a FORT [57]. Singlet-ground-state molecules were then observed
in potassium [59]. Followed by the observation of rubidium r.nolecules, in their
triplet-ground state, by Gabbanini [61]. Because energy cannot be conserved in
an inelastic two-body collision, a third body is needed in order to form a molecule
when two atoms collide. That is the function of the PA laser: a photon from this
laser acts as the third body, carrying away some of the energy and guaranteeing
that energy is conserved in the collision.

However, an atom can also serve as that third body in a recombination process
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such as Rb + Rb + Rb — Rby + Rb. Esry and others [63] have shown that
for diatomic species with a negative scattering length (this is the case for 133Cs
and ®Rb), the three-body recombination rates can be very large, allowing for
molecules to be formed without the need of a PA laser. As a matter of fact,
Takekoshi [58] reported on observing Cs, molecules without a PA laser. Instead,
they compressed their MOT by transiently increasing the magnetic field, thus
increasing the density and the collision rate. Gabbanini [61] also reported on
detecting cold Rb, formed by three-body collisions.

A problem common to both mechanisms, PA and three-body collision, is that
they are expected to create molecules with vibrational energies close to the con-
tinuum [58]. Actually, a photoassociated molecule will most likely decay back to
the continuum states of the ground-electronic surface. Only a very small fraction
of the molecules will decay to the lowest bound-vibrational levels of the ground
state. Furthermore, because in the PA scheme molecule formation relies on spon-
taneous emission, the process is not state selective. In Cs for example, the excited
surface is shaped so that it favors transitions to the triplet ground state [56]. Band
and Julienne [64] proposed a two-step PA scheme in which the spontaneous emis-
sion occurs from an excited Rydberg state with a good Franck-Condon overlap
with the lower levels of the ground state. This proposal was later implemented
by Nikolov [60] where they demonstrated ultracold K, molecules in the lower ten

vibrational states of the singlet ground state.
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Quantum control schemes have been proposed to overcome some of these limi-
tations and to produce ultracold molecules. Some of these involve excitation with
cw lasers [65-67], and others, pulsed lasers [68]. However, pulsed excitation is a
more efficient way to photoassociate molecules since it allows for a larger popula-
tion transfer between electronic states. In particular, some theoretical studies have
indicated that ultrashort-pulsed photoassociation of colliding ultracold atoms is

indeed viable [35,36,69).

1.6 Overview of Thesis

Despite the success of OCT in predicting control fields, numerical methods usually
tend to obscure the physics of the problem. For example, it is usually very hard
even to just understand why the control fields, obtained with OCT, have the shape
they do. This motivates us to seek an analytic solution to the control problem
in the strong-response regime. Such a solution is important for developing an
understanding of the physics in the strong-response regime of excitation and to
deconstruct the final shape of the control field. Also, as recently pointed out by
Zhu and Rabitz [70], in some cases only a good estimate for the control field is
necessary. These may be used, for example, as inputs to learning procedures that
are implemented experimentally.

An alternative approach to solving the control problem involves solving
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Schrédinger’s equation analytically in a regime that takes advantage of some of
the known physical dynamics of the situation.

In this thesis we tackle a smaller subset of the more general quantum control
problem that is controlling the dynamics of wave packets in Rydberg atoms and
diatomic molecules. We will show that by imposing the duration of the excitation
pulse to be shorter than the characteristic period of the quantum system, an
approximate analytic expression for the driving field can be found. The driving
field so determined works extremely well in both weak- and strong-excitation
regimes.

In Chapter 2 we apply the above ideas to control the dynamics of a radial
wave packet in a Rydberg atom. We introduce the “electronic” response function
for a Rydberg atom and show that if the driving field is longer than this response
function, but shorter than the Kepler period of the atom, the control problem
can be solved analytically. The analytical solution is then used to calculate the
fields that will create a quasi-coherent state and a Schrédinger- “cat” state in the
Rydberg atom, and we show that the driving fields are very similar in the two
regimes of excitation.

The possibility of ionization of the Rydberg atom, which was neglected in
Chapter 2, is considered in Chapter 3. We show that an analytic solution can still
be found here, although in most cases, the analytic solution of Chapter 2 is a very

good approximation. Also, we further explore the differences between the weak-
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and the strong-response solutions and show that depending on the target state,
these two solutions can indeed be very different from each other.

Next, in Chapter 4 we extend our technique to the case of vibrational wave
packets in diatomic molecules. As for the case of the Rydberg-atom problem, we
introduce the concept of an electronic response function for molecules as well. But
molecules can be harder to control than atoms! That is because when exciting a
molecule with pulses of a broad bandwidth, Raman-like transitions may de-excite
population back to the lower vibrational levels of the ground electronic state. We
show that this population trapping can be avoided by choosing amongst the many
solutions, one with the longest possible duration. However, the pulse must still be
shorter than characteristic time of the molecule, this being its vibrational period.

And finally, in Chapter 5 we look at the experimental detection of cold
molecules that are formed in a Rubidium atom trap. In particular, we describe
some of experimental parameters and issues that are important in observing these
cold molecules when ionizing with ultrashort pulses and that could be relevant for

ultrashort-pulse excitation and photoassociation of ultracold molecules.
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Chapter 2

Quantum Control of Radial Wave
Packets in Rydberg Atoms

2.1 Introduction

Many theoretical approaches were developed, in the past decade, to solve the
quantum control problem. In general, these approaches rely on intensive iterative-
numerical calculations, particularly when dealing with the strong-response regime
of excitation.

In this chapter, we derive an analytic formula for the electric field that gener-
ates a target radial wave packet in Rydberg hydrogen atoms. As we will show, the
formula holds well even in the strong-response regime. The key to obtaining this
solution is to simplify the problem by limiting the duration of the driving force
to less than one Kepler period of the system. The reason is that for times less
than the Kepler period, the particle does not have the opportunity to reach the

system’s boundary; it does not know its motion is being governed by a Coulomb
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potential and it then behaves essentially as a classical free particle. The analytic
solution also provides some insight into the multiplicity of solutions to the control

problem.

2.2 Temporal Dynamics of the Ground and

Excited-State Amplitudes

One of the conceptually simplest control problems in atomic physics is the prepa-
ration of a radial wave packet of an atomic-Rydberg electron. Such a wave packet
consists of a superposition of many electronic eigenstates with different princi-
ple quantum numbers. A common approach to this problem is to excite a ground
state atom with an ultrashort pulse whose mean frequency is tuned to a resonance
in the appropriate Rydberg manifold.

Figure 2.1 shows a pictorial representation of the excitatipn process and all
the energy levels involved. Each energy level |n) within the excited manifold is
connected to the ground state |1) by a dipole transition, but no direct interaction
is allowed between different levels of the excited manifold. For simplicity, we
ignore for now the possibility of two-photon transitions from the ground state to
the continuum (not shown in the figure) and that of direct transitions from the
excited manifold to the continuum. We will analyze the effect of the continuum in

the next chapter. The ultimate goal here is to calculate the classical electric field
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Figure 2.1: Model system to be controlled. The electronic ground state is labeled (1) and the
excited Rydberg levels [n). The sought electric field E(t) is assumed to be resonant with a
|11) = |n) transition.

that will create a target superposition of excited states centered at some principal
quantum number 72 >> 1.

As shown in Figure 2.1, the atom starts—at time t = t,—in the ground-
electronic state (n = 1, [ = 0) and is excited to a p series of high Rydberg states
(n > 1,1 =1) of the hydrogen atom. The Hamiltonian describing the interaction

of the atom with an external driving field E(¢) can be written as

H=h) wln)(n| - E)Y_ [dn (10| + [n)(1])], (2.1)

n=2 n=2

where |1) and |n) are the ground and excited bound-electronic states, respectively.
The first term in the right-hand side (RHS) of Equation (2.1) corresponds to the
unperturbed-atom Hamiltonian while the second term is the interaction Hamilto-
nian between the atom and the electric field E(t). We defined the eigenfrequency

of state [1) to be zero so that of state |n) is given by w, = [1 — n~?]n3w/2.
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For & > 1, @ = €?/(aofi®h) corresponds to the Kepler frequency of the wave
packet—the frequency with which the wave packet oscillates inside the Coulomb
potential. For high Rydberg states, the electric-dipole moments for transitions
between the ground and excited bound states of the hydrogen atom are given by
dn = 2.17 eag/n*? [71].

Let the classical electric field be written as

E(t) = By [f(t)e™ct%) 1 cc], (2.2)

with the envelope function f(¢) being complex:

f(&) = |f(2)]e®®. (2.3)

The modulus |f(¢)| is then the field’s (dimensionless) slowly-varying amplitude,
#(t) is its phase (also slow varying), and wy, is the carrier frequency. For simplic-
ity, we will take £y = 1 V/m. Furthermore, the driving field is assumed to be
resonant with the transition [1) — |72) so we set wz = ws. However, f(t) remains
undetermined at this point, except for the fact that f (t <tg) =0. So for t < £,
the atom rests unperturbed.

Next, we expand the state of the system—at time t—in terms of the unper-
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turbed eigenstates of the atom:

() = a()lL) + 3 ba(B)e -]y, (2.4)

n=2

where a(t) is the probability amplitude of the ground state |1), and b,(t) is the
* probability amplitude of the various excited states |n).

Substituting the above equation into Schrédinger’s equation
.\ 0 -~ -
(h)5;1%) = H|¥), (2.5)

yields—in the rotating-wave approximation—a set of coupled differential equa-

tions for the probability amplitudes:

@ =if"(t) Y Qnba(t)e~bnlt=t0), (2.62)
n=2
b = Q0 f (t)a(t)ent=to) (2.6b)

The following quantities have been defined: Q, = dnEo/h, and 6, = wy, —w;. The
former is very similar to the definition of a Rabi frequency, and indeed it has the
dimensions of frequency. The later is the frequency detuning for each transition
to a bound-excited state.

Equations (2.6) describe the temporal dynamics of the ground and excited

states’ amplitudes. The initial conditions are: a(tg) =1 and b(tg) = 0; that is, all
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the population is initially in the ground electronic state. The problem to be solved
is an inverse problem: We know both the initial and final (which is determined
by the desired target state) conditions, and want to solve for the driving field.
As we discussed in Chapter (1), two regimes of excitation are usually distin-
guished: the weak- and the strong-response regimes. In the weak-response regime,
the ground state is weakly perturbed, with little population being transferred to
the excited states. While in the strong-response regime, a significant amount of

population is transferred to the excited states.

2.3 Weak-Response Regime

In the weak-response regime of excitation, the ground state amplitude is assumed
to remain approximately constant [a(t) &~ 1] throughout excitation. So, Equa-

tion (2.6b) becomes:
bn ~ if(£)Q,eidn(t=t0), (2.7)

In the above equation, apart from a time-dependent phase factor, the dynamics
of the excited states’ amplitudes are determined directly from the driving field and

vice-versa. Integrating Equation (2.7) we obtain:

ba(T) = i / " dsf(s)eintemto, (2.8)
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The target time 7 is the time when the probability amplitudes b, (t) are expected
to converge to the target amplitudes b3. Since we are looking for a driving pulse,
in deriving Equation (2.8) we assumed that f(t) goes to zero again at some time
t < 7. This way, the integra;:ion limits in Equation (2.8) could be extended to
+ oo. |

The reader will note that according to Equation (2.8) the probability ampli-
tudes, at the target time, are simply proportional to the Fourier transform of the

field. Therefore, taking the inverse-Fourier transform of Equation (2.8) yields:

- Bo .
F@)ymg, = —il@/2m) F-e0". (2.9)

n

Here we replaced b,(7) by the target amplitudes 8. Equation (2.9) indicates
that the spectral components of the control field need to be specified only at the
frequencies §,. Any field for which f(¢) produces the correct spectral amplitudes
and phases at the particular frequencies 6, is a solution to the control problem:
The form of f(t) [or more precisely, of its Fourier transform f (w)] in between
these resonances is irrelevant. Since, in principle, there is an infinite number
of ways to interpolate f(w) between the various dn, there is correspondingly an
infinite number of possible solutions [72]. This observation corresponds to writing
flw) = —if(w), where B(w) can be any function whose values at w = 6, are

Bn = B(6n) = (©/27)(b3/Qh) exp(idnty). The only other requirement on ((w)
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is that its inverse-Fourier transform must have compact support (nonzero only)

between t; and 7.
Probably, the simplest of such functions is the sampled version of 8(w): B(w) =
Y me2 Bnb(w —6,). In this case then, it can be shown that the driving field f(z) is

given by:

f(t) = —iRg'B(t), (2.10)
where Ry = 27Q; /@, and
B(t) = ) _(Qn/Qn) bent—t0), (2.11)
n=2

A typical plot of B(t) is shown in Figure 2.2. If the target wave packet is well
localized, the function B(t) consists of a series of impulses of decreasing amplitude
that gradually broaden into one another. Each of the isolated impulses contains
a complete specification of the target wave packet, and therefore any of these
impulses can be used in Equation (2.10) to evaluate the field in the weak-response
regime. Of course, this quasi-periodic multi-impulse structure of B(t) is a result
of the choice we made for f (w): f(w) was specified only at the resonances w = §,,.
Had we interpolated f(w) between the resonances 0n with a continuous function,

B(t) would had come out to be a single-impulse function.
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Figure 2.2: A typical plot of the amplitude of the function B(z).

2.4 Strong-Response Regime

In the strong-response regime, where a large amount of population is transferred
to the excited states, the simple approximation a(t) = 1 can no longer be used.
Depletion of the ground state during excitation must be taken in consideration.
However, as we will show in the next few sections, an analytic solution for the
driving field can still be found in the strong-excitation regime. This solution is
similar to Equation (2.10) with an extra time-dependent term that accounts for

depletion of the ground state.

2.4.1 Ground-State Dynamics and the Electronic “Re-
sponse” Function

In order to derive an analytic solution in the strong-response regime, it is helpful

to first analyze the dynamics of the ground-state population under large depletion.
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Substitution of the formal integration of Equation (2.6b) into Equation (2.6a)

yields:
a=—Qaf(t) /t ds f(s)a(s)&(s — t), (2.12)

The electronic “response” function

N-1 (<] M
E(s—t) = [(Z+ Z ) + Z] (7/m)3e tm(t=s), (2.13)

m=2 m=M+1 m=N.

consists of two parts: a contribution &.(s — t) from states near resonance with
the optical field (N < m < M), and another &,.(s — t) from states significantly
detuned from it 2 < m < N, and M < m < o0). The separation into these
contributions occurs at levels N, M > 2 corresponding respectively to the lowest
and highest bound-electronic states occupied by the target wave packet.

The two components of response function have very distinct characteristics.
Because of the very large detunings in &,,(s — ¢), this component of the response
function oscillates many times during one Kepler period (T = 2n/@). Consider,
for example, an arbitrary function h(s) with compact support between 0 and
T. If &ur(s — t) oscillates very rapidly compared to h(s), then the integration of
their product over s is negligible. On the other hand, as shown in Figure 2.3,
the resonant contribution consists of a narrow “spike” centered at s = ¢, with

quasi-periodic revivals at s = ¢t — jT (with j = +1, +2, ... ), each of much
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Figure 2.3: A typical plot of the resonant part of the electronic response function.

lower amplitude and broader duration than that at s = ¢. The center impulse in
Figure 2.3 is the important feature of & (¢ — s) here: it picks out the value of A(s)
at s =¢. To a very good approximation, the electronic response function behaves
like Dirac’s delta function. Therefore, we can approximate [see Appendix A for

details]:

/t ds h(s)E,(s — t) ~ (n/@)h(t). (2.14)

Making use of Equation (2.14), Equation (2.12) can then be simplified and

solved for a(t), yielding:

a(t) = exp [-G(?)], (2.15)
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where
6) = @/4m)5 | dsIF(s)? (2.16)

is proportional to the pulse energy up to time ¢.

Equation (2.15) describes the temporal e;volution of the probability amplitude
of the ground state. In arriving at this result, no approximation was made regard-
ing the strength of the field. However, it should not be so strong that the ground
state is depleted significantly during the duration of £.(¢), though it may do so
over the duration of the control pulse itself. It indicates that no Rabi cycling of
the population between the ground and excited states can occur during the first
Kepler period. This is because transfer of population from the excited manifold
back to the ground state is suppressed by quantum interference. The short pulse
duration implies that there is an uncertainty of the excitation frequency large
enough that the discreteness of the manifold cannot be resolved, and the ground
state simply depletes as if the manifold were a continuum. As a matter of fact,
Equation (2.15) is similar to the Fermi Golden Rule expression for ionization of
the atom. In a wave packet picture, the localized state that is excited by the
pulse does not complete an entire period of oscillation during the time that the
driving field is nonzero, so that there is no possibility that quantum interference
of possible transition amplitudes between ground and excited states can oceur

during the pulse.
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2.4.2 Control-Field Solution

Now that the temporal evolution of the ground state is understood, and its evo-
lution has been decoupled from the evolution of the excited states, we can solve
for the control field.

The initial step is to specify the target amplitudes b2 at some target time 7
such that b,(7) = b}, with 3 2, [b3|> = A; A being the target depletion of the
ground state. The target time 7 must be such that at ¢ = 7, the field is again
zero.

Substituting Equation (2.15) back into Equation (2.6b) gives:
w -
b = iQn/ dsf(s)e"c(s)e""‘(s_t“). (2.17)
—00

The above equation is similar to Equation (2.8), and just as discussed in Sec-
tion (2.3), it may lead to a large number of possible solutions for.the driving field
f(t). However, in the strong-response regime there is the additional constraint
that the pulse must be shorter than the Kepler period, limiting the total number
of possible solutions.

Equation (2.17) can be solved just as described in Section (2.3), yielding:
f(t) = —iR;1B(t)eC® . (2.18)

The function B(t) is the same as that of Equation (2.11).
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The difference between Equations (2.10) and (2.18) is the “extra” exp[G(t)]
term in the latter. At first glance, Equation (2.18) looks like a transcendental
equation for f(f). Since f() enters the RHS through G(t), one might expect that
this equation could only be solved numerically. However, it turns out that this
is not the case. As shown next, we can solve for the dyna.miés of G(t) first, and
substitute it back into Equation (2.18) to evaluate the field. Taking the derivative

of G(t) [defined in Equation (2.16)], we obtain the result:
G(t) = (@/4)|Ro[?| £ () |. (2.19)
Substituting Equation (2.18) into (2.19):
G(t) = [(@/4m)|B(£)[?] €*°. (2:20)

This is a simple first-order differential equation for G(t) which.is straightforward

to integrate, arriving at:

e 20 =1 _ (@/27) /t ds|B(s)|%. (2.21)

to

Because this is an inverse problem, conservation of population is not automat-

ically guaranteed when substituting Equation (2.15) into Equation (2.6b): The
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LHS of Equation (2.17) is not properly normalized with respect to the RHS, and
population conservation must be introduced explicitly.

From Equation (2.15), the ground state population at time ¢ is: |a(¢)|?> =
e~26¢)_ If it is required that |a(t)[* + 300, |ba(¢)|*> = 1 (conservation of popula-_
tion), then from Equation (2.21): Yoo, [ba(7)I* = (@/27) f] ds|B(s)[*. Due to
the (n/7)3/2 factor in the definition of B(t) and the anharmonicity of the excited
manifold, in general 322, |b,(7)|> # A. The amplitudes b, (¢) [and similarly, a(t)]

need then to be renormalized. Defining

[§V]
N
N
~

x=4/ / " ds|B(s)P ¢

the renormalized amplitudes satisfy Yomes Ib,,(t)l2 =x fti ds [B(s)[2 and at t =T,
the proper depletion is achieved.

Then Equation (2.21) becomes:
t
e 20l =1 -y / ds|B(s)|>. (2.21%)
to

One can see from the above equation that the population in the ground-electronic
state is initially equal to 1, and at the target time 7, it is equal to 1 — A.
Finally, by substituting e~¢®) from Equation (2.21’) into Equation (2.18), the

field that generates the target state in the excited manifold is found to be given
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B() .
(1-x f2 as1BE)E) "

f(t) = —iRg! (2.23)

Equation (2.23) is the main result of this chapter, and it represents a pre-
scriptive solution for creating a particular Rydberg wave packet in a hydrogen
atom.

This solution for the strong-response lirnit looks a lot like the one for the weak-
response case [Equation (2.10)]. One can see that the weak-response solution
is reproduced by letting x — 0 in Equation (2.23). One can think about the
denominator in Equation (2.23) as a time-varying “scaling” factor. This scaling
factor accounts for depletion of the ground state by making the field more intense
(the denominator gets smaller with increasing time). It is clear from the weak-
response solution that each of the isolated impulses of B(t) contains a complete
specification of the target wave packet. However, in the strong-response regirné,
only one of these impulses at a time can be used in Equation (2.23) to evaluate
the field. Furthermore, only the impulses within a single Kepler period play a
role. That is because once the target depletion of the ground state is reached,
the control field should be set to zero. Pulses with duration longer than a Kepler
period will result in Rabi cycling of the population back to the ground state.

In practice, one chooses a particular impulse from B(t) by choosing a value
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for t,. Assigning a value to t;, the moment the pulse switches on, has no real
physical meaning since in the laboratory there exists no absolute time origin.
However, the choice of such an origin is implicit in the definition of the electronic
response function &-(%): the central peak of &.(t) is located at ¢ = 0. Furthermore,
Equation (2.14) assumes the nonzero portion of the driving field to be located
between 0 and T. Choosing a value for £y simply brings a particular impulse of
B(t) into this interval. Similarly, the value of 7 is arbitrary. The physically
meaningful quantity is the delay between the turn on of f(t) and the target time:
To = T — to. This is the time after the driving pulse has switched on at which we
expect the excited-state amplitudes to converge to the target distribution.

Also noteworthy is the fact that the phase of the driving field is exactly the
same in both regimes of excitation. That is because the phase is determined only
by the choice of target amplitudes, through B(t) in Equation (2.23).

However, not all target wave packets are susceptible to control by this proce-
dure. The main criterion is that the control field should not contain any structure
of duration shorter than the electronic response function. For example, a wave
packet with population uniformly distributed across states |75) to [100), with
constant phase, yields a time series that satisfies this criterion, but a state with
half its population in state [75) and half in state |100) is not amenable to con-
trol using this method. Also, as 7 decreases, the excited manifold becomes more

anharmonic and the resonant part of the electronic response function looks less
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like a -function, compromising the validity of the solution. As a general “rule-
of-thumb”, the method described here works very well for target wave packets
centered around 72 £ 40 with population distributed across the closest twenty

levels (N =7 —10) S n 5 (M =7+ 10)].

2.5 Numerical Results

Once the target state is chosen, the control field evaluated from Equation (2.23)
is substituted back into Schrédinger’s equation [Equations (2.6)], which are then
numerically integrated without any further approximations. The continuum was
noF included in the simulations because the control field intensities were always
less than 5 x 10! (W/cm?) even in the regime of nearly total population transfer to
the wave packet state. From here on, we will refer to this numerical solution as the
“actual” state—the distribution that is actually generated by the control field—as
opposed to the target state—the distribution we would like to see generated in
the excited manifold.

To test if the approximate driving field can generate the target quantum state
in the excited manifold we chose two prototypical localized test states: a ra-
dial quasi-coherent-state wave packet and a Rydberg “cat” state (a coherent su-
perposition of two quasi-coherent states). In both examples, the weak-response
regime corresponds to a target depletion of A = 10%, the strong-response case to

A = 97%, and the target time to 7o = 7 — £, = T.
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To quantify the fidelity of the actual solution, we used a generalization of the
achievement factor A, defined by [39] A? = Tr(ppr)/(Trp? Trpz)Y?, where j is
the density operator associated with the final state in the upper manifold and jr
is that of the target state. Here, A = 1 when j = pr—even for mixed states.
Since we will only deal with pure states, our achievément factor is the same as

that of Krause and others [39]. In this case, A can be simplified to:

| o 02 88

= (2.24)

A

where b} and A, are the “actual” amplitudes and depletion, respectively
(02,]02|* = A,). The achievement factor is defined such that A = 1 indi-
cates a perfect overlap between target and actual states, and A = 0 means no
overlap at all.

However, a high achievement factor by itself is not a good indication that the
target state has been achieved satisfactorily. In order to fully evaluate the fidelity
of the solution, one has to consider both the achievement factor and the actual
depletion. That is because the achievement factor is defined such that the actual
population put in the excited state does not matter as long as it is distributed

correctly among the several eigenstates.
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2.5.1 Quasi-Coherent State

The first test case we have chosen is the quasi-coherent state. As in the case of the

coherent state of a harmonic oscillator, here the target population is also Poisson

distributed across the eigenstates:

ble~#n™ = \/A[(R — N)*"Nexp(N — 71)/(n — N)I] (2.25)

withn=N,N+1,..., M; N=75 M =100; and 7 = 85. The amplitudes for
eigenlevels other then N < n < M are set to zero.

The driving fields, determined using Equation (2.23), are shown in Figure 2.4
for both small and large ground-state target depletion. The dotted line is the phase
of the field in both excitation regimes. Note that the shape of the field (although
not the pulse energy) in the strong-response case is not radically different from
that in the weak-response regime, and the differences make good physical sense.
In the strong-response case, the dynamics are easily understood vfrom the following
argument. By the time the trailing edge of the pulse arrives at the system, the
ground-state population is smaller than initially, and there is consequently less
absorption than at the leading edge of the pulse. Therefore, the pulse must be
more intense at the trailing edge in order to be able to pump whatever population
is left in the ground state to the upper manifold. The actual (black columns),

and target (white columns) populations and phases for the strong-response case,
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Figure 2.4: The driving field that generates a quasi-coherent state with 10% depletion (dashed
line) and 97% depletion (solid line). The phase (dotted line) of the field is the same in both
strong and weak-excitation cases. The peak intensities are 3x 10° (W/cm?) and 4 x 10! (W/cm?)
for the weak- and strong-response excitation fields, respectively. Here, to = T/5.

are shown in Figure 2.5. In both weak- and strong-response regimes the analytic
prediction compares favorably with the full numerical results, with less than one
percent difference from the targeted population transfer from the ground state.
In both weak- and strong-field domains we obtained an achievement of 4 = 1.00,
indicating that the target state was obtained with extremely high fidelity in both

excitation regimes.

2.5.2 Schrodinger “Cat” State

Fields that generate other distributions with more complicated phase-space struc-
ture can also be designed. For the second test case, we used Equation (2.23) to
design a field that generates a Rydberg “cat” state in the upper manifold.

This “cat” state corresponds to a coherent superposition of two classically-
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Figure 2.5: Solution to Schr&dinger’s equation using the field of Equation (2.23) for generating a
quasi-coherent state. Black and white columns correspond to the actual and target distributions,
respectively. The target phase is zero, and only the actual phase for levels for which |b,|? is
greater than 1% of the maximum target probability is shown.

distinguishable quasi-coherent states. The electron, in this case, is simultane-
ously localized in two different positions, much in the same way the notorious
Schrodinger cat is simultaneously both dead and alive.

Here,

Bemin = \/Al(a — NN exp(N —m)/(n = MU [(-1)" + 1] (2.26)

withn =N, N+1,..., M; N = 75; M = 100; and # = 85. The field that
generates such distribution is shown in Figure 2.6 for both weak (dashed line)
and strong (solid line) excitation regimes. As one would expect, two pulses are

necessary to produce this state [1,73-75]. The second pulse arrives approximately
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Figure 2.6: The driving field that generates a Rydberg “cat” state with 10% depletion (dashed
line) and 97% depletion (solid line). The phase (dotted line) of the field is the same in both
strong and weak-excitation cases. Here, to = T/5.

a time T/2 after the first pulse and creates a second wave packet, localized in a
different position inside the Coulomb potential. This second wave packet interferes
with the first one, canceling the population in the odd numbered levels. Again,
the differences between pulse shapes in the small and large depletion cases can
be explained by the smaller absorption seen by the second pulse, and the rapid
depletion of the ground state during each pulse. Figure 2.7 shows the actual (black
columns), and target (white columns) populations and phases for the strong-
response case. The achievement factor for this target state is A = 1.00 for both
excitation regimes. Again, the control fields achieved a nearly perfect overlap

between the target and generated wave packets.
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Figure 2.7: Solution to Schrodinger’s equation using the field of Equation (2.23) for generating a
Rydberg “cat” state. Black and white columns correspond to the actual and target distributions,
respectively. The target phase is zero, and only the actual phase for levels for which |6a? is
greater than 1% of the maxitaum target probability is shown.
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Chapter 3

Quantum Control of Rydberg
Atoms: Weak- Vs.
Strong-Response Solution

3.1 Introduction

In the previous chapter, we described an analytic approach to the quantum control
of wave-packet dynamics. We showed that the field that will produce a specified
wave packet (in both the weak and strong regimes of excitatioﬁ) in a Rydberg
atom can be found approximately from a simple analytic formula.

In this chapter, we investigate the effect of possible transitions from the excited
Rydberg states to the continuum to the final shape of the control field. We also
look at the relative complexity of the control-field shapes in the weak- and strong-
response regimes. Unlike for the test cases of Chapter 2, we discuss here some
targets whose control fields have very different forms in the weak- and strong-

regimes of excitation.
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3.2 Equations of Motion for the Bound and Con-

tinuum States

Figure (3.1) shows a pictorial representation of the excitation process, the relevant
energy-level scheﬁle, and the excitation frequencies to be used. We assume that
the atomic structure is known a priori, and just as in Chapter 2, the dynamical
problem is to invert the equations of motion for the probability amplitudes for
each of these levels. Each energy level within the excited manifold is taken to be
connected to the ground state and to the continuum states by a dipole transition,
but no direct interaction is allowed between different levels of the excited manifold.
Also, we ignore transitions between the continuum states and direct nonresonant
two-photon transitions from the ground state to the continuum.

As shown in Figure (3.1), the atom starts—at time ¢ = t,—in the ground
electronic state (n = 1, = 0) and is excited to a p series of high Ryvdberg states
(n>1,l=1); the hydrogen atom may then further ionize to tﬁe s or d continuum
states. The Hamiltonian describing the interaction of the atom with an external

classical driving field E(t) can be written as

H=n <anln>(nl +/0°° dEwc,e|5><€l) -

n=2
oc

> [dn(ll)(nl+ln)(ll)—’fooodE#ne(In)(ElHE)(nl)J E(), (3.1)

n=2
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Figure 3.1: Model system to be controlled. The electronic ground state is labeled |1), the excited
Rydberg levels |n), and the continuum states [e). The sought electric field E(¢) is assumed to
be resonant with a [1) — |n) tramsition, but a [n) — |¢) transition may also occur.

where |1) and [n) are the ground and excited bound-electronic states, respec-
tively; and [|€) the ionized continuum states. The eigenfrequency of state |1)
is defined to be zero while that of state |n) is given by w, = [1 — n72]a%w/2.
The eigenfrequencies of the continuum states are given by w. = (7*@)(z + 1/2),
with wep = we. For i > 1, @ = e?/(hapn®) corresponds to the Kepler fre-
quency of the wave packet. For high Rydberg states, the electric dipole mo-
ments for transitions between the ground and excited bound states are given by
dn = 2.17eag/n*? [71]; and for transitions between the bound and continuum
states, by fine & 0.4108 eao/[n3/%(e + 0.5n=2)%/3] [76].

The electric field is written as E(t) = Eg [f(t)e~%t(t~%) + c.c.]; here |f(t)] is

the dimensionless slowly-varying pulse envelope and wy, is the carrier frequency.
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We take By = 1V/m and wy = wp; however, f(¢) is undetermined at this point,
except that f(t <) =0.

The state of the system at time ¢ is then expanded in terms of the unper-
turbed eigenstates of the atom: [¥(2)) = a(t)|1) + D oo, bu(t)einlt=to)|pn) 4
I dec(e, t)e~™eelt=to)|c). Substituting this into Schrodinger’s equation [Equa-
tion (2.5)] yields, in the rotating-wave approximation, a set of coupled differential

equations for the probability amplitudes:

o
G =if"() D Qubn(t)e ), (3.2a)
n=2
b, = if(2) [Qna(t) + / de Anece, t)e“i‘”c"(“t°)] ginlt=to) (3.2b)
0
w - -
E=1if"() D Ancbn(t)e™nlt-t0)giveclt=to), (3.2¢)
n=2

where Q, = d, Eg/h, Ane = pneEo/F, and §, = w, — wy, is the frequency detuning
for each transition to a bound state. The initial conditions (¢ < ¢y) are: b,(t) =
c(e,t) =0 and a(t) = 1.

The amplitudes c(e,¢) can be eliminated from Equations (3.2) by assuming
that the continuum is populated only within a narrow zone around & = 2wy —
Weo)/nP@ ~ 1/2 and that the coupling parameters An. vary slowly with € in
that zone. This procedure is known as the flat-continuum approximation (the

procedure for removing the continuum amplitudes is discussed in detail in Ref. [77]
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and references therein), and these assumptions lead to the approximation
/ de AneAmee™ o) o (20 A A e [73@D) S (E — ). (3.3)
0

After eliminating the continuum using Equation (3.3), Equation (3.2b) be-

" comes

b = [m,, Fr@®)a(t) — @rhne/A°@) F(B)1 Amgbm(t)e‘i"m(t—to)J gidn(t=to)

m=2

(3.2b")

The second term in the RHS of this equation represents transitions to the con-
tinuum. Under conditions to be discussed later, this term is very small and can be
neglected. In this case, Equation (3.2b") becomes identical to Equation (2.6), and
the solution to the control problem follows as described in Chapter 2. In case we
wish to explore the consequences of transitions to the continuum, Equation (3.2b')

may be used directly.

3.3 Ground-State Dynamics

Using the flat-continuum assumption it is possible to solve for the dynamics of

the ground state. Substitution of the formal integration of Equation (3.2b') into
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Equation (3.2a) yields
a=—Qaf"(t) /tt ds q(s) f(s)a(s)é(s — 1), (3.4)

where g(t) = 1/(1 + a|f(®)[?), and o = 272A2,/(732?). £(s — t) is the electronic
response function, as defined in Equation (2.13).

Note the similarities between the resonant component of £(s — £):

M
&(s—t) = (rf/n)Pe0ntt=2) (3.5)

n=N

and its properties—and Equation (3.3): &.(s —t) acts as a narrow impulse at s = ¢
bécause of the superposition of oscillating terms of different frequencies. Due to
the discrete nature of the Rydberg series, however, &, exhibits a periodic structure
that is absent from the single “delta” function in the RHS of Equation (3.3).

When Equation (2.14) is valid, a solution to Equation (3.4) is possible. If the
exciting laser pulse has a duration less than the Kepler period [that is, the function
f(®) is nonzero only over a duration less than T}, than the periodic nature of &, is
not relevant, and the integral on the RHS of Equation (3.4) covers only a single
impulse of the response function.

Using Equation (2.14), with A(s) = q(s) f(s)a(s), we can solve Equation (3.4)
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for a(t) yielding

a(t) ~ exp[—-G(®)], (3.6)
where
6(t) = (1/4m)@RY) | dsq(s) 1£(s)? (3.7)

and Ry = (2782 /@).

Equation (3.6) describes the temporal evolution of the probability amplitude
of the ground state during a single Kepler period, and it indicates that no Rabi cy-
cling of the population between the ground and excited states can occur during the
first Kepler period. However, because of the g(¢) term in its definition, in general
the function G(t) cannot be associated with the pulse energy like Equation (2.16)

was.

3.4 Control-Field Solution

Knowing the ground-state dynamics, that of the Rydberg manifold can now be
determined. First, the probability amplitudes 52 of the target wave packet—at
a target time ¢ = 7—are specified. The target amplitudes are normalized such

that 37, [63]> = A; A being the target depletion of the ground state. Next,
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substituting Equation (3.6) back into Equation (3.2b") yields
w -
B =i, / ds F(s)ein(s—t0) (3.8)

Here we defined F(t) = q(t)f(t)e=G®.

Following similar steps to those outlined in Chapter 2, we arrive at
q(t)e=C® f(t) = iR5 1 B(t), (3.9)

with B(t) given by Equation (2.11).

Equation (3.9) is very similar to Equation (2.18). The main difference between
the two is the appearance of the function g(¢) in the LHS of Equation (3.9), which
contains details about coupling to the continuum. Equation (3.9) reduces to
Equation (2.18) when |f(¢)]*> < 102! and 7 > 1, corresponding to a peak intensity
on the order of 10! W/cm? for a typical hydrogen-like atom. Below such intensity
levels, a|f(¢)[*> < 1 and g(¢) = 1. One can see that the function G(t) [defined
in Equation (3.7)] becomes, in this case, proportional to the pulse energy up to
time ¢. The solution found previously for the control field [Equation (2.23)] then
follows directly.

Unlike Equation (2.18), in general Equation (3.9) is a transcendental equation
for the driving field f(t) and must be solved numerically.

Let us consider the case when the driving field is strong enough to induce only
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a small coupling between the Rydberg states and the continuum. This situation
corresponds to field intensities ranging from 10 W/cm? to 10'®* W/cm?2. Here,

5a¢?(t) |F(B)® S 0.1.

Then, from Equations (3.7) and (3.9):

G(t) = (@/4m) |1B@)I exp[2G ()] {1 + Ry exp[2G(2)] |B(t)*} . (3.10)

Note that Equation (3.10) reduces to Equation (2.20) when ag?(t)|f(¢)|? < 1.
After integrating the above equation, the resulting integral equation can be solved

by iteration. To first order:

|B(s)I* J .
1—xJydy [BW)I*|’

(3.11)

exp[—2G(t)] =1 — x. [/0 ds |B(s)|? + (a/R3) /Ot ds

where

s [ e tBear e carmay [ |B(s)[*
xe = A/ [/ ds |B(s)f" + (o RS) [ T IB(y”z}. (3.12)

The parameter x. has been defined so that the correct depletion is achieved
at the target time 7 in an analogous manner to x [Equation (2.22)].

Finally, in the limit of small coupling to the continuum, the driving field is
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found from Equation (3.9) to be
f(&) = iRy {1+ (eR;”) exp2G(¥)] IB(¥)[°} exp[G(®)]B(2), - (3.13)

with exp[—G(t)] given by Equation (3.11).

Just as Equation (2.23), Equation (3.13) represents a prescriptive solution to
the control field for generating a Rydberg wave packet in hydrogen, and hydrogen-
like, atoms. Once the target wave packet is specified, the control field is evaluated
immediately without any iterations. Although more difficult to deconstruct, Equa-
tion (3.13) is very similar to Equation (2.23) where coupling to the continuum was
ignored. The main effect of the continuum is to change only the envelope of the
pulse; its phase is unaffected by the continuum and as before, it is the same in

both regimes of excitation.

3.5 Numerical Results

In Chapter 2, we applied this method to generate two prototypical target quantum
states in the excited manifold: a radial quasi-coherent-state wave packet and a
Rydberg “cat” state (a coherent superposition of two quasi-coherent states). Both
distributions were taken to be centered at 7 = 85, occupying about 25 states. It
was shown that the field designed was very successful in guiding the system to

both target states in both weak- (10% target depletion of the ground state) and
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strong-response (97% target depletion) regimes. In both test cases, the control
field achieved a nearly perfect overlap between the target and the generated wave
packets.

In this chapter we consider three test cases that require driving fields of quite
different complexity. For all three of these test cases, the weak-response regime
corresponds to a target depIet’ion of A = 3%, the strong-response regime to A =
99%, and the target time to 7o = 1.5 T.

The procedure we adopt for checking our control-field design is the following:
The target state is specified and the driving field is evaluated from Equation (3.13)
[or Equation (2.23)]; this field is substituted back into Schrédinger’s equation [in
the form of Equations (3.2a) and (3.2b')], which is then numerically integrated
without any further approximations. We refer to this numerical solution as the
“actual” state, as opposed to the target state. To quantify the overlap between
the target and the actual statés we used the achievement factor from Chapter 2:

Equation (2.24).

3.5.1 Localized-Gaussian State

The first test case we wish to consider is the localized-Gaussian state. This state

corresponds to a well-localized-radial wave packet described by:

%(r) = Ne l=ro/Vaa gikr (3.14)
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Figure 3.2: The driving field (intensity) for generating a localized-Gaussian wave packet in the
weak-response regime (dashed line) and strong-response regime (solid line). The dotted line
is the field’s phase. The peak intensities are 3.43 x 109 W/cm? (weak) and 7.2 x 101! W/cm?
(strong). to = ~0.7T.

where NV is a normalization constant; 7y = 206 nm; ¢ = 14.8 nm; and £ =
0.0019 nm~!. At the target time, the valence electron is localized at r = To
and is slowly moving towards the nucleus. This wave packet is formed by the
superposition of about 10 electronic states, with 7i & 44.

In Figure 3.2 we show the field, evaluated from Equation (2.23), that creates
this target state in the two regimes of excitation. Note that the shape of the field
(although not the pulse energy) in the strong-response regime is similar to that
in the weak-response regime. As explained in Chapter 2, the difference in pulse
shape arises from the smaller absorption seen by the trailing edge of the pulse as
compared to that seen by the leading edge. Also, the phase of the driving field
is the same in both regimes of excitation. Substituting these two solutions back

into the equations of motion, we find that the control fields shown in Figure 3.2
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generate the target state with a fidelity of A = 1.00 in the weak-response regime
(actual depletion of 3.2%), and A = 0.98 in the strong-response regime (with
99.5% of actual depletion). Both target (solid lines) and actual states (dashed

lines) are shown in Figure 3.3, where we have plotted their Wigner function:
W(r,p) = / s2ds (s +r/2)0(s — r/2) exp(—isp/h); (3.15)
0

¥(r) being each state’s wavefunction. As indicated by the high achievement factor,
the calculated driving field is very successful in guiding the system towards the
target state: The actual state distribution overlaps very well with the target
distribution.

We have also evaluated the driving field from Equation (3.13), which includes
coupling to the continuum, and obtained driving fields very similar to those of
Figure 3.2. This driving-field solution yielded, in the strong-response regime, the
same results as that of Equation (2.23): A = 0.98 and a depletion of 99.5%. It
turns out the peak intensity of the control-field solution is well below the intensities
for which ccupling to the continuum starts to become important, and the use of
Equation (2.23) is completely justified. Although the similarity between the shape
of the control pulses in both regimes of excitation has been observed previously
[39,78,79], this is a consequence of the target states that were chosen in those
cases. The control pulses in the two excitation regimes may have very different

envelopes if the weak-excitation field exhibits more complicated structure than
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Figure 3.3: Phase-space (Wigner) representation of the target (dashed lines) and the “actual”
(solid lines) states for the localized-Gaussian state

the smooth envelope required for a localized wave packet, as shewn in Figure 3.2.

The next two target states we discuss illustrate this point.

3.5.2 Five-Peak Gaussian State

A more complex, and perhaps more interesting, target is the example of a wave
packet consisting of five equally spaced Gaussians [80]:

(1) =N(0.36e~1r-r0)/VBo* | o 740~r~r)/VET* |
(3.16)

e~ (r=r2)/V2? | g 740~[(r—13)/V20}]? + 0’366—[&—7‘4)/\/50]2) ekt

where N is a normalization constant; o = 134 nm; r; = 170 nm; r, = 206 nm;

T3 = 242 nm; ro = 278 nm; o = 8.5 nm; and k£ = 0.0019 nm™. In this example,



3.5. NUMERICAL RESULTS : - 61

the valence electron is, at the target time, simultaneously localized in five different
positions and slowly moving towards the nucleus. This wave packet is formed by
the superposition of about 35 states with 7t =~ 46.

The fields calculated from Equation (2.23) that generate this five-peak target
are shown in Figure 3.4a (weak excitation) and F igure 3.4b (strong-excitation
regime). In the weak-excitation case, we find a pulse shape of similar complexity
to that calculated by Krause and co-workers [80], who used a variant of optimal
control theory to evaluate the driving field. Unlike the previous test case, the
amplitude of the driving field looks, in the strong-response regime, different from
that of the weak-response case. In the weak-response regime, the driving field
has a much more complicated structure at its leading edge than at its trailing
edge. However, in the strong-excitation regime this leading-edge structure does
not get as amplified as the trailing-edge structure when compared to the weak-
excitation pulse shape. As a result, the envelope of the control;ﬁeld solution in
the strong-excitation regime seems simpler than the corresponding envelope in the
weak-excitation regime. Of course, the temporal phase of the field is the same in
both cases. It would seem then that generating the strong-excitation field, in the
laboratory, would be easier than generating the weak field. The W igner function
for the five-peak target (dashed lines) and that of the actual state (solid lines),
in the strong-response regime, is shown in Figure 3.5. Again, a very good overlap

between the two is observed, as indicated by the achievement factors: A = 0.93
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Figure 3.4: The driving field for generating the five-peak Gaussian wave packet in the (a)
weak-response regime and (b) strong-response regime. In both cases, the solid line is the field’s
intensity and the dotted line is its phase. The peak intensities are (a) 2.6 x 10° W /cm? and (b)
8.2 x 10} W/ecm?. to = —0.6 T.

for A = 99% (actual depletion was 99.7%), and A = 0.95 for“ A = 3% (actual
depletion was 3.3%).

Figure 3.6 shows the temporal evolution of the actual ground-state population
(solid line) and that predicted by Equation (2.21') (dashed line) for this test target
state. It is clear that no Rabi cycling of population occurs during the first Kepler

period, and Equation (2.21’) describes very well the dynamics of the ground state.
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Figure 3.6: Ground state depletion in the strong-response regime. The solid line is the “actual”
population, and the dashed line is that predicted by Equation(2.21).
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3.5.3 “Phase-Jump” State

As our last test case, we considered the “phase-jump” state. This target consists
of the coherent superposition of 14 eigenstates, centered at 7 = 75 and all with
the same probability amplitudes, but the lower seven have a m-phase shift with
respect to the upper seven states [10]. |

The field required to generate such a wave packet was calculated from Equa-
tion (2.23) and is shown in Figures 3.7a (weak excitation) and 3.7b (strong ex-
citation). The w-phase jump in the probability amplitudes of the target wave
packet causes the intensity to drop to a minimum at the center of the (weak)
driving pulse and is also responsible for the phase jump seen in the pulse’s tempo-
ral phase. In contrast to the previous test case, the amplitude of the driving field
looks much more complicated in the strong-response regime than in the weak-
response regime. This is because the structure in the trailing edge of the driving
field (which is not very significant in the weak-response case) is amplified with
respect to the leading edge of the pulse. Again, this amplification occurs because
of the smaller absorption seen by the pulse’s trailing edge. A very good overlap
between the target and actual states was observed. In both excitation regimes we
obtained a high achievement factor: A = 0.99. The actual depletions obtained

were 3.0% and 99.7% in the weak- and strong-response limits, respectively.
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Chapter 4

Quantum Control of
Molecular-Vibrational Wave
Packets

4.1 Introduction

In the last two chapters, we showed how to derive an approximate analytic expres-
sion for the driving field that generates a specified radial wave packet in Rydberg
atoms. We showed that by imposing the duration of the excitation pulse to be
shorter than a Kepler period, the driving field so determined works extremely well
for arbitrary population transfer to the Rydberg series.

In this chapter, we extend that method to the case of diatomic molecules. We
will show that a similar approximate analytic solution can be found for the field
that will generate an arbitrary vibrational wave packet in homonuclear diatomic
molecules. This approximate control field is evaluated directly from the target

probability amplitudes, and it holds well even in the strong-response regime. The
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feature of molecules that is different from atoms, so far as this problem is con-
cerned, is that the ground electronic state is itself a manifold: there are many
vibrational levels in each electronic state. Population can get trapped in these
vibrational levels via Raman-like transitions, limiting the amount of population
that can be transferred from the ground to an excitea electronic state. The key
to obtaining a good solution is to choose among the many possible solutions one
that is long enough to avoid such population trapping, and yet, that is still short

enough that the discreteness of the system’s level structure is not operative.

4.2 Equations of Motion for the Vibrational

Eigenstates

The systems we are trying to control have an energy level structure of the kind
shown in Figure 4.1. Each energy level within the upper (excited) manifold is con-
nected to the levels in the lower (ground) manifold by time-dependent interaction,
but no direct interaction is allowed between different levels within each manifold.
In the case of a diatomic molecule driven by an external optical field E(¢), the
two manifolds correspond to molecular vibrational-electronic states connected by
dipole transitions. We want to find the electric field that will create a target wave
packet, centered at j = 7, in the excited manifold starting from an initial state in

the ground manifold.
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$ —= le.)

wy

lg,n)

Figure 4.1: Model system to be controlled. States within the ground manifold g are labeled by
the quantum number n; and states within the excited manifold e are labeled by the quantum
number j. The sought electric field E(¢) is assumed to be resonant with a g — e transition.

The first step is to write the state of the system at some arbitrary time ¢ in

terms of the unperturbed eigenstates of the molecule:

N M
@) =D an(t)e ™omtt0)|g, n) + 3 b;(t)e~eslt=to) g, 3, (4.1)
- ‘

n=0 j=

where [g,n) and [e, j) are the ground and excited vibrational-electronic states,
respectively; N and M are the number of vibrational eigenstates supported by
each of the potentials; and wgo, the eigenfrequency of state |g, d), is defined to be
equal to zero.

We assume for t < ¢4 that b;(t) = 0 and a,(t) = 8p. That is, all the population
is initially in the ground vibrational-electronic state.

The equations of motion governing the time evolution of the probability am-



4.2. EQUATIONS OF MOTION FOR THE VIBRATIONAL
EIGENSTATES 69

plitudes a,(t) and b;(t) are then found directly from Schrédinger’s equation:
ey O ~
(h) 5; 1) = H|¥). (42)

The simple two-manifold model of Figure 4.1 applies to the excitation of an
electronic-vibrational transition in a molecule, if rotations are ignored. The Hamil-
tonian describing the interaction of such a molecule with the external classical field

E(t) can be written as

N M
-E[ =h (ngn,gw n><n=gl +Zwejl61j)<j, el) - & - E(t)‘ (4'3)
J=0

n=0

In the above equation, the first term in the right-hand side (RHS) corresponds to
the bare-adiabatic Hamiltonian that governs the field-free evolution of the system.
The second term is the interaction Hamiltonian, corresponding to dipole transi-
tions excited by the electric field. Such a Hamiltonian model for wave packet
excitation is very common in the literature [39,43,81].

The electric field, linearly polarized along the dipole moment d, is written
as E(t) = Eqg [f(t)e~elt~to) +cc]. With f() = |f(t)[e*®, then |f(¢)| is the
dimensionless slowly-varying amplitude of the field, #(t) is its phase, and wy is
the carrier frequency. We’ll take w; = w,; and Ey = 1V/m. Except for the
constraint f(¢ <) =0, the form of f(¢) is not prescribed initially.

Applying the rotating-wave approximation, we then find a set of coupled dif-
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ferential equations for the probability amplitudes:

M
G =if"(£) ) Qnjbj(t)e—won)t=to), - (4.4a)
=0
- N -
bj =if(t) D> Qpjan(t)e’—wemlt=to), (4.4b)
n=0 :

In these equations, Q,; = (n, g|d|e, 7)Fo/k is proportional to the Franck-Condon
factors, and §; = we; — wy, is the detuning for each transition.
Substitution of the formal integration of Equation (4.4b) into Equation (4.4a)

gives:

- ¢t N
Gn = —Qppe™ont=t0) £2(4) / ds f(5) D Qpe om0 g (5)Enm(s — 1),  (4.5)
to

m=0
In the above expression,
M
anQ:nj 5 -
_ = —id; (t—s) 4.6
fonls =) =3 (52a2t) e (46)

is the electronic “response” function for the transition |g,n) — |e, J). This re-
sponse function has very similar properties to the resonant component of the
atomic response function [compare to Equation (2.13)]. The response function is
an anharmonic series whose terms have an amplitude proportional to the Franck-
Condon factors connecting pairs of levels in the ground state via transitions to the

upper state. For n and m == 0, the response function &oo (s — t) consists of a series
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of impulses of decreasing amplitude and increasing duration, centered at approxi-
mately s~ t—kT [withk=0,+£1,+2,... ; and T = 1/v, = 27/(we1 —weo) being
the vibrational period of the excited electronic state]. It is a general characteristic
of such series that they have a maximum at s = ¢, whose width decreases as the
number of terms in the series increases. The location of the smaller impulses in
the series depends on the degree of anharmonicity of the excited manifold. Fig-
ure 4.2 shows a graph of a typical function £y (s — t), in this case, for the iodine
molecule. It has a strong narrow peak centered at s = ¢; smaller and longer peaks
at s & t = 2T; and small short-period oscillations everywhere else.

As discussed in Chapter 2, if h(t) is an arbitrary function with compact support
between 0 <t — ¢ty < T [that is, h(t) is nonzero only inside this interval], then to

a good approximation:

/ ds h(s)6ools ~ 1) = 3 (mo/ve)A(), (47)

—00

where ng = v, f;rT/.Z ds &oo(s). An important requirement on A(t) for Equation (4.7)
to hold is that it should not have any structure that is short in duration compared
to the response function £o(s — ¢). In this case, the small oscillations seen in
Figure 4.2 average out to zero when performing the integration in Equation (4.7).
The center impulse in Figure 4.2 is the important feature of &q(s — t) here: it
picks out the value of h(s) at s =¢. To a very good approximation, the electronic

response function behaves like Dirac’s delta function. In the case of a harmonic
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Figure 4.2: The electronic “response” function £uo(t) for the B state of I.. M = 55 states were
included in the sum.

manifold, the various §; are evenly spaced, and 7y/v. =~ 1 because the response
function £go(s — £) resembles very closely a series of evenly spaced delta functions
(see Appendix A for details). Depending on the anharmonicity of the excited
electronic state, the requirement that h(t) be restricted to one vibrational period
can be considerably relaxed (e.g., as for the iodine molecule). However, for n, m #
0, &éam(s —t) does not in general exhibit the same features seen in &y (s — t). The
generalization of Equation (4.7) for arbitrary n, m is an approximation that must
be checked for each system.

The complexity of the eigenstate spectrum will clearly determine whether the
time scales of the electronic response function are appropriate for determining
the control field analytically. The general requirements are that a large number of

states in the excited manifold be accessible from each state in the ground manifold,
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and that the coupling matrix elements should vary slowly as a function of n, and

m.

4.3 Ground-State Depletion and Population

Trapping

The short response-function approximation could be used to greatly simplify
Equation (4.5) if, throughout the excitation, the other vibrational levels of the -
ground state remained unpopulated: a@,z0(t) = 0. However, due to the large
bandwidth of the short driving pulse, population may be transferred back down
from the excited state to the other ground vibrational levels via impulsive stimu-
lated Raman scattering [82,83]. Such a process is illustrated in Figure 4.3. Popu-
lation returns to the lower states with just the right phase so that further ground
state depletion is inhibited and remains trapped in the ground electronic state. A
similar problem arises in the ionization of Rydberg atoms [77,84-86]. In order to
better understand the nature of this phenomenon, let us look at the much simpler
case of just two states in the lower manifold. We’ll also assume that the Franck-
Condon factors for transitions from these two states is uniform, that is: Q,; = Q.

Then Equation (4.5) simplifies to:

én + iwgncn = —g(t) (CO + C]_), (48)
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Figure 4.3: Illustration of the Raman process that can populate higher vibrational levels of the
ground-electronic state of a diatomic molecule. Excitation and de-excitation of the molecule are
both driven by the same pulse.

where cn(t) = an(t) exp[—iwgn(t — t5)] and g(2) = 1/2(Q%/w.)| f(2)|2.

Consider a model of instant switching of the driving field so that g(¢) = g
for 0 < ¢ — 1t < T. In other words, a rectangular driving field is applied to
this simpler molecule. (For the time being, let us forget the quantum control
problem and look at the forward problem where the driving field is known and
we want to solve for the probability amplitudes.) We want now to look at how
the ground-state population varies as a function of g. If we look for solutions to
Equation (4.8) of the form cg,; o exp[—iyo1(¢ — o)], where Yo,1 are the so called

complex quasi-energies of the system [85], then it can be shown that

You =i +wa/2+[wl /4 - g2 (4.9)

where g and <, correspond to the “—” and “+” signs, respectively.



4.3. GROUND-STATE DEPLETION AND POPULATION
TRAPPING 75

Two limiting cases are of interest: (i) ¢ < wg1/2 and (ii) g > wg1/2. In the

first case, it is easy to show that
Yo = g, (4-10).
and the ground-state population (Jag(t)|?) decays exponentially at a rate of
Lo = 2Im[vy] = 2¢. (4.11)

However, if condition (ii) is satisfied, then expanding the square root in Equa-

tion (4.9) to first order:
. . 1 2 y 9
Yo = ig —ig |1 — §(w91/29) . (4.12)
and the excitation rate is

Lo = -w? /g. (4.13)

|

For very strong pulses g — oo and consequently, Iy — 0. What this means
is that very-strong square pulses will only weakly deplete the ground state, and
increasing the intensity of the pulse increases the total population remaining in
the ground state after excitation is complete.

A careful inspection of Equation (4.11) and one can identify it as being nothing
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but Fermi’s Golden Rule for the weak-excitation regime. As a matter of fact, one
can look at conditions (i) and (ii) as a more qualitative way of distinguishing the
weak- and the strong-regimes of excitation.

In the case that the driving pulse has a smooth envelope, qualitative estimates
can be obtained by replacing g — g(t) in Equations (4.9), (4.11) and (4.13), so
that v — vo(¢) and 'y — Ty(¢). Of course, these substitutions are in no way
rigorous, and precise estimates for the excitation rates can only be obtained by
solving Equation (4.8). However, analytic solutions can only be found for a small
number of pulse shapes. Since we only want to look at the more general behavior
of these solutions, these substitutions are appropriate.

From Equation (4.9) it is straightforward to determine that [o(t) = 2 Im[v(2)]
has a maximum value of 2w,;. If this value is reached at time ¢ = £nq, then it is
around this time that excitation of the molecule is most efficient.

So generally speaking, population trapping occurs when the driving field is
switched on too fast, quickly going from the weak-response to the strong-response
regime. In the weak-response regime, the initial vibrational level experiences
an increasing rate of excitation with increasing intensity, while in the strong-
response regime this rate tends to decrease with intensity. At the boundary of
the two regimes, the decay rate goes through a maximum. Population trapping is
avoided by slowly turning the pulse on so that the pulse spends more time around

that point of maximum excitation. When the pulse goes into the strong-response
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regime, and population trapping begins to dominate, most population has already
been excited to the upper manifold.

Such Raman-like transitions were studied in some detail by Dubrovskii and
others [85], who derived conditions on the pulse duration and profile under which
population trapping could be avoided when ionizing a Rydberg atom. In the
quantum-control problem, because the exact shape of f(¢) depends on the tar-
get wave packet (not yet specified), an estimate (such as the ones derived by
Dubrosvkii [85]) on how long the driving pulse has to be in order to avoid popu-
lation trapping in the ground-electronic state can not be derived at this point.

A similar result for strong-response excitation of molecules also appears in
quite a different context. Cao and others [87] showed that by chirping a pulse,
a molecular “m pulse” could be designed, leading to an almost complete popu-
lation inversion between two electronic states of a diatomic molecule. They also
observed that shorter pulses failed to accomplish such an inversion, with popu-
lation remaining trapped in the ground electronic state after excitation. Their
explanation of this phenomena centered at a wave packet picture of the excitation
dynamics.

The similarity between ionization of Rydberg atoms and excitation of
molecules comes from the fact that the excited localized state of the molecule

takes at least one vibrational period to “notice” the discreteness of the excited
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state. Up to this point, the excited manifold looks just like a continuum and the
dynamics of ionization and vibration remains identical.

Considering these arguments, we postulate that if the driving field is long
enough to avoid trapping in the lower manifold—but still shorter than approxi-
mately one vibrational period—ground-vibrational levels other than m = 0 will
remain unpopulated throughout excitation. This approximation must, of course,
be checked after the fact, but this is a simple forward integration of Schrédinger’s
equation. In deriving an analytic solution, we will take a,,9 = 0 in Equation (4.5).

Then, using Equation (4.7), yields:

exp [-m0G(t)], ifn =0;
an(t) = (4.14)

0, if n # 0;

where
G(t) = (1/2) (vel Rol?) / F&)2ds (4.15)

is proportional to the pulse energy up to time t. Here, Ry = Q5 [Ve.
No assumption about the shape of f(t) has been made. We assumed only that
the driving pulse was long enough to avoid population trapping, but no particular

value was assigned to its duration. If the driving field turns out to be so short
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that Equation (4.14) is not a good approximation, that will be reflected on the
field’s inability to drive the system towards the target state with good fidelity.

It is important to point out that in arriving at this result, no approximation
was made regarding the strength of the field, beyond the constraint that the field
should not be so strong that the ground state is depléted significantly during the
duration of the electronic response function &t — s). (And of course, that the
two-manifold model itself remains valid at all times.) Nonetheless, we do allow the
ground state to deplete over the duration of the control pulse itself. This is in fact
how we define strong-response excitation. Equation (4.14) indicates that no Rabi
cycling of the population between the ground and excited states can occur during
the first vibrational period. This is because quantum interference suppresses the
transfer of population from the “bright” state, created in the excited manifold,
back to the ground state. In a wave-packet picture, the localized state that is
excited by the pulse does not complete an entire period of oscillétion during the
time that the driving field is nonzero; there is no possibility that the end of the
driving pulse can cycle population from the initially excited part of the wave
packet back to the ground state.

The requirement of a pulse width shorter than the vibrational period means
the excitation is non-adiabatic. The process we describe is in the regime of quasi-

impulsive excitation, and not at all in the regime of adiabatic following [87-90].
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4.4 Control-Field Solution

In the weak-response limit, since the population in the ground electronic state
does not change appreciably during excitation, the driving field can be found
easily by directly integrating Equation (4.4b) and then taking its inverse-Fourier
transform. Such procedure, and how it leads to the nonuniqueness of the control
solution, has been described in detail in Chapter 2. In the more general case of
significant ground-state-population depletion, the driving field can still be found
directly from the given set of probability amplitudes ¢ (with Z;‘_[—_o (6912 = A, A
being the target depletion) for the desired wave packet at time ¢ = 7, when the
field is again zero.

Substitution of Equation (4.14) back into Equation (4.4b) vields at the target

time 7:

oo M
B(t) =195, / dsf(s)e~mC) [z e %% (t“s)J - (4.16)
—oo =

Here, we set b;(7) = b9 and defined

M
B(t) =) (Qos/Q;)" e, (4.17)

7=0

Because f(t) is limited—Dby construction—to one vibrational period, the integra-
tion limits in Equation (4.16) could be extended to +oo. Equation (4.17) is very

similar to Equation (2.11) for the atomic case.



4.4. CONTROL-FIELD SOLUTION

81

As before, if a function h(¢) has compact support between 0 and T:

M

/ " ds h(s) [Z e~ “”)J = (n/ve)h(t),

- =0

where n = v, [ T,I/.% ds 311, eise.

Using the above approximation in Equation (4.16) yields:

f(t) = —i(nRo) te™C B(2).

(4.18)

(4.19)

This equation contains the sought field f(¢) in both its left- and right-hand

side. Equation (4.19) can be used to first solve for G(t), before determining f(¢),

much in the same way it was done with Equation (2.18) in Chapter 2. Following

the steps described there, we arrive at:

t
e~ (M+n3)G(t) — 1 — [(T]o + ﬂa)/anlz] Ve / IB(S)|2 ds.
to

(4.20)

From Equation (4.14), one can see that the above equation describes the tem-

poral dynamics of the ground state. However, we are here faced again with the

same problem discussed in Chapter 2: Because this is an inverse problem, conser-

vation of population is not automatically guaranteed when solving the equations

of motion for the probability amplitudes.

From Equation (4.14), the ground state population at time ¢ is:
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TN o lan(@®)F = e~™+%IGE_ If population is to be conserved at all times,
so that N e, (®)]2 + 30, 18;(t)[2 = 1 for all ¢, then at the target time T,
Z =0 [6: (T)[* = [(mo + m§)/2In*]ve [, IB(s)[?ds. Because of the Franck-Condon
factors in the definition of B(t) and the anharmonicity of the excited manifold, in
general the excited state population Zﬁo |6;(7)[2 will not be equal to A, the tar-
get depletion. The amplitudes b;(t) [and similarly, a,(¢)] need to be renormalized.

We define
x=24/ [ |B(s)Pds, (4.21)
to

so that Z o 10;@) = x j;f) |B(s)|?ds. Now, at t = 7 the proper depletion is

achieved. Equation (4.20) then becomes: exp[—(no+75)G(t)] = 1—x fti |B(s)[*ds,

which can then be substituted back into Equation (4.19) to evaluate the field.
The field that generates the target distribution b? in the excited electronic

state is then found to be:

B(t)
(1 - xj;z |B(s)|2ds

F(t) = —i(nRo)™" ),,O ==t (4.22)

From Equation (4.22), we see that f(f) can be evaluated directly from the
target amplitudes, thus completely determining the driving field E(¢). In the case
of molecules with weakly-anharmonic electronic potentials, Equation (4.22) can

be simplified even further by observing that 5 ~ ny = 1.
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Equation (4.22) is one of the major results of this chapter and it represents
a prescriptive solution for creating a target wave packet in diatomic molecules,
for arbitrary population transfer. If the target wave packet is well localized,
the function B(t) consists of a series of impulses of decreasing amplitude that
gradually broaden into one another. The more anharmonic the excited state is,
| the longer these impulses are, and the more they overlap. It is clear from the weak-
response solution [obtained from Equation (4.22) by letting x — 0] that each of
the isolated impulses contains a complete specification of the target wave packet.
In the weak-response regime, any of these impulses can be used in Equation (4.22)
to determine the driving field. However, in the strong-response regime, the only
impulses that will work are the ones that yield a pulse that is long enough to avoid
population trapping in the ground electronic state. Of course, these considerations
restrict the set of possible target wave packets to those for which B(t) has this
quasi-periodic structure. Because of the QO‘J-I factor in the definition of B(t), these
possible targets are those for which the probability amplitudes lie within the states
accessible via a Franck-Condon transition from the initial vibrational-electronic
state.
In practice, one chooses a particular impulse from B(t) by choosing a value for
to- Assigning a value to ¢y, the moment the pulse switches on, has no real physical
meaning since in the laboratory there exists no absolute time origin. However,

the choice of such an origin is implicit in the definition of the electronic response
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function &yo(t) [and similarly in Equation (4.18)]: the central peak of &y(t) is
located at ¢ = 0. Furthermore, Equations (4.7) and (4.18) assume the nonzero
portion of the driving field to be located between 0 and T. Choosing a value for ¢,
simply brings a particular impulse of B(t) into this interval. Similarly, the value
of 7 is arbitrary. The physically meaningful quantity is the delay between the
turn on of f(¢) and the target time: 79 = 7 —¢;. This is the time after the driving
pulse has switched on that we expect the excited amplitudes to converge to the
target distribution.

This technique for designing an electric field for generating prescribed wave

packets in diatomic molecules can then be summarized in a five-step recipe:
1. Evaluate B(t) from the target amplitudes.
2. Select a section of B(t) by choosing an appropriate value for tg.
3. Determine the driving field for the target using Equation (4.22).
4. Check the field by numerically integrating Equations (4.4).

5. If population trapping occurs, go back to step 2 and choose the next longer

impulse of B(t).

The above recipe is the second major result of this chapter. Together with
Equation (4.22), they describe a procedure for calculating the driving field that
will generate a desired wave packet in a diatomic molecule and avoid population

trapping in the ground electronic state.
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To avoid many runs through this recipe, one should start with the longest
section of B(t) that is still constrained to one vibrational period. Of course, there
is no guarantee a solution will be found for arbitrary states. Since B(t) must
have no structure of significant amplitude shorter than &(t), solutions cannot
be found for arbitrary states. For instance, a wave.packet consisting of half the
population in the eigenstates at the extreme of the Franck-Condon transition will
not be achieved with high fidelity. Of course, there is no guarantee that iterative

methods will achieve high fidelity either.

4.5 Numerical Results

To illustrate the method described in the previous sections, we now turn to the
excitation of prescribed states in two molecules of different degrees of vibrational
anharmonicity: the A state of K, (weakly anharmonic) and the B state of L
(strongly anharmonic).

The general excitation process is depicted in Figure 4.4: a wave packet is
excited at the inner turning point of the excited-electronic potential and then
propagates inside the potential well under the guidance of the control field. The
goal is to force the wave packet to have a specific shape at a particular time. Of
course, for times other than the target time the wave packet will have a shape
different from the targeted one. In these examples, the weak-response regime is

specified by a target depletion of A = 1%; that is, 1% of the electronic population
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Figure 4.4: Hlustration of the controlled wave-packet excitation in a diatomic molecule. The

excited wave packet propagates inside the excited potential well eventually converging to the
target wave packet.

of the initial state is transferred to the final state. For the strong-response case,
this depletion is A = 99%. And the target time is chosen to be 7, = 2 T.

The validity of the approximate analytic solutions was tested by substituting
the designed fields back into Schrodinger’s equation [Equations (4.4)] and numer-
ically integrating it without any further approximations to find the final state: we
will refer to this numerical solution as the “actual” state. To quantify the fidelity,
we used a similar definition of the achievement factor A defined in Equation (2.24):

|35 )" 5]

T~ (4.23)
a

A=

where 0%, and A, are the “actual” amplitudes and depletion, respectively

(T3Lo[b2]* = Aa). The achievement factor is defined such that 4 = 1 indi-
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cates a perfect overlap between target and actual states, and A = 0 means no
overlap at all.

More so than for the atomic case, here a high achievement factor by itself is
not a good indication that the target state has been achieved satisfactorily. In
order to fully evaluate the fidelity of the solution, one has to consider both the
achievement factor and the actual depletion. That is because population could

get trapped in the lower manifold.

4.5.1 Potassium Dimer

All the population was set to be initially in the lowest vibrational level of the X
state of the potassium dimer. For simplicity, we ignored the dependence of the
electronic dipole moment with internuclear distance and assigned to it a value
of 11.4 Debye—the value at the Franck-Condon region [91]. The frequencies w,;
and the Franck-Condon factors for the X and A states were calculated from the
potentials of reference [92]. The vibrational period of the A state is T = 470 fs.

We chose as test cases two prototypical localized states that exhibit both
classical and quantum features.

The first of these test cases was a localized vibrational quasi-coherent-state
wave packet centered at # = 10 in the A state. The target amplitudes were
taken to be ble~%ei™ = {A[pfexp(—7)/j'|}/? with j = 0,1, ..., M and 7 =

2T. Figure 4.5 shows B(t) for this target distribution—step 1 of the five-step
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Figure 4.5: The amplitude (solid line) of the function B(t) and its phase (dotted line) for a
vibrational coherent state in the A state of K5.

recipe. We chose the impulse of B(t) corresponding to ty = —7.2 T—step 2.
This is the longest section still constrained to about one vibrational period; thus
a good candidate to avoid population trapping in the ground electronic state.
The driving fields, determined from Equation (4.22), are shown in Figure 4.6 for
both small (1%) and large (99%) ground-state target depletion—step 3. A close
inspection of Figure 4.5 reveals ripples in B(t) not seen in Figure 4.6. This is
because each section of B(t) used in evaluating the corresponding driving fields
was filtered to remove high-frequency components prior to being substituted in
Equation (4.22). As will be discussed next, not only did this filtering not alter
the ability of the driving field to generate the wave packet, but it also allows
for temporal shapes that are more convenient to be reproduced in the laboratory.
Such robustness to small changes in pulse shape has also been observed previously

by others [39]. Just as in the atomic case (Chapters 2 and 3), the shape of the
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Figure 4.6: The driving field for generating a quasi-coherent state in the A state of Ka. The
dashed line is the weak field intensity; the solid line, the strong field intensity; and the dotted
line is the phase. The peak intensity, for the strong-response case, is 3.6 x 102 W/cm?, and the
weak field is about two orders of magnitude lower in intensity than the strong field.

field in the strong-response case is not radically different from that in the weak-
response regime. In the strong-response case, the dynamics are explained by
the reduced absorption seen by the trailing edge of the pulse. Here as well. the
temporal phase of the driving field is exactly the same in both regimes of excitation
because it is determined only by the choice of target amplitudes, through B(t), in
Equation (4.22).

The next step is to numerically test the validity of the control solution—
step 4. Multiphoton excitation processes were not included in the simulations
because the control-field intensities were always less than 10'® W/cm?, even in the
regime of nearly total population transfer to the excited state. At these intensities,
very little population (less than 0.2%) is transferred to higher excited states [93].
Figure 4.7 shows the target (dashed lines) and actual (solid lines) states in phase-

space for the strong-response case where we have plotted the Wigner function
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Figure 4.7: Phase-space representation of the target (dashed lines) and the “actual” (solid lines)
for a quasi-coherent state in the A state of Ky, in the strong-response regime.

[Equation (3.15)] of those states. One can see that excellent overlap between
the two is obtained. In both weak- and strong-response regimes the analytic
prediction compares favorably with the full numerical results. The achievement
is 4 = 1.00 in the weak-response regime and 4 = 0.99 in the strong-response
regime, indicating that the target state was obtained with very high accuracy in
both cases. The actual depletions accomplished were 1% (weak response) and
96% (strong response).

For the second test case, we used Equation (4.22) to design a field that gener-
ates a Schrédinger “cat” state [1,73-75] in the excited electronic state: The nuclei
are simultaneously localized at both inner and outer turning points of their trajec-

tories. The target amplitudes are be ™™™ = {A[pFexp(—7)/!}2 [(—1)7 +1]V/2,
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where j =0, 1, ..., M; 7 = 10; and 7o = 27T. The field that generates such a
distribution is shown in Figure 4.8 for both weak- and strong-excitation regimes
(with ¢p = —3.3T). The differences between pulse shapes from the small to the
large depletion case can be explained by the smaller absorption seen by the sec-
ond pulse and the rapid depletion of the ground st.ate during each pulse. The
difference in shape of the two impulses in the weak-response regime is due to the
anharmonicity of the potential, meaning that the wave packet changes shape as
it propagates towards the outer turning point.

Figure 4.9 shows the target (dashed lines) and actual (solid lines) states in
phase-space for the strong-response case. Again, very good overlap between the
two is achieved. Here, A = 1.00 and actual depletion of 1% in the weak-response
case; and A = 0.94 and actual depletion of 94% in the strong-response case.

Contrary to the first test case, the strong-response pulses for generating “cat”
states do not have to be necessarily very long in order to avoid population trapping.
That is because the boundary between the two regimes of excitation, weak and
strong, is not a clear one. In the first case, a single pulse depletes the ground state
by 96%, whereas in this second case, the first pulse depletes the ground state by
less than 60%. It is very difficult to tell exactly when population trapping will
become a problem; one has to go through the five steps of the recipe, until the
appropriate driving field is found. Note, however, that the recipe involves only

a single integration of Schrédinger’s equation using a prescribed field (in order
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Figure 4.8: The driving field for generating a “cat” state in the A state of K». The dashed line
is the weak field intensity; the solid line, the strong field intensity; and the dotted line is the
phase. The peak intensity, for the strong-response case, is 7.6 x 10° W/cm?, and the weak field
is about two orders of magnitude lower in intensity than the strong field.

to determine the fidelity of the final state); a step which is found in all iterative

methods as well.

4.5.2 Mbolecular Iodine

The B state of an iodine molecule is more anharmonic than the A state of a
potassium molecule. Also, the Franck-Condon factors for transitions between
the B state and the ground vibrational-electronic state are centered around the
vibrational number j = 30, making the vibrational frequencies’ spacing even more
irregular. As a consequence, the electronic response function is wider than that
for K, and its several impulses are more separated from one another in time. In
this case, the driving field can actually be longer than a vibrational period without

causing Rabi cycling between the X and B states. The eigenfrequencies and the
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Figure 4.9: Phase-space representation of the target (dashed lines) and the “actual” (solid lines)
“cat” states in the A state of K», in the strong-response regime.

Franck-Condon factors for the X and B states were calculated from the potentials
of reference [40]. For Iodine, the vibrational period is T = 267 fs.

For the numerical simulations, we again took the dipole moment to be inde-
pendent of internuclear separation with a value of 1 Debye, at the Franck-Condon
region [94]. Higher-lying electronic states were not included in the simulations
because the control field intensities were always less than 3.5 x 10'> W /cm? [39].

As a target, we now chose the “molecular reflectron” wave packet [38,39]. This

target state is represented by the wavefunction:

Y(r) = (2ro) " exp[~(z — £)2 /40 + i (5/K)(z - Z)], (4.24)

where Z = 3.72 A, p?/2m = 403 cm™!, p < 0, and o = 250 cm~!. As shown in
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Figure 4.10: Illustration of the “molecular reflectron” controlled-excitation process.

Figure 4.10, the excited wave packet must reflect off the potential barrier, at the
outer turning point, before it reaches its target shape: a localized gaussian wave
packet with a small negative momentum.

Figure 4.11 shows B(t) for this target. Say we first choose the narrow impulse
of B(t) corresponding to ¢y = —1.6 T. This impulse should yield a smooth pulse
that is well restricted to one vibrational period T. However, upon substitution into
Schrédinger’s equation, this driving pulse yields an achievement factor of 4 = 0.64
and a depletion of only 82%, in the strong-response regime, requiring us to take
step 5 of the recipe. The designed pulse is not long enough to completely avoid
population trapping in the ground electronic state. Figure 4.12a shows the weak
and strong fields evaluated with the impulse of B(t) corresponding to ¢; = 0.25 T.
The weak-response solution shown in Figure 4.12a is remarkably similar to that
shown in Figure 6 of Krause [38]. The achievement factors we get from numerically

integrating Schrédinger’s equation are also quite similar: A = 0.98 in the weak-
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Figure 4.11: The amplitude (solid line) of the function B(t) and its phase (dotted line) for the
“molecular reflectron” in the B state of Ip.

response case, and A = 0.70 in the strong-response case [39]. In the weak-response
regime, the achievement factor is slightly lower than one might expect because
the approximations of Equations (4.7) and (4.18) actually introduce a small time-
dependent phase factor to h(t). As for the low achievement of the strong-response
solution, even though the field is long enough to avoid population trapping in
the X state (the actual depletion is 96%, compared to the target of 99%), it is
not very long compared to the electronic response function; Equations (4.18) and
(4.18) are not very good approximations in this case. However, the section of B(t)
corresponding to {o = —3.9 T yields a field of longer duration, resulting in a much
better achievement factor: A = 0.96 with an actual depletion of 98%. F igure 4.12b
shows the calculated driving pulses in both regimes of excitation, and Figure 4.13
shows the target and actual wave packets for this case. As indicated by the high

achievement factor, the overlap between the two (target and actual) is very good.
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Figure 4.12: The driving fields for creating the “molecular reflectron” in the weak- (dashed line)
and strong-response (solid line) regimes for (a) to = 0.25T and (b) g = —3.9T. The peak
intensities are: (a) 3.3 x 10'* W/cm? and (b) 1.8 x 10'> W/cm?, for the strong-response case.
The weak fields are about two orders of magnitude lower in intensity than the strong fields.

Figure 4.14 shows the temporal dynamics of the ground vibrational states’
amplitudes. One can see that the population in the levels n # 0 remains nearly
unchanged (zero) throughout excitation, with at most 10% of the population going
to the other vibrational levels at one time. The pulses shown in F igures 4.12a
and 4.12b have chirps of opposite signs. While the negatively-chirped pulse of
Figure 4.12a agrees with the OCT solution found by Krause and co-workers [39],
these results show that a positively-chirped pulse can also focus a wave packet.

Even though the negatively-chirped pulse yields a high degree of inversion, and an
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Figure 4.13: Phase-space (Wigner) representation of the target (dashed lines) and the “actual®
(solid lines) “molecular reflectron”, in the strong-response regime.

achievement factor adequate for an experiment [39], the positive-chirp solution is
a better choice for a practical implementation. That is not just because it vields a
higher achievement factor, but also because population inversion has been shown
by Cao and others [87] to be more robust (to small changes in the chirp) for
positively-chirped pulses. Another interesting difference between the pulse shown
in Figure 4.12a (and those of Figures 4.6 and 4.8 as well) and that of Figure 4.12b
is that the former turns off well before the target time while the latter stays on
all the time guiding the molecule until it reaches the target. This means that
the excitation pulse does not need to control the dynamics of the molecule all the

way up to the target time. The control pulse is tailored so that it will prepare
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population in level n = 0, and the dashed line is the total population in the other vibrational

levels of the ground electronic state.

the molecule in a state that will naturally converge to the target state after an

interval of free evolution.
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Chapter 5

Ultrafast-Pulsed Detection of
Cold Rubidium Molecules

5.1 Introduction

The last three chapters of this thesis were concerned with the theoretical analysis
of the quantum-control problem in both Rydberg atoms and diatomic molecules.
In this chapter we will report on the experimental detection of cold molecules,
formed in an atom trap, by means of an ultrafast laser pulse. We look at some
experimental parameters and issues that could be important for wave-packet ex-
citation and for implementation of a quantum-control scheme for controlling cold
atomic collisions.

Such a scheme is shown schematically in Figure 5.1 and could be useful for
an efficient production of cold molecules. It is conceptually similar to the pro-
cess depicted in Figure 1.4 in the sense that cold atoms are converted into cold

molecules. There, the molecules end up distributed among several vibrational lev-
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Figure 5.1: Pump-dump quantum-control scheme for making cold molecules. The pump pulse
photoassociates the colliding-ground-state wave packet to the excited state and the dump pulse
brings it down to a bound eigenstate of the ground state.

els of the ground electronic state. Here, however, a pair of ultrafast-laser pulses
would be used to efficiently transfer a wave packet from the continuum states of
the ground electronic state to the lowest vibrational state of the same electronic
surface. The first pulse would excite the ground-state wave packet (representing
cold colliding atoms) to an excited electronic state. Then, when this excited-state
wave packet reaches the inner turning point, a second pulse would be used to
de-excite it down to the lowest vibrational level of the ground state. This ultra-
fast pump-dump scheme could prove to have several advantages over similar ones
proposed by Vardi and co-workers [68], and Mackie and Javanainen [66,95]. In

both these schemes, the pump-dump excitation process takes place over long time
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scales: Vardi proposes using nanosecond pulses for the excitation and Javanainen
cw lasers. In these time scales, spontaneous emission may be a factor, destroyving
the specificity of the process. Furthermore, for longer time scales, collisions with
other atoms may lead to phase perturbations and destroy the coherence of the
process. The cw scheme of Javanainen also requires the molecules to stay around
arbitrarily long, meaning they must be trapped [57]. All of these complications
can in principle be avoided if the pump and dump excitations take place on a very
short time scale such as the one proposed by us. This scheme would also serve as
a means to test the analytical solutions developed in the previous chapters since
the dump process is just the time reversal of the controlled-excitation process de-
scribed in Chapter 4: Given the excited-state wave packet, one needs to find the
pulse shape that will bring the wave packet down to the ground state.

We begin this chapter by describing in Section 5.2 the laser systems used to
detect the cold molecules; in Section 5.3 we discuss the atom trap; and we describe

the experimental setup and the ionization signal in Section 5.4.

5.2 The Laser Systems

In our experiments, three different lasers were emploved to detect the cold
molecules formed in our magneto-optical atom trap: an ultrafast-amplified-
femtosecond laser, a pulsed-dye laser, and a green Q-switched Nd:YAG laser.

We describe these systems next.
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5.2.1 The Ultrafast-Laser System

Figure 5.2 shows a diagram of the ultrafast-laser system. It consists of a
Ti:Sapphire oscillator and a chirped-pulse regenerative amplifier. We will only
outline some of its features as a much more detailed description can be found in
Ref. [96].

The Ti:Sapphire oscillator is pumped by a continuous-wave frequency-doubled
(A = 532 nm) Nd:Vanadate laser (Spectra Physics Millennia). It outputs about
1.5 nJ, 30 fs pulses centered at A = 830 nm at a rate of 90 MHz. Because the
energy of the oscillator pulses are very low, these pulses need to be amplified.
This is accomplished by means of a chirped-pulsed-amplifier (CPA) system.

" The first stage of the CPA system consists of a pulse stretcher. Pulses coming
out .of the stretcher have durations on the order of 150 ps. This is done so that the
pulses can be amplified without the risk of suffering from large nonlinear effects
or even damaging the gain rod in the regen cavity.

The longer pulses are then seeded into a regenerative-amplifier cavity which is
pumped by a Q-switched Nd-YAG laser (CLARK-MXR ORC1000). After 12 to
15 round trips inside the cavity, an amplified pulse is ejected from the cavity. At
1 KHz, the output-pulse energy is approximately 1 mJ. The amplified pulses are
then inserted into a pulse compressor which shortens the amplified pulses down
to about 60 fs. Typical energies of the amplified pulses after the COmMpressor are

on the order of 500 uJ.
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Figure 5.2: Diagram of the ultrafast-laser system. The dashed box identifies the components of
the CPA system.

Figure 5.3 shows plots of the spectrum and auto-correlation traces of the am-

plified pulses. Typically, the spectrum is centered at 830 nm with a full width at

half maximum of about 20 nm.

5.2.2 The Nanosecond-Pulse Dye Laser System

A schematic layout of the dye laser system is shown in F igure 5.4.
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Figure 5.3: Typical spectrum (a) and auto-correlation (b) traces of the ultrafast pulse. From

Ref. [96].
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Figure 5.4: Diagram of the dye-laser system. M1 and M2 are high-reflectivity mirrors.

The pump laser consists of a frequency-doubled Nd:YAG (Spectra-Physics
Quanta Ray, GCR Series) laser. This laser is actively Q-switched providing ap-
proximately 130 mJ of 5 ns, 532 nm pulses at 50 Hz. However, only 4 to 6 mJ
are sent to the dye cell. The pump beam is focused with a f = 250 cm lens to a
point before the cell so that the beam does not get focused onto the laser mirrors
and grating. Part of the (green) pump laser is also sent to the trap for ionization.

The dye oscillator is based on the original design of Shoshan and Littman and
its optical components and operation are described in greater detail in Ref. [97].
The oscillator consists of two mirrors and a single diffraction grating used in near-
grazing incidence to provide frequency tuning. Tuning is actually accomplished
by turning the mirror M2 which sends the first diffraction order off the grating
back into the oscillator. The total cavity length is about 8 to 10 cm. The quartz
dye cell has a path length of 1 mm, and the gain medium consists of a 2 x 10-4 M
solution of Rhodamine 640. This provided a tuning range of 598-626 nm with

a peak near 603 nm. For the purposes of our experiment, the two main issues
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concerning the operation of dye laser were to achieve the correct wavelength (close
to the appropriate molecular resonance) and to obtain enough energy to detect
(ionize) a good number of molecules. No attempt was made to control or optimize
parameters like continuous tunability, frequency shifts, mode hoping, temporal
profile of the pulses, etc. [97]

Typically we obtained, out of this system, pulses on the order of 5 ns and with

16 pJ of energy.

3.3 The Magneto-Optical Atom Trap

An introduction to the theory of atom trapping is provided in Appendix B. In this
section we discuss the experimental parameters concerning our magneto-optical
trap (MOT).

Our MOT is produced inside a stainless-steel chamber under high vacuum.
Typical background pressures are in the 1078 Torr range. Several windows al-
low for optical access of the trapping and repumping beams, positioning of the
channeltron close to the MOT, and optical monitoring of the trap—see Figure 5.5.

The trapping laser is a high-power cw diode laser with a (free running) optical
output of 70 mW and wavelength of A = 785 nm (Sanyo, DL7140-201). Usually,
a diffraction grating, blazed for a wavelength close to the operating wavelength of
the diode, is put at the output of the diode for tuning purposes and also to reduce

the laser linewidth. However, due to the high power of the Sanyo laser, we noticed
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Figure 5.5: Diagram of the vacuum chamber. The third pair of trapping, the repumping and
the ionizing beams enter the chamber at a plane perpendicular to that of the page.

that the optical feedback from the grating was intense enough to generate white
light in the front surface of the diode and eventually damage it. For this reason
we use a commercial-grade (no gold coating) grating blazed at 250 nm to reduce
the feedback into the diode laser. The trapping laser is also spatial filtered (using
a 30 pm pinhole) to improve its spatial profile. At the end, the total power being
sent into the chamber is 15 mW. Furthermore, the trapping laser is frequency
locked 16 MHz to the red side of the F =3 — F' =4 hyperfine transition of the
%Rb D, line at 780 nm. The repumping laser is a 50 mW (free running) diode
laser (Hitachi, HL7851G). This laser is locked to the D, line and approximately
7 mW is superposed to the trapping beam along one of the axis.

The trapping beam is split into three pairs of equally-intense, counterpropa-
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gating beams of about 1 cm in diameter. The trap is formed where the beams
cross each other, at the center of a quadrupolar magnetic field formed by two coils
in an anti-Helmoltz configuration.

One of the optical windows in the chamber is used to monitor fluorescence
from the trap. A 15 cm lens images the trap onto a beam analyzer (Spiricon
LBA-100). By using a beam analyzer we can accurately monitor changes in the
trap in real time, such as fluctuations in the number of trapped atoms and the
trap size. The MOT can typically load up to 108 atoms in a diameter of 800~
1000 um. Although we never measured the temperature of the atoms in our MOT,
similar traps—ran under similar conditions—exhibit temperatures on the order of
approximately 100 K [61].

Detection of the ions is made directly by a channeltron (Dr. Stujs Optotechnik
GmbH, model KBL408) placed about 6 cm below the trap. The channeltron input
is biased at —2600 V relative to the vacuum chamber allowing time-of-flight mass

spectroscopy to be used.

9.4 Ionization of Cold Rb Molecules

The atom of our choice to work with is Rubidium (Rb). This choice was made
because Rb has molecular transitions near the peak wavelength of our ultrafast
laser and it is easy to trap: the atomic trapping transition can be reached with

commercially available diode lasers. (Potassium also has a molecular transition
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near 830 nm, but trapping it is hard since, currently, its trapping transition can
only be reached with a Ti:Sapphire laser.)

‘A schematic representation of the experiment is presented in Figure 5.6.
Atomic Rb vapor is cooled down and trapped in a magneto-optical trap and then
ionized by either the dye laser or the ultrafast laser. The trapping and repump-
ing beams are sent through acousto-optic modulators (AOM’s) which are used to
switch the trap on and off. The ionizing beam is aligned with a “pointing” beam
and focused into the vacuum chamber with a f = 20cm lens. The pointing beam is
used to make alignment of the ionizing beam easier: The pointing beam is picked
off the trapping laser (and therefore it is resonant with the trapping transition),
so'it is possible to see (with the help of an IR viewer) its fluorescence track in-
side the vacuum chamber and very easy to direct it onto the trapped-atom cloud.
The cold-Rb atoms, initially at large internuclear distances, occasionally collide
with one another and form a molecule (Rb,). Gabbanini and co-workers [61] have
shown that these molecules are formed primarily through three-body collisions
(Rb + Rb + Rb — Rb, + Rb), although there is the possibility that the trapping
and repumping lasers may enhance the flux of colliding atoms at short internu-
clear distances through photoassociation. They have shown that some of these
molecules are formed in the triplet ground state, though the question of whether
any singlet-ground-state molecules are formed is still open.

Since we are interested only in ground-state molecules, in order to avoid ion-~
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Figure 5.6: Experimental setup for ionization of cold molecules. “M” are mirrors; “BS”, beam
splitters; and L is a 20 cm lens.

izing excited-state molecules (photoassociated by the trapping and repumping
beams), acousto-optic modulators (AOM’s) are used to switch the trapping and
repumping beams off. The AOM’s are synchronized with the ionizing beam so
that ionization occurs during the window in which the trap is off. The different
timings involved are shown in Figure 5.7. In general, the trap is switched off for
about 50 us and the ionizing beam comes in approximately 25 us after the trap
is switched off. This delay is about three orders of magnii:ude higher than the
typical lifetime of excited-molecular electronic states. So, by the time the ionizing
beam hits the cold atom/molecule cloud, any excited molecule will have decayed
to the ground state. Also, since the atoms and molecules are moving so slow
(= 0.2 m/s), they don’t move much (~ 5 pm) during the time between switching

off the trap and ionization. Then, approximately 5-6 us after ionization, atomic
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Figure 5.7: Diagram showing the different timing involved in the ionization. (Not drawn to
scale.) The trapping light is shut off for a very brief interval and at a slow enough rate (50 Hz
for ionization with the nanosecond pulses and 1 KHz for ultrafast ionization) that the trapped-
atomic cloud is not disturbed in any significant way.

ions are collected by the channeltron. Because the cold molecules are twice as
heavy as the cold atoms, the ratio of arrival times of molecular to atomic ions
is V2. The exact time of arrival for both atomic and molecular ions depends on
where the trap is formed relative to the channeltron, so it may change every time

the trapping and repumping beams, mirrors, etc. are realigned.

5.4.1 Ionization with Nanosecond Pulses

We first looked at ionization with the green (532 nm) laser. Ionization in this case
is a non-resonant two-photon process if the molecules are in the singlet ground-
electronic state and possibly a two-photon resonant process if they are in the
triplet state. [It is not clear if the green laser is resonant with a vibrational level
of the (2) %I, state.] The former is also true for ionization of Rb atoms—see

Figure 5.8.
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Figure 5.8: Ionization scheme for excitation with the green laser for Rb; detection. Shown are
the 'TF singlet-ground state (lower solid line), the 3%} triplet-ground state (dashed line), the
(2) 30, state (dotted line), and the ionic state (upper solid line).

Approximately 5.08 us after the green-ionizing beam reaches the trap, a very
strong peak is registered by the channeltron corresponding to the arrival of atomic
rubidium ions (Rb*). The channeltron also registers two other (although much
weaker than the first) peaks at 6.28 us and 7.08 us—see Figure 5.9. We'll refer
to these peaks as P1, P2, and P3, respectively. We observed that only P1 and
P3 are present in the ionization trace if the trapping and repumping beams are
blocked. In this case, the height of P1 reduces considerably while that of P2
remains unchanged. This indicates that P2 is unrelated to the trap and it comes
from ionization of background gas. We believe P2 to correspond to left-over Cs
atoms from a previous trap from which the current Rb trap was built. The ratio
of the arrival times of P2 (Cs*) and P1 (Rb*) of approximately 1.24 is certainly

consistent with the square root of the ratio of the atomic masses of the two species:
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Figure 5.9: Ionization trace taken with the green laser. The pulse energy was 36 ©J and time
t = 0 corresponds to the moment ionization takes place. The output of the channeltron was
sent to a digital scope and averaged over 1000 pulses.

Vics/rp = 1.25. P1, as shown in Figure 5.9, is due mostly from ionization of
the trapped-atom cloud, but it also has a small component from ionization of
background Rb atoms explaining why it has a long wing that extends over P2 and
almost into P3.

However, P3 is only present when the trapping and repumping beams afe
unblocked and the magnetic field is on; in other words, in order to see the third
peak in Figure 5.9 there must be a trap. Furthermore, P3 goes away as well
when aiming the ionizing beam above or to the sides of the trap. We measured
the ratio of arrival times of P3 and P1 to be approximately 1.39 which is very
close to v/2. These are very convincing indications that P3 corresponds to Rb,
ions, indeed. Much better resolution between the different ionization peaks and

a stronger molecules signal (RbJ) can be obtained if the ionizing laser is tuned
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Figure 5.10: Ionization trace taken with the dye laser. The pulse energy was 18 uJ. The displayed
trace corresponds to an average over 1000 pulses.

to a resonance. Following the work of Gabbanini and others [61], we tuned the
spectrum of our dye laser to about 602 nm (close to a molecular resonance), and
with 16 1J of energy, we recorded the ionization trace shown in Figure 5.10. Again,
three distinct peaks can be identified: a very small peak at approximately 5.08 us,
a second one at 6.28 us, and a third and stronger peak at 7.08 us. (These occur at
the same time as the one in Figure 5.10 because no tweaking of the trap was done
between the two experiments, so the trapped cloud was located approximately at
the same distance from the channeltron in both cases.) However, now ionization of
Rb atoms is a three-photon excitation process, whereas ionization of Rb molecules
is a two resonant-photon process—see Table 5.1. And because of this, the Rb+

peak is much smaller than the Rb; peak.
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Number of photons
Element | Ionization energy (cm™!) green orange
Cs 31485 2 2
Rb 33842 2 3
Rb, 31491 1+1() | 1+1

Table 5.1: Tonization energies of Rb, Rby, and Cs. One green photon has an
energy equal to 18797 cm™! and an orange photon, 16611 cm™!. The last column
(Number of photons) shows the number of photons required to ionize a particular
element. Ionization of Rb, with the orange laser is a two-resonant-photon process
(1 +1).

5.4.2 Ionization with Ultrafast Pulses

Next we sent ultrafast-laser pulses into the vacuum chamber and looked for
molecules. The ionization scheme is shown in F igure 5.11 and two possible routs
may lead to Rby. The first route corresponds to ionization of singlet ground-
state molecules. In this case, surface S1 in Figure 5.11 corresponds to the ground
(1) IZ} state; S2 to (1) '=; and S3 to (5) 'EF, (6) 1T, or (3) 'IT}. The second
route corresponds to ionization of triplet ground-state molecules. Here, S1 is the
triplet (1) X} state; S2 is (1) °S]; and S3, (6) 3S7 or (4) 3IT+. However, it is not
clear to us yet if the last step in the ionization process is a resonant process or
not; that is, if surface S3 is involved in the ionization process or not. That will
depend on how deep in the ground electronic surface the molecules are staring
from.

Figure 5.12 shows the ion trace we obtained. Again, three peaks are seen

corresponding to Rb*, Cs*, and Rbf. The atomic-Rb-ion signal is by far the
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Figure 5.11: General ionization scheme for excitation with the ultrafast laser for Rb] detection.
The surfaces S1, S2 and S3 are defined in the text.

strongest. With 2 pJ of the 830 nm pulse, this signal saturated at approximately
20 mV. The Cs* peak is much smaller than the Rb* (x 800 £V), but about an
order of magnitude bigger than the Rbj peak (~ 90 V). One striking difference
between the molecular (RbF) and the atomic (Rb* and Cs*) signals, which can
also be observed in Figure 5.9, is the width of the peaks: the Rb] peak is much
narrower than the other two. That is because the ionizing laser (be it the ultrafast
or the green laser) not only ionizes atoms from the trap, but also background
atoms surrounding the trap. But the molecules are only present in the trap
region, so the distribution of arrival times of molecular ions is much narrower
than that of atomic ions. In order to determine the number of molecules that
were being ionized, we sent the output of the channeltron to a photon counter.
Typical peak counts were on the order of 35, summing over 5000 pulses—or in

other words, 0.007 molecule/pulse. Since each pulse comes in at a rate of 1 KHz,
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Figure 5.12: Ionization trace taken with the ultrafast laser. The inset shows a zoomed out
picture of the trace. The pulse energy was 2 uJ and the ion signal was averaged over 5000
pulses.

this means we were detecting about 7 molecules/s. These numbers are consistent
with those of Gabbanini’s [61]: in their case, ionization with a 1 mJ dve laser
yielded 2-3 molecules/pulse. Taking into account that the energy of our ultrafast
pulses were three orders of magnitude lower than the energy of their dyve laser,
then the two molecules/pulse rates agree with each other. Other factors such as
lonization and detection efficiencies, population trapping, etc. are also relevant
but they should contribute to these estimates by factors of 2; not by many orders
of magnitude.

This means that, in principle, our detection rate could be increased signifi-
cantly by increasing the pulse energy. However, there is a practical limit to how
much energy the ionizing pulse can have: the more energetic the pulse, the broader

the atomic-ion signal will be. Eventually, this signal will extend itself over longer
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arrival times and mask the molecular signal completely. In the Conclusions chap-
ter we discuss possible ways to overcome this difficulty. Of course, cleaning the
chamber up to remove all traces of Cs would be the obvious first step. However,
the Cs atoms played a role by serving as one more way to correctly identify and
assign the different peaks and timings in the ionization traces.

It is important in this experiment to make sure when focusing the ionizing
beam that its waist is slightly bigger than the trap itself. This way one assures a
larger number of molecules are irradiated by the laser. But if the waist is much
bigger than the tr;f).p size, ionization of the background gas will become a problem
as discussed in the previous paragraph. Dependence of the molecules signal on
trap parameters such as number of atoms, volume shape, are harder to investigate.
Since the molecules are formed by three-body collisions [61], then the molecular
production rate should depend quadratically on trap density. Although we did
notice that the molecules signal tended to be bigger for rounder and smaller-
volume traps, occasionally we got similar ion signals for traps with very different
(factors of 2 or 3) total number of atoms.

In order to determine if the last step in the ionization, as shown in F igure 5.11,
is actually a resonant transition or not, it. would be necessary to investigate how
the molecules signal varies with intensity of the pulse. Unfortunately, as it is, the
molecules signal is too small to allow for such a study. We had some indications

pointing to a linear dependence, but these results are not conclusive yet.
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Chapter 6

Conclusions

A number of different schemes have been developed in the last fifteen years
for controlling quantum systems. One such method is Optimal Control Theory
(OCT), which has been very successful in predicting pulse shapes for controlling a
variety of quantum systems. However, in the great majority of cases, the outcome
of OCT is a numerical solution for the control field. In this thesis, we proposed
a different way of looking at the quantum control problem; one that yields an
analytic solution for the driving field for controlling wave-packet dynamics in
Rydberg atoms and diatomic molecules.

In Chapter 2 we showed that the idea of restricting the duration of the driving
force leads to a great simplification of the nonlinear-quantum-control problem of
Rydberg atoms. To achieve such a simplification, the control field must be short
enough so that the discreteness of the system’s level structure is not operative.
In contrast to other approaches to quantum control such as OCT, this restriction

allows one to derive a simple, approximate analytic solution for the driving field
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directly from the quantum state amplitudes in the upper manifold, even in the
limit of large population transfer.

The main approximation used in finding this analytic solution was that of a
rapid electronic-“response” function. This approximation was tested by substi-
tuting the driving field from Equation (2.23) in Equations (2.6), which were then
.numerically integrated. As shown in Figure 2.5 and 2.7, the approximation seems
to hold well even in the strong-response regime.

We have also discussed the differences and similarities between the weak and
strong-excitation solutions, and how they arise from the change in absorption
experienced by the control field in the strong-excitation case. For the coherent
and “cat” states, the envelope of the driving fields are very similar in the two
regimes of excitation. However, this result is particular to the chosen targets and
applies only to the envelope of the driving field. As a matter of fact, we also
showed that the temporal phase of the field is the same in the two regimes for
every target wave packet. This result had been observed previously from OCT,
but its origin was not understood until now.

In Chapter 3 we looked in more detail at how the relative complexity of the
weak and the strong-response solutions depends on the target states. On on
ehand, targets with simple phase-space distribution such as the localized-Gaussian
state, the quasi-coherent, the molecular “reflectron” , or even the Schrédinger “cat”

state require driving fields with little structure. As a result, the shape of the
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control fields in the two excitation regimes do not differ significantly from one
another. On the other hand, the fields that generate states with a complex phase-
space distribution (such as two of the cases discussed in Section 3.5: the five-
peak-Gaussian and the “phase-jump” states) have envelopes of a rather complex
structure. If the leading edge of the pulse is simpler than its trailing edge, then
the weak-excitation field will be simpler than the strong-excitation field and vice-
versa: a simpler trailing edge results in a simpler pulse in the strong-excitation
limit.

We also showed that even in the case in which transitions from the bound
Rydberg states to the continuum states cannot be ignored, it is still possible
to find an analytic solution for the control field. We showed that even in the
strong-response regime, the continuum plays a minor role in the excitation, and
the much simpler analytic solution of Equation (2.23) can be used to calculate
the driving fields in many cases. When transitions to the continuum cannot be
neglected, the more complicated solution embodied in Equation (3.13) should be
used to calculate the driving fields. What is not yet known, however, is whether
at the intensities at which these transitions to the continuum are important, the
rotating-wave approximation starts to fail. Nonetheless, we expect the results
obtained under this approximation to be still valid qualitatively [84]. Furthermore,
at these higher intensities levels it has been suggested that each Rydberg state

would be coupied to its nearest neighbors [98], an effect that has not been included
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in our model. However, there is flexibility in choosing the control field for any
specific target wave packet. It should be possible to choose a section of B(t)
[Equation (2.11)] with sufficiently small amplitude and long duration such that
the resulting control pulse has a low enough peak intensity that does not cause
transitions to the continuum nor between neighboriﬁg Rydberg states.

Next, the ideas of Chapters 2 and 3 were extended to the case of controlling
wave packets in diatomic homonuclear molecules. In Chapter 4 we argued that by
restricting the driving field to approximately one vibrational period in duration, .
one could derive an analytic solution for the control field.

However, controlling molecules is a more challenging problem than controlling
Rydberg atoms due to population trapping. Because the excitation pulse has a
large bandwidth, population may be trapped in the lower vibrational states of the
ground electronic state by Raman-like transitions. So not all possible solutions will
work. One must chose from among the many possible solutioﬁs ones for which
the field has a slow turn-on time, but at the same time, it is shorter than one
vibrational period. The family of wave packets that are amenable to control using
this scheme is restricted to those states that are accessible by a Franck-Condon
transition from the initial ground-vibronic state. These states must also have
characteristic functions B(t) [Equation (4.17)] whose impulses are longer than the
eiectronic response function.

Even though we discussed the technique with respect to a diatomic molecule,
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it could in principle be extended to a variety of systems consisting of a ground and
an excited manifold of states, of the type shown schematically in Figure 4.1. Many
quantum systems have at least part of their structure of this type: the internal
degrees of freedom of atoms and molecules, interband transitions in quantum-
confined semiconductors, the center of mass of motion of trapped ions and atoms,
to name a few. It is a simple matter to determine if the system is controllable,
using this method, once its spectrum and coupling matrix are known. The spec-
trum may represent the states corresponding to several degrees of freedom of the
optically excited particle, and to that extent, some control should be possible for
multidimensional systems. In any case, it is possible to determine from this infor-
mation what range of the Hilbert space of the system may be accessed using this
technique.

In the last decade, more attention has been devoted to the weak-response
quantum-control problem than to the strong-response case because the former
relies on perturbative solution to the dynamical problem and admits globally
optimal searches of the space of control-field pulse shapes. It is therefore more
general, although inefficient since only a fraction of the population is transferred
to the target state. The approximate analytic solution to the control problem
presented here provides a means to bridge the gap between the weak-excitation
global solutions and the strong-excitation local solutions known from prior works.

However, OCT is a more versatile technique that can be applied to a larger
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variety of problems and systems than the technique described here. For example,
our technique would be very difficult to apply to the case in which one starts from
an arbitrary population distribution in the ground electronic state. Because we
chose to work in the Schrédinger representation, we are also limited to controlling
only pure states. The main attraction of our technique is that by providing a
simple analytic solution, it helps shed some light onto the physics behind the
control of quantum systems in the strong-response regime. Also, the increased
insight into the dynamics afforded by this solution may be helpful in developing
iterative approaches to more complicated quantum control problems, if only in
the role of an initial guess for an iterative search algorithm.

Experimentally, we reported on the first observation of ground-state cold-Rb
molecules with an ultrafast laser. We looked at some of the experimental issues
that are involved in such an experiment, and that in principle are important for a
further investigations of wave-packet excitation in these molecules. For example,
we determined that with 60 fs pulses and only 2 uJ of energy it is possible to
ionize and detect cold molecules in a Rb trap. We estimated to be observing
approximately 0.007 molecule/pulse. However, this is just a small fraction of the
total number of molecules formed in the trap. Much stronger signals could be
observed with stronger (more energetic) pulses, but as discussed in Chapter 5,
ionization of background gas places a severe limit on the pulse energy. There

are a few ways to possibly overcome this difficulty. For example, by frequency
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doubling the ultrafast laser, one could focus the ionizing beam to a smaller spot
and in this way reduce considerably ionization of background gas. Of course, one
could also replace the focusing lens to a shorter one, but there are some practical
limitations on how close the lens can be placed to the trap in our setup. However,
care should be taken not to focus to a spot smaller than the trap otherwise only a
small number of molecules will be ionized. A third way of reducing background-
gas ionization would be to split the ionizing laser into two parallel beams and send
them through the focusing lens. This way the two beams will be superposed on
an area smaller than their waist. Another solution would be to apply a quantum
control scheme such as the one of Meshulach and co-workers [99]: Since ionization
of the Rb atoms is a nonresonant multi-photon-absorption process it should be
possible to modulate the phase of the field (using a pulse shaper) to minimize
the probability of ionization. Obviously, this scheme would only be effective if
ionization of Rbs, is indeed a resonant process. Anyway, a learning algorithm can
probably be implemented to search for the pulse shape that maximizes the Rb3
and at the same time minimizes the Rb* signal.

Detecting these cold Rb molecules is just the very first step in a series of
experiments that can be done with our setup. The natural extension of this
work is to setup a pump-probe experiment to study wave-packet dynamics in cold
molecules. One piece of information that could possibly be obtained with this

kind of study is if there are any singlet ground-state molecules being formed in the
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atom trap. By doing selective ionization with the dye laser, triplet ground-state
molecules were detected. But the ultrafast laser is possibly ionizing both kinds
of molecules. By exciting a wave packet and looking at its period of oscillation
we should be able to determine in which excited potential the wave packet is
moving and from there infer where they are coming from. Finaily, wave-packet
excitation with shaped ultrashort pulses could also be useful for controlling cold
collisions. One can envision, for example, a pump-dump scheme in which cold

colliding atoms would be turned into cold singlet-ground-state molecules.
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Appendix A

Harmonic Manifolds and the
Electronic “Response” Function

To better understand the nature of approximation (2.14), it is instructive to
look at the simpler case of a harmonic manifold of excited states. We will assume,
for simplicity, that each level in the excited manifold has the same coupling to the
ground state.

In this case, the response function is written as &(s —t) = 3 oo, e ¥m(t=s),
Here 6, = (m—) @ with @ being the characteristic frequency. Changing variables
so that n = m —17, then (s —t) = 3 o, €™ (=3) Figure A.1 shows a plot of
the response function &y(s — t). It corresponds to a series of short impulses, each

with the same amplitude and located at s =t + (27 /@)n.

Making use of the Poisson sum formula [100]:

Z:o:_oo e~ina@(t=s) — T Z:l_oo S[(t —s) — nT], (A1)
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Figure A.1: The electronic “response” function & (s — t) for a harmonic manifold.

where T = 27 /&, we can write to a very good approximation

/tt dsh(s)ée(s—t) =T i

n=—oo

/t ds h(s)d[(t — s) — nT). (A.2)

Note that we have extended the lower limit in the sum to —co. This can be done
because terms of large detunings contribute very little to the integration. (We
assumed that the excitation laser is tuned above the lowest state of the excited
manifold.) Let A(t) be some arbitrary test function with h(t < ty) =0, so that we
can replace the lower limit of integration in Equation (A.2) by —oco. Furthermore,
because s < t, the summation over n can be truncated by eliminating terms with

n < 0. Making the change of variables z =t — s, yields
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/t ds h(s)éo(s —t) = TZ:o:O /oo dz h(t — z)6(z — nT)
to
[ h(t) +Z _h(t—nT) ] (A.3)

If h(t) is nonzero only within 0 < ¢t — %, < T, then

" ds h(s)€o(s — £) = (T/2)h(2). (A4)

to

As discussed in Chapter 2, the resonant part of the electronic response function
for a Rydberg series [€,(s—t) = S_2_  (72/m)3e~#¥=(t~9)] has many similar features
to the response function of a harmonic manifold. Hence, as long as h(t) does not
have any structure of shorter duration than the central impulse of &.(s — t), we

may write in analogy to Equation (A.4)

ds h(s)&-(s — t) = (T/2)vh(t), (A.5)

to

where v = (1/7) fTT/.Z ds&.(s).

For 7 2 40, N = 72 — 10, and M = 71+ 10, we have v = 1; and Equation (A.5)
reduces to Equation (2.14). [It is straightforward to evaluate the response func-
tion &-(t) and numerically show that Equation (A.5) is satisfied under the stated

conditions.]
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Appendix B
The Magneto-Optical Atom Trap

Here we discuss the very-basic working principles of a magneto-optical trap
(MOT) and more details can be found in Refs. [101-103]. The general idea is
shown in Figure B.1. Three pairs of circularly-polarized counterpropagating laser
beams and a pair of coils, with opposite currents (anti-Helmholtz configuration),
are used to cool and trap atoms where the beams intercept each other, at the center
of the coils. Details of how the trap works for a real atom in three dimensions
are very complex, so we will illustrate the basic ideas for the much simpler one-
dimensional case.

The terms “cooling” and “trapping” apply to the slowing down and holding
of atoms at a point in space, respectively. The main mechanism behind both
processes is the the transfer of momentum from photons scaterred off an atom.

Cooling can be achieved with a pair of identical counterpropagating laser
beams tunned to a frequency below an atomic resonance. Let us say that Beam 1

is moving to the left, and Beam 2 is moving to the right. Due to the Doppler
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Figure B.1: Trapping in three dimensions. Cooling and trapping is accomplished by three pairs
of counterpropagating beams with angular momenta as shown. The pair of coils, with currents
propagating in opposite directions, create a magnetic field which is zero in the middle and
increases linearly with position along all three axes.

effect, which shifts the frequency of the laser beams, an atom that is moving to
the right will be closer to resonance with respect to Beam 1 than to Beam 2.
This means that the moving atom will scatter more photons off Beam 1 than off
Beam 2, and in this way, will be pushed more strongly to the left than to the
right. Likewise, an atom moving to the left will be more strongly pushed to the
right by Beam 2 than pushed to the left by Beam 1. In other words, there is more
resistance in the direction opposite to which the atom is moving. This strongly
dampens the atomic motion and cools the atomic vapor.

However, the atoms are stopped (cooled) in no particular position along the
beams. There is no preferred point to which the atoms converge to. Position
dependence—trapping—is accomplished by adding an inhomogeneous magnetic

field. As shown in Figure B.2, the magnetic field causes a Zeeman split of the
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Energy

Figure B.2: Energy level diagram of an atom with spin S = 0 ground state and S = 1 excited
state in a magnetic field. The trapping-laser frequency w must be red detuned with respect
to the m = 0 — m’ = 0 energy difference, and the counterpropagating beams must have the
polarizations as shown in order to produce trapping forces for the atom’s z-axis motion. In the
abscence of the magnetic field, the three excited levels are degenerate and position independent.

energy levels so that they are no longer degenerate. If the magnetic field is such
that it increases linearly with position, being null at z = 0, then the energy levels
will also vary linearly with position. Because the transition rules require that
m'—m = £1, then excitation from the initial m = 0 level can only be accomplished
by circularly polarized light. Right-handed circularly polarized light (o7) will
excite a m = 0 — m' = 1 transition, while left-handed circularly polarized light
(07) will excite a m = 0 — m' = —1 transition.

We can now understand how trapping is accomplished. A o+ beam propagat-
ing to the right (increasing z in Figure B.2) is closer to an atomic resonance at
negative z values than at positive z. A 0~ beam propagating to the left is, how-
ever, very far off resonance at negative z. This means that an atom at negative vz
will absorb more light from the o+ beam than from the o~ beam and consequently

will be more strongly pushed towards the origin, where the magnetic field is zero.
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If the atom happens to move beyond the origin, to positive z values, the opposite
will happen: it will be more strongly pushed back to z = 0 by the o~ beam.

This scheme not only holds the atoms in place, but it also increases the atomic
density since many atoms are pushed towards the same spot (z = 0).

A real atom, however, has more than just two energy levels and the excited
atom may radiate to another energy level far from resonance with the trapping
laser beams. This is circumvented by a applying a second “repumping” beam
which recycles the population between the energy levels. In the case of ®Rb, the

relevant energy levels and transitions are shown in Figure B.3.

F' =
4
A 3 5 Psp
—& 2
]
trapping
repumping -
3
58
2 12

Figure B.3: Energy level diagram of a 35Rb atom showing the trapping (F =3 = F' = 4) and
repumping (F = 2 — F' = 3) transitions. Energy differences are not drawn to scale.





