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ABSTRACT 

The amplification and propagation of broad-bandwidth, phase-modulated 

laser pulses was studied experimentally and theoretically. The near 1053 nm 

Chirped-Pulse-Amplification (CPA) laser system at the Laboratory for Laser 

Energetics (LLE) at the University of Rochester was used for these experiments. 

In theoretical analysis the power gain of the amplifier is treated as a 

function of the laser's instantaneous frequency. With this approximation non-ideal 

amplification processes, such as gain narrowing, gain saturation, and self-phase 

modulation (SPM), can be clearly expressed and understood. Experimental results 

from the CPA laser system are in good agreement with the theory. 

The sources of the pedestal (pre-pulse and post-pulse) associated with a 

CPA laser were identified, and carefully eliminated. This allows the CPA laser to 

generate ultrahigh-power Gaussian pulses of 0.9-ps duration with an intensity 

contrast exceeding 105:l. This work makes possible the study of high density 

laser-plasma interactions with a fiber-grating CPA laser system. 

Experiments on second harmonic conversion of 1.6-ps pulses at 1053 nm 

were performed with the CPA laser system using a KDP type I1 crystal. A 

predelay between the extra-ordinary and ordinary pulses was introduced at the 

input of the doubling crystal in order to compensate the group-velocity mismatch in 

the crystal. This brought the energy conversion efficiency up to -75 %. 

Spectral windowing in the expansion stage of a CPA laser system allows 

the generation of multiple pulses with different frequencies. These pulses are 

synchronized with identical spatial profile. They are frequency tunable and pulse- 

width controllable. One application of this technique is to measure the nonlinear 



refractive index using nearly degenerate four-wave mixing. This method 

automatically provides the phase-matching condition and can mix ultrashort pulses 

without jittering. Experimental and theoretical results are presented. 

The theory of amplification of broad-bandwidth phase-modulated laser 

pulses is extended from the linear frequency chirp for CPA laser systems to the 

sinusoidal phase modulation (spatial and temporal) for the beam smoothing in 

laser fusion. An analogy of the Hamilton-Jacobi equation in classic mechanics is 

used to explain the laser propagation. Amplitude and phase modulations of the 

laser pulse due to the evolution of the initial phase modulation are investigated. 

Local self-focusing of light, enhanced by the initial phase modulation, is also 

studied. 
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CHAPTER I 

INTRODUCTION 

A. High Power Lasers for Laser-Matter Interactions 

High power lasers are the basic tools used to study laser-matter 

interactions. The properties required of the high power laser usually depend on the 

specific physical problems encountered. 

In laser fusion,l attention is currently being focussed on the techniques to 

smooth the laser beam in order to produce a uniform plasma. The use of broad- 

bandwidth and spatially incoherent light has been proposed to average the 

interference between beamlets in time and space to achieve beam uniformity. Two 

important schemes are being developed. One is called induced spatial incoherence 

( I S I ) , ~ , ~  first proposed in 1983. A chaotic broad-bandwidth laser beam with short 

coherence time is divided into numerous independent beamlets by an orthogonal 

pair of reflecting, echelon-like mirrors. The beamlets are overlapped onto the 

target by a lens to form an instantaneous interference pattern which converges to a 

smooth intensity profile when averaged over time. The other method developed at 

LLE in 1989, combining phase-plate techniques4,5 and a broad-bandwidth laser 

with sinusoidal phase modulation is called smoothing by spectral dispersion 

( s s D ) . ~  The phase-modulated laser beam is broken up into beamlets using a 

phase plate and then focussed onto the target to form the time-averaged beam 

smoothing. 

In ultrafast laser-matter interactions, controlling the pre-pulse level is 

required for understanding the fundamental atomic physics7-12 and plasma 

physics,13-16 for the generation and application of short bursts of x-ray,17-21 and 



for the development of x-ray lasers.l3-21 Compact solid-state laser systems 

utilizing the chirped-pulse-amplification (CPA) technique are commonly used to 

generate high-power laser pulses.22-33 The CPA technique was originally 

introduced to increase the available power in radar over 40 years ago and was 

applied to solid-state lasers in 1985 by Strickland and ~ o u r o u . ~ ~  Recent efforts 

by several groups are towards higher peak power and shorter pulse durations. 

Nd:glass amplifier chain is still the favorite choice for ultra-high power 

extraction,23-29 which has recently brought the peak power up to 30 T W . ~ ~  

Broadband amplifiers such as alexandrite30 and ~ i : s a ~ ~ h i r e 3 1 , 3 2  are used to 

amplify pulses as short as 100 femtosecond. This technique, however, usually 

brings the unwanted prepulse and postpulse (called pedestal) beneath the 

compressed pulse.33 Methods utilizing spectral windowing,34 spectral gain 

n a r r 0 w i n ~ , ~ 5  saturable ab~orber,~7,33 temporal wind0win~,~9 and second 

harmonic generation35,36 to suppress the pedestal are in use or under 

development. 

In general, it is desirable to develop a high-power laser capable of 

generating the custom-made pulse shapes for different applications. One 

successful example, combining the spectral ~ h a ~ i n ~ 3 7 - 4 ~  and the CPA techniques 

for nonlinear refractive index measurement, was reported.41 Synchronized pulses 

with an identical beam profile but different frequencies served this purpose. The 

basic scheme consists of passing a broad-bandwidth laser pulse through a pair of 

gratings and a spectral window to obtain the desired group velocity delay and 

frequencies. This temporal and spectral tunable laser can be a powerful tool for 

plasma physics, nonlinear optics, ultrafast spectroscopy, and other fields. The new 

laser technique with the use of spectral shaping and CPA not only reduces the cost 



associated with the current multiple-beam configuration used for wave-mixing42 

and pump-probe experiments but also greatly simplifies the alignment and 

synchronization. Multiple-beam synchronization problems are more severe for 

ultrafast applications. 

B . Pulse Preparation and Modulations 

The high-power lasers discussed above usually include three stages: pulse 

preparation, amplification, and final manipulation. In the pulse preparation stage, 

optical devices such as fibers, crystals, and gratings are commonly used to 

modulate laser pulses. As a result, these pulses are not Fourier transform limited. 

The bandwidths are affected by chaotic phase modulation for ISI, sinusoidal phase 

variation for SSD, and parabolic phase modulation (linear chirp) for CPA. Through 

the use of these optical devices the laser becomes more versatile. 

Optical fibers are not only used in communication but also have been widely 

used in the field of nonlinear optics over the last 15 years.43 The production of 

linearly chirped pulses through the processes of self-phase modulation (SPM) and 

group-velocity dispersion (GVD) in the optical fiber has created a new method to 

generate ultra-short pulses.43, 44 The compression of the linearly chirped pulses 

has led to optical pulses as short as 6 - f ~ . 4 ~  For high-power Nd:glass CPA laser 

systems, optical fibers are still the standard device used to generate the desired 

bandwidth. The phenomenon of cross-phase modulation (XPM), occurring when 

two pulses propagate simultaneously inside the fiber, has recently been used to 

produce the chaotic phase modulation necessary for ISI. 

Crystals are commonly used as birefringent devices (wave plates, 

polarizers, etc.), frequency convertors, and electro-optical modulators.46 They 



have been proposed to up-convert the compressed pulses in CPA lasers to reduce 

the pedestal.35 In ultra-fast applications, crystals are widely used as 

autocorrelators for pulse-width meas~rernent.~7,~8 In SSD, the laser bandwidth is 

obtained by passing the laser beam through an electro-optical crystal.6 

Gratings provide angular dispersion for different frequencies. In SSD the 

gratings are used to disperse the frequencies across the beam so that each 

beamlet will have different instantaneous frequency.6 In pulse compression and 

expansion, a grating pair is used to produce different time delays for different 

frequencies in order to eliminate or provide the frequency c h i q ~ ~ 9 - 5 ~  This 

technique is used in CPA laser system. Further application of gratings includes the 

spectral windowing for pulse-shaping37-40 and multiple pulse generation.4.1 

C. Amplification of Phase-Modulated Laser Pulses 

Classical laser pulse amplification theory has been focused on transform 

limit pulses so that the laser pulses are either a narrow-bandwidth long pulse or a 

broad-bandwidth ultrashort pulse.52-57 In the present case, however, the laser 

bandwidth comes from the phase modulation instead of the envelope. This type of 

broad-bandwidth long pulse not only has its own response to spectral gain 

narrowing and gain saturation during the amplification, but also is sensitive to any 

nonlinear process such as SPM, self-focusing. Initial computer work has done by 

D. W. Hall et al. using classical theory superposing different frequency modes in 

the amplifier.57 However, i t  does not include all frequency modes. And more 

importantly, it does not involve the calculation on the angular dispersion due to 

phase modulation, diffraction effects, and nonlinear effects. 



D. Frequency Up-Conversion of Broadband Pulses 

Frequency up-conversion extends the capability of these high-power 

pulses. The advantage of the frequency up-conversion is two fold. First, frequency 

up-conversion may increase the intensity contrast of the ultrashort pulse due to its 

nonlinear effect.35 Second, short-wavelength laser pulses offer better absorption 

conditions in laser-plasma interactions. 1 359 

After the first frequency up-conversion experiment reported by Franken 

et al. in 1961,60 and later the theoretical analysis presented by Armstrong et a1.,61 

phase velocity matching became the primary requirement to bring up the 

conversion efficiency. However, phase velocity matching can only increase the 

conversion efficiency for long pump pulses with narrow bandwidth. For broadband 

pulses, the wavevector-frequency dependence is 

where ko is the wavevector at the carrier frequency coo. The group velocity 

(=ao/ak) difference between mixed light waves and the group velocity dispersion 

(=a2o/ak2) for each wave in the dispersive conversion crystal should be 

considered.62-64 Recently there are two schemes being proposed to increase the 

up-conversion efficiency. One method introduces a spectral angular dispersion by 

using gratings (and lenses) to match wavevectors for all frequencies.65-69 The 

other method requires the introduction of a predelay between two pump waves at 

the entrance of the type I1 doubling crystal to compensate the group velocity 

delay.70,35 In this research we use the later scheme for second harmonic 

generation in a CPA laser system. 



E. Outline 

This work includes the theoretical development of the amplification of 

broad-bandwidth, phase-modulated laser pulses for CPA and SSD, and the 

experimental verification using a CPA laser system. Other experiments on high- 

contrast ultrashort pulse generation, second harmonic conversion of picosecond 

pulses, and multiple wave generation for the measurement of the nonlinear 

refractive index are presented. 

In Chapter I1 the propagation and compression of a broadband laser pulse in 

a chirped-pulse-amplification (CPA) laser is studied. Spectral gain narrowing and 

self-phase-modulation (SPM) are the main mechanisms that modulate the final 

compressed pulse temporally and spectrally. The effect of gain saturation is also 

investigated. Due to the large chirp of this type of laser pulse, the power gain of 

the amplifier can be treated as a function of instantaneous frequency to simplify the 

analysis. Experimental results from an Nd:glass CPA laser system are in good 

agreement with the theory. Both experimental and theoretical results show that 

SPM can play an important role determining the final shape of the compressed 

pulse, even at relatively low values of the cumulative B-integral, B < - 2. 

In Chapter I11 the pedestal associated with a chirped pulse amplification 

(CPA) laser is studied. Four components have been identified which contribute to 

the pedestal. Pulses are spectrally shaped by gain-narrowing in a frequency- 

matched, regenerative amplifier while avoiding self-phase modulation. The 

intensity contrast is further improved through the use of a saturable absorber 

resulting in Gaussian pulses of -0.9-ps duration with an intensity contrast 

exceeding 105: 1. 



In Chapter IV experiments on the second harmonic conversion of 

picosecond pulses are presented. A type-I1 KDP crystal is used for frequency 

doubling of 1053 nm, 1.6-ps pulses. When a 1.46-ps delay between the extra- 

ordinary and ordinary pulses is introduced at the input of the doubling crystal, the 

conversion efficiency increases from near 40 to 75%. Both pedestal suppression 

and second harmonic generation make possible the study of high-intensity 

ultrashort laser plasma interactions with a fiber-grating CPA system. 

In Chapter V picosecond, chirped-pulse technology is used to generate two 

spectrally separate, time-synchronized pulses for x ( ~ )  measurements by nearly- 

degenerate four- wave mixing. Near 1053 nm, nonresonant, relative 

(3) measurements of X1 11 1 are carried out on three model substances: nitrobenzene, 

a-chloronaphthalene, and 4'-decyloxynaphthyl- 1'-(4 decyloxy benzoate). Their 

x ( ~ )  values are normalized to CS2. Theoretical analyses of Stokes and anti-Stokes 

generation including two-beam coupling and self-phase modulation are presented. 

The amplification of SSD laser pulses is modeled in Chapter VI. Distortion 

of this phase-modulated pulse due to propagation and spectral gain narrowing is 

presented. Phase variations due to propagation and self-phase-modulation (SPM) 

are investigated to ensure the preservation of the initial phase modulation of the 

pulse. Local self-focusing of light, enhanced by the initial phase modulation, is 

shown to be critical for pulse amplification. For a pulse with a 3 A bandwidth and 

an angular dispersion AelAh = 500 prad/A, the local self-focusing length can be 

shorter than one meter at an intensity I = 5 G W / C ~ ~ .  

The main results of this work are summarized in Chapter VII. The validity 

of the use of the instantaneous-frequency approximation for amplification in CPA 

and SSD is shown in the appendix. 
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CHAPTER I1 

PROPAGATION OF LIGHT PULSES IN A CPA LASER 

The propagation, amplification, and compression of a broad-bandwidth laser 

pulse in a chirped-pulse-amplification (CPA) laser is studied. Spectral gain 

narrowing and self-phase-modulation (SPM) are the main mechanisms that 

modulate the final compressed pulse temporally and spectrally. The effect of gain 

saturation is also investigated. Due to the large chirp of this type of laser pulse, 

the power gain of the amplifier can be treated as a function of instantaneous 

frequency to simplify the analysis. Experimental results from an Nd:glass CPA 

laser system are in good agreement with the theory. Both experimental and 

theoretical results show that SPM can play an important role determining the final 

shape of the compressed pulse, even at relatively low values of the cumulative B- 

integral, B < - 2. 

A. INTRODUCTION 

Chirped-pulse amplification (CPA) laser systems allow the production of 

high-power, ultrashort pulses in solid-state lasing media.l.2 The technique of 

CPA is shown in Fig. 2-1 schematically. A laser pulse is first generated in an 

optical resonator. Before amplification, it is frequency chirped and temporally 

expanded using a fiber,3 andlor an expansion grating pair.4,5 The longer pulse 

allows more energy to be extracted from the subsequent amplifier system than 

would be by a short pulse. After amplification, the pulse is compressed by a 

compression grating pair6,7 to picosecond or subpicosecond duration. There is a 



resulting increase in power equal to the chirped-pulse duration divided by the 

compressed-pulse duration. 1 9 8  

Optical 
fiber 

Expansion 
gratings 

Amplifiers Com pression 
gratings 

Fig. 2-1 Chirped pulse amplification technique. The optical fiber can be removed 

when the initial ultrashort pulse has enough bandwidth. 

Gratings can be used to generate negative or positive frequency chirp as 

shown in Fig. 2-2. In the negative chirp scheme6 the ray with the longer 

wavelength hl goes a longer distance inside a pair of parallel gratings than the ray 

with the shorter wavelength h2. This results in an output pulse with a negative 

frequency chirp, that is, the frequency decreases with time. If the light goes 

backward, this scheme can be used as a pulse compressor for an input pulse with 

positive chirp. In the positive chirp scheme4 a telescope is placed inside an anti- 

parallel grating pair. This telescope relays the image of the first grating, as shown 

by dashed lines, to form an equivalent negative chirp scheme with negative 



separation between two gratings. Therefore it gives the output pulse a positive 

chirp. A CPA laser system uses the latter (positive chirp) scheme for pulse 

expansion and the former (negative chirp) scheme, with the light going backwards, 

for pulse compression. 

Negative chirp: 

Fig. 2-2 Gratings can be used to generate negative or positive chirp. In positive 

chirp scheme a telescope relays the image of the first grating, as shown 

by dashed lines, to form an equivalent negative chirp scheme with 

negative separation between two gratings. 



Experiments using this type of laser in high-density plasma physics,g 

high-field atomic physics10 and nonlinear optics1 l have been reported. These 

fields are of great current interest. Detailed knowledge of the temporal shape of 

the ultrashort pulse is important for the analysis of experimental data. High- 

density plasma physics experiments, for example, require a laser pulse with high- 

intensity contrast. Also, short pulse x-ray conversion efficiency may be improved 

with an appropriate prepulse. A fully controllable pulse shape is desirable for the 

studies of these fields. 

In this type of laser, the compressed pulse may carry a significant amount 

of energy which remains uncompressed. This uncompressed portion is commonly 

referred to as the pedestal.12-14 The sources of the pedestal will be investigated 

in next chapter. They are found to be the nonlinear chirp, the non-Gaussian pulse 

shape and the nonlinearities in the amplification process. Distortion of the 

frequency chirp due to self-phase-modulation (SPM) was shown to result in a 

large pedestal beneath the final compressed pulse14, even though the intensity 

profile of the chirped pulse was amplified without significant distortion. The 

pedestal is generated during the final pulse compression because the gratings only 

compress the original frequency chirp, and the new frequency chirp from SPM 

spreads out as low intensity pedestal due to a different group velocity dispersion. 

Envelope distortion of the chirped pulse due to spectral gain narrowing in the 

regenerative amplifier of the CPA laser system also affects the final pulse 

compression.15 However, one can shape the chirped pulse using spectral gain 

narrowing so that it compresses to a near ~aussian.l3,16 Additional envelope 

distortion can occur due to frequency mismatch between the injected laser pulse 

and the gain center of the regenerative amplifier.13,14,17 



Theoretical work on chirped-pulse amplification has been mostly limited to 

the small signal gain (linear) regime.8,13,15 While the energy extraction is the 

main issue in a CPA laser system, nonlinearities due to high laser intensity such 

as gain saturation and SPM are important. For narrow-band optical pulses, gain 

saturation leads to pulse distortion,l8,19 because the leading edge of the pulse 

undergoes higher gain than the trailing edge due to the depletion of the population 

inversion. In a CPA laser system the chirped pulse is a broadband long pulse, so 

that gain saturation and gain narrowing affecting the chirped-pulse envelope 

should be considered together. Furthermore, SPM should be considered as well, 

because it is necessary to preserve the original frequency chirp in order to produce 

a high-quality-compressed pulse. 

The purpose of this chapter is to investigate how the amplitude and phase 

modulations of the chirped pulse in amplification affect the final pulse compression. 

In Sec. B we provide a set of basic equations that govern the chirped-pulse 

amplification, including gain, dispersion, and nonlinear polarization. In Sec. C, 

approximate solutions are obtained to give an intuitive way of understanding the 

amplitude and phase modulations during amplification process. A detailed analysis 

is given in Sec. D. The following topics are studied: (1) the power spectrum of a 

linearly chirped pulse, (2) pulse compression and the resulting pedestal, (3) 

spectral gain-narrowing in amplification process, (4) SPM induced from the 

amplifier, (5) the gain saturation, and (6) the results of the frequency mismatch 

between the center frequency of the chirped pulse and the linecenter of the 

amplifier, including the phase shift due to atomic response. In Sec. E we compare 

the theoretical results to experimental measurements using a Nd:glass 

regenerative amplifier. The main results of this chapter are summarized in Sec. F. 



B. BASIC EQUATIONS 

Since the transverse mode in the optical resonator (regenerative amplifier) 

is kept to 00 mode,20 and the amplifiers are placed within the Rayleigh range, we 

can concentrate on pulse propagation in the longitudinal direction. Pulse 

propagation in amplifiers is governed by Maxwell's equation, which can be written 

in the following form 

where i is the ordinary laboratory time frame; co is the velocity of light in vacuum; 

PL, PNL, and P are the linear, nonlinear polarization of the host material, and 

resonant polarization of the gain atoms, respectively; and E is the electric field. 

The constitutive relations for PL and PNL are3 

and 

( z  i) = 2non2,( E ~ ( z ,  i) )&.E(L, i ) ,  (2.2.3) 

where PL(z, o )  and E(z, o )  are the Fourier transforms of PL(z, i )  and E(z, i ) ,  

respectively, nL(o) is the linear index of refraction, no = nL(oo) is the linear index 

of refraction at the carrier frequency oo, n 2 ~  is the optical Ken coefficient governing 

the nonlinear response, and (E2(z, i ) )  represents the time-averaged value of the 

field squared. In Eq. (2.2.3) the nonlinear response is assumed to be 

instantaneous. The resonant polarization P for a homogeneously broadened two- 



level gain medium is given by the following two equations, the resonant-dipole 

and the population inversion equationg 

with 

K E  3* w a E h 3 ~  rad 
4x2 

where A o ,  is the full atomic linewidth, o, is the linecenter frequency, N is the 

population inversion, No is the initial population inversion with no applied signal, 

TI is the decay time of the upper energy level, 2* is a dimensionless population 

saturation factor with values between 1 and 2, depending on the gain medium,g E 

is the dielectric constant, h is the laser wavelength in the amplifier, yrad is the 

purely radiative delay rate,g and 3* is the dimensionless population overlap factor 

for atomic interactions,g with numerical value between 0 and 3. For 

inhomogeneously broadened gain media, the resonant polarization P should be a 

summation of all resonant dipoles described by Eqs. (2.2.4) and (2.2.5) over all 

sites of population inversion N. 

Equations (2.2.1) to (2.2.5) provide the general framework for light pulse 

propagation in homogeneously broadened two-level gain media. Since PL, PNL, P, 

and E are polarized in the same direction, we can drop the vector notation. Further 



simplification of these equations typically includes the following steps.3 The fields 

can be written as 

where Re means the real part, and ko r nooo/co is the propagation constant at 

carrier frequency oo. The frequency-dependent wavevector k(o) can be expanded 

in a Taylor series about oo 

where k' and k" are the first order and second order derivatives evaluated at oo, 

and we have neglected losses in the gain medium. Substituting Eqs. (2.2.6), 

(2.2.2), and (2.2.3) into the wave Eq. (2.2.1), applying slowly varying envelope 

approximation (SVEA),~ making use of the dispersion relation (2.2.7) in frequency 

domain, transforming back to time domain, and introducing the moving pulse time 

frame 

A 

t = t - k'z, (2.2.8) 

we obtain the following equation for pulse propagation in the amplifier 

where c = l/k' is the speed of light in the amplifier, P2 = 2xn2~/ho, and ho is the 

laser wavelength in vacuum. Similarly, applying SVEA to Eqs. (2.2.4) and (2.2.5), 

we obtain 



K 
at 2 2(W0 - Wa)lpo(z, t) = ~-N(z, 200  t)Eo(z, t), (2.2.10) 

where we have neglected the second term in Eq. (2.2.5), because the pulse width 

of the chirped pulse is much shorter than the decay time Ti.  

C. SOLUTIONS 

In the small-signal-gain regime it is convenient to describe the pulse 

propagation in the Fourier domain. However, in the gain-saturation regime, time 

domain analysis becomes necessary. We describe both analyses below. 

C.l Frequency Domain 

In the small-signal-gain regime, the population inversion N is treated as a 

constant, and SPM is negligible. Fourier transforming Eqs. (2.2.9) and (2.2.10), 

canceling Po(z, o-oo), and integrating over amplifier length L, one can obtain the 

amplified chirped pulse. An advantage of the frequency domain analysis is that 

pulse compression (or expansion) using a pair of gratings can be described by a 

multiplicative phase term, exp[io,(w)] (or e ~ ~ [ i $ ~ ( w ) ] ) , 4 ~ 6 ~ 7  with 

w = o - 00. 

By denoting the source pulse before expansion gratings as Eo(0, w) = A(w) 

exp[ios(w)], the power gain coefficient as a,(w), the total power gain as G(w) r 

exp[a,(w)L], and the total power loss as 1-R(w) for the CPA laser system, the 

final compressed pulse can be expressed as Eo(t) = F - ~ [ E ~ ( W ) ] ,  where F-1 

denotes the inverse Fourier transform, and 



Here the phase shift due to atomic response, Qa(w), and the phase shift due to the 

dispersion of the host material, $d(w), are defined as8 

W-W, 
o0NL = -- a(w) L ,  (2.3.2) 

Am* 

with 

00 = K/(ecAma) 

and wa = ma - COO. 

Equation (2.3.1) can be generalized for a laser system with multipass and 

multistage amplifiers by summing a,(w)L and $,(w) over all the gain media and 

$d(w) over the entire laser system. In inhomogeneously broadened gain media, 

the power gain coefficient should be a, = b ( t ) ~ ( t )  d t  = a'N, with site parameter 

5 describing spectral and polarization inhomogeneities,21~22 where a(6)  is the 

atomic transition cross section of each site of atom, a' is the effective cross section 

measured from experiment, and N = d t .  

For a CPA laser system using both expansion and compression grating 

pairs , one can adjust the separation and angle of the compression gratings to 

eliminate the quadratic and third order terms of the total phase described in Eq. 

(2.3.1) independently. Therefore, in the small-signal-gain regime, lower order 

phase variations such as dispersion $d(w) and atomic response $,(w) are not 

important. Furthermore if the initial power spectrum A ~ ( w )  is a flat top and 



matches the linecenter of the amplifiers, the final power spectrum will be 

dominated by the line shape G(w) due to spectral gain narrowing, and the 

compressed pulse will approach a ~aussian.13~14 However, if the spectrum has 

high-frequency amplitude or phase aberrations, either adjustment of gratings or 

spectral gain narrowing in amplification process can no longer eliminate these 

structures. We will discuss this later in Sub-section D.2. 

The dispersive phase @d(w) can be eliminated by adjusting @,(w), and its 

magnitude is usually much smaller than @,(w). This can be shown in the following 

numerical example in an Nd:glass CPA system: for the group velocity dispersion 

k" = 1.54 x 10-26 sec21m (Kigre, Q-98 laser glass), and a total amplification length 

L = 10 m, @d(w) = -7.7 x 10-26 w2. For a double-pass compression-grating pair 

with 1700 lines/mm, and a separation 1.5 m, $,(w) = 4.4 x 10-23 w2. Therefore, for 

simplicity we drop this small dispersion effect in the following analysis. 

C.2 Time Domain 

In the time domain, we first simplify the resonant-dipole equation (2.2.10). 

The procedure includes solving Po(z,w) in the Fourier domain and transforming 

back to the time domain by asymptotic expansion of the integrals. The basic 

assumption is that the chirped-pulse duration is much longer than the dephasing 

time of the gain medium. This is generally true for an optical pulse with large 

frequency chirp because z >> (AoL/2)-1 > (Ao,/2)-1 = T2, where z is the half 

pulse width, AUL is the laser bandwidth, and T2 is the dephasing time. Detailed 

assumptions and calculations are shown in the appendix. The resulting resonant 

polarization is 



where wi(t) is the instantaneous frequency defined as the time derivative of the 

total light-field phase, oi(t) = a~t,t(t)/at. 

For homogeneously broadened gain media, substituting Eq. (2.3.4) into Eq. 

(2.2.9), one obtains 

P 2  aEO(Z't) = i{ar[z,  t,wi(t)] + iai[z, t,o,(t)]}~,(z, t) - i-1E,(z,t)(2~,(z, t), (2.3.5) az 2 2 

where the dispersion term has been dropped. The power-gain coefficient a,[z, t, 

oi(t)] is defined as 

where O[oi(t)] is the transition cross section as a function of the instantaneous 

frequency oi(t). The imaginary part of the power gain coefficient is defined as 

Substituting Eq. (2.3.4) into Eq. (2.2.1 1) gives 

2* 
aN(z' t, = - -cr[wi(t)]N(z, t)I(z, t), 

at firno 

where I(z,t) = ~cl~~(z, t )12/2,  is the laser intensity. 



For inhomogeneously broadened gain media, the pulse propagation is still 

described by Eq. (2.3.5), with the power-gain coefficient a, summing over all class 

parameters of inh~mo~eneities? 1922 

a. [s t, a, (t)] = Jo[ai (1). 51 N(z, 1, 5) d5 
(2.3.9) 

The population inversion of each class N(z,t,t) is then given by the following rate 

equation 

The distribution of the initial population inversion on the class parameter 5 must be 

known. 

With the chirped pulse Eo(0, t) = A(t) exp[iQm(t)] input to the amplifier, 

Eq. (2.3.5) is readily solved to obtain the amplified pulse in the form 

where the power loss 1-R is added, and definitions 

~ ( t )  = exp{ Ja,[z, t, a , (% t)] dz} 

represent the power gain, the phase variation due to SPM, and the phase variation 

due to atomic response, respectively. In Eq. (2.3.14) we have used the identity, 



nzEcE2> = n 2 ~  IE012/2 = 1121, and we also related the phase variation @SPM to the 

so-called B-integral for a multipass laser system as a cumulative measure of the 

nonlinear interaction. 

Equation (2.3.12) can be used to describe the final chirped pulse leaving 

multipass and multistage amplifiers by extending the integrals in Eqs. (2.3.13)- 

(2.3.15) over all amplifiers. Numerical methods are generally needed to solve 

these integrals because the instantaneous frequency oi(t) = oo + a/at [@,(t) + 
@ s p ~ ( t )  + Qa(t)] is also a function of pulse propagation. Since we are not 

interested in large phase variations occurring in the CPA process, we can make 

the reasonable assumption, oi(t) = oo +a@,(t)/at in the pulse propagation to see 

the influence of small phase variations on CPA lasers. With this assumption, and 

in the small-signal-gain regime, Eqs. (2.3.13)-(2.3.15) become 

G (t) = exp{ar [mi (t )]L} (2.3.16) 

where Iin(t) is the intensity of the input pulse. 

D. ANALYSIS 

Detailed analyses and numerical examples of CPA will be presented in this 

section. The initial chirped pulse is chosen in the form 



where z is the half pulse width at e-1 intensity point, b = AoLz/2 defines the 

amount of linear chirp, and @NL(~)  = 0[(t/z)3] represents the possible nonlinear 

frequency chirp generated from the optical fiber or expansion gratings. The 

envelope of the chirped pulse 

A(t) = A exp[-(t/z)2m/2] 

can be either Gaussian (m = I), or super-Gaussian (m > 1). The former may be 

obtained by using a pair of expansion gratings to stretch an ultrashort pulse that is 

directly produced from an optical oscillator. The latter may be obtained from a pulse 

coupled into an optical fiber and chirped into a broadband long pulse due to both 

SPM and group-velocity-dispersion. The time derivative of the initial phase 

variation, a@,(t)/at = bt/z2 + a@m(t)/at, describes the frequency chirp of the input 

pulse. 

D . l  Power Spectrum 

Applying the Fourier transform to a linearly chirped pulse, Eo(t) = A(t)exp 

[ib(t/z)2/2], and performing simple algebra we can obtain the spectrum in the form 

w2z2 
E d w )  = C X ~ [  - ilb] J A ( ~ )  F X ~ [  i b ( i  2 z - ~ ) 1 ]  dt. (2.4.2) 

The integral in the right hand side of Eq. (2.4.2) has a similar form to Huygens' 

integral in the Fresnel approximation. This approximation is commonly used in 

diffraction theory. For light with wavelength h ,  the diffracted field located at a 

distance z away from the source is given by8 



where a, the half-aperture width, is added here for comparison. Aside from the 

multiplicative factors preceding both integrals, the two expressions in Eqs. (2.4.2) 

and (2.4.3) are similar with the chirp parameter b equal to 27c times the Fresnel 

number Nf = a2/hz in the diffraction analogy. Just as the power spectrum of a 

Fourier-transform-limited optical pulse can be compared to Fraunhofer diffraction, 

the power spectrum of a linearly chirped pulse can be compared to Fresnel 

difhction. 

Following Eq. (2.4.2), the power spectrum of the amplified chirped pulse 

from Eq. (2.3.12), is proportional to 

The transformation from the time domain to frequency domain is similar to Fresnel 

diffraction, as shown in Fig. 2-3(a). The initial pulse envelope is similar to the 

light source. The net power gain RG(t) which shapes the source pulse is similar to 

an amplitude modulator. Phase variations @NL(~), @ s p ~ ( t ) ,  and @a(t) which affect 

the power spectrum are similar to phase modulators. The chirp parameter, b, which 

behaves like the Fresnel number, is quite large in CPA lasers (for example, b = 

300), and thus the power spectrum is analogous to the near-field diffraction 

pattern of the pulse envelope. 

D.2 Pulse Compression and Pedestal 

For a pulse with large frequency chirp, pulse compression is performed by 

using a pair of gratings to eliminate the phase term, exp[-iw2~2/(2b)], in Eq. 

(2.4.2). Applying the inverse Fourier transform to this spectrum and using the 



amplified chirped pulse described by Eq. (2.3.12), we can obtain the compressed 

pulse 

A(t')[RG(t1)]% e ~ ~ { i [ @ ~ ( t ' )  + @spM(tl) + @,(t')]}exp[iq] dt'. (2.4.5) 
Z 

From Eq. (2.4.5), one can see that aside from the multiplicative factors preceding 

the integral the compressed pulse is a Fourier transform of the ~ h i r ~ e d - ~ u l s e . 6  As 

shown in Fig. 2-3(b), this is analogous to focusing a beam (one transverse 

dimension) so that the focal spot is the Fourier transform of the input beam spatial 

profile. Again, the net power gain RG(t) plays the role as an amplitude modulator 

and the phase variations @ N L ( ~ )  + @ s p ~ ( t )  + Qa(t) play as phase modulators. 

These amplitude and phase modulations either distort the compressed pulse (low- 

frequency perturbations) or scatter the light to form a background pedestal (high- 

frequency perturbations). Low-frequency perturbations can be compensated by 

adjustment of compression gratings. This is similar to a compensating lens used to 

correct the low-spatial-frequency beam perturbations. For high-frequency 

perturbations, a fast temporal filter during pulse compression is important. This is 

the same when focusing a beam, one can use an pinhole as a spatial filter to 

eliminate the high-spatial-frequency beam perturbations. A saturable absorber 

has recently been used as this type of temporal filter (see Chap 111). 
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Fig. 2-3 A schematic of diffraction analogy shows spectral and temporal 

modulations in CPA lasers. The net power gain RG(t) is similar to an 

amplitude modulator. Phase variations $NL(~)  + $ s p ~ ( t )  + $a(t) are 

similar to the phase modulators. (a) The power spectrum is analogous 

to the near-field beam profile. (b) The intensity profile of a compressed 

pulse is analogous to the beam profile of a focal spot (far-field). The 

background pedestal is a result of scattered light spreading over a wide 

range depending on the nature of amplitude and phase aberrations. 



D.3 Gain Narrowing 

To explain the amplitude modulation by spectral gain narrowing, we begin 

the amplified chirped pulse from Eq. (2.3.12), with an initial pulse described by 

Eq. (2.4.1). When the bandwidth of the applied signal AWL is much smaller than 

the atomic linewidth of the gain medium Ao,, the gain coefficient can be simplified 

to a quadratic form, ar[oi(t)] = a 0  - (a"/2)[oi(t) - wa]2 = a 0  - (a"/2)(wo + btIz2 

- oa)2, where a "  = -d2ar(o)ldo2 evaluated at midband frequency o,. In the 

frequency-matched case, oo = o,, the total-power gain in the small-signal regime 

i s  

where Go = exp(a0L) is the small-signal power gain at midband, and Teff = 

(2+/aV~b2)1/2 represents the half-width of the gain curve. 

A suitable pulse-shaping is accomplished when Zeff is smaller than the half 

width (at e-1 intensity point) of the input chirped pulse z, with gain-center match. 

In this case Zeff represents the shortened half-width (at e-1 intensity point) of the 

amplified chirped pulse. With reasonable estimations b = z A o ~ 1 2  and a "  = 

8 a o l ( ~ ~ a ) 2 ,  which is exact for a Lorentzian gain profile, the inequality Teff < z 

becomes 

where AOL is the full bandwidth of the laser pulse, and Ama is the atomic line 

width of the gain medium. If SPM is still negligible, the applied signal becomes a 

Gaussian pulse, which can then be compressed to a Fourier-transform-limited 



pulse with half-width (at l/e intensity point) approximately equal to (z/z,ff)(z/b) 

in the large-chirp limit b/(z2/zeff2) >> 1. The factor z/zeff is the pulse broadening 

ratio for the compressed pulse, which is equal to the pulse shortening ratio of the 

chirped pulse in the amplifier due to the gain-narrowing effect. The power spectrum 

of this Gaussian pulse in the large-chirp assumption is proportional to exp[-(24 / 

b2zeff2)(a - = exp[-112 a " L ( o  - mO)2], which is exactly the line shape 

G(o)M, as expected.13,14 

To illustrate the gain-narrowing, Fig. 2-4(a) shows the power spectra for 

different gain-narrowing conditions, z/zeff = 0, 1, 2, and 3, with parameters ho = 

1053 nm, z = 75 ps, m = 25, b = 236, and a small amount of nonlinear phase 

variation $NL(~) = -(t/z)3 - 4(t/z)4. The bandwidth for the initial pulse (z/zeff = 0) 

is 37 A (FWHM), and this power spectrum looks like a diffraction pattern from a 

slit as explained in Fig. 2-3(a). The term -(t/z)3 makes the spectrum asymmetric, 

and the term -4(t/z)4 makes the spectrum more peaked near the two edges. 

Figure 2-4(b) shows the corresponding intensity profiles of the compressed 

pulses. For ~ / ~ e f f  = 0 case, the compressed pulse width is 1.6 ps (FWHM) and 

the gross pedestal is the result of its original chirped pulse profile (nearly square 

top) and the nonlinear chirp. For other cases, the pedestal is significantly 

suppressed by spectral gain-narrowing. 
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Fig. 2-4 (a) Power spectra for different spectral gain-narrowing conditions, t/z,ff 

= 0, 1, 2, and 3. They approach Gaussian in large gain narrowing limit. 

(b) The intensity profiles of compressed pulses. Pedestal suppression 

by spectral gain narrowing is shown. 



D.4 Self-phase Modulation 

As depicted in Eq. (2.3.14), the laser pulse experiences a time-varying 

phase modulation, @ s p ~ ( t ) ,  produced by the intensity variation of the pulse itself. 

The new frequency chirp, = a@spM(t)/at = -(2a/x0) In2 aUat dz, adds to 

the original linear frequency chirp of the laser pulse and changes the laser power 

spectrum. Since the additional frequency chirp has different group velocity delay 

than that of the linear chirp in the compression stage, it introduces a background 

pedestal to the compressed pulse. When a sharp change in the pulse envelope 

occurs, the induced phase variation @ s p ~ ( t )  also change sharply. Thus, the 

background pedestal increases significantly even when the peak phase variation 

due to SPM is relatively small. This is similar to a phase plate, which diffracts light 

significantly at a sharp change in thickness, even for a small phase change. The 

maximum frequency shift occurs at the points of maximum slope of intensity I(t) or 

maximum dI(t)/dt. Thus, the added frequency chirp for a super-Gaussian pulse is 

nearly m times higher than for a Gaussian pulse (m = 1). Gain-narrowing in the 

amplifier that reshapes the pulse to a near Gaussian can reduce AmSpM. 

To illustrate the roles of SPM in a CPA laser, Fig. 2-5(a) shows the 

intensity profiles of ultrashort pulses compressed from chirped Gaussian pulses 

(m = 1, z = 100, b = 200) under a variety of SPM conditions, i.e., peak B-integral 

values B = 0, 2, 4, 6.  Figure 2-5(b) shows the intensity profiles of ultrashort 

pulses compressed from chirped super-Gaussian pulses (m = 5, z = 100, b = 200) 

under the same SPM conditions as for Fig. 2-5(a). In both figures changes in the 

pulse shape are clearly shown. Note that because of the group velocity delay in 

grating pairs, the new frequency chirp AOSPM determines the width of the 

pedestal. The energy associated with the pedestal is determined by the fraction of 
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Fig. 2-5 (a) Intensity profiles of ultrashort pulses compressed from chirped 

Gaussian pulses (m = 1, z = 100, b = 200) under a variety of SPM 

conditions, i.e., peak B-integral values B = 0, 2, 4, 6. The compressed 

pulses become wider and have bumpy structures as B increases. (b) 

Intensity profiles of ultrashort pulses compressed from chirped super- 

Gaussian pulses (m = 5, z = 100, b = 200). The compressed pulses 

have wider pedestal as B increases. 



the pulse energy near the maximum of aI/at. In the case of a super-Gaussian pulse 

of high order, only a small fraction of the pulse energy is in the region of large aI/at, 

whereas for a Gaussian pulse (m = l ) ,  a much larger fraction of the pulse energy is 

contained within the region of large aI/at. Thus, for a Gaussian pulse, while the 

added frequency chirp may be smaller than for a super-Gaussian pulse, the effect 

may be as important because of the larger amount of energy involved. These B- 

integral values can occur quite easily in a multiple-pass regenerative amplifier 

operating near gain saturation.23 For example, a laser pulse at ho  = 1053 nm with 

peak intensity equal to 1 G W / C ~ ~  traveling through an amplifier with the nonlinear 

index of refraction n 2 ~  = 1.2 x 10-13 esu (for Ndf3-doped phosphate-glass Q98), 

and with the amplifier length L = 115 mm, the peak SPM is equal to 0.22. Thus, at 

this intensity level, a laser pulse can accumulate a significant amount of SPM in 

several passes through the amplifier, and the resulting new frequency chirp will 

increase the pedestal of the compressed pulse. 

D.5 Gain Saturation 

In gain saturation regime, both gain narrowing and gain saturation distort 

the chirped pulse. The former is a function of the atomic transition cross section 

o[oi( t)] .  The latter is a function of the population inversion N(z, t). For 

homogeneously broadened gain media, pulse propagation Eq. (2.3.5) can be 

written in the form 



This equation and the population inversion Eq. (2.3.8) govern the gain saturation. 

Combining both equations, one can obtain the energy conservation equation in the 

following form 

By integrating Eq. (2.4.9) over the amplifier length, and defining the total inverted 

population per amplifier area as 

Eq. (2.4.9) becomes 

aN,t(t> - 1 
at 

- --[ Iout(t) - ~ ~ ~ ( t ) ]  = -- (exp{ o[ai(t)] Nmt(t) ] - 1), (2.4.11) 
Gousat Gousat 

where UWt I tr w0/(2*00) is the saturation fluence,8 and we have used the relation 

Iout(t) = Iin(t)G(t) = Iin(t) e ~ p ( o [ ~ ~ i ( t ) ] N ~ ~ ~ ( t ) ) .  Equation (2.4.11) has to be 

solved numerically. However, for the special case that gain narrowing is not 

significant during gain saturation, by making the assumption o[oi(t)] = o(oo), 

one can solve Eq. (2.4.11) analytically in the usual form15 

t 
Here Gg is the small signal power gain at frequency COO, and Uin(t) = !_ Iin(t1) dt' 

is the input laser fluence. 

For inhomogeneously broadened gain media, the pulse propagation Eq. 

(2.3.5) can be written as 



t, = a[z, t, ui(t)] I(z, t) = /o[ui(t), t] N(Z, t, 5) d t  I(z, t). (2.4.13) az 

To fully understand the gain saturation in the inhomogeneously broadened gain 

media, one needs to use numerical method to solve the pulse propagation Eq. 

(2.4.13) and the population inversion Eq. (2.3.9) simultaneously, with the 

distribution for inhomogeneities N(z,t,t) = f(t)N(z, t). 

For Nd:phosphate glasses, gain saturation can be approximately described 

by homogeneous theory.21,22 Figure 2-6 shows a linearly-chirped super- 

Gaussian pulse Iin(t) = ~~exp[ - ( t / z )~O]  undergoing both gain narrowing and gain 

saturation in an amplifier, with zIQ/Usat = 0.002, Go = 200 and different bandwidth 

ratios AodACOa = 0, 0.2, and 0.5. Figure 2-6(a) shows the calculation result of the 

depletion of the total population inversion from Eq. (2.4.1 1). Since CPA with larger 

bandwidth ratio causes higher degree of gain narrowing and chirped-pulse 

shortening, the depletion of the population inversion decreases as the bandwidth 

ratio increase. For AoL/Ao~ = 0 case, the calculation result can be obtained 

directly from Eq. (2.4.12). The amplified chirped pulses are shown in Fig. 2-6(b). 

A pulse under the small-signal-gain and without gain narrowing is shown as 

reference. Gain saturation tends to pull the chirped pulse toward its leading edge. 

Frequency-matched gain narrowing tends to shrink the chirped pulse toward the 

center. The balance of both mechanisms determines the final intensity profile of the 

chirped pulse. 
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Fig. 2-6 (a) Relative total population inversion in gain saturation regime with 

different gain narrowing conditions, AOL/AOa = 0, 0.2, 0.5. (b) 

Amplified chirped pulses under different gain narrowing conditions with 

an input super-Gaussian pulse, m = 5, Iin7/Usat = 0.002, and a small- 

signal gain Go = 200. 



D.6 Frequency Mismatch 

If a frequency mismatch exists between the carrier frequency of the seed 

pulse and the linecenter of the amplifier, i.e., oo # o,, the small-signal power gain 

becomes 

where to = T*(aa - oo)/b = 2(oa - o o ) z / A o ~ .  In the case of a chirped pulse 

generated from the optical fiber, one of the sharp edges of the super-Gaussian 

pulse (which also carries a higher order nonlinear chirp) cannot be suppressed 

sufficiently through gain narrowing. Thus, the pulse-shaping is poor and frequency 

distortion due to SPM remains strong at the sharp edge. 

In Eq. (2.3.5) the imaginary part of the gain coefficient ai occurring from 

frequency mismatch describes the phase shift (per distance) due to the resonant 

dipoles. In gain-saturation regime the reactive phase shift for a homogeneously 

broadened gain medium is 

where $',(t) = a$,(t)/at, and Eqs. (2.3.15), (2.4.10) have been used. The total 

population inversion NtOt(t) in Eq. (2.4.15) is obtained from solving Eq. (2.4.1 1). 

Therefore, qa(t) is a function of the applied laser intensity. This phase variation 

may become significant as to affect the pulse compression, if the frequency 

mismatch is large. 



E. EXPERIMENTS ON SELF-PHASE MODULATION 

In this section we present experimental data and calculated results using 

an Nd:glass regenerative amplifier as an example to explain the possible SPM 

encountered in CPA. The details of this CPA laser system will be described in the 

next chapter. Here we introduce the experimental setup related to SPM. The initial 

chirped pulse is prepared as follows. A train of 1053-nm, 50-ps pulses is 

generated from a cw-pumped mode-locked Nd:YLF oscillator. These pulses are 

coupled into a 800-m-long single-mode optical fiber to produce bandwidth and a 

frequency chirp due to the SPM and the group velocity dispersion. They are further 

stretched by expansion gratings (1700 linesfmm) with an effective separation of 

1.4 meters. One of the pulses in the train is selected and seeded into the 

regenerative amplifier. The chirped pulse is amplified from approximately 1 nJ to 1 

mJ. The power spectrum and the temporal shape of the chirped pulse are 

simultaneously measured by a spectrometer and a streak camera. 

Experiments on SPM are quite well explained in Fig. 2-5: for Gaussian 

chirped pulses the compressed pulses broaden as SPM increases, and for chirped 

pulses with sharp changes in their envelopes such as super-Gaussian pulses the 

compressed pulses enhance their background pedestals as SPM increases. The 

distortion of the power spectrum due to SPM should not be significant because of 

the already existent large phase modulation in the chirped pulse. However, in 

some experimental cases strong distortion of the power spectra have been 

observed. 

To explain the strong spectral distortion, there are two kinds of seeded 

chirped pulses were used in this experiment: (i) pulses with a 445-ps pulse width 

stretched by expansion gratings from pulses leaving the optical fiber which have a 



pulse width of 147 ps and a bandwidth of 35 A. (ii) Pulses with a 290-ps pulse 

width stretched from pulses leaving the optical fiber that have a pulse width of 110 

ps and a bandwidth of 20 A. The theoretical model begins from the super- 

Gaussian pulse (2.4.1) after the fiber with m = 10, z = 74 ps, b = 219, and +NL(~)  

= -(t/2)3 - 3(t/2)4 for case (i), and with m = 10, z = 55 ps, b = 93, and same 

+NL(~) for case (ii). Then, in Fourier domain, both quadratic and third-order-phase 

variations are used to describe the expansion gratings,7 that is, +,(w) = -3.8 x 

10-23 w2 + 4 x 10-37 w3. A simple Gaussian net-power-gain R(w)G(w) is used to 

describe the amplified chirped pulse in small-signal-gain regime. The total power 

gain is Go=1045, and the amplifier bandwidth is 210 A (FWHM). The SPM 

calculation is performed in time domain using Eqs. (2.3.12) and (2.3.14). 

Figure 2-7 shows the calculated and measured initial temporal pulse shape 

of case (ii). The peaked edges of the chirped pulse are a result of the stretching in 

the expansion gratings. These two peaked edges are the potential places for SPM 

to occur and generate a higher frequency chirp, and may form the pedestal of the 

compressed pulse. For case (i) the edges of stretched chirped pulses are less 

peaked. Generally speaking, the stretched pulse with large frequency chirp will 

have less sharply peaked edges. 

Figure 2-8 shows the calculated and measured amplified temporal pulse 

shape in different experimental conditions. Figure 2-8(a) shows the amplified 

chirped pulse of case (i). The chirped pulse initially has a pulse energy of 1 nJ, and 

is amplified to 1 mJ. Spectral gain narrowing shapes the pulse to Gaussian. Figure 

2-8(b) shows amplified chirped pulse of case (ii). It retains peaked edges because 

the spectral gain narrowing is less significant for the pulse with a smaller 

bandwidth ratio, A(uL/A(u~. Figure 2-8(c) shows the amplified temporal pulse 
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, Fig. 2-7 Calculated and measured initial temporal pulse shape with a 290-ps 

pulse width and a 20-A bandwidth. The peaked edges of the chirped 

pulse is a result of using expansion gratings [$,(w) = -3.8 x 10-23 w2 + 

4 x 10-37 w3]. 

shape of case (ii) with a gain-center offset about 5 A. One of the peaked edge is 

suppressed by gain narrowing, but the other is not. The gain center of the 

regenerative amplifier is adjusted by tuning the frequency dependent loss 

associated with the voltage of the Q-switching Pockels' cell. SPM changes the 

phase but not the amplitude of the pulse and hence does not change the temporal 

shape. 
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Fig. 2-8 Calculated and measured amplified temporal pulse shape. The total 



power gain is Go=1045, and the amplifier bandwidth is 210 A (FWHM). 

(a) The chirped pulse initially has a 445-ps pulse width and a 35-A 

bandwidth. Gain narrowing shapes the pulse to Gaussian. (b) The 

chirped pulse initially has a 290-ps pulse width and a 20-A bandwidth. 

It retains peaked edges because of less gain narrowing. (c) Same 

chirped pulse as in (b) except the gain center is offset 5 A. 

Figure 2-9 shows the calculated and measured power spectra of the 

amplified chirped pulse of case (ii) with gain center offset, which is shown in Fig. 

2-8(c). Figure 2-9(a) shows the power spectrum of the chirped pulse switched out 

of the regenerative amplifier 5 round trips earlier than the peak of the pulse train. 

Figure 2-9(b) shows the power spectrum of a chirped pulse switched out of the 

regenerative amplifier 9 round trips after the peak of the pulse train, with the same 

energy as the pulse in Fig. 2-9(a). Spectral modulation due to SPM is clearly 

shown. The peak B-integral value is 5 for this calculation. There are other points 

which support the idea that the spectral distortion is due to SPM. In cases 2-9(a) 

and 2-9(b) the streak camera shows that both chirped-pulse shapes remain 

similar. Spectral windowing in expansion gratings cuts both peaked edges of the 

initial chirped pulse (Fig. 2-7), and reduces the degree of the spectral distortion 

due to SPM. By tuning the frequency offset to the opposite side, one can see the 

spectral distortion also move to the other side when SPM occurs. 
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Fig. 2-9 Calculated and measured power spectra of amplified chirped pulses with 

gain center offset. (a) The chirped pulse is switched out of the 

regenerative amplifier in an earlier time. (b) The chirped pulse is 

switched out of the regenerative amplifier 15 round trips later than (a). 

Spectral modulation due to SPM (B=5) is clearly shown in (b). 



F .  CONCLUSIONS 

In this chapter we have used the concept of instantaneous frequency to 

simplify the pulse propagation equations for CPA. As a result, the power gain and 

phase variations generated from the nonlinear amplification process become 

functions of time. An optical diffraction analogy illustrates the amplitude and phase 

modulations of the chirped pulse during amplification, and intuitively shows the 

distortion of the compressed pulse and its power spectrum. 

In the CPA process the bulk of the amplitude modulation is typically due to 

spectral gain narrowing, and most of the phase modulation is from SPM. Gain 

narrowing, which may cause broadening of the final compressed pulse can be, 

however, employed as a pulse shaping tool. SPM not only broadens the 

compressed pulse but also enhances the background pedestal and should be 

avoided. In the gain saturation regime, both gain saturation and gain narrowing 

distort the pulse envelope and must be considered together. A frequency mismatch 

between the applied signal and the amplifiers may degrade the amplified pulse and 

potentially may cause phase modulation in gain saturation regime. 

SPM in phosphate Nd:glass CPA laser systems that use fiber and 

expansion gratings to process the initial chirped pulses has been identified 

experimentally and theoretically. If the peaked edges of the chirped pulse are not 

well suppressed by spectral gain narrowing and frequency matching, they may 

undergo a high-frequency phase shift when SPM occurs. This high-frequency 

phase shift with its own wide-spread group velocity in compression gratings 

contributes to the background pedestal of the final compressed pulse. 



The analysis presented here is valid for any CPA scheme, even those 

where an initial ultrashort pulse is expanded by a grating pair. The super- 

Gaussian order of the expanded pulse will, of course, change. 
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CHAPTER I11 

GENERATION OF HIGH-CONTRAST ULTRASHORT PULSES 

In this chapter the pedestal (pre-pulse and post-pulse) associated with a 

chirped pulse amplification (CPA) laser is studied. Four components have been 

identified that contribute to the pedestal. Pulses are spectrally shaped by gain- 

narrowing in a frequency-matched, regenerative amplifier while self-phase 

modulation (SPM) is avoided. The intensity contrast is further improved through 

the use of a saturable absorber, resulting in Gaussian pulses of -0.9-ps duration 

with an intensity contrast exceeding 105:l. This work makes possible the study of 

high-intensity ultrashort laser plasma interactions with a fiber-grating CPA 

system. 

A. INTRODUCTION 

As mentioned in Chapter I, the study of high-density plasma physicsl and 

ultrafast x-ray emission>,3 by means of high-power, ultrashort laser pulses is of 

great current interest. Detailed knowledge of the temporal shape of the pulse is 

crucial. In particular, high-density plasma physics experiments require a laser 

pulse with a high-intensity contrast. The peak intensity may be well above 1016 

w/cm2, whereas the pre-pulse intensity should be limited to -1011 w/crn2 if one is 

to avoid generating a low density, preformed plasma. 

It is well known that the fiber-grating compression technique produces a 

pulse that cames a significant amount of energy and remains imperfectly 

compressed4~5. This uncompressed portion is commonly referred to as the 



pedestal. Pedestal reduction is discussed in many papers. Nonlinear birefringence 

can cause a fiber act as an intensity discriminator and partially suppress the 

pedestal.6 Careful adjustment of the compression gratings can help reduce the 

third order nonlinear chirp that arises from the fiber.7 Spectral windowing8 can 

nearly eliminate the pedestal, but the temporal shape of the pulse may still not be 

Gaussian. Recently, perry9 et al. used the gain-narrowing of the regenerative 

amplifier to do spectral shaping in a chirped-pulse-amplification (CPA) system. 

They successfully shaped the spectrum to a near-Gaussian form, making the pulse 

also near-Gaussian. For this technique an intensity contrast of greater than 700:l 

was reported. 

This chapter explores the pedestal that is associated with a CPA laser. 

Four components have been identified that contribute to the pedestal of a 

compressed pulse. The square-top pulse envelope and the nonlinear frequency 

chirp that are generated in the optical fiber lead to the first two effects: (a) pulse 

wings that make the pulse wider than a true Gaussian at low intensitiesl0,ll and 

(b) satellite pulses. The sinc2-type pulse wings are a direct result of compressing 

a square-top chirped pulse. This is because, as shown in Chap. 11, the envelope of 

a compressed pulse is the Fourier transform of the envelope of a linearly chirped 

pulse. Low intensity, long duration satellite pulses that locate at the two edges of 

the original chirped pulse are a result of a negative frequency chirp12 or an 

unshifted frequency component The other two effects originate in the 

regenerative amplifier: (c) a large 200-ps background pedestal that is due to 

self-phase modulation (SPM) and (d) etalon effects. The details of how the SPM 

distorts the linear chirp and form the pedestal was introduced in Chap. 11. 



The pedestal contributions of the regenerative amplifier are removed by 

operation below saturation, removal of etalon effects, and adjustment of the gain 

center to that of the chirped pulse after the fiber. The pulse wings are suppressed 

by spectral gain-narrowing in the regenerative amplifier,9 and the satellite pulses 

are suppressed by a saturable absorber after pulse compression. Gaussian pulses 

of duration less than 0.9 ps with intensity contrasts exceeding 105:l have been 

produced. This work makes possible the study of high-intensity ultra-short laser 

plasma interactions with a fiber-grating CPA system. In Sec. B, the current CPA 

laser system is introduced. Section C presents experiments on pedestal 

suppression. This chapter is summarized in Sec. D. 

B . LASER SYSTEM AND EXPERIMENTAL SETUP 

A schematic diagram of the current CPA laser system is shown in Fig. 3-1. 

It consists of three parts: the pulse preparation stage, the amplifier chain, and the 

compression stage. Figure 3-l(a) shows the pulse preparation stage. A cw- 

pumped mode-locked Nd:YLF oscillator generates a 100-MHz train of 50-ps 

pulses at a wavelength of 10530 A. The pulses are coupled into a 0.8-km single- 

mode optical fiber with a 9 - ~ m  core and then are sent through a pair of expansion 

gratings. The pulse undergoes SPM and group-velocity dispersion in the fiber and 

further dispersion by the expansion grating pair. This leads to chirped pulses with 

a 37-A bandwidth and a 300-ps duration. A cw autocorrelator monitors the 

compressibility of the chirped pulses produced in the fiber. A small grating pair, 

matched to the high-power-compression gratings, is used to compress the pulse. 
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A single nanojoule energy-level pulse is selected by a Pockels cell and 

seeded into a Q-switched, end-mirror-dumped regenerative amplifier. The 

amplifier uses a 7-mm-diameter phosphate Nd:glass rod (Kigre Q98). (A carefully 

designed regenerative amplifier not only amplifies the laser pulse but also shapes 

the laser ~~ec t rum.9  For this reason, the regenerative amplifier is considered part 

of the pulse preparation stage.) A 1-mJ pulse is selected from the pulse train, 

which is transmitted through the 50% reflective end mirror in the regenerative 

amplifier. The spatial profile of the beam is improved with an air spatial filter. An 

attenuator consisting of a half-wave plate between two polarizers is used to 

control the energy input to the amplifier chain. 

The amplifier chain and the compression stage are shown in Fig. 3-l(b). 

All the amplifiers contain Nd:glass with a maximum gain at 10530 A. The amplifier 

chain consists of a double-pass 9-mm-diameter amplifier (Kigre 4-98, 235 mm 

long), and a single-pass 16-mm-diameter amplifier (Hoya LHG-8, 360 mm long). 

A single pass 30-mm-diameter amplifier (Hoya LHG-8, 360 mm long) will be 

added when compression gratings with a higher damage threshold are installed. 

One Pockels cell after the 9-mm amplifier further isolates the pulse and 

suppresses any feedback pulse that might result from reflections off optical 

elements. An additional attenuator increases the system's dynamic range to 106. 

A vacuum spatial filter after each amplifier is used to upcollimate, to relay the 

image, and to filter the pulse spatially. The energy of the chirped pulse after the 

16-mm amplifier can be as high as a joule with a repetition rate of 1 shot per 70 

seconds (limited by the thermal lensing in the 16-mm amplifier rod). 

The compression stage currently consists of two 1700 linesfmm gold- 

coated holographic gratings with dimensions 80 x 110 mm. The gratings are used 



in the near Littrow, double-pass configuration with a separation distance of 164 

cm. The laser pulse is compressed to 1.6 ps with a bandwidth of 12 A when no 

saturable absorber is used. The laser beam has a 36-mm diameter currently 

limiting the maximum energy to 300 mJ because of the damage threshold of the 

compression gratings. An autocorrelator and an energy meter are used to measure 

the final pulse width and pulse energy after compression. 

The laser spectrum and pulse width are almost un-affected by our amplifier 

chain (after the regenerative amplifier) because of the relatively low amount of 

gain compared with that in the regenerative amplifier. For the experiments on 

pedestal suppression the laser pulse goes directly from the pulse preparation 

stage to the compressor. This allows the laser to operate at a repetition rate of 

1 Hz. The main diagnostic for this experiment is an autocorrelator, as shown in 

Fig. 3-2. The wedged beam splitter and slits are used to prevent all secondary 

reflections within the autocorrelator from reaching the photomultiplier. The PIN 

diode measures shot-to-shot laser energy fluctuations. The autocorrelation signal 

is obtained by division of the photomultiplier signal by the square of the PIN diode 

signal. This assumes a non-depletion condition for the second-harmonic 

generation. Each data point in the autocorrelation trace represents an average over 

10 shots. The standard deviation is shown by the error bars. This setup becomes a 

single-shot autocorrelator when the slits are removed and the photomultiplier is 

replaced by a linear array detector. We use this single-shot autocorrelator to begin 

the initial pulse width measurement and to align the compression gratings, and 

then use multiple shots to obtain a detailed autocorrelation trace. 
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Fig. 3-2 Autocorrelator. The wedged beam splitter and slits are used to 

eliminate all etalon reflections from reaching the photomultiplier. The 

PIN diode detects shot-to-shot laser energy fluctuations. This setup 

becomes a single-shot autoconelator when the slits are removed and 

the photomultiplier is replaced by a linear array detector. 



C. EXPERIMENTS ON PEDESTAL SUPPRESSION 

The pedestal was suppressed by spectral gain narrowing in the 

regenerative amplifier and by a saturable absorber after pulse compression. 

Improvements in the laser pulse shape begin with a careful adjustment of the 

regenerative amplifier in order to avoid SPM and etalon effects. Next, the spectral 

gain-narrowing of the frequency-matched regenerative amplifier shapes the pulse 

~ i n ~ s . 9  Finally, a saturable absorber suppresses the satellite pulses. 

C.l Spectral Shaping 

The pulse wings and satellite pulses of a compressed pulse come from the 

square-top envelope and nonlinear chirp that are generated in the fiber.lo.11 A 

typical power spectrum of a chirped pulse after the fiber in our laser system is 

shown in Fig. 3-3(a). The bandwidth is 37 A and the line center is at 10530 A, the 

wavelength of our Nd:YLF oscillator. The results reported in Ref. 10 show that the 

linear chirp is located near the center part of the spectrum, while the nonlinear 

chirp is located near the edges. Figure 3-3(b) shows the autocorrelation trace of 

the compressed pulse after the fiber without further amplification. This figure 

shows a 1.6-ps pulse with broad pulse wings. An additional feature that can be 

seen in Fig. 3-3(b) is the long satellite pulses due to negative frequency chirp and 

frequency-unshifted light. 
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Fig. 3-3 (a) Spectrum of the chirped pulse leaving the fiber, FWHM = 37 A. 
(b) Autocorrelation trace of the compressed pulse before amplification, 

FWHM = 1.6 ps, assuming a Gaussian profile. The pulse wings and the 

satellite pulses are the results of compressing a square-top chirped 

pulse with the nonlinear chirp locating at the leading and trailing edges. 



Frequency mismatch and SPM in amplification process further enhance the 

pedestal of the final compressed pulse. This was discussed in Chapter 11. The end- 

mirror-dumped regenerative amplifier produces a train of pulses, one of which is 

selected for injection into the amplifier chain. Pulses were sampled at various 

times with respect to the peak of the pulse train, and it was found that pulses near 

and after the peak of the pulse train are strongly spectrum modulated. The 

distortion in the pulse appears to be due to the combination of S P M ~ ~  with a 

mismatch in the gain-center wavelength of the regenerative amplifier and the 

Nd:YLF oscillator. Figure 3-4(a) shows the autocorrelation trace of a compressed 

pulse which was extracted at the peak of the pulse train. The bandwidth of the 

injected chirped pulse was only 20 A, and there was a frequency mismatch of 4 A 

between the line center of the chirped pulse and that of the regenerative amplifier. 

An overwhelming 200-ps-long background pedestal is generated. One can reduce 

this type of pedestal by switching out a pulse before the peak of the pulse train. 

This would reduce the total B integral seen by the pulse. Figure 3-4(b) shows the 

autocorrelation trace of the compressed pulse which is 5 pulses (-50 ns) earlier 

than the peak of the pulse train. The Gaussian curve-fits in Fig.3-4 show the ideal 

pulses, the goal of this experiment. 

There are many spectral-shaping methods that can be used to reduce the 

pulse wings. Spectral windowings can be used within the expansion gratings. A 

bandpass filter can be used to shape the spectrum and reduce the nonlinear chirp 

near the edges of the chirped pulse. One can also reduce the nonlinear chirp by 

adjusting the angle of incidence and separation distances between the 

compression gratings,15 though this can lead to astigmatism in the compressed 
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Fig. 3-4 Autocorrelation traces of the compressed pulse shows the pedestal 

enhanced by SPM and gain-center mismatch. (a) With SPM and gain- 

center mismatch. (b) Without SPM. The Gaussian curve-fits show the 

ideal pulses. Each data point represents the average of 10 shots. 



pulse.16 In this experiment we used spectral gain narrowing in the frequency 

matched regenerative amplifier for spectral shaping.9 With SPM being carefully 

avoided the laser spectrum is forced to become Gaussian. A further improvement 

involved adjusting the Brewster-plate-polarizer angle and the Q-switch voltage 

inside the regenerative amplifier cavity in order to match the spectral line center of 

the Q-switched pulse to that of the seed pulse. To this stage the pulse wings are 

suppressed, leaving the etalon effects as shown in Fig. 3-5. Etalon effects came 

from optical elements with parallel surfaces such as mirrors, Brewster-plate 

polarizers, beam spliters, etc. They were removed through the use of wedged or 

thick optics. 

Fig. 3-5 Autocorrelation trace of the compressed pulse shows the etalon effects. 



The spectrum of a pulse switched out of the regenerative amplifier with a 

bandwidth of 12 A is shown in Fig. 3-6(a). This spectrum has a Gaussian form. 

The corresponding autoconelation trace of the compressed pulse with a width of 

1.6 ps is shown in Fig. 3-6(b). The pulse profile is nearly Gaussian for three 

orders of magnitude. Low-intensity, long-duration-satellite pulses are also clearly 

shown in Fig. 3-6(b). With this spectral-shaping scheme, the final problem is the 

elimination of the last structure in the pedestal, i.e., the satellite pulses. 

C.2 Temporal Filtering 

There are two low-intensity, long-duration satellite pulses. We have used 

the third order correlation technique17 to find that these two satellite pulses are 

almost symmetrically located 80 ps on either side of the main peak with an 

intensity contrast of order 103. This part of the pedestal originates from the low 

intensity wings of the oscillator pulse that either get a negative frequency chirp in 

the fiber12 or go directly through the fiber without S P M . ~ ~  The satellite pulse 

intensities decrease when the power spectrum generated from the SPM in the fiber 

is made broader. 

Saturable absorbers18 are used to filter the low-intensity satellite pulses 

temporally. Two kinds of saturable absorber are used in this experiment, Kodak 

Q-switching dyes #9860 and #5. Dye #9860, with pure nitrobenzene as a solvent 

(approximately 5 x 10-5 M), is contained in a 2-cm-long dye cell. The relaxation 

time of this saturable absorber is 4.2 ps, which is much shorter than the time delay 

between the satellite pulses and the main peak (see Fig. 3-6 (b)). This dye cell is 

placed between two lenses (f = 140 mm) after the compression gratings, so the 
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Fig. 3-6 (a) Spectrum of the pulse leaving the regenerative amplifier, FWHM = 12 

a. The Gaussian profile is a result of spectral gain narrowing. The spectral 

line center is the same as in Fig. 3-3(a). (b) Autoco~elation trace of the 

compressed pulse, FWHM = 1.6 ps, assuming a Gaussian profde. 



peak laser intensity will exceed the saturation intensity of the dye. The low- 

intensity transmission is less than while the transmission for the main peak 

is -30%. Figure 3-7 shows the experimental results with this dye cell in the 

system (compare to Fig. 3-6, without the saturable absorber). The spectrum is 

broadened to 36 A and is mainly red shifted, as shown in Fig. 3-7(a). The 

autocorrelation trace of a 0.9-ps pulse, with a Gaussian fit over 5 orders of 

magnitude, is shown in Fig. 3-7(b). The satellite pulses are no longer present in 

this autocorrelation trace. The baseline is the noise from the detector. The 

intensity contrast is now greater than 105, with this valued limited by the dynamic 

range of our autocorrelator. A rescaled autoconelation trace of Fig. 3-7(b) with a 

Gaussian fit is shown in Fig. 3-8. 

The dye cell is currently placed after the compression gratings with the 

whole amplifier system firing and is used only when a high-intensity-contrast 

pulse is required. A 200-cm lens was used to measure the focal characteristics of 

the beam both with and without the saturable absorber in place. The focal-spot 

area was larger by approximately a factor of 2 with the saturable absorber in place. 

This decrease in focusibility is probably due to nonuniformities in the near-field 

pattern of the beam entering the saturable absorber. The nonlinearity of the 

saturation process can enhance the nonuniformities. It is also possible that there 

is self-focusing accompanying the SPM that degrades the focal spot. The factor- 

of-2 degradation of the focal-spot area appears to be an acceptable trade-off for 

the improved temporal quality. 
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Fig. 3-8 Rescaled view of Fig. 3-7(b). A detailed autocorrelation trace of a 0.9- 

ps pulse with a Gaussian fit is shown. 

The second saturable absorber, dye #5 with 1,2-dichloroethane as the 

solvent (approximately 5 x 10-5 M) , is contained in a 1-cm dye cell. The 

relaxation time of this saturable absorber is 2.7 ps, even shorter than that of dye 

#9860, This dye cell is put in the same position as dye #9860. The low-intensity 

transmission is less than 10-4, while the transmission for the main peak is -30%. 

The experimental result had the same characteristics as those for dye #9860 

except the pulse width was slightly longer at 1.1 ps. 



D . CONCLUSION 

We have discussed four different contributions to the pedestal associated 

with a CPA laser system and have investigated techniques to reduce them, 

leading to the production of high-intensity contrast (>105:1) 0.9-ps Gaussian 

pulses. The pedestal consists of: (a) pulse wings, (b) satellite pulses, (c) a 

background pedestal resulting from SPM during amplification, and (d) etalon 

effects. The pulse wings and satellite pulses result from the square top envelope 

and the nonlinear chirp generated in the optical fiber. The pulse is switched out 

before gain saturation so that further frequency modulation in the regenerative 

amplifier is avoided. The pulse wings are suppressed by spectral gain narrowing in 

the frequency-matched regenerative amplifier. A saturable absorber is used to 

filter the satellite pulses and further reduce the pedestal. 

These results suggest a method for increasing the energy and temporal and 

focal qualities in a CPA laser. The laser pulse from the Nd:YLF oscillator will be 

first chirped by the fiber and then injected directly into the regenerative amplifier 

without further stretching. The resulting l-mJ level pulse will then be compressed 

by the first compression grating pair and will pass through the saturable absorber 

so that the pedestal is removed. This low pedestal pulse will be restretched and 

chirped in an expansion grating pair and be injected into the amplifier chain. After 

amplification the chirped pulse will be perfectly compressible in the final 

compression grating pair, since the expansion- and compression-grating pairs 

have opposite functions and will be separated by the same distance. Without 

suffering any higher-order chirp, this pulse can be stretched to an arbitrary chirp 

ratio in order to gain more energy and to reach the same intensity-ratio increase 



after compression. The limiting factors are the size of the gratings and the space 

required for grating ~e~aration.4 

With this pedestal reduction, high-intensity contrast picosecond pulses 

with intensities exceeding 1016 w/cm2 can be produced with the current system, 

with higher intensities available with larger gratings. The results of this work 

make possible the study of high-intensity ultra-short laser plasma interactions 

with a fiber-grating CPA system. It is important to note, though, that chirped 

pulses with Gaussian envelopes can undergo SPM if the total B integral is of order 

2, and this factor must be taken into account in the design of future high-power 

CPA systems. 
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C H A P T E R  I V  

F R E Q U E N C Y  DOUBLING OF P I C O S E C O N D  PULSES* 

The efficient second harmonic generation (SHG) of picosecond pulses is 

studied. A type-I1 KDP crystal is used for frequency doubling of 1053-nm, 1.6-ps 

pulses. When a 1.46-ps delay between the extraordinary and ordinary pulses is 

introduced at the input of the doubling crystal, the energy conversion efficiency 

increases from -40 to -75%. 

A. I N T R O D U C T I O N  

As mentioned in early chapters, high-power ultrashort laser pulses are the 

basic tools for studying fundamental atomic and plasma physics, and for 

investigating x-ray applications.l Frequency up-conversion further extends the 

capability of these pulses. Advantages of the frequency up-conversion of ultra- 

short pulses for laser-plasma interactions are twofold. First, the nonlinear nature 

of the frequency up-conversion may increase the intensity contrast of the 

ultrashort pulse.2 High-contrast ultrashort pulses are desired for the study of 

high-density plasmas in order to produce short-pulse x-rays. Second, short- 

wavelength laser pulses offer better absorption conditions in laser-plasma 

interactions.394 A higher absorption efficiency is also desired for efficient x-ray 

production from a moderate-size laser system. 

*l"his experiment was performed in collaboration with a group from the Australian National 
University and the results were published in Optics Letters ("Highly efficient conversion of 
picosecond Nd laser pulses with the use of group-velocity-mismatched frequency doubling in 
KDP," Y. Wang, B. Luther-Davies, Y.-H. Chuang, R. S. Craxton, and D. D. Meyerhofer, Opt. 
Lett. 16, 1862 (1991)). 



The first second harmonic generation (SHG) experiment was reported by 

Franken et al. in 1961.5 In the following year Armstrong et a1.6 presented a 

theoretical analysis and considered SHG as a three-wave parametric interaction 

with two pump waves and one SHG wave. They pointed out that phase matching 

of these three waves is required in order to achieve high conversion efficiency. In 

later SHG experiments the phase matching condition was obtained, for example, 

by changing the crystal temperature, pump wavelength or angular orientation of the 

birefringent doubling crystal. Conversion efficiencies from 80% to 92% for long 

pump pulses with narrow bandwidth were reported.7-9 For ultra-short pulses 

(with broad bandwidth), the frequency dependence of the wavevector is 

where ko is the wavevector at the central frequency oo. The conversion efficiency 

is usually low even when the central-frequency wavevectors of the three mixing 

waves are well matched. This is because these waves have different group 

velocities, (ak/aw)-1, in the dispersive conversion crystal.10-12 For example, in a 

type I1 doubling crystal the input beam is decomposed into an ordinary wave (o- 

wave) and an extraordinary wave (e-wave). These two pump waves and the SHG 

wave will have different group velocities v,, ve, and v2, respectively. In an extreme 

case, the three mixing waves may spatially separate from each other after 

propagating a certain distance within the conversion crystal, and greatly reduce the 

total conversion. 

Two schemes have been proposed to increase the up-conversion efficiency 

for ultrashort pulses. One method introduces a spectral angular dispersion by 

using gratings (or prisms) to match all wave~ectors.l3,1~ The other method 



requires the introduction of a predelay between two pump waves at the entrance of 

the type I1 doubling crystal to compensate the group velocity delay.2,15 

In this chapter we report on the efficient up-conversion of 1.6-ps laser 

pulses at 1053 nm to their second harmonic at 527 nm using the predelay scheme.2 

The overall energy conversion efficiencies are up to 75%. These efficiencies were 

measured at average beam intensities of -2.5 GWIcm2 for a 1-cm-diameter beam. 

The chirped-pulse-amplification (CPA) laser system16,17 used in this experiment 

was introduced in Chapter I11 (see Fig. 3-1). To complete the study of frequency 

up-conversion for picosecond pulses, we report this work in the following order. 

First, we present the experimental and calculated results using a single type-I1 

KDP crystal without predelay, which gives -40% conversion efficiency. We then 

show an increase in the conversion efficiency from -40% to -75% by introducing 

the predelay crystal. Besides central wavevector matching and group velocity 

matching, we further consider the sensitivity of polarization mismatch for 

picosecond pulses. For type-I1 frequency conversion the laser is equally 

decomposed into two optical axes leading to an optimum polarization angle of 45' 

(to the ordinary axis of the doubling crystal). A lower conversion efficiency (60% 

under the predelay scheme) is obtained with a non-optimum polarization angle of 

51°, which is equivalent to -1% (energy) depolarization of the input beam. A final 

experiment in which a polarization-angle scan was carried out using a single KDP 

crystal shows the conversion efficiency falling off with polarization angle as 

predicted. 



B. METHODS 

The frequency doubling scheme2 used in this experiment is shown in Fig. 

4-1. It includes two crystals, one for predelay and one for doubling. The predelay 

crystal is a 15-mm thick 53' cut KD*P crystal with its o and e directions aligned at 

90' to those of the doubling crystal. This crystal is detuned so that no second 

harmonic generation occurs. Based on published refractive index data (Ref. 18), 

this KD*P crystal introduces a 1.46-ps predelay. The doubling crystal is a 25-rnm- 

thick type-I1 KDP crystal with sol-gel AR coatings on its input face for 1.06 pm 

and on its output face for 0.53 Fm. From the refractive indices reported in Ref. 19, 

the calculated group velocities of the pump o and e waves, and the second 

harmonic are v, = 1.966~1010 cmls, v, = 2.019~1010 cmls, and vz = 1.988~1010 

cm/s, respectively. This KDP crystal gives the o-wave a 3.3-ps group velocity 

delay relative to the e-wave. When a laser pulse passes the first predelay crystal 

its p-polarization leads the s-polarization by 1.46 ps as shown in Fig. 4-1. In the 

doubling crystal, the s-polarization catches up with the p-polarization and moves 

to the leading position at the output. This results in a shortened, high-peak- 

intensity second harmonic pulse located in time between the two residual pump 

waves. 2 

The autocorrelation trace of the laser pulse is shown in Fig. 3-5(b) (Chap. 

111). It is a near-Gaussian 1.6-ps pulse with less than 5% energy in the pedestal. 

The laser beam profile was modified for these experiments by placing a 1-cm- 

diameter hard aperture in front of the vacuum spatial filter in order to produce a 

uniform beam profile. Fig. 4-2 shows the schematic layout of frequency-doubling 

experiments. A PIN diode measuring the leakage light from the compression 
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gratings served as a system energy monitor. A single-shot autocorrelator 

provided an off-line diagnostic of the pulse width. The Brewster-plate polarizer 

was used to improve the polarization contrast, and the half-wave plate was used 

to rotate the polarization angle for frequency doubling experiments. The predelay 

KD*P crystal was located immediately after the half-wave plate. It was removed 

when single-crystal frequency conversion experiments were being performed. The 

laser pulse energies were controlled by tuning a half-wave plate between two 

polarizers (not shown in Fig. 4-2) and were measured by a pyroelectric 

calorimeter. 

The energy conversion efficiencies were measured as follows. The energies 

of fundamental IR pulses were measured by the PIN diode, which was calibrated 

by an energy meter in front of the doubling KDP crystal over a wide range of laser 

energy. The energies of the second harmonic pulses were measured by the same 

energy meter at the output of the doubling KDP crystal. A 2-mm-thick BG 18 

green filter (optical density > 8 at 1054 nm) was used to block the IR light from the 

energy meter. The measured conversion energies were then corrected by the 

transmittance of the filter at the second harmonic. The energy conversion efficiency 

was obtained as the second harmonic energy at the output of the KDP doubling 

crystal divided by the total IR energy at the input. From repeating shots, we 

estimate the uncertainty of the conversion efficiency to be +s%. 

The beam profiles were measured for each experimental run. They changed 

slightly between runs due to changes in alignment. Kodak TMAX 400 film was 

placed in front of the doubling crystal to record the beam patterns. The images 

were digitized and converted into intensity data using the known film response 

calibrated from the same laser conditions (1.6 ps at near 1053 nm). Figure 4-3 (a) 



is an example which shows the intensity contours of the laser beam used for 

frequency conversion with predelay. Figure 4-3(b) shows two radial line-outs of 

the beam distributions, in the x and y directions. The dashed line is a simple 

averaged profile used in calculations to approximate the real beam distribution. 

The total energy under the dashed line is equal to the measured total energy. 

All theoretical predictions in this chapter were provided by Dr. R. S. 

Craxton at the Laboratory for Laser Energetics (LLE), University of Rochester. 

The theoretical approach begins from the frequency doubling equations for 

monochromatic signals. The electric fields of three interacting waves are given by 

the real part of Ejexp(iujt - ikz) for j = o, e, and 2, with Ej slowly varying along the 

z-direction. For convenience the modified variables fi, = njl12Ej are used, where n, 

is the refractive index of wave j. The energy flux is then proportional to 1fij12. The 

general equations governing frequency doubling for monochromatic signals are20 

where K is related to the fundamental constant d36 by 

Yj are absorption coefficients, and Ak = k2-(ko+ke) is the wavevector mismatch. In 

Eq. (4.5) 8, is the corresponding phase-matching angle, and p, and p2 are the 

small walkoff angles of the input e-wave and the SHG wave, respectively. Note 

that the d36 used in Eq. (4-5) is 0.5 times the dg6 of Ref. 23. Equation (4-5) is 

consistent with the more standard definition of d36 used in Ref. 22. 



Beam radius (cm) 

Fig. 4-3 The laser beam profile. (a) Intensity contours relative to the maximum 

intensity. (b) Line-out of the beam profiles in two perpendicular 

directions. The dashed line was used as an average in the calculations 

(which assumed cylindrical symmetry). 



Numerical data used in calculations are as follows. The nonlinear constant 

for KDP was20-22 d36/e0 = 0.39 pm/V (0.78 pmN in the notation of Ref. 23). The 

constant K= 1 . 1 0 6 ~  10-6 V-1 was used. The phase-matching angle was 8, = 59.2'. 

The walkoff angles were p, = 0.0201 rad and p2 = 0.0245 rad. Refractive indices 

came from Ref. 18 for KD*P and Ref. 19 for KDP. Energy absorptions in KDP at 

1054 nm were 5.8 m-1 for the o-wave and 2.0 m-l for the e-wave (propagating at 

8,).23 Other KDP properties particularly related to the frequency up-conversion 

at 1054 nm are available in Ref. 23. 

A broadband ultra-short pulse is described by a summation of 

monochromatic modes, where each mode has a distinct frequency. The electric 

fields of three interacting waves are then given by 

for j = o, e, and 2. Mixing any two monochromatic modes, one from the o-wave and 

the other from the e-wave, with the same sum frequency gives a new 

monochromatic mode of the SHG signal. The final SHG pulse is obtained by 

summing all the SHG modes. Therefore, broadband frequency conversion may be 

described using the multimode equations 



where Ejj.m=nj'l'~j,m, and Akmn= k2(w2,,+,) - k,(~,,,) - k,(~,,,). The input 

pump pulses were assumed Gaussian with a pulse width of 1.6 ps (FWHM). The 

spectra of these pulses were also assumed Gaussian. There are 2M+1 frequency 

modes in this calculation and M = 50 was used. The spatial profiles were 

approximated by a simple shape shown in Fig. 4-3(b). 

Besides Craxton's method using multimode equations as stated above, 

another theoretical approach based on Wang and Dragila's model, which advanced 

the electric field in time domain, was also used for the calculation of ultrashort- 

pulse frequency ~onversion.2~2~ Both codes gave exactly the same results. 

C. RESULTS 

The measured and calculated frequency up-conversion efficiencies for 

ultrashort pulses are shown in Fig. 4-4. In all cases the KDP crystal was tuned for 

optimum phase matching. However, due to the finite size of the laser beam (D = 1 

cm) a 100-pad (A8 = h/D) angular detuning is expected. Figure 4-4(a) shows 

the results of the doubling efficiency without predelay (i.e. the first crystal in Fig. 

4-2 is removed). The dashed curve, as a reference, shows the calculated 

conversion efficiency of monochromatic plane waves (with absorption) that we 

should have got without group velocity mismatch. With group velocity mismatch 

the conversion efficiency of 1.6-ps pulses drops to be about 40% near the peak, 

and is relatively insensitive over a wide range of laser intensity. The agreement 

between experiment and theory (with a 0-100 prad angular detuning) is excellent 

over the entire range covered. This level of conversion efficiency is also consistent 

with the data reported in Ref. 25 (4-ps pulses, -40% conversion efficiency). Figure 

4-4(b) shows the results of frequency doubling with predelay. With the addition of 



predelay the conversion efficiency rises to 75% at a laser intensity near 2.5 

G ~ I c m 2 .  The data matches the theory very well over the whole intensity range. 

We encountered one difficulty in our first attempt at high efficiency 

frequency doubling. The laser pulses experienced depolarization during the 

amplification and compression processes leading to a loss of SHG efficiency. A 

Brewster-plate polarizer was then introduced to improve the polarization contrast 

as shown in Fig. 4-2. To understand the role of polarization matching we further 

placed a half-wave plate to detune the polarization. Figure 4-4(c) shows the 

doubling results with a non-optimum polarization angle of 51' to o-direction, which 

is equivalent to -1% depolarization. The peak conversion efficiency (with the 

predelay) dropped from -75% to -60%. This was consistent with the theoretical 

prediction. 

We carried out a further experiment to investigate the sensitivity of the 

conversion efficiency to the polarization angle. For simplicity, this experiment was 

only performed without the predelay. We fixed the laser intensity at 2.1k0.2 

GW/cm2. The results are shown in Fig. 4-4(d). The agreement between the 

experiment and the theory is, again, excellent. 
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4-4 Second harmonic energy conversion efficiency. (a) Without pre-delay, 

-40% conversion efficiency is obtained. (b) With pre-delay, the conversion 

efficiency increases to -75%. (c) A lower conversion efficiency (with 

predelay) is obtained with a non-optimum polarization angle of 5 lo. (d) The 

conversion efficiency (of single KDP doubler) falls off with polarization 

angle as predicted. 



D. SUMMARY 

Experiments on frequency doubling of picosecond pulses using a predelay 

scheme2 have been presented. A KD*P crystal was used to give the predelay in 

this experiment for its well known properties and low absorption losses at 1053 

nm. A type-I1 KDP crystal was used as an frequency doubler. When a predelay 

between o and e waves was introduced in front of the doubling crystal the 

conversion efficiency increased from -40% (without predelay) to -75% (with 

predelay). The agreement between the experiment and theory is excellent. 

Experiments on the sensitivity of polarization angle mismatch for frequency 

doubling were also reported. Depolarization or polarization mismatch of the laser 

pulse decreases the conversion efficiency, consistent with theoretical predictions. 

This simple and effective conversion scheme is well suited for picosecond 

high power lasers. Further experiments should include a second-harmonic pulse- 

shape measurement to investigate the pulse shortening and pedestal reduction 

predicted in Ref, 2. Frequency tripling using two type I1 crystals (Ref. 9 and 20) for 

picosecond pulses should also be considered since partial compensation for the 

group velocity delay is automatically provided in this scheme. The capability of 

operating high-power picosecond lasers at several different frequencies should 

thus be possible in the near future. 
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CHAPTER V 

NONRESONANT xE1 MEASUREMENTS 

Picosecond, chirped-pulse technology is used to generate two spectrally 

separate, time-synchronized pulses for x ( ~ )  measurements by nearly-degenerate 

(3) four-wave mixing. Near 1053 nm, nonresonant, relative measurements of X l l l l  

are carried out on three model substances: nitrobenzene, a-chloronaphthalene, 

and 4'-decyloxynaphthyl-1'-(4-decyloxy benzoate). Their x ( ~ )  values are 

normalized to CS2. There are two possible error sources. One comes from the 

laser; two input pulses are not well compressed due to the nonlinear chirp. The 

other comes from laser-matter interactions other than the Stokes and anti-Stokes 

generation: two beam coupling and phase modulation. 

A. INTRODUCTION 

All-optical nonlinear effects based on the third-order susceptibility XO) are 

often investigated by four-wave mixing techniques. Starting with the classic 1965 

proof-of-principle experiments by Maker and ~erhune,l these measurements have 

yielded x ( ~ )  values for many condensed compounds. When these measurements 
(3) are carried out in a fully degenerate manner, i.e., when Xijkl (-6.); W, W, -61) is 

probed, the experimental hardware requirements become simple and relatively 

inexpensive. This permits the widespread use of the technique. In a more 

complicated embodiment using excitation beams of two frequencies, ol and 02, ol 

> 02, four-wave mixing takes on the form of coherent anti-Stokes Raman 

scattering (CARS) and coherent Stokes Raman scattering (CSRS), generating 



new frequencies at either 2 a 1  - 0 2  if the intensity is I (ol )  >> I(w2), or at 2 a 2  - 
ol if the reverse intensity condition holds and phase-matching requirements are 

met. Compared to the fully degenerate case, CARS complicates the measurement 

by requiring two laser sources and by being sensitive to phase matching. The 

major strength of this technique is that the output signal is both spatially and 

spectrally separated from the input beams. Whenever x ( ~ )  magnitudes are 

anticipated to be low and thus in need of background-free detection, CARS is the 

method of choice. 

Adair, Chase, and payne2 have in recent years adopted a nearly- 

degenerate (near 1.06 pm) version of CARS and derived with it the nonlinear 

refractive index n2 for a large number of optical glasses and crystals. In their 

approach ol is chosen to differ from 0 2  by no more than Ao i 0 1 - 0 2  = 60 cm-1, 

thereby simplifying the phase-matching condition for narrow-bandwidth input 
0 

beams, Ak = ; [2n (w) - n ( o  + Ao)  - n ( a  - Am)]. The absence of any 

significant group velocity dispersion over a 60 cm-1 range in all samples considered 

guarantees a phase-matched collinear alignment of all input and output beams for 

Ak 0. 

We report here on nearly-degenerate CARS measurements fashioned after 

those of Adair et a1.2 by using a chirped-pulse-amplification (CPA) lased-5 for 

generating picosecond pulses at both w l  and 0 2 .  A spectral window in a CPA 

laser is used to choose these two spectral lines. With this technique two pulses 

are jitter-free and spatially identical. The alignment and synchronization are thus 

greatly simplified. 



B . EXPERIMENTAL SETUP 

This approach exploits the spectral pulse shaping ability of the CPA 

technology. As mentioned in Chap. 11, CPA overcomes the intensity-related B- 

integral effects (self-focusing and damage) which limit the amplification of short, 

picosecond pulses in solid-state lasing media. In CPA, short pulses are 

temporally stretched due to group velocity dispersion, amplified to higher energies 

than could be achieved by amplifying the short pulse directly, and then compressed 

to a short pulse. 

The spectral pulse shaping technique in a CPA laser is shown in Fig. 5-1 

schematically. A pulse train of a mode-locked Nd:YLF laser near 1053 nm was fed 

through a fiber to produce a 40-A, self-phase-modulated ~~ec t rum.6  The use of an 

antiparallel, double-pass pair of gratings for pulse stretching allows access to the 

Fourier transform of the laser pulse (in wavelength space). This allows for 

spectral pulse shaping by the use of appropriate masks.8 In our case, we use a 

hard edge stop W (see Fig. 5-1) to block the central 20 A of the laser bandwidth. 

This creates two independent, chirped laser pulses, each with a bandwidth of -7 A 

at f 11 A from the gain center of the regenerative amplifier. To minimize diffraction 

effects, a spatial filter before the diffraction gratings is used to place the Fourier 

transform on a plane exactly at the location of W. 

These nJ-level, spectrally and temporally separated pulses are amplified in 

the regenerative amplifier to an energy of -0.5 mJ. Due to the temporal separation 

these pulses do not encounter any nonlinear wave mixing during amplification. The 

transverse mode TEMoo build-up in the regenerative amplifier forces these pulses 

to have identical beam profile. This gives the wave-mixing experiment a constant 

ratio of energy flux between pump waves at all transverse positions. The 



Fig. 5-1 Schematic representation of pulse expansion, spectral windowing, 

amplification and pulse compression used in nearly-degenerate four- 

wave mixing measurements. 



symmetry of the injected pulses about the gain center of the regenerative amplifier 

ensures that the pulses undergo identical amplification. The resulting pulses each 

have a bandwidth of 8 A and are separated by 17 A. 

Finally, the pulses are spatially filtered and undergo compression in a 

double pass, parallel grating ~onfi~uration.7 The autocorrelation of the overlapped 

pulses is shown in Fig. 5-2. The 75 data points each represent 10-shot averages. 

The 17-A spectral separation between the two pulses leads to a 2-ps temporal 

modulation of the combined pulse as expected. This beating must occur for any 

CARS technique. The envelope of the autocorrelation trace is fit with a 6.7-ps 

Gaussian. Because of losses during compression, the pulse reaching the sample 

carries 0.3 mJ energy. 

CARS samples were enclosed in plane-parallel, 0.5-mm thick cells placed 

in the converging cone of a 1-m focal length lens. The beam spot size (0.5 mm) 

was recorded on calibrated IR film and measured by microdensitometry of the 

image. The beam exiting the cell, including the ol + Ao signal, is recollimated and 

dispersed by a third, double-pass grating pair. The purpose of this grating 

arrangement is to spatially disperse pump, Stokes, and anti-Stokes signals for a 

neutral-density filter to attenuate the intense, undepleted signals at ol and 0 2  to 

about the signal level of the ol + Ao four-wave mixing signal. In this fashion, a 

cooled, IR-intensified optical multichannel analyzer in the image plane of a 

monochromator permits recording, within its dynamic range limits, all signals, 

I ( o l ) ,  I(02), and I ( o l  + Ao). Since both I(o1) and I(o2) have identical 

(3) polarization, this experiment is probing the tensor component ~ 1 1 1  of the third- 

order susceptibility. 



Data points: 10-shot averages 

Fig. 5-2 Second-harmonic autocorrelation trace of compressed, spectrally- 

segmented pulse pair. Each data point is a 10-shot average. For 

comparison, first-order Gaussian (dotted line) is overlayed. The 

experimentally measured modulation frequency equals the beat- 

frequency between two, 17-A separated waves. 



C. EXPERIMENTAL RESULTS 

Figure 5-3 shows the raw-data record of a single-shot measurement on 

CS2. The intense, undepleted signals at ol and 0 2  were attenuated to a factor of 

10 before entering the detector. Data in Fig. 5-4(a) show single-shot intensities 

of the anti-Stokes signal as a function of the pump intensity product ~ ~ ( o ~ )  I(02) 

for a 0.5-mm CS2 path, while those in Fig. 5-4(b) show the coherent Stokes signal 

plotted against 12(02) I(ol). There is a one-to-one correspondence among data 

pairs in Figs. 5-4(a) and (b). The single-shot, systematic measurement error for 

these data is smaller than the plotted symbols. In assembling Fig. 5-4 only those 

measurements were selected for which the spectral width at both ol and 0 2  fell 

within a preselected, spectral interval. Fluctuations in the spectral wings from 

shot to shot contribute to variations in the degree of compression and in the final, 

temporal pulse shape. The prime source for this spectral-width jitter will be 

investigated in next section. Over the -one-order of magnitude intensity range 

plotted along the abscissa in Figs. 5-4(a) and (b), one finds the expected linear 

behavior. The solid lines in Fig. 5-4(a) and (b) are least-square fits to the data 

points. The non-zero offset at zero input intensity is attributed to both the CARS 

and Stokes signals riding on pump-pulse wings that have not been deconvoluted 

(see Fig. 5-3). 



0 1  0 2  

Wavelength 

Fig. 5-3 Multichannel detector record from a single-shot, four-wave mixing 

event in CS2. Shorter wavelengths are to the left. The central two 

peaks represent I(ol)/10 (left) and I(oa)/10 (right). Clearly resolved 

(in full scale) are the coherent Stokes (furthest right) and anti-Stokes 

(second from left) peaks. 
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I(co,) ~ ' ( o , )  (arbitrary units) 

Fig. 5-4 (a) Nonresonant CARS signal magnitude plotted against the input 

wave intensity product I2(o I(02). (b) Nonresonant CSRS signal 

magnitude plotted against the input wave intensity product 

12(a2) I ( 0  The data point in (a) and (b) map into each other, i.e., 

pairs of CARS and CSRS signals were taken simultaneously. 



The monitoring of all pertinent intensities I(ol), I(a2), I(O1+AO), and 

I(m2-Aa) on every shot facilities relative sample-to-sample comparison, 

recording intensity fluctuations and checking for pump intensity depletion. This 

complete record permits comparing ~ ( 3 )  results from different samples with those 

of a standard such as CS2, without the need for irradiating, on each shot, both the 

sample and the standard. Of course, care must be taken in placing the samples in 

identical beam positions. In this manner, we measured the relative third-order 

susceptibility of several organic compounds. 

Table I lists the relative CARS and CSRS results normalized to CS2 for 

nitrobenzene, a-chloronaphthalene and 4'-octyloxynaphthyl-1'-(4- 

decyloxybenzoate). In each case the linear refractive index n of the material is 

accounted for. Refractive indices were measured at 1053 nm on an Abbe 

refractometer. The last compound is a liquid crystal synthesized at LLE out of a 

series of tolane and ester-linked naphthyl compounds, the nonlinear behavior of 

which will be published elsewhere.9 Maintaining alignment throughout the liquid- 

crystal bulk over the 500-pm sample path was difficult. We chose to measure ~ ( 3 )  

in the sample's isotropic phase (>90°C), realizing that a penalty in ~ ( 3 )  magnitude 

had to be paid by giving up the macroscopic mesophase alignment. CARS 

measurements of ~ ( 3 )  have been done on liquid-crystalline systems before.lO,ll 

The values for nitrobenzene compare well with the relative value of 0.5 deduced 

from the 3-11s four-wave mixing data of Levenson and ~loember~en.12 The values 

for chloronaphthalene can be compared with earlier, relative measurements by 

Saikan and ~ a r o w s k ~ l 3  who found for 2-ns excitation near 440 nm a relative 

value of 0.3. The results show that within a factor of 2-3, these materials 

approach the ~ ( 3 )  values of CS2. 



Table 1 

Measured Relative Third-Order Nonlinear Susceptibilities ~(3)/n2 



D. ERROR ANALYSIS 

There are two possible error sources that cause the fluctuations of the 

Stokes and anti-Stokes generation. One comes from the laser fluctuation: the two 

pump pulses may not be well compressed and mixed by the compression grating 

pair due to the nonlinear frequency chirp, self-phase modulation, and spectral gain 

narrowing generated in CPA (see Chap. 11). This can be improved immediately by 

adjusting the band-width of the self-phased-modulated spectrum generated from 

the optical fiber, avoiding self-phase modulation in amplification process, and 

carefully aligning the compression gratings. Masking a chirped pulse directly 

stretched from an ultrashort pulse is also a good choice for reducing the non-ideal 

pulse ~om~ression.3-5 The other comes from the interactions between the two 

pump pulses in the nonlinear medium other than the Stokes and anti-Stokes 

generation: two beam coupling,14,15 and phase modulations. 

In considering the energy transfer between the light and the nonlinear 

material, we assume the nonlinear part of the refractive index nNL can be described 

by the Debye relaxation equation in the integral form14,15 

where the relaxation time 2 describes the time interval needed for the nonlinearity 

to develop. When the relaxation time 2 is much shorter than the laser pulse 

duration, Eq. (5.1) gives the limiting result n ~ ~ ( t )  = nzI(t), which is consistent 

with the optical Kerr effect described in Chap. 11. The order of magnitude of the 

relaxation time 2 is as follows: femtosecond for electronic polarization, picosecond 



for molecular orientation, nanosecond for electrostriction, millisecond for thermal 

effect.16917 Using a procedure similar to that shown in Chap. 11, we describe the 

mixed laser field on the moving pulse frame t = i - zlv,, as E(t) = 

Re[Eo(t)exp(ioot)], where oo is the center frequency of the continuum before the 

spectral window being used, i is the usual laboratory time coordinate, and v, is 

the group velocity. By neglecting the absorption, group velocity dispersion, and 

diffraction of the light in the nonlinear medium, the wave equation (A6) (see 

appendix) can be reduced in the form 

aE 
0- 2n: - -i-n,(t) E,. az Lo 

The laser light before entering the nonlinear material is Eo(t) = Al(t)exp(iwlt) + 
A2(t)exp(iw2t), where wl = ol-oo and w2 e 612-oo denote the frequency shifts 

relative to the fundamental frequency oo. 

We assume the electric field in the nonlinear material, including Stokes' and 

anti-Stokes' waves, can be written as 

Using non-depletion conditions, As, AaS cc A1, A2, we can approximately describe 

the laser intensity in the nonlinear medium as 

Substituting Eq. (5.4) into Eq. (5.1), assuming the amplitudes A1 and A2 are 

nearly invariant within the time scale T, and carrying out the integral in Eq. (5.1), 

the nonlinear refractive index becomes 



where 11.2 = ( & C / ~ ) I A ~ , ~ I ~ ,  and A o  = ol - 0 2  = wl - w2. 

Substituting Eq. (5.3) into Eq. (5.2), using Eq. (5.3, and collecting terms 

with the same frequency, we obtain a set of equations for the wave amplitudes 

Equations (5.6) to (5.9) provide the theoretical framework necessary for this 

analysis. The energy transfer between the two pump waves is described by the 

coupling equations (5.6) and (5.7). The Stokes and anti-Stokes waves are 

described by Eqs. (5.8) and (5.9), respectively. The common phase modulation for 

these four waves is shown in the last terms of Eqs. (5.6) to (5.9). 

The two beam coupling equations (5.6) and (5.7) can be written in terms of 

I1 and I2 by using their complex conjugate equations. This gives14 

31, 4x11, Awr - = -- 
2 2 1 2 '  a~ h, I+(AU) r 

Adding Eq. (5.10) to Eq. (5.1 1) gives a(11+12)/az = 0, the non-depletion condition. 

Letting Itot(t) = 11(z,t)+12(z,t) = Il(0,t)+12(0,t), substituting the relation, Il(z,t) = 

I,,(t)-12(z,t), into Eq. (5.1 I), and solving, we obtain 



Equation (5.12) shows the result of two beam coupling. The high-frequency 

( a l )  pulse tends to transfer energy to the low-frequency (012) pulse. When Ao-z  

approaches 0 or -, there is no energy transfer between two pulses. When 

A o - z  = 1 the energy transfer between two pulses is maximized. In ~ ( 3 )  

measurements described in the previous section, two beam coupling is one of the 

mechanism that causes the spectral line fluctuation. To reduce the error, two beam 

coupling must be avoided. However, Eq. (5.12) shows a simple form for relaxation 

time measurement. By changing the spectral difference A o  between two pump 

signals, one can obtain a set of output signal intensity ratios. The relaxation time z 

is obtained as z = l/Ao, when A o  gives the maximum intensity ratio. For CS2 the 

molecular re-orientation time is -2 ps,18*19 the resonant condition occurs at Aw = 

ol-o2 = 112 = 5 x 1011 radlsec, that is, when the wavelength difference between 

two pump waves is 3 A. 
If we assume the energy transfer between two pump signals is negligible, 

Eqs. (5.8) and (5.9) can be integrated to give 

and 

For large values of Ao-z  both Stokes and anti-Stokes waves are reduced by a 

factor of 1/[1 + (Ao)2z2]. This statement, however, is just true for a two-level 

atom far from resonance. The assumption of Debye-relaxation equation with a 

single decay time z is only an approximation of the real physical process. Recently 

a model with several components of orientational response was considered. 



Detailed theoretical and experimental descriptions are shown in Ref. 19 (and its 

references). 

The frequency domain analysis shows another reason for the spectral line 

fluctuation of the pump waves and the scattering waves: the phase modulation B = 

n2(11+12)(2~/hO)L enters into the power spectra of these waves. This phase 

modulation is clearly shown in the last term of Eqs. (5.6)-(5.9). The spectral line 

shapes of Stokes and anti-Stokes waves and the two pump waves are all 

distorted by this phase modulation. The total area beneath each line, however, is 

not changed by this phase modulation. It is equal to the time integral of each wave. 

Therefore in this experiment, the strength of each wave is obtained by integrating 

over its spectral lineshape instead of by its peak value. 

E. DISCUSSION 

A simple solution to synchronization jitter20 among CARS input sources is 

presented. Spectral shaping of a linearly chirped pulse in the expansion gratings of 

a CPA laser was used to produce two pulses with different frequencies. A 

regenerative amplifier of appropriate bandwidth was used to amplify these two 

pulses. After amplification these two pulses were temporally mixed through 

compression gratings. With this technique two pulses are jitter-free and spatially 

identical. The alignment and synchronization are thus greatly simplified. In general, 

any ultra-short pulse source used in conjunction with expansion and compression 

grating pairs can serve as driver for this kind of four-wave mixing experiment. To 

reach other wavelength, sources such as Ti:sapphire could be used in a similar 

manner. 



The energy transfer between two beams in this experiment is treated as a 

noise source. This two beam coupling phenomena, however, provides the 

relaxation time measurement by using the beating between the two lines. As the 

beating frequency resonates to the relaxation time of the nonlinear medium, the 

energy transfer between two signals is maximized. From the line ratio change one 

can measure the resonant condition and, as a result, the relaxation time. 

The laser technique for producing two pump waves used in this experiment 

can be extended to produce synchronized multiple waves by changing the spectral 

window. These synchronized waves can be mixed by compression gratings for 

wave-mixing applications. They also can have different delays between each other 

by applying optical delay near the spectral window. This technique can be used for 

pump-probe experiments. The advantage is that each signal has its own 

distinguishable frequency but nearly same group velocity so that collinear pump- 

probe is possible. The identical beam profiles of pump and probe waves generated 

from the same regenerative amplifier also reduce the experimental uncertainty due 

to beam pattern fluctuation in usual two-beam pump-probe experiments. 
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CHAPTER VI 

AMPLIFICATION OF PHASE-MODULATED LIGHT FOR SSD 

In this chapter the results of modelling the amplification of broadband laser 

pulses presented in Chap. I1 are extended to those pulses used in smoothing by 

spectral dispersion (SSD). The power gain is treated as a function of 

instantaneous frequency to simplify the analysis. Distortion of this phase- 

modulated pulse due to propagation and spectral gain narrowing is presented. 

Phase variations due to propagation and self-phase-modulation (SPM) are 

investigated to ensure the preservation of the initial phase modulation of the pulse. 

Local self-focusing of light, enhanced by the initial phase modulation, is shown to 

be critical for pulse amplification. For a pulse with a 3 A bandwidth and an angular 

dispersion AelAh = 500 prad/%i, the local self-focusing length in Nd:glass can be 

shorter than one meter at an intensity I = 5 GW/C~*.  

A. INTRODUCTION 

In laser fusion, attention is currently being focussed on techniques to 

smooth the laser beam in order to form a uniform plasma. Broad-bandwidth and 

spatially incoherent laser pulses are proposed to average the interference between 

beamlets in time and space and achieve beam uniformity. One method is called 

induced spatial incoherence ( I S I ) . ~ . ~  A broad-bandwidth laser beam with short 

coherence time is divided into numerous independent beamlets by an orthogonal 

pair of reflecting, echelon-like mirrors. The echelons introduce time delays 

between the beamlets which are longer than the coherence time. The beamlets are 



overlapped onto the target by a lens to form an instantaneous interference pattern 

which converges to a smooth intensity profile when averaged over time scales 

longer than the coherence time. Another method combining the phase-plate 

t e ~ h n i ~ u e s 3 . 4  and the phase-modulated broad-bandwidth laser is called 

smoothing by spectral dispersion (ssD).~ The bandwidth and the frequency 

modulation are obtained by passing a laser pulse through an electro-optic crystal. 

A pair of gratings is used to disperse the frequencies across the beam, without 

distorting the temporal pulse shape. After amplification the laser beam is broken 

up into bearnlets using a phase plate and then focussed onto the target to form the 

time-averaged beam smoothing. In this chapter we deal with the amplification of 

the laser pulses treated by SSD technique. 

In SSD the pulse leaving the second grating can be described by:5 

where 6 and om are the modulation amplitude and angular frequency of the 

electro-optical device, oo is the fundamental angular frequency of the laser, and P, 

describing phase modulation across the transverse direction y, is related to the 

grating dispersion A8IAh by 

As a result, different parts of the pulse (transverse and longitudinal) have different 

instantaneous frequencies. To amplify this pulse, care must be taken to preserve 

the initial frequency modulation, and not to distort the temporal profile. 

When this phase-modulated pulse propagates through the amplifiers, there 

are three mechanisms that may lead to amplitude modulation. Angular dispersion 



of the phase-modulated pulse tends to re-distribute the pulse energy during 

propagation and thus modulates the pulse amplitude. Spectral gain narrowing 

gives higher gain in any part of the pulse which has the instantaneous frequency 

near the linecenter of the gain medium and causes amplitude modulation.6 Gain 

saturation also causes amplitude modulation because the leading edge of the pulse 

undergoes higher gain than the trailing edge due to the depletion of the population 

inversion. These three mechanisms are not only coupled to each other but also 

depend on the phase variations of the pulse during propagation. 

In addition to the evolution of the initial phase modulation, there are also 

three mechanisms that may cause phase modulation during amplification: 

diffraction, self-phase-modulation (SPM), and the phase-shift part of atomic 

response in gain medium.7 These three mechanisms are also coupled to each other 

and in turn depend on the amplitude modulation of the light pulse. When preserving 

the initial pulse frequency modulation through the gain medium is necessary, these 

phase variations should be minimized. Self-focusing, a result of phase variation in 

space, may damage the amplifier and must be avoided. As a result, the energy 

extraction efficiency of amplification process may be limited by these phase 

variations. 

The purpose of this chapter is to provide an intuitive way of understanding 

the amplification of broadband SSD pulses. The instantaneous-frequency 

approximation derived in Chap. I1 and in the appendix are used. The major 

extension of the work in Chap. I1 is the inclusion of spatial effects. In Section B, we 

provide a set of basic equations that govern the amplification of broadband, phase- 

modulated pulses. In Section C, approximate solutions are obtained to analyze the 

amplitude and phase modulation during amplification process. The following topics 



are studied: (a) amplitude modulation, (b) phase modulation, and (c) small scale 

self-focusing. The main results of this chapter are summarized in Section D. 

B .  BASIC EQUATIONS 

The model considers a laser pulse, E = Eo eioot = ~ e ~ ( ~ o ' - @ )  traveling in 

the +z direction through a gain medium with a power-gain coefficient a ( o )  = 

a,(o) + iai(o), where A and $ are real functions. The nonlinear dependence of the 

index of refraction on applied signal strength is given by the optical Kerr effect? n 

= no + n2~<E2> = no + n 2 ~  A212 = no + n21. The basic equation governing the light 

propagation in an amplifier including SPM is7 (also see appendix) 

where mi r oo - a$/at is the instantaneous frequency of the laser pulse, P2 
2 ~ n ~ ~ / h ~ ,  and ho is the laser wavelength in vacuum. Note that z and t refer to 

coordinates in the moving pulse frame, which is defined by the transformation, z = 

A 
z and t = P - tic, where t and P are ordinary laboratory coordinates and c is the 

velocity of light in the amplifier. Equation (6.2.1) is similar to Eq. (2.3.5) in Chap. 

1 I1 except that the term -v:E, is added to describe spatial effects in SSD. 
2ko 

In the gain-saturation regime, the power-gain coefficient a is a function of 

the the population inversion N of the gain medium. The simple two-level-atom 

model described in Chap. II provides the following relations for a homogeneously 

broadened gain medium6,7,8 (also see appendix and Eqs. (2.3.6) to (2.3.8)) 



with 

describing the depletion of the population inversion, where I = &cA2/2 is the laser 

intensity, E and c are the dielectric constant and speed of light in the gain medium, 

COa and A a a  are the linecenter frequency and the full atomic linewidth, and 2* is a 

dimensionless population saturation factor with values between 1 and 2, 

depending on the gain medium.7 For an inhomogeneously broadened gain medium, 

it is necessary to find an atomic model for the inhomogeneities and sum over 

them.9 

Equations (6.2.1) to (6.2.4) provide the general framework for light pulses 

propagation in the amplifiers. For convenience, we choose z = 0 as the image- 

relay plane of the second grating. At this image plane the laser pulse can be 

described by Eq. (6.1.1) with both A and P divided by the total magnification of the 

spatial filters.10 In the following analysis we still keep the phase modulation at 

the image-relay plane in the form 



C. ANALYSIS 

In this analysis, we focus on the modulations of the laser pulse due to the 

evolution of the initial phase modulation described in Eq. (6.1.1) during 

amplification and propagation. Therefore we only consider the transverse 

dimension y and neglect the dependence on x. We first split the real part and 

imaginary part of Eq. (6.2.1) into two real equations and further describe them on a 

ray trajectory. We then make the approximation that the light rays follow straight 

lines within the amplifier, that is, the actions, such as diffraction and self-focusing, 

do not significantly bend the rays within the amplifier. This gives us a set of 

analytical solutions including the amplitude and phase of the laser pulse. We use 

this result to obtain the small phase variations, such as those due to SPM, as 

perturbation solutions. In the extreme case when local self-focusing of light 

induced by the initial phase modulation occurs, we then take account of both 

diffraction and self-focusing to complete this analysis. 

Equation (6.2.1) can be split into two coupled equations describing the 

energy relation and the equation of motion, respectively: 1 1-13 

and 

Equation (6.3.1) can be understood in the usual form for the energy conservation, 

i.e., aplat + V.(pv) = ap,  with A2 playing the role as the energy density p, and z, 

ko, V_L@, V_L corresponding to the time t, the particle mass m, the momentum p, 

and the operator V, respectively. Equation (6.3.2) has the same form as the 



Hamilton-Jacobi equation aS1at + H = 0 in classical mechanics,ll-l3 where H = 

p2/2m + V is the Hamiltonian of a partic1e.h a potential well V, and S is the 

Hamiltonian's principle function. In this case the phase variation @ plays the role 

as S, and 

describes the atomic response, diffraction, and self-focusing. For simplicity, the 

x-dependence is neglected in the SSD analysis, and the operator VI becomes 

a~ay. 

In order to solve the energy equation (6.3.1), we label the light rays using 

their y positions at z = 0 (an image plane of the grating), where the phase 

variation is known. The light rays are defined as the trajectories orthogonal to the 

wave-fronts.14 In the current case this leads to the ray trajectory defined by 

where ky is the y component of the wavevector. Using the particle analogy stated 

above, Eq. (6.3.4) can be understood as a velocity-momentum relation, 

dyldt = plm. We now assume that the solution of Eq. (6.3.4) is y(z; yo), where the 

parameter yo is the y position of the ray trajectory at z = 0, and is used to label the 

ray. By varying the parameter yo we can obtain a family of ray trajectories. In this 

family there exists a ray that connects any given point (y, z) back to the position 

(yo, 0). In other words, if we know the functional form of y(z; yo), we can invert the 

function to obtain yo(y, z). The parameter yo varies among rays, but is a constant 

along a ray. Since yo(y,z) is an invariant (a constant) along a ray trajectory, it has 



a convective derivative equal to zero along a ray, i.e., (ayo/az)dz + (3yday)dy = 0. 

This gives the slope of a ray as 

By using the invariant function yo(y,z) in Eq. (6.3.5) instead of using the phase 

variation $(y,z) in Eq. (6.3.4) to find the ray trajectory, we can solve the energy 

relation (6.3.1) along a ray trajectory without knowing the exact functional form of 

this ray trajectory. 

Equation (6.3.1) can be solved analytically along a ray trajectory. Using 

d/dz = a/& + (dy/dz)(a/ay) and the slope equations (6.3.5) and (6.3.4), we obtain 

which is nothing but the left hand side of Eq. (6.3.1) in one transverse dimension. 

We can now rewrite Eq. (6.3.1) in the form 

The amplification can be given by a simple integration along the ray, 

where z = zl is the entrance of the amplifier, yl is the corresponding y position in 

z = zl plane, and the integration of the power gain coefficient is along the ray 

where yo is an invariant. The intensity and phase profile at the entrance of the 

amplifier z=zl can be determined from solving for the free propagation of SSD 



pulses from the image-relay plane z=0, that is, from solving yo(yl, zl, t) = 

yo(y, z, t). This technique will be discussed in Subsection C.1. 

The energy relation between the position z = 0 and the current position z is 

shown in Fig. 6-1. Two neighboring rays with their initial positions at yo and 

yo+Ayo are used to illustrate the energy flaw. If we neglect the power gain in this 

illustration, we can intuitively obtain the energy-conservation relation I(yo, 0)Ayo 

= I(y, z)Ay or I(y, z) = (Ayo/Ay)I(yo, 0) for an infinitesimal Ayo. This is nothing 

but a special case of Eq. (6.3.7) for a, = 0 and zl = 0. Once the functional form of 

the ray trajectory y(z; yo) is available, we can use Eq. (6.3.7) to predict the laser 

intensity I(y, z) after propagation and amplification. 

The ray trajectories can be obtained by solving Eq. (6.3.2). However, by 

knowing that the direct result of the Hamilton-Jacobi equation is the equation of 

motion, - d2y = --- I a'9 for the particle, we can rewrite Eq. (6.3.2) as 
dt2 m ay 

for the ray trajectory y as a function of z with the initial condition y = yo at z = 0. 

One can also obtain Eq. (6.3.8) by taking the derivative of Eq. (6.3.2) with respect 

to y, and then using the slope relationship, dy/dz = (a@/ay)/ko, and the following 

identity 



Y Ray 
trajectories 

Yo + AYo 

Yo 

I(Y,z)AY = I(YO ,o)Ayo (for no power gain) 

Fig. 6-1 The energy relation between the position z = 0 and the current position 

z is shown. Two neighboring rays with their initial positions at yo and 

yo+Ayo are used to illustrate the energy flow. 



C.1. Amplitude Modulation 

For simplicity we first assume that the light rays have the form of straight 

lines within the amplifier, that is, d2y/dz2 = 0. This assumption is valid only when 

ai, l/ko, and p2 are all very small such that V + 0, as shown in Eqs. (6.3.3) and 

(6.3.8). This assumption is an extension of the geometrical optics approximation 

that assumes ho + 0.14 From Eqs. (6.2.5) and (6.3.4) we obtain the initial slope 

of the ray at z=0, y=yo as dyldz = (a$0/ay)/ko = -(G~/ko)cos(o,t+~yo). Since we 

assume that the light rays follow straight lines this slope is a constant along the 

ray. Direct integration gives the ray trajectory 

Varying the parameter yo we can obtain a family of rays that cover all the laser 

field. Inversion of Eq. (6.3.9) implicitly gives yo(y,z,t), the desired functional form 

for later analyses. 

Using the slope equation (6.3.4) and Eq. (6.3.2) for V = 0, we obtain 

and 

respectively. Note that the parameter yo becomes a function of y, z, and t from 

inverting Eq. (6.3.9). Integrating d@/dz = (ao/ay)(dy/dz) + (a$/az) along the ray 

gives the phase variation at position z, 



where Eqs. (6.3.10), (6.3.1 I), and the initial condition Qo = -6sin(omt + Pya) have 

been used. Note that in the above integration yo(y,z,t) is a constant along the ray. 

Differentiating Eq. (6.3.9) about y gives 

Using this result, the laser intensity can be obtained directly from Eq. (6.3.7): 

6P2z 
1 +-sin[omt + pyo(y, z, t)] 

6P2z YO 

1 + -sin[omt + Pyo(y,z, t)] 
k 0 

where 
~ P z ,  

Y1 = ~o(~ ,z , t ) - -  C O S [ ~ , ~  + PY. (Y, Z, t)]. 
k 0 

The integration of the power gain coefficient is along the trajectory described by 

Eq. (6.3.9). 

Equations (6.3.9), (6.3.12), and (6.3.14) are only valid in the range lzl c zr, 

where 

is the radius of curvature of the initial phase front Qo near sin(omt + pya) = -1, 

that is, the local focal length (in geometrical optics approximation) of the rays 

coming from the vicinity of sin(o,t + pya) = -1. When z 2 z, there exists a caustic 

line14 

6P2z 
1 + -sin[omt + pyo(y,z, t)] = 0 

k 0 



that gives the laser intensity equal to infinity in this approximation. In practical, 

however, when z - zr diffraction becomes significant and the light rays will no 

longer be straight. 

Equation (6.3.14) shows, in a nice form, that we can treat the intensity 

modulations due to propagation and power gain separately. We first neglect the 

power gain in Eq. (6.3.14) and focus on a simple free propagation case, I = Id{ 1 + 

(6P2z/k0) sin[omt + Pyo(y,z,t)]) for zl = 0. Figure 6-2 shows the intensity 

modulation of the initially phase-modulated light after free propagating a distance 

z = 20 m, with 6 = 4, wm/(2n) = 10 GHz, (bandwidth = 3 4 ,  hg = 1053 nm, ( k ~  = 

5.967 x 106 m-1 in air), and dWdh = 67 p a d ,  (P = 148 m-1). This gives z/zr = 

0.29. The laser pulse has a Gaussian envelope with a pulse width 750 ps 

(FWHM) and a Gaussian beam profile with a beam diameter 10 cm (FWHM). A 

three dimensional plot of laser intensity is shown in Fig. 6-2(a). The peaks are at 

the positions where sin[o,t + Pyo(y,z,t)] = -1. The intensity profile of the central 

part of the beam, y = 0, is shown in Fig. 6-2(b). The intensity modulation across 

the beam at a certain time is not shown here, but is similar to Fig. 6-2(b) with a 

different number of peaks. 

To explain the intensity modulation due to spectral gain-narrowing, we 

neglect the angular dispersion effects in Eq. (6.3.14), that is, calculate the 

intensity at the image-relay plane, z=0. Within small-signal-gain regime the 

amplified laser intensity becomes, I = I o e x p [ ~ ~ ~ ( ~ ~ i ) L l ,  where L is the amplifier 

length. The instantaneous frequency mi can be derived from Eq. (6.3.12): 



Time (ps) 

Fig. 6-2 Intensity modulation of initially phase-modulated light after free 

propagating a distance z = 30 m in air, with 6 = 4, P = 148 m-l, and ko = 

5.967 x 106 m-1. (a) Three dimensional plot of laser intensity. The 

peaks are at the positions where sin[o,t - Pyo(y,z,t)l = -1. (b) The 

intensity profile of a 750 ps pulse at center part of the beam, y = 0. 



which is a constant within the integral in Eq. (6.3.14) because the function 

yo(y,z,t) is invariant along the ray. When the bandwidth of the applied signal, ACOL 

= 26aIn, is much smaller than the atomic linewidth of the gain medium Ama, the 

gain coefficient can be simplified with a quadratic form, ar[ai(t)] = a 0  - 

(a"/2)[wi(t) - coal2, where a "  = -d2ar(a)/da2 evaluated at midband frequency 

a,. The power gain of the amplifier becomes 

where Go = exp(a&) is the power gain at midband, and parameters 

and 

represent, respectively, the magnitude of spectral gain narrowing and the degree of 

frequency mismatch between the fundamental laser frequency a 0  and the 

linecenter of the gain medium a,. In the last part of Eq. (6.3.20) we have assumed 

the curvature a "  = 8aO/(Aaa)2, which is exact for a Lorentzian lineshape. 

Figure 6-3 shows the intensity modulation due to spectral gain narrowing. 

Since the laser intensity is calculated at the image-relay plane, the intensity 

modulation due to propagation is not shown in this figure, i.e., in the absence of 

gain narrowing, the curve will be smooth. The solid line represents the intensity 

profile of the amplified pulse at y = 0 with the frequency match, d = 0. The dotted 

line represents the frequency-mismatched case, d = 1.08. The numbers used in 

this example are: a0L = 25 (for the entire amplifier system), 6 = 4n, am/2n = 10 

GHz, Aaa/2n = 5.4 x 1012 HZ (200 A FWHM), ~00/2n = 2.8470 x 1014 HZ (lo = 



10530 A), Gaussian pulse width 750 ps (FWHM), frequency offset 5 A, and at 

z = 0, the image plane of the grating surface. Therefore, a = 0.054 and the initial 

spectral bandwidth is about 9.3 A (Am= = 2661,). In the frequency-mismatched 

case, the intensity modulation is enhanced because of larger gain difference within 

the laser bandwidth. 

-1500 -1000 -500 0 500 1000 1500 

Time (ps) 

Fig. 6-3 Spectral gain narrowing of phase-modulated light can cause intensity 

modulation. The solid line represents the frequency matched case. The 

dotted line represents the case with 5 A linecenter mis-match. The 

intensity modulation is enhanced because of larger gain difference 

within the laser bandwidth. Parameters: In(G0) = 25,6 = 4x, om/2x = 

10 GHz, at y = 0. 



For a homogeneous gain medium in the gain-saturation regime, the 

population inversion equation (6.2.4) becomes 

where Eq. (6.3.7) has been used. From Eq. (6.3.22) we know that gain saturation 

is coupled with gain narrowing and angular dispersion. The former comes from the 

fact that the gain cross section o depends on the instantaneous frequency ai. If 

the angular dispersion is small and therefore (ayo/ay)/(ayo/ay)z, + 1, Eq.(6.3.22) 

can be further simplified as 

where Ntot r N dz is the total inverted population per unit amplifier area. Our 

calculation shows that for a small laser band width, A U L / A a a  c 0.1, the 

dependence of gain saturation on instantaneous frequency is negligible in a single 

amplifier. Thus classical gain saturation theory8 can be used here. However, if the 

angular dispersion within the amplifier is large, a numerical solution for 

Eq. (6.3.22) is required. 

C.2. Phase Modulation 

The phase variation described in Eq. (6.3.12) is a result of propagating the 

initially phase-modulated light. Careful image relaying can bring this phase 

variation back to the originally designed phase modulation (at z = 0) for SSD. 

Other small phase variations can be obtained as perturbation solutions from Eq. 

(6.3.2). The reactive (or phase-shift) part of the atomic response in a 

homogeneous gain medium is 



and the phase shift due to SPM is 

where the instantaneous frequency COi and the laser intensity I(z) are estimated 

from Eq. (6.3.18) and Eq. (6.3.14), respectively. Both phase variations can 

accumulate over the entire laser system. If the fundamental laser frequency o o  is 

matched to the linecenter of the gain medium ma, the value of $,p calculated from 

Eq. (6.2.3) and Eq. (6.3.24) is S (1/2)(AoJAoa) ln(G) which is small and can be 

neglected. The peak value of $SPM is usually designed near 5 to optimize the 

energy extraction efficiency of the amplifier system. 

Figure 6-4(a) shows the power spectrum of the amplified pulse at y = 0 

and at an image-relay plane, z = 0. The bandwidth is about 9.3 A, and the total 

B-integral is 5. Other parameters are the same as the gain narrowing case, except 

a = 0 and d = 0. The spectral distribution is almost the same as when the total 

B-integral is equal to zero, that is, the amplitude of each frequency mode is still 

described by the Bessel functions in Eq. (6.1.1). Fig. 6-4(b) shows the detailed 

view of the power spectrum. The finite width of each frequency mode is due to the 

finite laser pulse width. Each frequency mode separates into two bumps due to 

SPM. Whether this frequency split affects the frequency up-conversion or the 

beam uniformity should be further studied. 



1052.5 1053.0 1053.5 1054.0 

Wavelength (nm) 

1052.95 1053.00 1053.05 1053.1 0 

Wavelength (nm) 

Fig. 6-4 (a) Power spectrum of the amplified pulse at y = 0, with B-integral = 5, 

6 = 4x, and om/2x = 10 GHz. (b) Detailed view of (a) shows that each 

frequency mode separates into two bumps due to SPM. 



C.3 Self-Focusing 

In our analysis we will consider a constant intensity profile I(z=O) = I. in 

the y direction. In this approximation there would be no self-focusing in the 

absence of SSD phase modulation. For simplicity we let zl = 0 , a, = constant, and 

ai = 0. Substituting Eq. (6.3.7) into Eq. (6.3.3) and then into Eq. (6.3.8) gives 

We try the ray in the form 

as a modification of the straight ray described in Eq. (6.3.9), and substitute it into 

Eq. (6.3.26). Then we choose the rays initially from the region sin(omt+pyo) = -1, 

where the light with initial angular dispersion tends to focus. With this choice, we 

find that the function M in this region is independent of yo, and obtain 

with initial conditions M(0) = 0 and M'(0) = 8P*/ko = l/zr, where 

is an index describing the ratio of the self-focusing force to the diffraction force. In 

this region the relative intensity modulation becomes 1/10 = exp(a,z)(ay&y) = 

exp(a,z)/(l-M), and the relative beamlet width becomes Ay/Ayo = (1110)-1 = 

(1-M)/exp(a,z). 



In the right hand side of Eq. (6.3.28), the first term describes the diffraction 

force and the second term describes the self-focusing force. When U > 11462 the 

value of M increases as z increases. However as M approaches 1,  the diffraction 

force grows with a factor l / ( l - ~ ) ~  stronger than the self-focusing force, and 

decreases the value of M. 

If the power gain in Eq. (6.3.28) is neglected, this equation can be 

integrated to give 

Further integration gives the local focal length zf in a nonlinear medium, 

where Mmax is the root of dM/dz = 0 between 0 and 1, obtained from Eq. (6.3.30). 

For U>>l, or 6>>1, we can approximately solve the integral in Eq. (6.3.31) 

leading to analytic form 

The maximum intensity modulation, r = (I/I0)rnax, at the focus, can be obtained 

from solving 

with known 6 and U. Equation (6.3.33) is derived from Eq. (6.3.30) by setting 

dM/dz = 0 and r = l/(l-M). 

Figure 6-5(a) shows the ray trajectories under different self-focusing 

conditions U = 0, 1, 10. U=O corresponds to the results from Subsection C.l with 



diffraction included. This figure is obtained from numerical integration of Eq. 

(6.3.28) with 6 = 4, and the power gain coefficient ar = 0. Figure 6-5(b) shows the 

local self-focusing length as a function of U with different values of 6. These curves 

are obtained from Eq. (6.3.31). For large U, they approach the same curve 

described by Eq. (6.3.32), which is shown in Fig. 6-5(c). Since the local self- 

focusing length is always smaller than the parameter zr = kO/SPz, it is important to 

know the value of z, when designing the initial phase modulation. For example, if 

we design the initial phase modulation with the following data, 6 = 4, om/2z = 10 

GHz, (bandwidth = 3 A), = 1053 nm, dB/& = 500 prad/A, (P = 1100 m-I), nz = 

3x10-16 cmZ/W, ng = 1.5, and 10 = 5 GW/cmz, then zr = 1.85 m and U = 4.14. From 

Eq. (6.3.32) we obtain the local self-focusing length zf = 90 cm. At the focus the 

local intensity will increase -8 times as a result of Eq. (6.3.33). 

Normalized distance (z/zr) 



Fig. 6-5 Local self-focusing of light induced by the initial phase modulation. (a) 

The ray trajectories under different self-focusing conditions, U = 0, 1, 

and 10, and 6 = 4, a, = 0. (b) The normalized local self-focusing length 

zf/zr as a function of U in different values of 6. (c) Asymptotic solution 

of zf/zr for large U. 



CONCLUSION 

We can treat the power-gain coefficient as a function of instantaneous 

frequency and thus simplify the equations for the amplification of broad-band 

phase-modulated laser pulse. Through this treatment and following the light rays, 

we can solve for the intensity and phase modulation of this initially phase- 

modulated light during propagation and amplification. 

Intensity modulations due to propagation (angular dispersion) and 

amplification (gain narrowing) can be treated separately within the geometrical 

optics approximation. This helps the design of the initial phase modulation in SSD 

to avoid the problems arising from propagation, image relay and amplification. For 

an amplification system with the total B-integral equal to 5, each frequency mode 

of the phase-modulated light split into two bumps. This may affect the final 

performance of the laser pulse in SSD. 

Local self-focusing is an important issue in amplification of the initially 

phase-modulated light. The amplitude of the electro-optical modulation 6, and the 

parameter U = (n21/no)(ko/6P)2 determine the local self-focusing strength, where 

p= 2x(de/dh)(o,/oo). The local self-focusing length is always shorter than the 

reference distance z, = kO/6P2. For a laser pulse with a large angular dispersion 

amplified to the G W / C ~ ~  range, the local self-focusing length can be shorter than 

one meter. 
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CHAPTER VII 

SUMMARY 

The amplification and propagation of broad-bandwidth, phase-modulated 

laser pulses was studied experimentally and theoretically. The near 1053 nm 

Chirped-Pulse-Amplification (CPA) laser system at the Laboratory for Laser 

Energetics (LLE) at the University of Rochester was used for these experiments. 

In theoretical analysis the power gain of the amplifier was treated as a function of 

the laser's instantaneous frequency. With this approximation non-ideal 

amplification processes, such as gain narrowing, gain saturation, and self-phase 

modulation (SPM), have been clearly expressed and understood. 

Several techniques that are currently desired in laser applications are 

successfully accomplished. Theoretical analyses and experiments on CPA lasers 

led to the production of high-power ultrashort pulses with an intensity contrast 

exceeding 105:l. Experiments on second harmonic generation of 1.6-ps pulses 

resulted in the energy conversion efficiency of up to ~ 7 5 % ~  the highest for 

ultrashort pulses ever being reported. The combination of the spectral shaping and 

CPA techniques creates a jitter-free wave-mixing condition for nonlinear- 

refractive-index measurement, which is currently strongly in need in nonlinear 

optics. The use of ray-trajectory function in SSD calculations gives an intuitive 

understanding of energy conservation for light propagation. This calculation 

technique is also important in nonlinear optics. 

In Chapter 11, we used the concept of instantaneous frequency to simplify 

the pulse propagation equations for CPA. As a result, the power gain and phase 



variations generated from the nonlinear amplification process became functions of 

time. An optical diffraction analogy illustrated the amplitude and phase 

modulations of the chirped pulse during amplification, and intuitively showed the 

distortion of the compressed pulse and its power spectrum. 

In the CPA process the bulk of the amplitude modulation is due to spectral 

gain narrowing, and most of the phase modulation is from SPM. Gain narrowing, 

which may cause broadening of the final compressed pulse can be, however, 

employed as a pulse shaping tool. SPM not only broadens the compressed pulse 

but also enhances the background pedestal and should be avoided. In the gain 

saturation regime, both gain saturation and gain narrowing distort the pulse 

envelope and must be considered together. A frequency mismatch between the 

applied signal and the amplifiers may also distort the amplified pulse and further 

degrade the compressed pulse. 

SPM in phosphate Nd:glass CPA laser systems that use fiber and 

expansion gratings to process the initial chirped pulses has been identified 

experimentally and theoretically. If the peaked edges of the chirped pulse are not 

well suppressed by spectral gain narrowing and frequency matching, they may 

undergo a high-frequency phase shift when SPM occurs. This high-frequency 

phase shift with its own wide-spread group velocity in compression gratings 

contributes to the background pedestal of the final compressed pulse. 

In Chapter 111, we investigated four different contributions to the pedestal 

associated with a CPA laser system and the techniques to reduce them leading to 

the production of high-intensity contrast (>105:1), 0.9-ps Gaussian pulses. The 

pedestal consists of: (a) a background pedestal resulting from SPM during the 

operation of the regenerative amplifier near gain saturation; (b) etalon effects; (c) 



pulse wings; and (d) satellite pulses. The last two result from the square top 

envelope and the nonlinear chirp generated in the optical fiber, respectively. The 

pulse was switched out before gain saturation to avoid further frequency 

modulation in the regenerative amplifier. The pulse wings were suppressed by 

gain-narrowing in the spectral line-center matched regenerative amplifier. A 

saturable absorber was used to suppress the satellite pulses and further reduce 

the pedestal. 

With this pedestal reduction, high-intensity contrast picosecond pulses 

with intensities exceeding 1016 ~ l c m 2  were produced with the current system, 

with higher intensities available with larger gratings. The results of this work 

make possible the study of high-intensity ultra-short laser plasma interactions 

with a fiber-grating CPA system. 

In Chapter IV experiments on frequency doubling of picosecond pulses 

using Wang and Dragila's scheme1 were presented. A KD*P crystal was used to 

give the predelay in this experiment for its well known properties and low 

absorption losses at 1053 nm. A type I1 KDP crystal was used as an frequency 

doubler. When a predelay between o and e waves was introduced in front of the 

doubling crystal the conversion efficiency increased from -40% (without predelay) 

to -75% (with predelay). The agreement between the experiment and theory is 

excellent. Experiments on polarization matching for frequency doubling are also 

reported. Depolarization or polarization mismatching of the laser pulse decreases 

the conversion efficiency. This is consistent with theoretical predictions. 

This simple and effective conversion scheme is well suited for picosecond 

high power lasers. Further experiments should include the second-harmonic 

pulse-shape measurement to investigate the pulse-shortening and pedestal 



reduction predicted in Ref. 1. Frequency tripling using two type I1 crystals (Ref. 2 

and 3) for picosecond pulses should be also considered since the group velocity 

delay is automatically compensated in this tripling scheme. The capability of 

operating high-power picosecond lasers at several different frequencies should be 

possible in the near future. 

In Chapter V, a simple solution to synchronization jitter among CARS input 

sources was presented. Spectral shaping of a linearly chirped pulse in the 

expansion gratings of a CPA laser was used to produce two pulses with different 

frequencies. A regenerative amplifier of appropriate bandwidth was used to amplify 

these two pulses. After amplification these two pulses were temporally mixed 

through compression gratings. With this technique two pulses are jitter-free and 

spatially identical. The alignment and synchronization are thus greatly simplified. 

In general, any ultra-short pulse source used in conjunction with expansion and 

compression grating pairs can serve as driver for this kind of four-wave mixing 

experiment. To reach other wavelength, sources such as Ti:sapphire could be used 

in a similar manner. 

The energy transfer between two beams in this experiment is treated as a 

noise source. This two beam coupling phenomena, however, provides the 

relaxation time measurement by using the beating between the two lines. As the 

beating period is equal to the relaxation time of the nonlinear medium, the energy 

transfer between two signals is maximized. From the line ratio change one can 

measure the resonant condition and, as a result, the relaxation time. 

The laser technique for producing two pump waves used in this experiment 

can be extended to produce synchronized multiple waves by changing the spectral 

window. These synchronized waves can be mixed by compression gratings for 



wave-mixing applications. They also can have different delays between each other 

by applying optical delay near the spectral window. This technique can be used for 

pump-probe experiments. The advantage is that each signal has its own 

distinguishable frequency but nearly the same group velocity so that collinear 

pump-probe experiments are possible. A single spectrometer is enough to 

measure the results. The identical beam profiles of pump and probe waves 

generated from the same regenerative amplifier also reduce the experimental 

uncertainty due to beam pattern fluctuation in usual two-beam pump-probe 

experiments. 

In Chapter VI, we again treated the power-gain coefficient as a function of 

instantaneous frequency and thus simplify the equations for the amplification of 

broad-band phase-modulated laser pulse for SSD. Through this treatment and by 

following the light rays, we calculated the intensity and phase modulation of this 

initially phase-modulated light during propagation and amplification. 

Intensity modulations due to propagation (angular dispersion) and 

amplification (gain narrowing) can be treated separately within the geometrical 

optics approximation. This helps the design of the initial phase modulation in SSD 

to avoid the problems arising from propagation, image relay and amplification. For 

an amplification system with the total B-integral equal to 5, each frequency mode 

of the phase-modulated light splits into two bumps. This may affect the final 

performance of the laser pulse in SSD. 

Local self-focusing is an important issue in amplification of the initially 

phase-modulated light. The amplitude of the electro-optical modulation 6, and the 

parameter U = (n21/no)(ko/6P)2 determine the local self-focusing strength, where 

p= 2n(d0/dh)(om/oo). The local self-focusing length is always shorter than the 



reference distance z, = ko/6P2. For a laser pulse with a large angular dispersion 

amplified to the G ~ I c r n 2  range, the local self-focusing length can be shorter than 

one meter. 

In the appendix detailed derivations of the instantaneous-frequency 

approximation for the amplification of phase-modulated light is presented. We first 

simplify the resonant-dipole equation and obtain the modified rate equation. We 

then compare the results to those from the conventional rate-equation 

approximation for narrow-band pulses. 
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APPENDIX 

In this appendix we simplify the resonant-dipole equation1 for broadband, 

phase-modulated lasers through the use of the instantaneous frequency 

approximation. We then compare the results from this approximation to those from 

the conventional rate-equation approximation for narrow-band pu1ses.l 

In the standard approach for a quasi-monochromatic beam propagating in 

an isotropic medium along z direction, the applied signal and the resulting electric 

polarization (electric dipole moment per unit volume) are first written in the form 

and 

where Re means the real part, ko is the wavevector (in the medium) at the carrier 

frequency oo, r is the shorthand for spatial coordinates x, y, z, and ^t is the 

ordinary laboratory time coordinate. We then follow the same procedure described 

in Chapter I1 to obtain the basic equations that govern the light propagation in a 

homogeneous amplifier. This includes the use of the slowly varying envelope 

approximation (SVEA) and the introduction of the moving pulse time frame 

t = i - Z / C ,  (A31 

where c is the speed of light in the gain medium. We further consider the 

transverse variation of the laser field in this appendix, which is not shown in Chap. 

11. The three basic equations are: the resonant-dipole equation 



the population-inversion equation 

2 * 
aN(r't) = i- [E; (r, t)p0(r, t)-E0(r, t ) ~ i ( r ,  t)], 

at 4~ 

and the paraxial wave equation 

where ma and Ama are atomic transition frequency and atomic linewidth, N(r,t) is 

the number density of the inverted population, K is a constant, 2* is a 

dimensionless population saturation factor with values between 1 and 2, 

depending on the gain mediuml, E is the dielectric permeability of the gain medium, 

k" is the second derivative of k(o) with respect to o and evaluated at oo , 

P2 = 2xnZE/hO is a parameter related to the optical Kerr coefficient n 2 ~ ,  and ho is 

the laser wavelength in vacuum. In Eq. (AS) we have neglected both pumping 

effects and upper-level relaxation during the transit time of the amplified pulse. 

The right hand side of Eq. (A6) includes the common effects encountered in laser- 

pulse amplification: signal gain, diffraction, dispersion, and nonlinear effects. 

The resonant-dipole equation (A4) is a first order ordinary differential 

equation. It can be solved and written in the following integral form: 

K - 
P,(r,t) = i-J N(r, t - 7) A(r, t - 7) exp --7 +i(w, -coo)= - i ~ ( r , t  - 7) dz. (A7) 
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In Eq. (A7) we have used the expression 

Eo(r,t> = A(r,t) exp[-iQ(r,t)l (AS) 

to describe the phase-modulated light. Both A(r,t) and Q(r,t) are real functions. 

The term exp(-Aoaz12) in Eq. (A7) describes the impulse response of the 

resonant dipoles. The response time is equal to the dephasing time T2 ~ I A C O ~ . ~  



The integral in Eq. (A7) can be carried out as an asymptotic power series using 

integration by parts. The leading behavior of Po(r,t) is 

where 

is the instantaneous frequency and @"(r,t) is the second derivative of the phase 

variation with respect to time t. Repeated integration by parts gives the full 

asymptotic expansion of Po(r,t). 

Equation (A9) can be further simplified by the following assumptions. First, 

for an optical pulse with large frequency modulation the pulse duration zp is much 

larger than the dephasing time T2. This can be understood by the fact that the laser 

pulse is far from the Fourier transform limited and the bandwidth of the amplifier is 

chosen to be large enough to cover the entire bandwidth of the laser pulse, i.e. 

Second, the laser field is not strong enough to create Rabi-frequency oscillations,l 

so the population inversion N(r,t) varies slowly. With these two assumptions we 

can conclude 



2 a -- 
AU, at 

[ ~ ( r , t ) ~ ( r , t ) ]  cc N(r, t) A(r, t), 

and drop the second term of the series in Eq. (A9). The last assumption for the 

phase-modulated light is 

This statement can be verified for both chirped-pulse amplification (CPA)~ and 

smoothing by spectral dispersion (ssD).~ In CPA the phase modulation can be 

expressed in a quadratic form o(t) = - b ( t / ~ ~ ) ~ / 2 ,  where b - T ~ A  o L / 2  is a 

parameter describing the frequency chirp.5 Relationship (A13) is equivalent to 

2 

= L(%) cc 1. 
b A o ,  

This is commonly true since the value of b is typically chosen from a few hundred 

to several thousands for a practical CPA laser. In SSD, the initial phase 

modulation of the laser pulse can be described as $=6sin(omt+py), where 6 is the 

amplitude of the electro-optical modulation, om is the angular frequency of the 

modulation, and P is a parameter related to the angular di~~ersion.4 Statement 

(A 13) becomes 

This is also true since om << Ao,. Therefore the third term of the series in Eq. 

(A6) is negligible. As a result of the three assumptions stated above, Eq. (A6) 

becomes 



where A(r,t)exp(r,t) = Eo(r,t) has been used again. 

Equation (A16) describes the relation between the electric field and the 

electric polarization. By using Eq. (A16) the term describing the signal gain in Eq. 

(A6) can be written in the familiar form 

with 

where 00 = K/&cAoa is the gain cross section at linecenter, and mi is the 

instantaneous frequency described by Eq. (A10). The imaginary part of the gain 

coefficient a describes the phase shift of the signal due to the gain. The effect of 

this phase modulation is usually negligible in pulse amplification. Therefore we can 

treat the power gain coefficient as a real number. For convenience we define the 

gain cross section as a function of the instantaneous frequency, 

such that the power gain coefficient can be described as the conventional form 



Substituting Eq. (A16) into the population equation (A5), gives the rate 

equation in the form 

a ~ ( r ,  t) 2* 
at = - -o[oi ti00 (r, t)]N(r, t)I(r, t), 

where I(z,t) = &cIEo(z,t)l2/2, is the laser intensity. Equation (A21) can then be 

used to describe the gain saturation for broadband phase-modulated laser pulses. 

The conventional rate-equation approximation for narrow-band 

(homogeneous) lasers assumes 

The resonant-dipole equation (A4) can then simplified as a linear-susceptibility 

relation 

where x is the electric dipole susceptibility and oo is the carrier frequency of the 

laser pulse. Under the approximation (A23), the population equation (A5) 

becomes the usual rate equation 

where 

is the gain cross section at the laser carrier frequency oo. 



We now compare the results of the instantaneous-frequency approximation 

for broadband phase-modulated lasers to those of the conventional rate-equation 

approximation for narrow-band lasers, that is, compare Eqs. (A16), (A19), and 

(A21) to Eqs. (A23), (A25), and (A24), respectively. For phase-modulated pulse 

the only difference is that the instantaneous frequency is used instead of the 

carrier frequency oo. For a laser pulse without phase modulation the 

instantaneous frequency defined by Eq. (A10) is equal to the carrier frequency. In 

this case the instantaneous frequency approximation reduced to the conventional 

rate-equation approximation as expected. 

There is another method, presented by D. W. Hall et a1.,6 to model the 

amplification of broadband phase-modulated pulses. The broadband laser pulse 

was separated into several monochromatic waves. The amplification of each 

frequency mode was assumed to be described by the rate-equation approximation. 

This approach, however, may not be convenient for a real case, since the nonlinear 

effects, such as self-phase modulation and self-focusing, become important. For 

example, the initial SSD pulse can be expressed as4 

where we have dropped the notation Re for simplicity. The initial amplitude of the 

frequency mode oo + no, is AJ,(6). A spatial phase modulation nJ3y is also 

presented in this frequency mode. To describe the nonlinear effects, one needs to 

deal with all couplings among all frequency modes, which will be difficult. Instead, 

the advantage of using the instantaneous frequency approximation is clear shown 

in Chapter VI. Several features of the pulse distortion due the propagation and the 

non-ideal amplification process are successfully described in that chapter. 
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