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Abstract 

In this thesis, nonlinear birefringence in optical fibers has been investigated 

both experimentally and theoretically. Good agreement has been found between 

experiment and theory. Its applications in ultrafast optical pulse shaping has been 

discussed. A more efficient scheme of pulse shaping based on nonlinear 

birefringence has been proposed and analyzed. It was found that the ellipticity of 

incident beam can be used to optimize the efficiency of nonlinear transmission. 

Soliton stability and soliton collisions in birefringent optical fibers were 

investigated analytically and numerically. A virial theorem for the dynamics of 

vector temporal solitons was obtained. The nonlinear dependence of the soliton-fusion 

threshold on the birefringence was obtained for the first time, and was confirmed by 

computer sin~ulation. The collisions of vector temporal and spatial solitons was 

studied numerically. It was found that vector soliton collisions can be classified into 

three different regimes: (i) soliton fusion; (ii) resonant collision; (iii) perturbative 

regime. The application of collisions of vector solitons in all-optical switching has 

also been discussed. 

Finally, the self-defocusing of 1 ps laser pulses in a thin gas target was 

investigated experimentally. It was found that self-defocusing depends strongly on the 

focal geometry of the optical system (or 1%). It was found that the intensity profile of 

laser beam was strongly modified, double foci or cone formation was observed at a 

pressure of 2 torr. Both the saturation of effective focal shifts and the cone formation 

are in agreement with theoretical predictions. 
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CHAPTER 1 

Introduction 

1.1 Origins of  optical nonlinearities 

Traditionally, the response of an optical medium to applied laser radiation 

becomes nonlinear when the polarizations density of the medium depends nonlinearly 

on the laser field. According to Maxwell's equations, this nonlinear polarizations will 

be a source of new radiation. It is well known in nonlinear optics that the nonlinear 

polarizability is responsible for many important phenomena such as harmonic 

generation, frequency mixing, stimulated Ranian scattering (SRS), stimulated 

Brillouin scattering (SBS), phase conjugation, and nonlinear refraction. 1-7 The 

origins of this nonlinear polarizations can be microscopic, or macroscopic, depending 

on whether the nonlinear responsc is from electronic excitation within an atom or a 

molecule, or from acoustic excitations of the bulk niediuni. Sometimes, the 

temperature of the mediuni riscs due to linear and nonlinear absorption, which 

modifies its optical propertics and thus causes a nonlinear response. Since different 

excitations have difkrcnt rcsponse Limes, the corresponding nonlinearities also have 

different response tinies. For example, electronic polarizations is alniost 

instantaneous, niolecular oricntation has a response time of picoseconds, 

electrostriction has a response tinie of nanoseconds, saturated atomic absorption has a 

time scale of 10 nanoseconds, while ~hcrmal effccts have response tinies of 

milliseconds.7 

Among the variety of nonlinear niechanisms, only electronic polarizations is 

nearly instantaneous. This ultrafast nonlinearity has found niore and more 

applications in fields such as self mode-locked lascrs, or Lhe Kerr-lens mode locking 



(KLM) laser, 8 9 9  optical switching and optical computing.1° The purpose of this 

thesis is to investigate the nonlinear propagation of ultrashort pulses and their 

applications. We are particularly interested in nonlinearities resulting from the 

instantaneous electronic response. All other kinds of nonlinear contributions will be 

ignored due to their finite response time. The mechanisms of nonlinear electronic 

polarizations can be further classified into two subgroups depending on whether the 

nonlinearity comes from (a) the anharmonic motion of bound electrons under the 

influence of an applied field or (b) the field-generated free electrons or free-carriers. 

It should be pointed out that the second kind of nonlinearity does not come from the 

free electrons theniselves, since the response of free electrons will become nonlinear 

only when the laser intensity is relativistically high (> 10'8 w/cm2). l  l The 

nonlinearity comes from the fact that the ionization changes the free electron density 

in the medium, and thus changes the refractive index. When the free-carrier or 

electron densities are changed by optical excitations, we are concerned with real 

transitions. The resulting nonlinear processes proceed via a real exchange of energy 

from the optical field to the niediuni, and are often referred as 'dynamic nonlinearities' 

in  the field of sen~iconductors. l 2*13  This kind of nonlinear response occurs in 

semiconductors when free electrons or carriers arc generated by an applied field, or 

in gases and bulk media when ionization occurs. For bound electrons, the nonlinearity 

comes from the virtual transitions between the ground state and other virtual states 

when the laser wavelength is far away from any resonance.' From the Heisenberg 

uncertainty principle, we know [he response t in~e is inversely proportional to the 

energy difference between the ground state and the excited states, which corresponds 

to a time scale around 10-l6 seconds, a l~~ ios t  instantaneous. The tunneling rate for 

hydrogen is approxinlately lOI3 s-l at an intensity of 1014 W/cni2, which corresponds 

a response tinic of  a few optical cycles for 1 pnl wavelength light. It should be 



mentioned that the dynamic nonlinearity in  a gas medium is much simpler than that in 

semiconductors, in which the collective effects of electrons, energy band structure, 

and Coulomb shielding effects play very important roles in modifying the nonlinear 

response. In this thesis, thc only dynamic nonlinearity we consider is that in low- 

density gases. Although the nonlinearities of bound electrons and ionized free 

electrons all have a fast response, they have different properties. In this thesis, we 

study the effects of these two nonlinearities on the propagation of ultrashort pulses 

and their practical applications. 

1.2 Significance of nonlinear propagation of r~ltrashort pulses 

The propagation of lascr radiation bccomcs nonlinear when the optical 

properties of a medium are modified due to the presence of intensc light. The most 

important optical propcsty that affccts light propagation is the refractive index. 

Therefore, nonlinear propagation usually mcans that the refractive index becomes a 

function of the intensity of applied field, or mathematically, n = no+ An(I), whcre n is 

the total refractive index, no is the linear refractive index, An is the nonlinear 

refractive index. In most applications in which the nonlincar effect is relatively weak, 

An can be expandcd as An = n2I +nJ2+. . ., where n2I >> n@. 

It is very important to study the nonlinear propagation of ultrashort pulses. 

Nonlinear refraction is universal h s  all nonlincar media. Nonlinear propagation has 

strong effccts on other kinds of nonlinear interactions such as three and four-wave 

mixing, SRS and SBS. For instance, it can dctune the three and four-wave mixing 

processes,14~15 reduce the threshold of SRS? and change the characteristics of high- 

order harmonic generation.16 Sccond, nonlincar refraction is a phase-insensitive 

process in the sense that it dcpends only upon laser intensity, it does not require any 

phase matching. Third, i t  provides an important method for conlrolling light with light 



more rapidly than is possible with any electronic device can provide. In recent years, 

many applications have been found in the area of optical switching, optical 

computing, and optical communications. 10 

For most applications in which the nonlinear effect is weak, the refractive 

index can be truncated as n = no + n2 I. The values of n2 can be either positive or 

negative, depending on the detailed nonlinear mechanisms. For the electronic 

polarizations in which we are interested in this thesis, n2 is positive for nonlinearity 

coming from bound electrons, and negative for ionized free electrons. Aside from the 

sign of n2, there is another important factor which causes very different behaviors of 

nonlinear propagaiion of short pulses; dispersion. Since we are interested in pulse 

widths lcss than 10 ps, chromatic dispersion nlay play an important role in the 

propagation of short pulses. Chron~atic dispersion is usually described by group 

velocity dispersion ( G V D ) . ~  The combination of nonlinear refraction and GVD 

generates a variety of phcnomcna such as opiical solitons, spatial-temporal self- 

focusing or dark solitons, orland self-dcfacusing.1~ The spatial analogy of GVD is 

diffraction, and the combination of nonlinear refraction with diffraction is responsible 

for spatial solitons, self-focusing, and self-defocusing. In this thesis, we study 

different cases depending on whciher GVD or diffraction is important, or the sign of 

n2 is positive or negative. Different combinations of n2, GVD and diffraction can 

generate very different spatial and temporal behaviors. 

1.3 Nonlinear birefringence and its applications 

In an isotropic nonlinear medium, the nonlinear refraction manifests itself in 

many ways. Nonlinear birefrinsence (or nonlinear polarizations rotation) is one of the 

more interesting phenomena. In a birefringent medium, the polarizations state of an 

incident laser beam will change as i t  propagates if the iniiial polarizations siaie is not 



one of the polarizations eigenstates of the birefringent medium. Nonlinear 

birefringence means that the medium becomes birefringent due to the presence of 

intense light, and the polarizations state will change during propagation through the 

medium. Nonlinear birefringence can be best understood in terms of self-phase 

modulation (SPM) and cross-phase modulation (XPM). When there are two or Inore 

laser beams copropagating in a medium, each beam experiences some amount of 

nonlinear phase nlodulation due to the effect of nonlinear refraction. There are two 

contributions to the nonlinear phase nlodulations, one comes from the presence of the 

beam itself, the other is Lio111 all Lhe othcr copropagating beams. The nonlinear phase- 

nlodulation due to the beam is referred as SPM, while those due to the presence of 

other intense beams is referred as XPM. An elliptically polarized beam can be 

described by two linearly and orthogonally polarized beams. In a nonlinear Kerr 

medium, the effect of SPM and XPM generates a phase difference between these two 

orthogonally polarized components, similar to the situation in which a light beam 

passes through a birefringent mediun~. The difference is that in the former case, the 

phase difference is intensity-dependent, and that is why it is called nonlinear 

birefringence. The physical reason for this phase difference comes from that fact that 

SPM and XPM have different strengths even if the beanls have the same intensity. 

Since its first discovery in 1964,18 nonlinear birefringence has been found 

very useful in many applications. Basically, there are two reasons that make nonlinear 

birefringence practical. One comes from that fact that its nonlinear response is almost 

instantaneous, which makes i t  very desirable in broadband optical devices such as 

optical switches with THz bandwidths. The other reason is related to the advanced 

technology of optical fibers. The small mode size and extremely low loss of optical 

fibers provide an ideal nonlinear medium. The small nlode size makes it possible to 

obtain high intensity with relatively low power, while low loss makes i t  possible to 



use longer lengths of optical fiber so that enough nonlinear phase modulation can be 

accumulated. Furthermore, it is difficult to separate nonlinear birefringence from self- 

focusing in a bulk medium, while there is no self-focusing in optical fibers. Nonlinear 

birefringence or self-induced birefringence in optical Kerr media has found many 

applications since its discovery by Maker et a1.18 For example, nonlinear 

birefringence has been used in optical shutters and optical niodulators with 

picosecond response tinies,19 pulse shaping or intensity di~criminators ,~0 optical 

pulse ~ l e a n e r s , ~ l - ~ 3  fiber-optic logic gates10v24.25 high-resolution distributed fiber 

sensors, 26 and for passive mode locking of fiber lasers. 27-30 

One goal of this work is to perforni Inore detailed investigations of nonlinear 

birefringence, and try to find optimal conditions for using nonlinear birefringence. 

Since residual birefringence always exists in optical fibers, the polarizations rotation 

depends on both linear and nonlinear hircfringence in a very complicated manner. 

From the point of view of practical applications, there are two very interesting cases: 

one is the case in which nonlinear birefringence doniinates, the other is the case in 

which linear birefringence dominates. In the former case, Maker et a1 found there 

are two nonlinear eigenstates of polarizations that will not change with propagation, 

the linearly and circularly polarized states. For a given incident laser intensity, the 

nonlinear polarizations rotation is a function of the polarizations ellipticity. Since 

linear and circular polarizations arc eigenstates, there lnust exist an optimal ellipticity 

for which the nonlinear birefringence is the largest. In the latter case, the effect of 

nonlinear birefringence can be understood in the following way. If the angle between 

the polarizations direction of the incident laser light and the fast axis of the optical 

fiber is not zero, the electric fields along both fast and slow axes will not be zero. 

Therefore, both components induce refractive indcx changes not only along their own 



axis but also along the other axis, that is, the refractive index change along one axis is 

due to both self-phase n~odulation and cross-phase n~odulation. As a consequence of 

this nonlinear birefringence, the polarizations of the total electric tield rotates, and the 

electric field polarizations will in general be elliptical. If the linear birefringence is 

compensated for and a polarizer is used to block low intensity light that does not have 

a polarizations rotation, then the transmitted light will depend on the incident power 

and polarizations direction. Previous experiments3 1 7 3 2  only confirmed the power 

dependence of the transmission; discrepancies were found in the relation between 

transn~ission and input polarizations. For example, when the incident polarizations is . 
along one of the optical axes, there is no electric tield along the other axis. Thus, there 

should be no nonlinear birefringence and, hence, zero transnlission. Previous 

experimental results showed that the nonlinear birefringence was not zero, and no 

experiment confirmed the overall behavior of transnlission with respect to the 

polarizations direction. This discrepancy was believed to be due to the random 

fluctuations of the birefringent axis and the misalignment of the incident polarizations 

vector in the experiments. One disadvantage of previous investigations was the low 

switching contrast since the residual birefringence of optical fibers was not 

compensated, and the transmission was not optimized. In this thesis, we investigate 

the nonlinear transnlission under a variety of conditions, and find the optimal 

conditions. 

1.4 Soliton stability and collisions in birefringent optical fibers 

In 1973, Hasegawa and Tappcrt realized that optical fibers exhibit both the 

optical Kerr effect and negative GVD at wavelengths longer than 1.3 nun. 33 Thus 

they predicted optical fibers could satisfy the mathematical requirements for the 

propagation of optical solitons, or nonlinear pulses that do not suffer frcm any 



distortion-of the pulse shape as they propagate. The broadening caused by linear 

dispersion associated with any short pulses is compensated for by nonlinear effects. 

Seven years after the prediction by Hasegawa and Tappert, Mollenauer et a1.34 

succeeded in the generation and transmission of optical solitons in a fiber for the first 

time. One of the important applications of optical solitons is in high bit-rate optical 

transmission systems. Since solitons are not distorted by fiber dispersion, they can be 

transmitted for an extended distance only by providing amplification to compensate 

for the fiber loss. Since fibers can be converted to amplifiers by appropriate doping, 

35 this property of a soliton can be used to construct an all-optical transmission 

system, which is much more economical and reliable than a conventional system that 

requires repeaters involving both photonics and electronics in order to reshape thc 

optical pulse distorted by the fiber dispersion. Thc early experiments were carried out 

using Raman amplification. With the dcvelopmcnt of diode-pumped Erbium-Doped- 

~ i b e r - ~ m ~ l i f i e r s ( ~ ~ ~ ~ ) 3 5 ,  a much morc practical amplifier became available. All 

long-distance-fiber-propagation experin~cnts arc currently done with such amplifiers. 

~ o l l e n a u e r 3 6 - ~ ~  demonstrated this repeaterless transn~ission system over distances 

of 12,000 k n ~ .  Another in~portant applicaiion of optical solitons is for all optical- 

switching. The aim of all optical-switching is to effect the travel of one optical pulse 

by another, the 'signal' pulse by the 'control' pulselo. Islam used the properties of 

soliton collisions in a birefringent libcr to build all-optical switching devices, called 

soliton-dragginp devices.1° The advantage of using solitons instead of ordinary 

optical pulses comes from thc unicluc properties of solitons. Since solitons can adjust 

themselves in such a way that the phasc is uniform across the whole pulse, they can 

be switched as a whole unit, while for non-soliton pulses only high intensity part will 

be switched, and the pulse shape will be distorted due to the intensity-dependent 

transmission. 



Real fibers always have some residual birefringence due to manufacturing 

processes such as stress, twisting, and environmental conditions such as thermal 

effects. It has been found that it is always possible to find two principal states of 

polarizations (PSP) in birefringent fibers.41 W-hen the incident polarizations direction 

is aligned to one of the PSP's, there will be no change in the exit polarizations state. 

For short pulses, birefringence combined with GVD causes a pulse to split in the time 

domain because of the difference in the group velocities of polarizations components 

along the two birefringent axes. This group velocity difference of pulses with their 

polarizations aligned to different birefringent axes of a fiber is referred to as 

polarizations mode dispersion (PMD). Just as nonlinear refraction can negate linear 

birefringence to form solitons in isotropic nicdium, the same nonlinearity can also be 

used to compensate for the polarizations mode dispersion, and regain the property of 

soliton propagation in an optical fibcr. The pcnalty is a higher amplitude threshold for 

generating stable solitons. Menyuk numerically studied soliton stability under thc 

effect of P M D $ ~ , ~ ~  and found that a soliton with sulficient energy can still be robust 

in the presence of substantial birefringence. It was found that when a pulse consisting 

of both polarizations is injcctcd inlo an optical fiber, each polarizations component 

shifts its central frequency in such a way that the two polarizations self-trap and move 

down the fiber with the same average velocity. If the power or anlplitude of the initial 

injected optical pulse is below a certain threshold, the two polarizations will not be 

able to trap each other, they will separate from each other after propagating some 

distance. However, they changc cach other's phase aftcr separation. The problem of 

soliton stability in a birefringent fibcr was latcr analyzed by Kivshar using a 

perturbation method.44 His results showed a linear dependence of thc soliton 

threshold amplitude on lincar birefringence or PMD, which is in agreement with 

compiltcr si~~iulations when thc PMD is small. Menyuk's simulation showed that this 



dependence is nonlinear, and there is a significant deviation for larger PMD. In this 

thesis, we use a new niethod to study the problem of soliton stability. We are able to 

find an analytic result for the soliton threshold, which agrees very well with coinputer 

~ i r n u l a t i o n s . ~ ~  It provides a useful criteria for practical system design. 

PMD not only changes the soliton threshold, it also changes the fundamental 

physical properties of the syslem. In an isotropic medium (PMD = O), solitons are 

described by the Nonlinear Schrodinger e q u a t i o n ( ~ s ~ ) , 3 3  which is integrable in the 

sense that there is an infinite number of constants of motion. Soliton propagation in 

birefringent optical fibers is described by two coupled nonlinear Schrodinger 

equations [NSE's], 46747 which are known to he nonintegrable by means of the 

inverse-scattering method.47 The most iinportant difference between an integrable 

nonlinear wave equation and a nonintesrable one is that thc collision between solitary 

waves is elastic in the former case and inelaslic in the latter. 46747 There is always 

radiation emitted during solitary wave collisions in a nonintesrable systeni such as the 

system governed by the coupled NSE's. In this thesis, we study the details of soliton 

collisions in birefringent optical fibers and their applications. This subject attracts 

great current interest due to its scientific i n 1 ~ o r t a n c c 4 2 - ~ 3 ~ ~ 8 ~ 4 ' )  and its potential 

applications to optical logic devices. 1075095 If the amplitudes of two colliding 

solitons with orthogonal polarizations directions are below a threshold value, the two 

solitons will separate from each other after the collision. Each soliton will be strongly 

changed after the collision with the other, althoush each still propasates as a soliton. 

The most important changes include polarizations mixing, central frequency shifts 

and velocity chanzes. In this thesis, it is found that the relative contribution to the 

total polarizations state varies over a large range and depends very sensitively on the 

linear birefringence. By linearizing the coupled nonlinear Schrodinger equations, 

Malolned and ~ a b n i t z ~ ~  found that there exists a critical value of linear 



birefringence for which the soliton collision is resonant in the sense that the spatial 

frequency of the soliton shadow equals that of the soliton with much larger amplitude. 

When the linear birefringence is above this critical value, the interaction between two 

solitons is small and each soliton picks up a shadow after a collision. Most of the 

previous work on soliton collisions was in the nonresonant regime, and the mixing 

effect was very small. In this thesis it is found that the resonant regime is more subtle 

in that it consists of bound states and unbound states. In an integrable system, solitons 

will not change their velocities after a collision. However, the velocities of two 

colliding solitons generally change after a collision in a nonintegrable system. We 

also investigate this aspect by numerical simulation. It is found that both the velocity 

change and the amount of mixing measured by means of cross-correlation depend 

strongly on the linear birefringence. The XPM between two colliding pulses generates 

nonlinear frequency shifts and, thus, velocity changes due to group velocity 

dispersion. The dependence of the velocity changes on the linear birefringence is 

similar to that o i  the mixing on the linear birch-ingencc. None of thc previous work on 

soliton collisions was concerned with the dependence on the linear birefringence. It is 

not surprising that only vcry small mixing has been found, since the linear 

birefringence chosen in previous work was vcry large, and the collisions wcre in the 

nonresonant regime. The entire range o i  paramclcr space in the magnitude of the 

linear birefringence is investigated in this thesis. A variety of phenomena in soliton 

collisions are found in  this thesis and their application to all-optical switching is 

discusscd in detail. 

1.5 Self-defocusing of short pulse in gases 

When n2 is negative, an intense laser bean1 will experience self-defocusing 

when propagaling in a hulk o r  ?as 111cdiun1. Like self-locusing,5 self-del'ncusing is an 
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intensity-induced lens effect. For a bean1 with a Gaussian-like transverse profile, the 

central part of the bean1 having a larger intensity experiences less refractive index 

than the edges due to the presence of free electrons, and therefore the center region 

travels at a faster velocity than the edses. Consequently, the wavefront distortion is 

similar to that generated by a negative lens, and the beam appears to defocus by itself. 

Among many nonlinear mechanisms that give rise to negative n2, we are 

particularly interested in the dynamical nonlinearity, that is, the nonlinear refraction 

resulting from ionization of a gas medium or free-carrier generation in  

semiconductors. In this thcsis, we concentrate on self-defocusing in gas mcdia, 

allhough the physics is also valid for the other case. Since the invention of the chirped 

pulse amplification system ( c P A ) , ~ ~ . ~ ~  the availability of ultrahigh intensily lasers 

opened a new era for both nonlinear optics and high-l'ield atomic physics. Currently, 

CPA systems are able to provide pulses with 54 TW peak power and an intensity of 

10'9 - 1020 ~ / c r n z  at focus.55 With such high power lasers, a variety of new 

phenomena can be investigated expcrin~entally. Thcse phenomena include (i) wake- 

field a c c e ~ e r a t i o n . ~ ~ - ~  (ii) relativistic optical g~~ id ing  or self-focusing, b2-b4 (iii) 

laser frequency a n ~ ~ l i f i c a t i o n , ~ ~ ? ~ ~  (iv) relalivistic harmonic generation, 67 (v) 

nonlinear Thomson scattcring,l 1,h8 (vi) niultiphoton i 0 n i z a t i o n 6 ~ - ~ ~  (vii) above- 

threshold i o n i ~ a t i o n , ~ 3 ~ ~ ~  (viii) high-harmonic gcneration in gases,75 (ix) and X-ray 

~ a s e r s . ~ ~ , ~ ~  A conimon factor of all these applications of high-power laser systems is 

that almost all the media used in thcse experiments are gases or plasmas, since only 

gases or plasmas don't have the problem of material damage. A direct consequence of 

this fact is the self-defocusing associated with the dynaniical nonlinear response. All 

these experiments require nonlinear propagation of laser pulses in a gas tarset with 

intensities ranging from 1013 w/cm2 to 1019 ~ l c n 1 2 .  It is well-known that the laser- 

generated plasma dccreases thc refractive indcx, or in  other words has a negativc nz. 



As a result of this laser-generated negative lens, the laser beam may begin to defocus 

before the beam reaches the geometric focal point in vacuum, which greatly limits the 

maximum intensity achievable in a gas target. The ionized gas or plasma can have a 

drastic effect on the propagation of the laser pulse due to self-defocusing. The effect 

of self-defocusing in an ionized gas is not new. In 1974, Feit and Fleck used this 

phenomenon to explain the dependence of the breakdown threshold of gases on focal 

spot size.78 Borger and Sniith found that the threshold increases as the spot size is 

decreased.T9 Self-defocusing causes a signillcant portion of the laser energy to be 

refracted, resulting in a reduction in absorption. As the spot size is reduced, this effect 

becomes more iniportant. Recently, new interests have been stimulated by the 

potential applications of ultrashort intense laser pulses in underdcnse plasmas: both 

experimental i n ~ e s t i g a t i o n s 8 0 - ~ ~  and computer s i r n u l a t i o n s 8 2 ~ 8 ~ ~ 8 5 ~  have bcen 

done. All these studies concern relatively high pressure, for example, > 10 torr for 

high-harmonic generation, > I bar for x-ray recombination lasers and plasnia-based 

accelerators. It was found recently that self-defocusing could be iniportant at a 

pressure as low as 3 torr with an intensity of the order of 1014 w/cm2.16 The focal 

spot was three tinics larger than that associated with vacuum propagation. This 

finding shows that self-dcfocusing may play a liiore iniportant role than previously 

expected. For example, the work of Auguste et al. g1 and Rae 86 were performed 

with backfilled gas tanks at pressures larger than 15 torr. Rae found that the tighter 

the focus, or the snialler the I*, the larger the maximum electron density. Intuitively, 

more severe self-defocusing is expected for smaller t*, since the change in refractive 

index is proportional to Np. However, both the effective interaction length and ionized 

volunie will be snialler for a beam with tighter focus, which results in  less 

accumulated phase distortion. Therefore, the self-defocusing will be less significant 

for snialler i*. In order to understand this, we developed a thin lens model. It is found 



that the significant self-dcfocusing at pressure as low as a few torr can be explained 

by the f# dependence of self-delocusin, 0. We also found that thc saturation of focal 

shifts can be explained by this model. On the other hand, the experimental data 

clearly showed the formation of a cone in the laser intensity distribution, which is 

beyond the thin lens approximation. However, an improved model based on the thin 

lens approximation can be uscd to explain the cone formation. Since this improved 

model is more complicated than the thin lens approximation, we can only obtain 

results by computer simulation, instead of analytic results. 

1.6 Outline 

Chapter 2 describcs an cxperiniental technique called frequency-domain 

interferometery(FD1) . This technique has been uscd to measure polarizations mode 

dispersion (PMD) in optical fibers, since PMD has strong effects on soliton stability 

and soliton collisions in bircfringent optical fibers. Detailed working principles of 

FDI have been given in this chapter, as well as the experimental results. 

Chapter 3 is devoted to the experimental investigations of nonlinear 

birefringence and its application in optical pulsc cleaning. Nonlincar transmission has 

been measured as a function of the incidcnt polarizations angle for the first time, and 

good agreement betwecn theory and experiment has been found. The possible 

applications of nonlinear birefringence are also discussed. 

Chapter 4 dcscribcs numerical studies of the effects of PMD on the stability 

and collisions of tenlporal solitons in birefringent optical fibers. An analytic rcsult for 

the soliton threshold has been obtained by using a virial theorem. This result is the 

only one that is consistent with computer siiuulation for the whole range of PMD. 

Collisions of vector solitons have been numerically investigated in detail. Many new 



properties have been found, and their possible applications in all-optical switching 

have been discussed. 

Chapter 5 describes the propagation of intense laser pulses in a thin gas target. 

After describing the experimental setup, we show several experimental results. It has 

been found that the self-defocusing induced by ionization can be explained by the thin 

lens approximation. The theoretical predictions of the thin lens approximation, such 

as effective focal shifts in the image plane and the saturation of the focal shifts, have 

been confirmed experimentally. It has been found experimentally that there are two 

foci in the image plane, which give rise to the fc~rmation of a cone in the transverse 

intensity distribution. Based on the thin lens approximation, we have developed an 

improved model to explain thc cone formation. The physical mechanism of cone 

formation has been discussed. 

Finally, this work is summarized in  Chapter 6. 
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CHAPTER 2 

Frequency-Domain Interferometer for Measurements of Polarization Mode 

Dispersion in Birefringent Media 

In this chapter, we discuss one of the most important properties of optical 

fibers, the polarization mode dispersion (PMD). Polarization mode dispersion causes 

a short optical pulse to split into two components, each propagates with its 

polarization aligned to one of the two principal polarization states of the fiber. PMD 

limits the transmission bandwidth in fiber communication systems, increases the 

soliton threshold in optical fibers, and changes the characteristics of soliton collisions 

in optical fibers. There are many methods for measuring PMD, we have developed a 

new method based on the frequency-domain interferometry (FDI). In this chapter, we 

have discussed the fundamentals of FDI, and its applications in measuring PMD in 

optical fibers and group velocity walkaway in nonlinear crystals. This technique is 

based on the spectral interference of two short pulses in the frequency domain. In the 

frequency domain, two temporally separated pulses interfere in the same way that two 

waves with different frequencies beat in time domain. Measuring the interference 

fringes in the frequency domain gives the temporal delay of two short pulses. 



2.1. Introduction 

Single-mode optical fibers have been increasingly used in (coherent) optical 

transmission systems and as polarization-dependent fiber-optic sensors. In these 

applications, it is of fundamental importance to know the polarization properties of 

single-mode fibers because these properties govern the degree and state of the 

polarization of the radiation. It is well-known that birefringence in optical fibers can 

be induced by built-in stress or by geometric deformation of the fiber core.172 The 

most important parameters characterizing birefringent fibers are the polarization mode 

dispersion (PMD) and modal birefringence (MB). PMD is the group delay time 

difference between two orthogonally polarized HE11 modes, while MB is the 

refractive index difference between these two modes. Unlike birefringence in crystals, 

optical fibers suffer from the random coupling of two polarization modes due to the 

uncontrollable random changes of local birefringence axes. Depending on the relative 

length of optical fiber compared to the mode coupling length, PMD shows very 

different characteristics. For instance, the average PMD is linearly proportional to the 

propagation distance when the fiber length is much shorter than the mode coupling 

length, while PMD is proportional to the square root of fiber length when the fiber 

length is much longer than the mode coupling length. In the later case, the random 

mode coupling can be described through statistical picture.3 PMD is a fundamental 

characteristic of a fiber or a device that describe its propensity to split a narrow-band 

optical input pulse into two temporally separate output pulses according to its state of 

polarization. which results in bandwidth ~imitations.~ PMD has two contributions: 

one is the phase delay, which is proportional to MB; the other arises from dispersion 

difference between two modes. Since the first experimental verifications of PMD in 

birefringent optical fibers made by Rashleigh and ~ l r i ch .5  many methods for 

measuring PMD in single-mode fibers have been reported.6-24 These methods fall 



into six categories: (i) optical short-pulse methods8 (ii) frequency domain 

techniques,9, 10 (iii) interferometric  method^,^. 9-17 (iv) optical heterodyne 

techniques.lbl9 (v) Jones matrix eigenanalysis 20-22 (vi) wavelength scanning 23,- 

25 The white-light interferometric method has proved to be very accurate and 

applicable to meter-length samples, 5,17 and better results can be obtained by the 

method of Jones matrix eigenanalysis with a resolution of roughly 50 attoseconds (50 

x 10-18 s). 22 

Recently, PMD has attracted many investigations due to its important impact 

on fiber comm~nications.20-~5 In this thesis, we will focus on other important effects 

of PMD on the nonlinear propagation of short pulses in optical fibers. Previously, 

people concentrated on the measurement of PMD and its effects on the linear 

propagation of short pulses. To the first order, PMD causes a short pulse to be split 

into two. However in the nonlinear regime, especially in the system of soliton 

propagation, this pulse-splitting effect raise the question of soliton stability in soliton 

communication systems. On the other hand, PMD also strongly changes the 

characteristics of soliton collisions in birefringent optical fibers. In this chapter, we 

will describe a new method of measuring PMD, while studying the effects of PMD on 

nonlinear propagation of short pulses in Ch. 4. This new method is based on 

frequency-domain interferometry. There are several advantages of this new method 

compared to previous methods. First of all, this method provides a dynamic 

measurement of PMD without tedious calculations and curve fitting. For instance, the 

method of Jones matrix eigenanalysis provides very good resolution, but requires 

solution of eigenvalues of the Jones matrix based on three different steps of 

measurements. In the method of wavelength scanning, the wavelength resolution is 

usually poor (>0.5 nm), which results in low resolution in the case of high 

birefringence. However, our new method provides a dynamic measurement as well as 



high resolution for the measurement PMD in high birefringent fibers. Finally, this 

method is even ideal for the applications involving propagation of short pulses, since 

the same short pulses can be used to measure PMD, thus the results are immediately 

relevant for the application. 

This new method has many other applications. In this chapter, we apply this 

technique in the measurement of group velocity walkaway in nonlinear crystals, 

which is a very important factor in determining the wavelength conversion efficiency 

of short pulses in nonlinear crystal. Frequency conversion in nonlinear crystals has 

been an important method for obtaining coherent radiation sources with wavelengths 

not covered by lasers. This is especially true in applications involving ultrashort laser 

pulses. Frequency conversion includes second, and higher harmonic generation,26-28 

and optical parametric oscillators (OPO) and amplifiers ( o P A ) . ~ ~ v ~ ~  A major 

limitation to ultrashort frequency conversion is the group-velocity walkaway( GVW) 

between the ordinary (0-wave) and extraordinary (e-wave) waves due to the different 

group velocities for the two polarizations.31 Since birefringence and dispersion exist 

in all nonlinear crystals, the GVW effect becomes a fundamental factor in 

determining the frequency conversion efficiency on applications involving short 

pulses. The walkaway has been used to increase the conversion efficiency of type I1 

doubling of 1 pm, 1 ps laser pulse by using a second crystal to predelay the 

extraordinary wave relative to the ordinary wave.26,27 It was also found that the 

pulse duration could be reduced from 1 ps to 200 f ~ . 3 ~  Chien et al. 28 have studied 

the conversion efficiency of high power ultrashort pulses and have found that the 

GVW between two polarization causes reconversion of the second harmonic back to 

the fundamental frequency. 

Typically, the walkaway is inferred by measuring the refractive indices and 

the dispersion of the e- and o-waves. In this work we report on the first direct 



measurement of the GVW between the e- and o- waves in a birefringent crystal. The 

same ultrashort pulse which is to be frequency converted can be used for the these 

measurements. Most values of the refractive index have been obtained by the 

minimum-deviation method(MDM), and are accurate to the fifth decimal place.33 

Extensive measurements of refractive indices of nonlinear crystals isomorphic to 

KH2P04 have been made by Kirby and ~ e ~ h a z e r . 3 ~  Although MDM provides an 

accurate measurement of the refractive indices of e- and o- waves, it is not convenient 

for many applications involving nonlinear frequency conversion. Since the MDM 

measurement requires a high quality prism made of the sample crystal, this method 

can be expensive and impractical for ordinary frequency conversion applications. The 

dispersion properties are usually obtained by fitting to the Sellmeier or Zernike 

formula, 35.36 which requires multiple measurements with different light frequencies. 

Since narrow spectral lines of different lamps are used in MDM, it is possible that no 

experimental data exists for some specific wavelength that is used in frequency 

conversion experiments. Another disadvantage of this method is that the refractive 

indices of o- and e- waves is a function of propagation direction. All the calculations 

require the relative angle between the propagation direction and the optical axis to be 

known precisely. Hence precise locations of optical axes and propagation angle are 

required before the final calculations can be made. 

There are several other advantages of technique presented here for nonlinear 

frequency conversion. In practical applications of frequency conversion involving 

short pulses, it is desirable to know the walkaway parameter for the laser frequency 

involved. The walkaway can be measured using the same laser pulses that will be 

used in frequency conversion, therefore the measured data about the walkaway is 

immediately relevant. For the applications involving cascade processes of frequency 

conversion of short pulses, it is crucial to know the polarization direction, or the 



crystal orientation which correspond to the minimum walkaway, so that the 

orientations of nonlinear crystal for the next stage of frequency conversion can be 

0~timized.32 Our method provides real time information about the GVW, its 

simplicity will be helpful in the system design of devices of nonlinear frequency 

conversion. To our knowledge, this method provides the first direct measurement of 

angular dependence of the GVW. 

2.2 Basics of frequency-domain interferometer 

In this chapter, a new technique based on frequency-domain interferometry 

(FDI) 37.38 has been used to measure the PMD, or the group-velocity walkaway of 

short pulses in birefringent media. As the name implies, this technique is based on the 

spectral interference of two short pulses in the frequency domain. The intrinsic phase 

delay between the fast and slow modes of a birefringent medium is used. Due to the 

different group delays, the two pulses launched along the fast and slow arms will 

come out of the medium at different times. In the frequency domain, two temporally 

separated pulses interfere in the same way that two waves with different frequencies 

beat in time domain. In the frequency-domain interferometer described in this work, 

the measurement of the modulation period of the interference fringes in frequency 

domain gives the group-velocity walkaway (GVW) directly without further 

assumptions about the properties of the light source. By analogy with an ordinary 

interferometer, the two axes of the birefringent medium can be regarded as two 

interfering arms, while a polarizer placed at the output end of the medium combines 

the two field components to generate interference fringes in frequency domain. 

Temporally separated pulses can interfere owing to the linear dispersion of the grating 

in a ~~ecuomete r .37~38  Different frequency components propagate along different 

directions, which results in a frequency-dependent time delay. Therefore, two 



temporally separated pulses can physically overlap on the detector surface of the 

spectrometer. Compared with other methods, the experimental setup of our 

interferometer is quite simple; the alignment is also very easy. More importantly, the 

experimental data is directly related to the GVW; no further curve fitting is needed. 

In order to understand the physics of the frequency-domain interferometer, we 

need to understand the properties of a spectrometer. A simplified version of a 

spectrometer is shown in Fig. (2.1). The incident beam is collimated, and has a 

diameter D. The incident angle to the grating is i, while the diffracted angle is a. 

Assuming two pulses with pulse width rp are separated by T, we find that the energy 

fronts, or the amplitude fronts of these two pulses are no longer parallel to the phase 

fronts. At the focus of the image lens, each pulse is temporally stretched to a duration 

of DNh/cos(i)c, where N is the groove number of the grating, h is the wavelength of 

the pulses, c is the speed of light. It is easy to see that two separate pulses can 

physically overlap with each other at the focal plane, or the frequency plane. Note that 

no such overlapping is possible if the original separation T is greater than the grating 

stretching DNhlcos(i)c, as can be seen in Fig. (2.1 ). 

The configuration of the frequency-domain interferometer is shown 

schematically in Fig. (2.1). The birefringent axes are labeled as x and y; the laser light 

propagates along the z direction. Two identical pulses temporally displaced by T are 

launched into the birefringent fiber with their polarization directions aligned to the x 

and y axes, respectively. At the input plane (z = O), the electric fields of these two 

pulses can be expressed by 



Fig. 2.1 Temporal stretching of short pulses in a spectrometer. 



where E(t) is the slowly varying envelope of the two pulses and oo is the carrier 

frequency of the laser pulses. At the exit end of the fiber, the Fourier transformations 

of the electric fields are 

OPTICAL FIBER 

computer - digitizer spectrometer 

Fig. 2.2 The experimental setup. Where h / 2  means half-wave plate, MO 

microscope objectives, P polarizer, and M mirror. The linearly polarized 

light is coupled into thc optical fiber with the polarization direction aligned 

to 45" with respect to fiber axes. 

E, (o. z = L) = E(o - oo)exp[-i P, ( a )  L] 



where ~ ( o  -ao) is the Fourier transform of E(t) and P , (o)  and P y ( o )  are 

propagation constants of the x and y modes. 

A polarizer with its transmission axis set to be 45' with respect to the x and y 

axis combines the two electric fields, 

The power spectrum detected by a spectrometer can be expressed as 

where AP(o) = Px ( a )  - Pr(o)  is the modal birefringence and can be expanded as 

follows: 

where dAP/do is the polarization mode dispersion. The third term in Eq. (2.5) is the 

difference of the group velocity dispersion (GVD), which describes the difference of 

the pulse spreading in two principal axes. For subpicosecond pulses, the dispersion 

distance (the distance at which pulse width becomes twice the initial value) can be 

shorter than 1 m.39 However, as pointed out in Ref. (5), this term can be ignored 

since the temporal spreading is almost the same for each mode; in other words, the 

difference of temporal spreading due to GVD is still negligible. Substituting Eq. (2.5) 

into Eq. (2.4) gives 



From Eq. (2.6), it is easy to find that the periodicity of the interference fringes is 

given by 

The polarization mode dispersion can be determined in terms of measured quantity R, 

that is, the fringe spacing in frequency domain. From Eq. (72.). we have 

Note that Eq. (2.8) provides two ways of measuring PMD. First, no optical delay is 

needed, which means T = 0. Measuring the fiber length L and interference spacing Q 

gives the required result of PMD. This method is very simple to implement. On the 

other hand, it is possible to adjust the temporal delay such that R = infinity, then 

PMD = -T/L. Physically, this means that the predelay T is set such that two pulses 

come out of the fiber at same time; therefore there will be no interference in 

frequency domain. 

2.3 Experimental results 

The experimental setup is shown in Fig. (2.2). The laser beam originates from 

an actively mode-locked Nd:YLF oscillator that produces a 50-ps pulse train at a 



wavelength of 1054 nm with a repetition rate of 100 MHz. The pulse train goes 

through an 800-m, single-mode optical fiber that increases the bandwidth from 0.3 A 
to 3 1.6 A through the combined effects of self-phase-modulation (SPM) and G V D . ~ ~  

The pulses are then temporally compressed to 1 ps by a double-pass grating pair. Two 

microscope objectives are used to couple the laser beam into and out of a highly 

birefringent fiber (3M product, FS-HB-565 1). A h/2-wave plate placed in front of the 

fiber was used to control the polarization direction of the incident laser beam. A 

polarizer placed at the exit end of fiber was used to combine the electric field 

components of the fast and slow modes. Finally the collimated output beam was sent 

to the spectrometer with an optical multichannel analyzer (OMA). Another U2-wave 

plate placed in front of the spectrometer was used to match the polarization direction 

of the laser beam to that of the grating inside the spectrometer. The waveguide 

parameters of the fiber used in the experiment are listed in Table 2.1. 

The input spectrum [ ~ ~ ( o - o ~ ) f ]  is shown in Fig. (2.3). The power 

spectrum has nearly a square-top shape with a width about 31.60 A. In the 

experiment, the input polarization direction was adjusted to be 45' with respect to the 

fast and slow axes of the birefringent fiber. The polarizer was also aligned to the same 

angle as described in Eq. (2.3). The frequency-domain interference fringes are shown 

in Fig. (2.4). Least squares method is used to fit Fig. (2.4) using Eq. (2.6); Q was 

found to be 22.7 + 0.1 pixels, giving a modulational period of the interference 

fringes of 9.13+ 0.04 A, corresponding to a temporal delay of 3.91 f 0.04 ps. The 

length of the fiber was measured with an accuracy of 1 mm. According to Eq. (2.8), 

the PMD is found to be 1.42 pslm with an accuracy of 1%. It is well known that 

dAp/do can be expressed as 



Frequency (A)  

Fig. 2.3 The spectrum of the incident pulses. The spectrum shape is typical of the 

combined effects of SPM and GVD. The peak-peak width is 3 1.60 A. 

the PMD is found to be 1.42 ps/m with an accuracy of 1%. It is well known that 

dAP/do can be expressed as 



where An is the modal birefringence. Table 1 shows that the first term on the right- 

hand side of Eq. (2.9) equals 1.3k0.1 ps/m (the uncertainty comes from the fact that 

there is not enough information about the sample fiber, see Table 2.1), which is very 

close to the measured PMD. This means that the contribution of the second term in 

Eq. (2.9) is much smaller than the first term, which is true in most stress induced 

birefringent fibers. 40411n fact. it is easy to show that the first term in Eq. (2.9) takes 

approximately 90% of the total group delay in the case studied here. 

I mode field diameter I 6.8 urn I 

fiber length 2.750 m 

fiber diameter 100 pm 

operating wavelength 1.060 ~ r n  

cutoff wavelength 1.000 prn 

birefringcncc 4 x 1 0 4  



Frequency (A) 

Fig. 2.1 Frequency-domain intcrt'crcncc l'ringcs. The l'ringe spacing is measured to 

he 9.13 A. 
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Table 2.2 Parameters of Nonlinear Crystals and Measured Walk-off 

(a) measured results 
(b) cnlculated resul ts34 

Crystal 

CDA I 

KDP* I1 

KDP I1 

KDP I 

From Eq. (2.4), the power spectrum detected in the spectrometer takes 

following form 

where ~ ( o -  wo) is the spectrum of the incident pulse; $0 is a constant, AT is the 

temporal delay between the two pulses traveling along the fast and slow axes of 

birefringent medium; Ao = o -oo. Therefore the GVW is just the periodicity of the 

interference pattern in frequency domain. 

The experimental setup is similar to Fig. (2.2), except the fiber is replaced by a 

nonlinear crystal. The frequency-domain interference fringes for a 2.5 cm thick CDA 

crystal are shown in Fig.(2. 5). A least squares method is used to fit Fig. (2.5) using 

Cut angle 

85" 

53.7" 

59.2O 

41.2" 

Length 
x2 (cm) 

2.50 

1.50 

1.90 

1.029 2 0.005 

Walk-off (a) 
(pslcm) 

1 .OO +0.01 

0.9450.02 

1.35 + 0.02 

Walk-off (b) 
(pslcm) 

1 .O1 

0.97 

1 3 3  

0.79 



Eq. (2.10), as shown in dashed curve. There are three sources of error in the 

measurements, the error in measuring the lengths of the crystals, the error in 

calibrating the spectrometer, and the error in determining the spacing of the 

interference fringes. The uncertainty of the thickness measurement is 1 %. The 

calibration was performed using five spectral lines of Rubidium lamp ranging from 

1053 nm to 1073 nm. The spectral lines were fitted with Lorentzian line shape, and 

the overall uncertainty in the calibration was found to be 0.2 %. The least square fi t  

for the interference fringes gives an error of 0.3 %. The largest uncertainty comes 

from the measurement of the thickness of the crystals. After taking into account of 

these three error sources, we found that the error in determining the temporal 

walkaway is about 1 lo. The GVW parameters of several commonly used nonlinear 

crystals have been measured, the results are listed in Table 2.2. The cut angles and 

lengths of the tested crystals are also listed. The last column of Table 2.2. shows the 

calculated values of the GVW based on the dispersion data of Ref.[34]. The measured 

results are very close to the calculated ones, as can be seen from Table 2.2. 

It is well-known that the refractive index of extraordinary wave is a function 

of propagation direction, which means that the GVW is also a function of propagation 

direction. Fig(2.6) shows the dependence of walkaway on the propagation angle. The 

angle is measured with respect to the phase-matching angle of the crystal (KDPII) in 

YZ plane. The scattered triangles are experimental data, the solid curve is the 

theoretical prediction based on material dispersion34. The experimental data fits the 

theory, with an accuracy of 1%. It should be mentioned that the angle in Fig. 6 is the 

angle inside the crystal, that is, Snell's law has been used to obtain the internal angle. 

Since the crystal is cubic, the propagation distance is also a function of angle, which 

has been taken into account in Fig. (2.6). 



75 90 105 120 135 150 

Frequency (A) 

Fig. 2.5 Frequency-domain interference fringes of sample CDA I. The fringe 

spacing is measured to be 6.7 A. The solid line is the experimental data. 

while the dashed line is the theoretical fitting. 



2.4 Conclusions 

In conclusion, a new technique based on frequency-domain interferometry has 

been used to measure the polarization mode dispersion of birefringent media. In 

contrast to the usual interferometric methods that measure the interference visibility 

as a function of optical delay between two interfering arms, we measure the 

periodicity of the interference fringes in frequency domain by using short broadband 

optical pulses. No curve fitting is needed to find the values of PMD since the 

measured modulation period of the fringes is directly related to PMD, as shown in Eq. 

(2.8). Two different schemes of measurement have been discussed in detail. These 

two methods differ from each other in that one needs an optical delay line, while the 

other does not. The method without an optical delay line has been demonstrated 

experimentally. There are several advantages of this new method for measuring the 

GVW in a birefringent medium. First of all, the measurement is direct. The group- 

velocity walkaway can be measured in real time, which is useful for applications in 

which the GVW can be controlled by tuning the crystals. Secondly, for most 

applications of frequency conversion, this method provides the values of GVW at the 

appropriate wavelength, since the source is the same source that is used in the 

nonlinear frequency conversion. Thirdly, this method makes it possible to measure the 

angular dependence of GVW, which is useful for experiments involving serial 

frequency conversion. The walkaway can be compensated for in the second crystal. 

32 Our method can be used to align the crystal by monitor the compensation. 

Compared to other methods, our method provides reasonably good accuracy, as well 

as experimental simplicity. It should be mentioned that our method is linear in the 

sense that it does not depend on the laser power. In our experiment, the pulses were 

not transform limited, in other words, the pulses are slightly chirped. It is believed 



that the chirp may be responsible for the finite visibility of the interference patterns, 

so it could affect the accuracy of the measurements when the visibility is poor. 

Angle (O) 

Fig. 2.6 Dependence of the group-velocity walkaway on the propagation direction. 

The angle is measured with respect to the phase-matching angle of the 

sample (KDPII). 
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CHAPTER 3 

Nonlinear Birefringence and its Applications 

In reccnt years, nonlinear birefringence has been found many applications in 

ultrafast optical pulse shaping or cleaning, and all-optical switching. Optical fibers are 

the idea mcdia for the study of nonlinear birefringence. In this chapter, we 

investigated nonlinear birefringcnce in two different regimes: (a) linear birefringence 

dominates nonlincar birefringcncc; (b)  nonlinear birefringence dominates. In the first 

case, we experimcntally coniirmed thc dcpcndcnce of nonlinear transmission on the 

incident polarization direction with rcspcct to the bircfringent axes. Thc existcnce of 

an optimal incident polarization anglc will be useful in thc optimization of nonlincar 

kansmission. We also proposed and analyzed an improved schemc of pulse shaping 

using nonlincar polarization rotation. It  was found that our improved scheme is much 

more efficient than thc previous schcmc. Thc pcak transn~ission can be incrcased 

more than thrce times, from 7% to 24% for a incidcnt power that is equivalent to that 

of generating a self-phase modulation($,,-,,,) of ~c. For = 2x, the gain in nonlinear 

transmission is ahout 2.5 timcs, corresponding an increase from 23% to 57%. For 

highcr power, the gain becon~cs saturated. Since stimulated Raman and Brillouin 

scattering limit thc powcr level that can he uscd, this improved scheme will bc very 

useful for many applications involving n~oderatc power Icvels. 



3.1 The origin of nonlinear birefringence 

Birefringence is an optical property of an anisotropic optical medium when its 

refractive index depend on the polarization statcs of an incident optical radiation. For 

a given propagation direction, there arc two polarization eigenstates that have 

differcnt refractive indcx. This birefringence is referred as linear birefringence 

compared to the nonlinear bircfringence wc are going to study in this chapter. Linear 

birefringcncc is a propcrty of an optical mcdiurn itself, typical of anisotropic mcdia 

such as crystals. Nonlinear birefringencc, howevcr, is a birefringence induccd by the 

intense optical radiation that propagates in the medium, it  can exist in  all nonlinear 

media. Nonlinear bircfringence is simply a vectoral representation of nonlincar 

refraction, thus it  is a univcrsal phenomenon for all nonlinear mcdia, both isotropic 

and anisotropic. In ordcr to conlparc lincar and nonlinear birefringence, we first 

review the basic rcsults of lincar bircfringcncc. In a bircfringcnt medium, thcre cxist 

two polarization eigcnstatcs of a incidcnt lascr bcam that will not change during the 

propagation along a givcn dircction in the medium. Thc corresponding refractive 

index and thus propagation velocities are different tbr cach eigenstate. Usually, an 

cigenstatc with larger(s~naIlcr) rcl'ractivc indcx is called slow(fast) mode since the 

group velocity is smallcr(highcr). If thcse polarization cigcnstatcs arc linearly 

(circularly) polarized states, then the rnedii~m is called linearly(circularly) 

birefringent. It can also he elliptically bircfringcnt i f  the eigenstatcs arc elliptically 

polarized. Nonlincar birefringencc has similar charactcristics in  the scnse of 

polarization eigenstatcs. Howcvcr, thcre arc scvcral in~portant diffcrcncc betwcen 

linear and nonlinear bircfringcncc. First of all, as n~cntioned prcviously, the physical 

origin of lincar and nonlincar birefringence is dirfcrent, linear bircfringcncc comcs 

from thc material asymmetry, while nonlincar bircfringence is due to the vcctoral 

aspects of nonlincar refraction, indcpcndent of material structure. Sccondly, linear 



birefringence is usually dominated by one type of birefringence, in other words, it is 

either linearly birefringent or circularly birefringent. Nonlinear birefringence can 

support simultaneously two kinds of nonlinear eigenstates, both linearly and circularly 

polarized eigenstates. If the incident polarization state is either linear or circular, 

then the output polarization state will be the same as the incident polarization state. 

Thirdly, the evolution of polarization states is very different for linear and nonlinear 

birefringence. In n medium with linear bircfringence, the polarization state changes 

periodically from linearly polarized to elliptically or circularly polarized, and then 

back to linearly polarized, the polarization ellipticity evolves periodically between 

zero and I. However in the casc of nonlincar bircfringence, the ellipticity is a constant 

of motion, only the orientation of the polarization ellipse changes periodically with 

propagation distance. The distance at which the polarization state go through a 

complete cycle is called beat length in the casc of linear bircfringence, and is given by 

h/An, where h is the wavelength of the optical radiation, An is the refractive index 

difference between the two eigenstates. In the case of nonlincar birefringence, the 

output ellipticity is the same as the input, i t  is the azimuth orientation of the 

polarization cllipsc [hat changcs pcriodically with a constant angular velocity 

determined by both the laser intensity and the polarization ellipticity. In fact, 

nonlincar bircl'ringcnce is very different from linear bircfringence, which is why 

nonlincar birefringence is so~iictinies callcd nonlincar polarization rotation or ellipse 

rotation LO cniphasize the hct  that nonlincar bircfringence mainly causes a rigid 

rotation of ~ h c  polarizaiion ellipse. Nonlinear birefringence is more like optical 

activity than linear birefringence. 

As we mentioned before, nonlinear birefringence is just a vectoral 

representation of nonlincar refraction, therefore nonlinear birefringence will appear at 

the same tinie as nonlincar refraction is observed. In other words, nonlinear 



birefringence will be accompanied by self-focusing or self-defocusing in a bulk 

medium. Since self-focusing (sclf-defocusing) results in an increase(decrease) in peak 

intensity or a reduction(increase) in beam size, the nonlinear phase modulation or 

polarization state will also be modified in a bulk medium. In order to prevent the 

complication of nonlinear transvcrsc effects, one needs to limit the medium length to 

be smaller than self-focusing (self-defocusing) distance. Since the nonlinear 

polarization rotation is proportional to the product of incidcnt power and the effective 

interaction distance, this limitation of medium length increases the power 

requirements, which li~nits its practical applications. Thc advances in optical fiber 

fabrication have madc it possihlc to obtain single-mode fibers with small core size 

and cxtrcmcly low loss. The s1-1-1all corc sizc makes it possihlc to obtain high intensity 

with relatively low incident avcragc power, whilc low loss makes is possible for an 

optical pulsc to propagates thousands of mcters without significant reduction in pcak 

power. On the other hand, thc transvcrsc cffect is absent in optical fibcrs due to their 

waveguide nature. Therefore, a significant amount of nonlinear phase modulation is 

possible for vcry low input powcr. which is very useful in practical applications. All 

these advantages make optical fibers an idca n~cdiurn for thc study of nonlinear 

birefringence and its practical applications. 

Optical fibers can bc classified into two catcgorics according to whether they 

arc bircfringcnt or not. The difference in refractive indices of two polarization 

eigenmodcs or bircfringcnt axes, An, is ~~sua l ly  used to characterize thc significance 

of linear bircfringcncc. For instanccs, an optical fiber with An > 10-5 is usually callcd 

high hirel'ringent fiber, while iL is callcd low bircfringent fiber when An < 10-6 or 10- 

7. In fact, no optical fihcr is Cree of bircfringcncc. It is wcll-known that birefringence 

in optical fibers is due Lo the prcscncc of asymmetric stress or gcometric 

d e f o r m a ~ i o n . ~ ~ ~  Birefringence can be present if thc fihcr core is not perfect circular, 



or if the fiber is bent, twisted, or under external pressure. Since linear birefringence is 

unavoidable in optical fibers, we should consider both linear and nonlinear 

birefringence when we are going to study the polarization evolution in optical fibers. 

It turns out that the absolute value of linear birefringence is not relevant in describing 

the polarization cvolution in bircfringent optical fibcrs. It is the relative strength of 

linear and nonlinear birefringcncc that is important in determining the dynamics of 

polarization. The power under which nonlincar birefringence is cqual to linear 

birefringence is defined as thc critical power p,,. There are two extrcmc cascs that we 

are intcrestcd i n  this ctii~ptcr: (a) low bircfringcnt. In this casc, the input power P >> 

Po, or in order words, the nonlincar birefringence dominates the lincar birefringencc 

so that the medium can he considcrcd as a medium with negligible linear 

birefringence; (b) high bircfringcnt. In this casc, P cc PC,. The nonlincar birefringcncc 

is much snlnllcr than the lincar hircfringcncc, the polarization dynamics is dominatcd 

by lincar birefringence, thc nonlinear birefringcnce is only a small perturbation. The 

reason for choosing thcsc two extrcnlc cascs is that the polarization dynamics show 

much simpler behaviors than the case when the nonlinear birefringcnce is comparable 

to lincar hircfringcncc. Thcrc is an instability known as polarization instability whcn 

P is comparable to P , , . ~ - ~  

Nonlinear hirel'ringcncc or self-induccd bircfringence in optical Kcrr media 

has found many applications since it's discovery 111adc by Maker at al. For cxample, 

nonlincar birefringence has heen uscd in optical shutter or optical modulators with 

picosecond response t i n ~ c . ~  pulse shaping or intcnsity  discrimination.^ optical pulse 

cleaning, 9-1 Iibcr-optic logic g a ~ c s , I ~ * ~ 3  high-resolution distributed fibcr scnsor,14 

passive nlodc lockins of fiber lasers. l 5  - IX. Recently. J.-L. Tapic! and G. Mourou 

used this crl'cct to re111ovc the pedestal associated with the pulses comprcssed by a 

fiber-pulse conlpressor, and a contrast ratio as high as 10' was obtained. 1 Due to the 



complication of self-focusing of intense laser beam in bulk Kerr media, which is 

closely related to nonlinear birefringence, most investigations have been made in 

single mode optical fibcrs. 

The purpose of our work is twofold. First we want to conduct further 

experimental investigation of nonlinear bircfringence, and find a way to optimize the 

nonlinear transinission in a scheme siinilar to Stolen et a l ' ~ . ~  Previous experimental 

investigation only partially confirmed the thcorctic predictions of Ref. (8). it was 

confirmed that thc nonlinear transmission increases quardractically with incident 

power. 14-16 However. according to Stolcn ct al's thcory. the nonlinear transmission 

is also a function of incident polarization anglc with respect to the birefringcnt axes, 

and thcre is an optimal incidcnt anglc such that the nonlincar transn~ission is the 

largest. It  is the purpose of this work to test thc existence of this optimization. which 

will bc vcry hclpful to Illany other applications bascd on nonlinear polarization 

rotation. Secondly, wc arc also intcrcstcd in  looking for improved schemes of pulse 

cleaning bascd on nonlincar polarization rotation. Thc thcory of Stolen et a1 is valid 

for high bircliingcnt cases, it is also interesting to study the low hirefringent casc. 

The outline of this chaptcr is as follows. In Sec. (3.2). wc arc going to study 

the nonlincar hircfringcncc in  thc high hircfringcnt rcgime. The existence of optimal 

nonlinear transmission, as well as the overall angular-dcpcndcnce of nonlincar 

transmission, has been conl'ilAmcd experimentally. In Sec. (3.3). a improved schcme of 

ultrafast pulse clcaning dcvicc bascd on nonlincar polarization rotation in  Lhe low 

birefringent regime is analyzcd in  detailed. Co~llparison bctween our improved 

scheme and that of Stolcn ct al's has bccn madc, i t  is found that our improved schcnle 

is much more efficient than that of Stolcn ct al'. Finally, we sunln~arize our resulls and 

discussions in  Sec. (3.3). 
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Fig. 3.1 Experimental setup. A/'-half wave plate; MO-x I0  micro-objective; ?J4- 

quarter wavc plalc; P-polasizcr. 



3.2 Nonlinear birefringence in high birefringent optical fibers 

When thc intcnsity of a light wave propagating in a birefringent optical fiber is 

large enough, thc refractive indiccs of thc fast and slow axes are changed by different 

amounts depending on the polarization direction of incident light wave. This 

phenomenon, referrcd to as nonlincar bircfringcnce or self-induced bircfringence, has 

many applications. 

If the angle between the polarization of incidcnt laser light and fast axis of 

optical fiber is not zero, the electric I'iclds along both fast and slow axes will not bc 

zero; therefore both components induce rcti-active index changes not only along its 

own axis but also along the other axis. that is, the refractive index change along one 

axis is due to both self-phasc modulation and cross-phase modulation. As a 

conscqucncc of this nonlincar bircliingcncc, thc polarization of the total clcctric field 

rotates, and the electric ficld polarization will bc elliptical in gencral. If the linear 

birefringence is compensated for and a polarizcr is used to block low intcnsity light 

that does not have a polarization rotation, lhcn thc transmitted light will depcnd on the 

incidcnt power and polarization direction. Previous cxperiments14-16 only confirmed 

the power dcpcndcncc oL' the ~ransmission; discrcpancics were found in  he rclation 

between transmission and input polarizalion. For cxan~ple, when incidcnt polarization 

is along one 01' the optical axes, there is no electric ficld along ~ h c  other axis, thus 

there should be no nonlinear hirciringcncc, hence, zero transmission. Experimental 

results showed  hat the nonlincar hircl'l-ingcncc was not zero, and no experimental 

resul~s conlirlncd thc ovcrill behavior of transmission wilh respect to the polarization 

direction. This discrepancy was bclicved to bc due to the random tluctuarions of thc 

bircfringent axis and thc misalignment of thc incidcnt polarization angle in thc 

cxperin~cnls. An elliptical rolarion o T  polarization due to the four-wave mixing was 

also considered important for low bircfringcnt fibers.19 However, it is shown in this 



paper that this discrepancy is not physical, and good agreement between theory and 

experiment is verified. 

The experimental setup is shown in Fig. (3.1). A 50-ps Nd:YLF laser pulse 

(h  = 1.053 pm) was coupled into a 800-111 single-mode optical fiber. A chirped pulse 

with spectrum broaden to 2.4 nin is formed due to self-phase modulation. A double- 

pass grating was then used to compress the chirped pulse to I ps before being coupled 

into a 3-ni single-mode fiber oC type FS-LB-42 11 (product of 3M company) by a 

micro-scope objective. The core diameter of  the fiber is 4 pm. Another microscope 

objective was used to collimate the o ~ ~ t p u t  laser light. A quarter wave plate was used 

to compensate for the linear birefringence of the optical fiber. A polarizer was 

positioned to block thc low intensity light. For high intensity light, the polarization 

direction of the light pulse will rotate a finite angle depending on light intensity and 

fiber length. Thcrel'orc, part of high intensity pulse is expected to pass through the 

polarizer. The transmission induced by nonlinear birefringence is given by8 

where Po is the inpii t  power and 0 is the incident polarization angle with respect to the 

fast axis of the fiber. y = 2 1 ~ n ~ / h A , , . ~  and ACff is the cl't'cctive libcr cross section. n2 

is the Kerr parameter ol' optical libcr. For fused silica. n z  = 3.2 * 10-l6 cni2/w. 

In our experiment, as 111iich as 5010 of incident light was coupled into the low 

birefringent l'ibcr, which gavc a peak power of 150-300 W depending on the pulse 

width. I t  was not difficult to find the two optical axes. The extinction ratio was 

measured to he ahout 400. I t  was found that the linear birefringence tluctuates 

randomly for different valucs of 8. I t  is important to compensate the linear 

birefringcncc as niiich as possible, otherwise thc transmission will suffer a large 



Fig. 3.2 Experirncnlal rcsulls 01' nonlinear lransmission for a twistcd fiber. Thc data 

points arc 5" :lpart. 



deviation. Figure (3.2) shows the experimental result. The tiber was wound on a drum 

of a diameter of 20.5 c n ~  with sonle axial twisting introduced. Thc vertical axis is the 

transn~ission, and the horizontal axis is thc incidcnt polarization angle 8. The smooth 

curve is fit using Eq. (3.1) with Po = 150W and L = 3 m. It should be pointed out that 

the transn~ission T strongly dcpcnds on thc optical power or (Pnl=yPoL, a 50% change 

in (P,,, will cause T to be thrce times smaller in the weak nonlinear regimc studied 

here. Altholigh the transmission is nonzcro throughout, the overall bchavior is 

consistent wilh the theory. The data points in Fig. 2 are 5" apart. 

Fig. (3.3) shows the transmission with 111orc data points (cvcry 20 apart) and 

dit'fcrcnt winding. The overall behavior is thc same to that of Fig. (3.2). Fig. (3.3) was 

obtained wi[h Lhc fiber loosely placed on an optical table with thc bending and 

twisting rcduccd as much as possiblc. The main diffcrcncc between Fig(3.2) and Fig. 

(3.3) was the absolute values o i  the transmission. From thc theory, thc highcr ~ h c  

nonlincarity, thc larger the transmission. It was confirmed that thc nonlinearity of 

fiber can bc increased by introducing axial twisting of thc fibcr. The fine scalc 

Iluctuations in Fig. (3.2) and Fig. (3.3) arc bclicvcd to be due to thc error in adjusting 

the polarization angle and the iricidcnt lascr powcr. In order to conlpcnsatc the lincar 

birefringence, we need to reduce the incident lascr powcr to make sure that thc 

nonlinear effect is ncgligiblc. Sincc both the h/2 wavcplatc for thc control of incidcnt 

power and the h/4 waveplate i~scd 10 compensate thc linear birefringence arc adjusted 

n~anually, an cn-or of a significant fraction of l o  is cxpcctcd. Fronl Eq. (3.1). an crror 

of 5% in transmission is possible i f  an crror of 0.50 is introduced in adjusting the 

polarization angle. I t  is found that thc transmission is very sensitive to the polarization 

angle. I t  is also very diil'icult to conlpcnsatc thc lincar bircfiingcncc completely due to 

the tinitc cxtinction ratio of the polarizcr and the error in adjusting the polarization 



Fig. 3.3 Experimental results of nonlinear transmission for a loosely placed fiber. 

The data points arc 2" apart. The transmission shows periodic 

n~odulations. 



angle. A more precisc control o( the waveplate and polarizer is needed to obtain a 

better result with less tluctuations. 

Both Fig. (3.2) and Fig. (3.3) show that the transmission is always nonzero. 

However, this is not considered as a large discrepancy between theory and 

expcrirnent, since thc overall bchavior of cxpcrimental rcsult is so close to that of 

theory. It is believed that thc cn-or in the compensation of thc linear bircfringcnce, the 

finite extinction ratio oC thc polarizcr. and the angular misalignment of incidcnt 

polarization anglc could be thc important rcasons for the nonzero transn~ission at 0 = 

0°, 45O, 90°, 135'. and 180'. It sccrns that nonlincar elliptical rotation is not as 

important as thc (actors mentioned abovc. In fact. any failure compensate thc linear 

birel'ringcncc could destroy Lhc ohserved results con~plctcly. 

3.3 Nonlinear birefringence in low birefringent optical fibers 

Nonlinear birefringence is also known as nonlinear polarization rotation in 

some ot'the applications n~cntioncd above. Makcr el all found that thc direction or thc 

major axis o( an intense, clliptici~lly polarized lascr beam will chansc aftcr 

propagating tlirough a nonlincar Kcrr medium. The ellipticity of the polarization 

ellipse will not change. In order LO use [his self-induced n1odil7cation of thc 

polarization state, people usui~lly place the nonlincar mcdiun~ bctwcen a crosscd 

polarizer-analyzcr pair. Low intcnsity radiation will not transmit, while high intcnsity 

component cxpcricnccs polarization rotation, part of thc high intensity component 

transmit. In the pcrturbativc regime, thc nonlinear transn~ission increases 

quardractically with thc incidcnt peak Stolen workcd out the theory that laid 

down the I'oundation Sor most practical applications.8 Expcrimcntal confirmation of 
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Fig. 3.4 Experimental setup. x and y are thc axes of the first quarter wave plate: 0 

is the angle bctwccn x and thc polarization vector: P-polarizer. 



Stolen's theoretical predictions had been made by Nikolaus et a1,14 Kitayama et a1,16 

and Cao and ~ e ~ e r h o f e r . ~ ~  There are two Edctors that prevent investigators from 

obtaining high values of nonlinear transmission. First most laser systems do not 

provide the high power required by the theory. Secondly, stimulated Raman 

scattering(SRS) and stimulated Brillouin scattering(SBS) will become important 

when the incidcnt powcr is above thc threshold of SRS or S B S . ~ ~  This power 

requirement has greatly limited thc practical applications of nonlincar birefringence. It 

should be pointed out that Stolen et alls theory8 is valid for a birefringent medium, 

although his analysis did no1 include explicitly any parameter characterizing the linear 

birefringence. There has been solnc confusion in applying Slolen et al's 8 lheory. 

Since Stolen et al considcrcd linearly polarized laser beams, the nonlincar 

transmission has bccn incorrectly intcrprctcd as the polarization rotation of a linearly 

polarized light. Maker ct a1 ishowcd thal lhcrc will be no polarization rotation for a 

linearly polarized laser hcam in an isotropic Kcrr medium. The fact that thcrc still 

exists nonlincar transmission is due to the presence of linear birefringence, which 

changes the polarization statc from linear to elliptical. The reason that this linear 

birefringcncc did not appcar in final analysis is due to the rapid oscillation of 

polarization statc causcd by Lhe linear bircfringcncc. In other words, when the bcat 

length is much shorter than lhc nonlinear bcat Icngth, only the average effect of lincar 

birefringence is Icft. Whcn the bcat Icngth is comparable to the nonlincar Icngth, thc 

interplay of lincar and nonlincar bircfringcncc has to be taken into considcration.19 

It is well known that lhc nonlinear polarization rotation dcpends on not only 

the incident powcr, but also lhc polarizalion stale, or the ellipticity of ~ h c  incident 

beam. In a isotropic Kcrr medium, Lhcrc exist two nonlincar eigenstatcs of 

polarization, Lhat is. linearly and circula1.1y polarizcd states. In order words. thcre will 
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Fis. 3.5 Nonlinear transmission vcrsis incidcnt angle of the polarization vector; 

Uppcr curve corresponds to ~ h c  in~provcd scheme, while thc lower one 

corresponds to the schcme 01' Stolen ct ;lLX 



be no polarization change if the incident beam is either linearly or circularly 

polarized. Since linearly polarized light was used in the scheme of Stolen et a1.8 there 

should be no nonlinear transmission. However, as mentioned previously, the finite 

nonlincar transmission in the scheme of Stolen et a1 is due to the presence of linear 

birefringence that changes the polarization state periodically from linear and circular. 

Since there are no nonlinear transmission for both linearly and circularly polarized 

light, thcre should be an optimal choice t'or the polarization state of the incident beam. 

It is the purpose of  this work to tind out this optimum polarization state that gives the 

largest nonlincar transmission. 

In our improved scheme, the incident polarization is assumed to be elliptical in 

general. Since most previous applications were based on the s c h c i ~ ~ c  of Stolcn ct a1.8 

it will be helpful to lllake direct comparison of these two schemes. Therefore, we start 

with a linearly polarized light. then change the polarization to elliptical using a 

quarter wavcplatc(hM) as shown in Fig(3.4). An analyzer consisting of another 

quarter waveplate and a polarizcr is placed at the exit of a nonlinear Kerr medium. 

The analyzer is adjusted in a way such that thcre will be no transmission for light with 

low intcnsity. The polarization ellipse of high intcnsity component will rotate an angle 

after passing through the nonlincar ~ncd iu~n ,  which causes tinite amount of nonlinear 

transmission. The axes ol' the l'irst quarter wave plate is along x and y axis as shown. 

The angle between kut axis(x) and the polarization direction of the incidcnt beam is 

0. Our scheme is very similar to that oC Stolcn et al. except the polarization states. 

The nonlinear polarization of an isotropic Kerr medium is given byl 



where A= 122, B= ~ 1 2 2 1 .  and * are the amplitude of the electric tield and its 

complex conjugate, respectively. For medium like fused silica, in which the 

nonlinearity comes from the nonresonant electronic response. A = ~ . 2 2  BIA = 6 for 

nonlinearity of molecular orientation, BIA = 0 for electrostriction. Since the 

nonresonant electronic nonlinearity is almost instantaneous, we concentrate on this 

kind of nonlinearity in this work. There will be no cohcrent coupling terms between 

components of orthogonal basis iT the basis arc chosen to be circular polarized statcs. 

The intensity-dependent rel'ractivc indices of risht- and left-hand polarized beams are 

niven hy22 s 

where E, = ( E ~  i: i ~ ~ ) l &  arc the electric field components of right- and left-hand 

polarized basis. The rotation angle of the polarization ellipse equal to half the phase 

difference between the two components, and is given by2 

wherc no is the linear refractive index of optical libcr, o is the frequency of incident 

laser. L is the Icngth of the nonlinear medium. It is straightforward to calculate thc 

nonlincar transmission due to the rotation of thc polarization ellipse, and it is given by 



where Qspm = yPoL is the self-phase modulation of a linearly polarized beam with 

equal amount of power or intensity, Po is the input power, y = 6 ~ t ~ m ~ , f f / n ~ c  and Aeff 

is the effective fiber cross section. The dependence of nonlinear transmission of both 

schemes on the incidence polarization angle are plotted in Fig. (3.5) for Qspm = X. The 

peak values of the nonlinear transmission are functions of incident angle of 

polarization direction and power. The upper curve is obtained from Eq. (3.3, while 

the lower one is from Eq. (3.1). It is obvious that our improved scheme provides a 

much larger transmission. The pcak transmission of Stolen et a1 is about 6.5% for 

= x ,  while i t  reaches 24% i n  the in~proved scheme. The peak nonlinear 

transmission as a function of incident power or Qspm are plotted i n  Fig. (3.6). Again, 

the upper curve is obtained from Eq. (3.51, while the lower one corresponds to Eq. 

(3.1). When QSp,, = 2x, the corresponding peak transmissions are 57% and 23% 

respectively; When Qsp,, = 3x. the pcak transmission our improved scheme 

approaches 78%, showing the characteristics of saturation, while the peak 

transmission of the scheme of Stolen ct a1 is about 42%. The gain in the nonlinear 

transn~ission of our in~proved scheme is tremendous, which is expected to reduce the 

power requirement in many applications significantly. 

Since the polarization ellipticity is related to 8 by e = tan(8) when 0 c 8 c ~ 1 4 ,  

e = ctan(8) when 7114 c 8 ~ ~ 1 2 .  Fig. (3.4) also shows the dependence of nonlinear 

transn~ission on the incident cllipticity e. The transmission curve is mirror-symmetric 

around 8 = 45O, we concentrate on the first half of the transmission curve, or 0 c 8 c 

d 4 .  As 8 increases from 0 to 45O. thc ellipticity e also increases from 0 to 1. Fig. (3.4) 

shows that there is an optimal value of ellipticity such that the nonlinear transn~ission 

is the largest. It turns out tha t  this optimal ellipticity e,pt depends on the incident 

power. Fig. (3.7) shows the variation of for different incident power indicated by 



Fig. 3.6 Peak nonlinear transmission vcrsis incident power. Upper curve 

corresponds to the irnpl-ovcd scheme. while rhe lower one corresponds to 

the scheme of Stolen et a!.* 



Qspm. At low power level, Qspm< 7~,  eopt is approximately 0.414, corresponding an 

incident angle 8 = n18. At high power level, Qspm>> 7~, eopt approaches a constant of 

0.057, corresponding 8 = 3.3O. The higher the input power, the smaller the optimal 

ellipticity, and thus the smaller the incident polarization angle. It should be mentioned 

that the nonlinear transmission T is a periodic function of Q S p , ,  therefore there are 

multiple peaks in  the transmission curve. Correspondingly, there are multiple optimal 

values of eopt when Qspm >> n. As long as Qspm is less than 40, the optimal ellipticity 

eopt in Fig. (3.7) still corresponds to the highest transmission, although i t  is possible 

that other peaks arc con~parable to this one. Therefore, the regime of n18 < 8 < 3x18 or 

0.414 < e < 1 should always be avoided in order to obtain higher transmission. 

3.4 Conclusion 

In conclusion, the nonlinear birefringence of low birefringent fiber has bcen 

studied experimentally. It is found that the earlier discrepancies between experimental 

results and theory could be due to the failure to compensate the linear bircfrin, ('ence. 

and the experin~ental results obtained i n  this paper are consistent with theory. It 

should be mentioned that the dependence of nonlinear transmission on the 

polarization angle could be used to optimize the nonlinear transmission i n  pulse 

shaping, optical switching, and other applications as well. A improved scheme of 

pulse shaping using nonlinear transmission has bcen analyzed i n  detail. It is found 

that the nonlinear transmission of this improved scheme is much larger than that of 

previous scheme. The peak transmission can be increased more than three times, from 

7% to 24% for a incident power that is equivalent to that of generating a self-phase 

modulation of n. For QSp,, = 2n. the gain in nonlinear transmission is about 2.5 times, 

corresponding an increase fro111 2310 to 57%. For high power, the gain becomes 



Fig. 3.7 Optimal polarization ellipticity e,,pt versis incident power measured by 

@spm. 



saturated. Since stimulated Raman and Brillouin scattering limit the power level that 

can be used, this improved schemc will be very useful for many applications 

involving moderate power levels. For the same power as used in Fig. (3.3), the 

nonlinear transmission can be increased from 20% to nearly 60% by using our 

improved scheme. Similar improvcnlent can be obtained in the pulse shaping 

experiment of Tapid and Mourou.ll As for the pulse shaping experiment, our 

improved scheme has two advantages compared to that of Ref.(ll). First, the 

enhanccd nonlinear transmission will provide a better contrast. Second, there is no 

need to compensate for the linear birefringence in our improved scheme, which 

strongly affects the contrast in the scheme of Tapic! and Mourou 11 It is found that 

there is a optinla1 polarization ellipticity for the maximum nonlinear transmission. 

The value of eoDl dcpcnds on thc incident power. It is also found that the polarization 

ellipticity should always kept smaller than 0.414 so that higher nonlinear transmission 

can be obtained. For high power, thc gain becomes saturated. Since stimulated Raman 

and Brillouin scattering limit the power lcvel that can be used, this improved scheme 

will be very uscful for many applications involving moderate power levels. 
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CHAPTER 4 

Soliton Stability and Soliton Collisions in Birefringent Optical Fibers 

In prcvious chapters, we have studicd the effects of linear and nonlinear 

birefringence on the propagation of short pulses. Linear birefringencc or polarization 

mode dispersion (PMD) causes a short pulse to split into two components. However, 

we neglcctcd the efl'ccts ofthe group velocity dispersion (GVD) i n  chapters 2 and 3. In 

this chapter, wc study the nonlincar propagation of short pulses i n  optical tibers whcn 

linear bircl'ringencc, nonlinear birefringence (or nonlinear refraction), and GVD arc 

important. Thc combination ol' nonlincar refraction and GVD gives rise to a very 

iniportant phcnomcnon, that is. optical solitons. Linear bircfringcncc can destroy ~ h c  

soliton propagation since i t  causes a short pulsc to split. 

In this chapter, we study the cl'l'ccts 0 5  linear bircliingencc on soliton stability 

and collisions. Several conservation laws arc found and used to dctcrniinc a one- 

paranictcr family of solitary-wave solutions. Soliton stability is discussed quantitatively 

using a virial theorcm. By nn:~lyzing the virial thcorem, we obtain the relationship 

hctwccn the threshold a~llplit~~dc and the linear bircl'l-ingcncc. 0i1r analytic wsult agrees 

well with nunicrical sin~ulations. 

The effects of linear bircl'ringencc on the collisions of solitons are studied 

numc~ically. It is found that there are thrce regions of interaction i n  the paranictcr space 

oC lincar bircfringcncc. It has been shown that the governing cquadons for Lhe tcniporal 

solitons in a bircfringcnt optical fiber are mathc~liatically equivalcnt to thosc for vcctor 

spatial solitons. Tllc collisions of vcctor spatial solitons is investigated numerically. 

Thc applications of spatial vcctor solitons in  all-optical switching arc invcstigatcd 

ni~nicrically. 



4 . 1  Introduction 

In most discussions of optical solitons, it is assumed that the input pulses are 

linearly polarizcd, and rcmain so throughout their propagation. The state of polarization 

plays no role i n  thc nonlinear propagation.lv2 However. there are more gcneral 

situations in which thc statc of polarization is important. For example, when optical 

pulses or beams arc elliptically polarizcd. we know from chaptcr 3 that nonlinear 

refraction can rcsult in  polarization rotation if the light is elliptically polarizcd. 

Therefore, the electric ficld amplitude can't be described by a sinzlc licld componcnt, 

and a vcctor description is required. The corresponding solitons arc rcfcrred to as 

vector solitons to emphasize tllc fact that an input pi~lsc n~aintains not only its intcnsity 

profile hut also its statc of polarization.J Vector solitons are fundanlentally differcnt 

from the usual scalar solitons, they possess many new propcrtics that can't hc found in 

scalar solitons. I t  is thcse ncw properties that 111akc vcctor solitons have more potential 

applications than scalar solitons. 

There arc two kinds of optical solitons, that is, tcmpc)ral and spatial solitons. 

Tempol.i~l solitons arc nonlinear pulses 1 I i i 1 ~  can maintain Lhcir pt~lsc shape or width 

without distortion during their propagation. whilc spatial solitons arc l i ~ h t  beams Lhat 

can maintain their  bean^ shapes or sizes without broadening. In a wavesuidc such as an 

optical fihcr, thc spatial intensity profile is tixcd and only thc pulse width is allowed to 

change due to chromatic and polarization dispersions. In such cases, we can have 

temporal solilons if self-phase modula~ion (SPM) or cross-phase modulation (XPM) 

can negatc the effect of lincar dispersion. As for the propagation of CW laser hcams in 

planar wavcguidcs. thcrc is no temporal variation, but Lhc bean1 s i ~ c  is allowed to 

change with distance t~ndcr Lhc cffcct of diffraction. In such cases, spatial solitons are 

possible if nonlinear refraction can cancel diffraction so that the beams can propagate 



without changing their sizes. Both spatial and temporal solitons can be either scalar or 

vector solitons dcpendin~ on whether the polarization of the light ticld comes into play. 

It should bc emphasized that temporal solitons are more likely to bc vector solitons in 

optical fibcrs due to thc prcsencc of thc rcsidual birefringence which causes the 

polarization to cvolvc periodically. Since most optical solitons are realized in optical 

fibers, thc cffcct of bireti-ingencc on ten~poral solitons is becoming a very important 

issue . These effects includc the issue of soliton stability and soliton collisions. In other 

words, it is interesting to know whether solitons can survive the intluencc of 

birefringence. and how bircl'ringcnce affccts thc soliton collisions. Although thc same 

qucstions can also be asked ror spatial solitons, the effect of  bircl'ringencc in planar 

wavcguidcs is not as important as in optical tibcrs. However, it was found that the role 

of bircl'ringencc in  tcmporal solitons is replaced by anothcr parameter i n  spatial 

solitons, that is, thc intcrsection anglc between two vcctor soliton beams. Intcrcstingly, 

the spatial and temporal solitons arc mathcmatically equivalent i f  the term describin~ 

bircfringcncc in temporal solitons interchanged with the intersection anglc in spatial 

solitons. This makes i t  possible Lo study both spatial and temporal solitons using the 

same governing cclu:~tions. and the spatial-tcmporal analogy is very hclpful in 

understanding the underlying physics. In this chapter, wc study the slabilily and 

collisions of vcctor solitons in  a unil'icd way so that the rcsults arc applicable to both 

spatial and tcmporal solitons. 

The organization of this chaptcr is as follows. We discuss Lhe soliton stability in 

Section 4.2, collisions of tcnlporal vcctor solitons in Section 4.3 and collisions of 

spatial vcctor solitons in Section 4.4. Thc rcsillts are sun~marizcd in Scclion 4.5. 



4 . 2  Stability of vector solitons in birefringent optical fibers 

Optical solitons are nonlinear pulses that propagate without distortion and can 

be dcscribcd by a nonlinear Schrodinger equation ( N S E ) ~  for the wave amplitude. 

Bright solitons in optical l'ihcrs were first observed more than ten years ago.5.6 

Soliton-based con~munication systcn~s have a tremendous information handling 

capacity comparcd with even [he most advanced conventional optical ~~s tcn1s .4  

However, solitons suffer fro111 I I I L I ~ L I ~ ~  intcr~~ctions. or collisions, since the same Kcrr 

nonlinearity uscd to conlpcnsatc l'or dispersion also results in interactions anlong 

neighboring solitons. This kind ol' collision limits thc bit rate of soliton-bascd 

comnlunication syslenls. Soliton collisions in losslcss fibcrs have been studied both 

theoretically and cxpcri~~~cntally;2~7 holh attracdvc and repulsive interaction l'orccs were 

found. To avoid such intcraclions, the distance bctwcen solitons has to be sul'ficicntly 

large, usually ten tin~cs larger Lhan Lhc pi~lsc widlh. This rcquircn~cnt significantly limits 

the achievable transmission ralc. 

Anolhcr importan1 factor which aflccls soliton propagalion is ~ h c  oplical 

birefr ingcr~cc.~-~ The work dcscrihcd above rcsls on [he assumption [hat single-modc 

fibcrs conlain only one p~.opagi~tin; mode. Howcvcr, singlc-mode iihcrs arc rcally 

binlodal because of [he pl-csencc ol' oplical hircl'ringcncc. These ~ w o  modes are 

orthogonally polarized and propagate wiih diil'ercnt group vclocilics. When [he 

birefringence is weak, iw main ciicct is thc polarization instabilily, since [he crilical 

power for thc polarization instability is quitc slnall for wcak bircfringencc. 10 Howcvcr, 

birefringence is usually not wcak i n  oplical l i b c r ~ . ~ - ~  The resulting dilfcrcnce in group 

velocities leads to pi~lsc splilling, which is i~ndcsirahlc i n  conlnlunication applications. 

Just as the Kcrr nonlincarily can hc uscd Lo colllpcnsatc ior linear dispel-sion and 

generate s ~ l i t o n s . ~  ~ c n ~ i ~ k ~  showed [hat ihc same nonlinearity can also negate thc 
b 

walk-oil' cfl'cct and entrain [he solitons. He found that the threshold anlplitude I'or 



mutually trapped solitons increases with increasing birefringence; solitary light pulses 

can still bc obtained providing tlieir amplitudes exceed this threshold. Using a pseudo- 

particlc model. Caglioti, Crosignani and Di Porto showed that thc threshold amplitude 

depends quadratically on the linear bircfrin2ence.l l Based on the model and thc 

numerical rcsults of ~ c n ~ u k ~ ,  ~ i v s h a r l ~  predictcd that the threshold an~plitude 

depends lincarly on thc lincar hirclringcncc. The n~cthod used by Kivshar is Lhe 

rcduccd variational mc thod (RVM) dcvcloped by Anderson, Bondcson, and ~ i s a k .  13- 

15 In fact, these authors had considered the same model and had obtaincd a sin~ilar 

potential lorn1.15 They also poined out that the pcrturbcd Lagrangean lormalisn~ is 

only valid whcn the separation between the partial solitons and thc bircfrin, '7encc arc 

both relatively small. Our coniputcr simulation shows [hat thc threshold amplitude tends 

to a finite valuc as thc lincar bircfringcncc approaches zero. ~ i v s h a r l 2  correctly 

predictcd the cxistcncc of this gap, while tlic result of Caglioti, Crosignani and Di 

Port01 1 has no such gap. 

In this section, thc virial theorcm is uscd to study soliton collisions in 

hirefringcnt optical libcrs. Znkharov, Sobolcv, and Synakh l 6  wcre thc first to apply 

the virial theorem 01 VI:lsov. Pctrishchcv and T a l i ~ n o v ~ ~  to thc nonlinear Schriidingcr 

equation. Subscqucntly, a remarkable analogy has been found hctwcen thc behavior of 

NSE and the N-body problc~n in celestial n ~ e c h a n i c s . ~ ~  The virial theorem was first 

extended to coupled NSE's by McKinstric and ~ u s s e l l . 1 ~  A closely related method is 

the reduccd variational method. The method o l  Caglioti, Crosignani and Di port01 1 

is closcr to the RVM Lhan to the virial thcory. In this scclion, an equation governing thc 

behavior oC the partial solitons is dcrivcd. It is found that thc amplitudes o l  thc 

syn~nictric partial pulses and their inilial separation arc hoth critical factors in the wave 

cvolu~ion. Below threshold, the: p~lrtial solilons will eventually scparatc; no mutual 

 rapping exists. Above threshold, trapped states exist in which the partial pulses 



oscillntc around a common ccntcr and which can therefore be regarded as quasi- 

solitons. Unlike the case of a single NSE mentioncd earlier. the interaction force does 

not depend on [he relative phasc between [he partial pulses. The threshold amplitude is 

found to depend nonlinearly on [he birefringence, not linearly as predicted by 

Kivshar. 12 The predictions of [his section show a better agreement with the numerical 

results of McnyukR than do those of Kivshar.12 The numerical simulations of 

MenyukX have been supplcnlcnlcd to show [he dependence of threshold amplitude on 

[he birefringence more clearly and to confirm [he presence of the gap. 

4 . 2 . 1  Derivation of the Virial theoreni 

Pulsc propagalion i n  a bircfringcnt optical fiber is described by the coupled 

N S E ' s ~ . ~  

whcre 3, = 3131.3, = d13x. Al and A? are lhc ampliludcs of lhc ~ w o  polarizalion 

componcnw of lhc wavcs. Thc normalized strcng~h ol' lincar bircfringcncc is dcnolcd by 

6 and is given hy 112 (v;; - V ~ ' ) T , , I Z ~ ,  whcrc Vgl,2 are lhc group velocities oi the 

Fast and slow modes, rcspcclivcly; T,, is nor~nalizalion time and is equal 10 0.568 
2 T ~ I I M  of the solilon pulse; ZJ is the dispersion distance T ~ / P ~ ,  used for spatial 

norn~alizadon; and P2 =(d2k/do2) is the GVD paranleler. The relalion between 6 and 

[he lincar hircl'ringcncc An is 6 = AnT(j(2cZd), whcrc c is the speed of light in vacuum. 

Tn Eqs. (4. I )  and (4-2), 1 is [he distance along [he fihcr, and x is the local time in a 



frame moving with the average velocity of the fast mode and the slow mode. The 

parameter E describes the strength of XPM relative to S P M . ~ ~ ~  For birefringent fibers 

with lincarly polarized eigenrnodcs e = 213, whereas for circularly polarized modes, e = 

2; with elliptically polarized eigcnn~odes, 213 < e < 2. In this chapter the tiber modes 

are assumed to be lincarly polarized, so e = 213. In Eqs.(4.1) and (4.21, the roles of t 

and x are interchanged relative to Ref. 8. This interchange facilitates coniparisons with 

the related problem of the nonlinear focusing of two light waves intersecting at a finite 

anglc,21 in which 26 is the approach velocity of the waves and one-dimensional 

dispersion is replaced by two-dimensional difUraction. We will discuss this issue in 

detail in Section 4. 4 whcn discussing sp:lLial vector solitons. The four-wave-mixing 

terms in Eqs. (4.1) and (4.2) have bccn neglected since they arc highly oscillating tcrnis 

in most practical situations.~~9 

The spatio-temporal evolution ol' the wave amplitudes is governed by the 

Lagrangcan density 159 l9 

* 
where A, and A arc the canonical variahlcs, and Lhc potential Q is given by 

a 

Summation over rcpcatcd indices in Eq. (4.3) is implied. 

Application oT the Ei11cr-Lagrangcan cqi~ations 



a 3~ - a +- a~ a~ - = o  
at 3(3Aa /a t )  3x a(3Aa /ax)  dAa 

to the Lagrangean fencrates the coupled NSE's (4.1) and (4.2). 

Since Q is real, no energy is exchanged hclween [he two waves. Thus, each wave action 

is conscrvcd. Addilional conservation laws can hc deduced from the n~omenlum-energy 

tcnsnr 19.22 

where the subscripts p and v denote 616xP and S/sxV, respectively. In  our case here 

x0 = t, X I  = x. Thc momentum-cncrgy conservation cqualion is 

If L doesn't dcpcnd cxplicilly on 1, and x ,  then the following two quantities arc 

conserved: 

(a) The total wave momcnlum 

P =  T,, dx J O 

(h) TIlc total wave enel-gy 



where 6 1 = 6. and 62 = -6. 

In the moment approach.16 Llic average value of a physical quantity F is detincd by 

Of particular intcrcst hcrc is Lhc pulse separation 

(6x2) = (x') - ( x ) ~  . 

It is easy Lo show that 

whcrc d[=d/dL and dll=d2/dt2. Tlic cli~antitics of intcrcst. (x) and (x?), arc the t'irst and 

second moments of Lhc wave action. The general idea of thc moment approach is to use 

the conservation laws (4.8) Lo integrate Lhc moments by parts and relate them LO the 

known constants N, P, and H. For example. 



Thus. the second tern1 in Eq. (4.13) is a constant of the motion, and the third term is 

equal to zero. Although the algebra is lengthy, the first term in Eq. (4.13) can be 

evaluated in a similar Fashion. The rcsult is 

where all terms on the right-hand side arc constants except the remainder term 

Equation (4.15) is called the virial rhcorcm and is exact. For the special case in which 

birefringence is absent, Eq. (4.15) reduces ro the virial equation of McKinstric and 

Russell. 19 

If the polarizalion of incident wavc is aligned to one of thc birefrinscnt axes, or, 

in orhcr words, only a single n~odc is present, onc can choose a new reference frame 

that niovcs wilh [he group vclociry 01' the wavc. The virial cquation can then he recast 

3s 

2 dx is [he kinetic energy and V = - Q dx is the pnlenlial I 
energy. 

For soliron solulions, one ohlains 



It is found that 

Written in l'ull, Eq. (4.19) beco~l~es 

Equation (4.20) is a ncccssnry condition L'or a soliton solution, since we have othcr 

conservation laws which impose othcr constraints on the solutions. In thc classical N- 

body problem. the virial theory of Eq. (4.19) represents a circular orbit around the 

ccntcr of the mass, and the soliton solutions of the NSE correspond to thc stationary 

uappcd orbits of the classical N-body problcm.lR In Ref. 18. the authors showed that 

in hifhcr dimcnsional cases (D > 11, the collapsc oC nonlinear light waves is analogous 

to the gravitational collapsc: both phenomena have the same collapsc criteria and 

behavior of thc singulal-ily. 

4.2.2 Solitary- Wave solutions 

A solitary-wave solulion has hccn given by ~ i v s h a r l ~  when thcrc is no lincar 

hirefl-ingcncc. Based on Kivshar's solulion, a one-parameter Family of solitary-wave 

solutions of Eqs. (4.1 ) and (4.2) is sivcn by 



where v is the difference between the solitary-wave velocity and the carrier-wave group 

velocity, A is the solitary-wave amplitude, Uj = (v2 - A2)/2, kl = v. and k2 = v. 

One way to detem~ine a solitary-wave solution to Eqs. (4.1) and (4.2) when the 

linear hirefringcncc is not zero is to usc an ansatz with several free parameters, which 

can be chosen to satisfy Eqs. (4.1 ) and (4.2). In general, the correct rclation between 

the Crce parameters is not obvious. A key part of this procedure is [he ansatz. Since the 

effect of birct'ringencc is to change the linear dispcrsion characteristics of each mode, 

one mighl suspect that Eq. (4.2 1 ) will be a solitary-wave solution of Eqs. (4.1) and 

(4.2), even i n  the presence oC t-~ircl'ringencc, i f  i t  is 111odificd to allowed for additional 

shifts i n  thc modc l'rcclucncics and wave numhcrs. There are several conserved 

quantities associated with Ecls. (3.1) and (4.2), as was shown above. The wavcnumbcr 

shift of cach partial wave is proportional to the momentum carried by the wave, so the 

momcntum conservation law li111its L I I ~  wave-nun~bcr shift of each wave i n  such a way 

that the to~al shift of both waves is a constant. A straightforward way to determine the 

free paranlctcrs in the ansatz of Eq. (4.21) is to substitute Eq. (4.21) directly into Eqs. 

(4.1) and (4.2). It  is easy to show that k l  = -8 + v, k2 = 8 + v, and ol = o2 = (v2 - 

62 - ~ 9 1 1 2 .  Putting thcsc results to~cthcr sivcs 

(4.22) 
cosh[A(x - vt)]  

Equation (4.21) can bc anticipated on purely physical grounds. The linear 

propagation characteris~ics ol'cach mode slcm iron1 a dispersion relation of the for111 



for which the associated group vclocity 

Suppose tirst that v = O. Thc original solitary-wave ansatz (4.21) has an average wave 

numbcr of zero, for which the g ~ u p  velocities arc 6 and -6, respectively. If the 

average iiiodc wave nuiiibcrs wcre shiftcd by -6 and 6 correspondingly, the new group 

velocities woi~ld both be cqilal to zcro. Correspondingly, both modes would acquirc a 

frequcncy shift of -6212, as Cound in solution (4.22). Since this physical iiicchanisni 

relics solely on GVD, coupled solitary waves 01' arbitrary amplitude cxist. Now 

suppose that v # 0.  At first glance, Equation (4.22) appears to rcprcsent two light 

pulses traveling at sonic vclocity othcr tli:~n the lincar group vclocity of thcir carricr 

waves. lntcrcst in the gcncral issuc of nonlinear Sroup vclocity has bcen rckindlcd 

rccently by Mori ct a1.23 However, consideration of thc frcquency (v2) and wave 

numbcr (v) shifts associated with linitc v shows that thc total solitary-wavc velocity (vg 

+ V )  is cqual to the lincar group vclocity dwldk cvaluatcd at (wO+v2, ko+v). In othcr 

words, changing the parameter v corresponds to making the SVEA, on which the 

couplcd NSE'b arc based, relative lo a dil'l'crcnt carrier I'rcqiicncy and wav~lcn~th.37 A 

spccilic solution. in  which A = I and v = 0, was obt:~incd by ~ c n ~ u k . 9  who cxplaincd 

the physical signilicancc of his solution in a latcr Sonic analytical solutions of 

couplcd NSE's wcre also hund indcpcndcntly by ~ u r a w s k i . ~ ~  and by Tratnik and 

~ i ~ e , ~ ~  and niiiny others. 

4 .2 .3  Relationsllip Between Tllreshold Amplitude and Birefringence 

In Scc. 4.2.2, i t  was found that solital-y wavcs cxist whcn both partial wavcs 

have the same pi~lsc shape, and overlap exactly in  tinic. However, i t  is well known that 



each partial wave can separatc a small distance and f o m ~  a quasi-stable state.8-9 In this 

section, the virial theorcln is uscd to study the trapping behavior for arbitrary pulse 

shape and separation. 

The threshold behavior can hc obtaincd by analyzing Eq. (4.15). The only tcrm 

that changcs is R; all thc othcr terms arc eithcr constants of motion or free parameters. 

From Eq. (4.15) and Ecl. (4.4). we obtain 

If thc right hand side Ecl. (4.15) is ncgativc. then (6x2) will be hounded; thus we have 

a bound statc, or trapping statc. Wc know that the energy oC cach pulsc is conscrvcd. 

the interaction hctwccn cach pi~lsc only changcs tllc pulse phase and pulse shapc, a 

well-known rcsult for XPM. Tllc magnitude of R increases when the relative distance 

between thc two pulscs dccrcascs. Whcn the two pulses arc well separatcd, we have 

Under this condition. il' the RHS ol' Eq. (4.15) is positive, Lhcn the two pulscs will 

pass through cach othcr and go to the infinity. On thc othcr hand, i f  the RHS of Eq. 

(4.15) is ncgativc. the two pi~lscs will attract cach othcr and form a n~utual ~rapping 

statc. Thcrcforc the condition for trapping state is that the RHS of Eq. (4.15) is 

ncgativc whcn the two pi~lses are well scpar;~tcd. 

Using the Cauchy-Schwaltz inequality. we obtain the following cstin~atcs for 

the value of R whcn thc relative distance bctwccn thcm is large, 



where NI and N2 are thc wavc actions and L l  and L2 are the distances over which the 

pulscs cxtcnd in space. Note that Ll and L2 arc not sharply dctincd. bccause cven a 

soliton with a hypcrbolic sccant piilse shapc does not have a wcll defined tcillporal 

extcnt. Thcrcl'orc, i t  is iinderstood that L1 and L2 are paranleters related to the pulse 

width in which most of the pulse energy is located. Using this result, wc obtain the 

suCficicnt condition for the trapping state: 

It is important that all thc tcrills involvcd in thc above relation arc constants of motion; 

thus, we can analyze thc wholc situation siiiiply by considering thcse constants, no 

iuattcr how the piilse shapc changes. In order to gain sonlc insight to this relation, we 

consider the synimctric input I'ollowing the spccilic case of ~ c n ~ i 1 k g . 9  

From Eq. (4.27) and Ecl. (4.28), ~ h c  threshold condition is Cound to he 

In order to coliiparc our results wiih thc results of Mcnyi~k and Kivshar, we 

plot Eq. (4.30) in Fig. 4.1 with E = 213. Usins thc reduccd variational nlcthod and the 



soliton stability argumcnt from inverse scattering theory, Kivshar obtained his linear 

relationship betwccn Alll and 6, which is denoted by the solid line in Fig. 4.1. The 

dashed line is ihc eslirnae of ~ a s c g a w a . ~ ~  who used a quantum mechanical analogy to 

the coupled NSE's. The numerical rcsulls of Mcnyuk are denoted by filled circles. 

Kivshar's results agree with the numerical simulations only when the linear 

birefringcncc is small, which is just the assumplion he n~adc  in his mcthod, and this 

assumplion limils L ~ C  range of validity of his 111clhod. Hasegawa's rcsult gives an upper 

bound for the threshold an~pliludc. The band bounded by two solid curves is our rcsult 

calculalcd from Eq. (4.30) by taking L = 8, and L = 4, respcctivcly. Thc cnc r~ ic s  

contained in hyperbolic sccanl pi~lscs with symn~clric cxlcnsions of L = 4 and L = 8 arc 

96% and 99.9676, rcspcclivcly. The sirnulalion results clcarly show a nonlinear 

dcpendcncc of thc ~hrcshold cond ilion on Lhc strength of lincar hire fringcncc. The 

untilled circles arc our numerical simulations, which are very closc LO thc rcsults of 

Menyuk's. We solved Eq. (4. l )  and (4.2) using the split-slcp n~elhod,Z which is 

described in detail in Lhc Appendix. Wc i~scd 2048 grid poinls in our sin~ulation. In 

order lo dctcrn~inc the lhrcshold more accuralcly, our propagation distance o f  50 solilon 

units is 111uch longer than lhc pnlpngalion distance of ~ c n ~ u k ' s . ~  The unccnainty in 

determining ~Iic lhrcshold value is 0.05. 11 is easy Lo see Lhc asrcemcnt between our 

sin~ulalion with L = 8 and Llic prcdiclion given by Eq. (4.30) whcn Lhc birefringence 

paranictcr 6 < 0.5. When 6 > 0.5 sirnuli~~ion rcsulls approach Lhc curvc of L = 4. 

Finally, we want to point oul that McKinslrie and ~ u t h c r ~ 7  showed that the lincar 

n~odulalional instability of waves governed by couplcd NSE's can only occur in inlinilc 

media when lhc normalized convcclion velocity 6 c Ao. This is Lhe same scaling we 

obtain i n  this scclion for Lhc threshold ampli~udc Alll whcn 6 is comparable LO 1. 

Thcrcforc, allhough lhc li~icar modulalional inslability is differen1 from soliton 

entrainnicnl, ~l ic  scaling is [he sa~iie, which suggests that thc underlying physics is 



Birefringence (6) 

Fig. 4.1 Thc solid line shows the analytical rcsult of Kivshar; the dashed line is thc 

estimation oI' Hascgawa; the numerical rcsult of Menyuk is given by tillcd 

circles; thc band boundcd by two solid curves is plotted according to Eq. 

(4.30) with L = 8, and L = 4, rcspectivcly, corresponding to 99.96% and 

96% oC the cnergy in a soliton pulsc; the unfillcd circles are our numerical 

simulations. E = 213. 



similar. Associated with thc nonlincar frequency shifts are corresponding shifts in the 

wave number and group velocity. Consequently, the entrainment of modulations or 

partial pulses is only possible over a ccrtain range of 6. Since a minimum energy is 

required to generate a nonlincar frcquency shift large enough to compensate the linear 

dispersion even in single NSE, the coupled NSE's also require a minimum energy to 

form a soliton: a threshold gap at 6 = 0 is expected and is confirmed by Eq. (4.30) and 

Fig. (4.1). 

In our rcsult, the thrcshold an~plitudc gap is a natural consequence of our 

analysis. But in the rcduccd variational approach of ~ i v s h a r . ~ ~  this thrcshold gap 

cannot he obtained directly. In fact, Kivshar12 made thc assumptions that the coupled 

NSE's can support such quasi-solitons and that thcsc quasi-solitons possess the same 

stability property as do the solitons of single NSE. Using a result from the inverse 

scattering method (ISM) ahout thc stability of solitons, Kivsharl2 was able to obtain 

the threshold gap. However, we obtain this threshold gap from the virial theorcm 

directly. In fact, the vil-ial theorem can be utilized to study other aspccts of the bchavior 

of intcracting solitons. Since the information about evolution is containcd in R,  

analyzing R is sufficient to understand the interaction process. For example, if we 

assume that thc partial pulses do not changc their shape during the intcraction, which is 

valid I'or small 6, wc have 

since the relative distance (6x2) differs from only by a constant, where A is the 

distance bctwccn the p~~lscs  measured from thc center of cach pulse. Making use of 

Eqs. (3.21) and (4.29) as the p~llse profile, we get 



Fig. 4.2 The partial solilons arc scparaicd while experiencc nonlinear oscillations 

along thcir own palhs. 



whcre 

and 

when 

Equation (4.33) dcscribes a nonlinear oscillator with gain or loss depending on the sign 

of thc constant term on the RHS oL' Eq. (4.33). Thus, the oscillatins term in Eq. (4.33) 

is given hy 

Thc oscillation frcqucncy is 

We note that thc oscillation Crcqucncy is proportional to the pulse intensity, a result 

earlicr obtained previously hy ~ i v s l ~ a r l ~  and Lisak. ur ul. 

Below the threshold, we havc an atilplilied osci1lato1-, and each pulse will bc 

separated while oscillating around their uncoupled t~.;!icctory, as shown in Fig. (4.2). 



Fig. 4.3 The partial solitons bounce back and forth while propagating, and form a 

trapped state. 



While above threshold, the colliding pulses will form a trapped state as shown in Fig. 

(4.3). 

4.3  Collision of temporal vector solitons in birefringent optical fibers 

This scction is devoted to the study of soliton collisions in a nonlinear 

birefringent fiber. This subject attracts great current interest due to its scientific 

importancc~.9.12.20~-32 and its potential applications to optical logic devices.33~34 

Pulse propagation in birefringcnt optical fibers is described by two coupled 

~ ~ ~ ~ 8 . 9 ~ 2 0  which are known to be nonintcgrablc by means of the inverse-scattering 

method  ISM].^^ The most in~portant dil'fcrence between an intcgmble nonlinear wave 

equation and a nonintcgrablc one is that thc collision bctween solitary wavcs is elastic in 

the fornlcr case and inelastic in thc l a t t ~ r . ~ ~ . ~ ~  There is always radiation cmitted during 

the solitary wave collisions in a nonintegrable system such as the system governed by 

the couplcd NSE's. 

In this section, i t  is found that strong radiation emission, which has some 

similarity to Ccrenkov emission, is associated with thc bound state. If the amplitudes of 

the two colliding solitons arc bclow a threshold value, thc two solitons will scparatc 

from cach other al'tcr thc collision. Howcvcr, cach soliton cmerges from the collision in 

a mixcd polarization. Tllc component with snlallcr amplitude or energy is called the 

soliton ~ h a d o w . ~  Although thc same phcnomcna as the soliton shadow is studicd in 

this section, i t  is found that thc amplitude of the shadow is not always much smallcr 

than the other component, thus thc word shadow is not an appropriate concept here. 

This p h c n o ~ ~ ~ c n a  is simply callcd mixing here without emphasizing the dominant 

contribution to thc total polarization state. This kind of mixing also exists in the 

parametric interaction hctwccn solilons with difl'crcnt wa~elen~ths.38 Recently. Wang 

et ~ 1 . 3 ~  studied this mixing el'lcct (soliton shadow) in birefringent optical fibers. They 



found that the amplitude of the shadow is much smaller than that of the component that 

traps the shadow. The dcpendcncc of the shadow amplitudes, widths, and shapes on 

the initial separation of the colliding solitons has been studied in some detail. In this 

section, i t  is found that thc relative contribution to the total polarization state varies in a 

large range and depends vcry sensitively on the linear birefringence. By linearizing the 

coupled NSE's, Malomed and wabnitz40 found that there exists a critical value of 

linear birefringence for which the soliton collision is resonant in  the sense that the 

spatial frequency of the soliton shadow equals that of the soliton with much larger 

amplitude. Under thc conditions of resonance, solitons collide with each other much 

more strongly, and show many new phcnon~cna. When the linear birefringence is 

above this crilical value, the interaction bctween two solitons is weak and each soliton 

picks up a shadow aftcr a collision. Most of thc previous work on soliton collisions 

was in thc nonresonant rcgime. and Lhc n~ixing effect was very small. In this section it 

is found that the rcsonant regime is more subtle in that it consists of bound states and 

unbound states. Therefore, the paramctcr space of linear birefringence is divided into 

three regimes corresponding Lo bound. unbound resonant, and unbound nonresonant 

states. In an intcgrablc system. solilons do not change [heir vclocitics after a collision. 

However, in a noninlegrable syslcnl, the vclocilics of two colliding solitons generally 

change aftcr a collision. We also investigate (his phenomenon by numerical simulation. 

It is found that both ~ h c  velocily change and lhc amount of mixing n~easurcd by means 

of cross-corrclalion dcpcnd strongly on thc lincar birefringence. The XPM bctween two 

colliding pulses generates nonlinear frequency shifts and, hcnce, vclocity changes due 

to GVD. The dependence of the vclocity changes on the linear birefringence is sin~ilar 

to that of the mixing on the lincar birefringence. None of previous work on soliton 

collisions was conccrncd with Lhc dcpcndcncc on the linear birefringence. It is not 

surprising Lhal only very small iuixing has been found, since  he linear birefringence 



chosen in prcvious work was very large, and the collisions were nonresonant. The 

entire range of the linear birefringence is investigated in this section. 

The governing equations have already been given in a previous section [Eq. 

(4.1) and (4.2) 1. We considcr collisions bctween two solitons that travel in two 

orthogonally polarized modes. Initially, the two solitons are represented as follows: 41 

Ai(z = 0,t) = A,, sech[A, (t + b)], A5 = 0, 

A ~ ( z  = 0.t) = A" sech[A,(t - b)]. AT = 0 (4.38) 

The two solitons, labeled by A;, A;, and AT A; are assumed to have equal 

amplitudes; to is equal to 5 in all thc simulations. and A, = (1 +&)-'I2. The initial 

condilions arc chosen in such a way that the two colliding solitons are well separated 

before ~ h c  collision. In this section, the propagalion distance along tibcr is denoted by 

z, whilc the local time variable is denoted by t. 

Soliton collisions in a nonintcgrablc system, such as the one dcscribed by Eq. 

(4.38), have many intcresting properties that do not appear in an integrable system. 

Among thcni arc the mixing of two colliding solitons and the frcquency shifts after 

collision. Thc frcquency shifts arc most importan1 in thc application oC soliton logic 

devices. In dispel-sivc media, lhc f~.ccluency shifts will result in lime shiCts due to the 

GVD. In ordcr lo invcsligale lhc 111ixing proccss cluanlilativcly. thc following parameter 

is introduced: 



Fig. 4.4 Dependence of M on thc linear birefringence 6. ( a )  The overall behavior. (b) 

Fine structure of the second interval. 0.27 < 6 < 0.305. 



Fig. 4.5 Dependence ot' v-6 of colliding solitons on the linear birefringence 6. (a) 

The overall behavior. (h) Fine structure o f  the second interval. 0.27 < 6 < 

0.305 



Since most of the energy of a soliton is localized, it is easy to see that 
M = Lim m(z) measures the overlap of two solitons after collision. When two identical 

Z - S W  

solitons overlap exactly, M = 1; while they are well separated, M = 0. When above the 

threshold amplitude,8~9~12~20 two solitons overlap with each other, and M will be 

very large (approaching 1). It is easy to understand that high values of M exist when 

two solitons form a bound state after collision. The important thing is how M changes 

when there is no trapping. In an integrable system, there is no mixing after a collision; 

therefore, M will be 0 after the collision of two solitons. However, in the nonintegrable 

system studied in this section, it is found that M approaches a well-defined value after 

two colliding solitons are well separated from each other. In order to calculate M, we 

solve Eq. (4.1) and (4.2) numerically using the well-known split-step method (see 

Appendix). The initial conditions are given by Eq. (4.38). which guarantees that the 

two colliding solitons are well separated before collision. The linear birefringence 

parameter 6 is used as a control parameter. Numerical simulations show that the mixing 

parameter M depends on the linear birefringence 6 in a complicated way. There are 

three kinds of behavior depending on the values of 6 .  This can be seen from Fig. 

4.4(a). The first regime is 0 < 6 < 0.27, corresponding to the trapping state. In this 

case, two partial solitons form a breather-like trapping state, M oscillates between 1 and 

another high value (>0.5), and there is no asymptotic value of M. In this regime the 

soliton fusion is evident. Note that we leave this regime blank in Fig. 4.4(a) since M is 

not well defined in this region. The second regime is denoted by 0.27 < 6 < 0.305. In 

this regime, the two colliding solitons interact strongly, bouncing back and forth 

around each other for several times and then separate from each other eventually. M 

value is well-delyned; the fine structure of this regime is shown in Fig. 4.4(b). 



Fig. 4.6 Dynamic behavior ot' soliton collision in the second interval vith 6 = 0.298. 

(a) Variation of m(z) versus propasation distance Z. ( h )  Variation of center 

of mass of one soliton versus propagation distance Z. 



Fig. 4.7 Dynamic behavior of solilon collision in [he second interval vith 8 = 0.304. 

(a) Variation of m(7.) versus pnlpagation distance Z. (b) Variation of center 

of mass of one soliton versus propagalion distance Z. 



Complicated oscillations occur in this regime. Small changes in 6 Senerate very 

different final states. The third regime is represented by 6 > 0.305. M decays 

exponentially with increasing 6 approximately as e-IoS. This behavior is casy to 

understand, since the largcr thc approaching velocity, thc smaller the interaction. 

The fact that soliton collisions in bircfringcnt fibers are inelastic is very 

important for many potential applications in all-op~ical switching and optical logic gates. 

The inclasicity of soliton collision rnanifcsts itself by shiftins the central frcquencics 

and the vclocitics of thc colliding solitons. In fact, thc vclocity changes are closcly 

relatcd to thc t'rcqucncy shifts by Lhc CVD. Furthcrmorc, thc velocity change rcsults in 

a time shill upon propagation along the libcr, which is thc major mcchanism 

z (XI 0') 

Fig. 4.X Thcrc is no mixing whcn velocities of colliding solitons arc largc. 6 = 2. 



of soliton-dragging logic gates.33*34 No such change is possible for a single NSE 

system because of its integrability. Here the velocity is free to change as long as the 

momentum of thc syslenl is conscrvcd. Bel'orc collision, the two solitons will shift f6 

in time respectively, aflcr propagating a unit distancc. In general, the tin~c shifts pcr unit 

distancc al'tcr a collision will no longer be +6. In this work, the time shift per unit 

distance of one soliton is labcled by v. As n~entioned above, the time shift is closely 

related LO thc frcquency shil't duc to rhe elsect of GVD. In general, i t  is impossible to 

obtain a direction relationship bctwccn v and ARC (the centcr frcquency of one soliton) 

due to L ~ C  prcscncc of SPM. Howcvcr, il was found that the 

Fig. 4.9 A new kinds of soliton pcncra~cd by soliton collision. 6 = 0.304. AStcr 

200 solilon periods, one ol' Lhc oulgoing solitons is used as thc initial 



relationship between v and ARC is detcrniined by the linear dispersion relation of Eq. 

(4.1) and (4.2) for colliding solitons,37 and is given by ARC = +(v - 6 ). The center- 

frequency shifts of the colliding solitons are equal to each other, but have a different 

sign. In this work, v - 6 is calculated numerically. Figure 4.5(a) shows the 

dependcnce of Av = v - 6 on 6. It is easy to see that the dependcnce is similar to Fig. 

4.4 as there are also thrcc different regimcs of behaviors. Figure 4.5(b) shows the fine 

structure of Av in thc second rcgimc. I t  is cvident that there is some correlation bctwecn 

Av and M, and Av shows similar structure as M. In the first section, that is 6 < 0.27, 

two colliding solitons trap cach othcr and a hound state is fomcd;  Av is not dcfincd. In 

thc second regime, Av shows rapid oscillations. In thc third regime, Av decreascs 

exponentially in the same manner as M. I t  is intcrcsting to note that thc peaks in Av are 

anticorrclated with those o f  M; that is, a maxiniuni of Av corresponds to a niininium of 

M. It is hclicvcd that M is closely related to Av. The ccntcr frcquencics of both solitons 

are shifted due to XPM, and their group velocities arc changcd according to lincar 

GVD. 

As an examplc, the dynaniic behavior of ni in a typical siniulation is shown in 

Fig, 4.6(a). Tlic simulalion is done in the second rcginie with 6 = 0.298 and a 

propagation distancc of 240 solilon periods. Initially the two solitons are wcll- 

separated, and [he value of m is 0. As Lhcy approach cach other, 111 incrcascs almost to 

1.  Thc reason that m is less than I is hccausc the collision is inclastic. At the moment 

just bct'ore total overlap, cach soliton is split into two parts; the small part ncar thc olhcr 

soliton moves away rapidly and is trappcd hy thc other soliton. After a quasi-bound 

period, Lhc two colliding solilons separate li-on1 cach othcr with a well-defined value of 

M. This means the linal slalc of cach oulgoing soliton is a mixture ol' both polarizalion. 

The collision process can bc seen more clearly in Fig. 4.6(b), in which the motion of 



the center of mass <T> of one soliton is plotted. Initially, both solitons move with 

constant velocity 0.298; thcy interact strongly during the quasi-bound state. It is easy to 

see that the two solitons trap each othcr and move back and forth through each other 

four times until Z = 140. After Z = 140, thcy separate from each other with velocity 

about 0.03. Figure 4.7 shows the collision behavior in the third refinle with 6 = 0.304. 

In this case, two solitons pass through each other and change their final velocities. 

Something interesting happens when the two colliding solitons are separating from each 

other, part of one soliton is taken away by the other. The larger the linear birefringence 

6, the less the mixing. In fact this mixing decreases exponentially with increasing 6, as 

shown in  Fig. (4.3). Figure 4.8 shows 111 for a nearly noninteracting situation with 6 = 

2. m increases to 1 and Lhcn drops to zcro alicr collision. Av approaches zcro alicr the 

collision. 

Linear theory predicts that thcrc is only one bound state and the amplitude ratio 

between the trapping pulse and the trappcd pulse is large.9 The simulations in this 

section show that this is true in the third regime, especially for large values of 6. 

However, the situation changes quite a lot in the second regime or small 6, large values 

of mixing M exist as shown in Fis. 4.4. In order to show the evolution of an individual 

soliton, we plot the evolution of both solitons on top of each othcr in Fig. 4.9, that is, 

1 ~ ~ 1 2  and lA212 arc plotted individually in Fig. 4.9, not the total intensity 1 ~ ~ 1 2  + 1 ~ 2 1 2 .  

By doing this, thc evolution of cach polarization coii~poncnt can be seen more clearly. 

The parameters used in  Fig. 4.9 are the same as that of Fig. 4.8. It is easy to see that 

the amplitude ratio bctwccn thc  rapping and the trappcd pulses can be as large as 1. 

Another interesting li'aturc is ~ t l ; ~ t  this a~llplitilde rali~) is not a constant; i t  oscillates 

periodically. Carcl'ul examination shows that both the pi~lsc width and pulse location of 

the trapping and trappcd pulses can he dil'l'cren~ from cach other. In fact the trappcd 

pulse is moving back and forth i n  the potential wcl I, generated by the stronger uapping 



pulse. The aniplitude of the strong pulse is also oscillating with the same period. The 

simulation is interrupted at position Z = 200 soliton periods, and the result is used as 

the initial condition for the next siniulation of the sanie propagation distance. In the 

second siniulation, [he left soliton is taken away, only the right soliton of the previous 

simulation is allowed to evolve continuously. Calculation of M shows that it remains 

the sanie. This means that after collision the two outgoing mixed pulses niove 

independently. After the collision, each pulse consists of both polarization. The energy 

confined in each p~llsc rcniains Iocalizcd forever, hence they can be termed solitons. 

However, this kind of soliton has periodic internal niolions. both Lhc aniplitude and 

pulse width of each polarizalion component arc oscillating periodically, as shown in 

Fig. 4.9. Since linear thcory assumes a I'ixcd pulse shape, the niixing state here cannot 

be explained by linear theory. I t  is well known that thcre is no energy exchange 

between pulscs with different polarization: thcrcforc, Lhc oscillations associated with 

pulse width, ampliludc, and localion is solely due to XPM between the trapping and 

trapped pulses. To [he best knowledge ot' Lhc author, [his kind of soliton was not 

known before. Although thcre is no energy exchangc between two pulscs, thc 

ampliludc ratio can changc t'rom I Lo a very large value, since [he pulse shape can 

changc quite a lot. That is to say, by changing the phases of the two pulses, [he 

aniplit~~dc ratio can be controlled at the end of fiber. This property could bc useful in 

all-optical switches. 

Sincc thc systclu is nonintcgrablc, radiation is cxpcctcd to exist. I t  is found that 

the trapping is not characterized by a particle model in lhc scnsc that each soliton cniils 

photons through tunneling processes, while a particle niodel predicts two nicchanical 

balls moving i~roond each olhcr.?? It is found that the hreathcr formed by two trapping 

solitons suffers spontaneous dccay by ct-uitting dispersive waves, which have 

characteristics ol' Cercnkov emission. Fi2~1rc 4. IO(a) shows the Ccrenkov eniission is 



Fig. 4.10 Ccrenkov emission generated hy two colliding solitons in the sccond 

rcgin~e.  6 = (1.2, propagation distance Z = 200 solilon pcriods. (a)  The  

trapping statc is shown in the ccntcr. whilc the radiation is shown outsidc 

~ h c  center part. The radiation field is amplified 1000 timcs. (b) Radiation 

dctectcd at position I'ar I'rom the trapping region, t = 20. 



formed by two n~utual trapping solitons. The radiation field has been magnified by a 

factor of 103; the center part is the trapping arca. The initial velocities of colliding 

solitons is 6 = 0.2; it is found that the radiation moves three times faster than that of 

initial soliton velocities. Figure 4.10(b) shows the Cerenkov emission detected at a 

position far from the trapping region as a function of time. It seems that there is no 

correlation betwcen the frcqucncy of oscillating brcathcr and that oC the Cerenkov-like 

emission. 

In summary, the soliton collision in  birefringent optical fibers has been 

investigatcd numerically. It is found that the collisions can be dividcd into three regimes 

according to different valiies oC linear birefringence 6. The first regime is denoted by 6 

c 0.27, which coircsponds to thc soliton fusion or mutual trapped states. The second 

regime, from 0.27 to 0.304. is a transition regime. In this regime, two solitons interact 

with each other strongly and then separate eventually. The vclocitics and thc center 

frequencies of both solitons arc changed after collision. A quasi-bound statc is found in 

this region. Thc third rcgi~ne is reprcscntcd by 6 > 0.304. Two colliding solitons pass 

through each other with their final velocities changed slightly. It is found that the center 

t'rcquency shifts dccrcasc exponentially as 6 increases. The pulsc mixing of diffcrcnt 

polarization has charactcristics sin~ilar to those of the ccntral t'rcqucncy shifts. A new 

kind of soliton is found by numerical simulation, as shown in  Fig. 4.8. Strong 

radiation is found to exist i n  the bound statc. The radiation is gcncratcd by thc internal 

motion of a pair of bound solitons. The bound solitons will rclax to a tinal bound state 

by giving away extra cncrgy, as shown in  Fig (4.10). 

4.4 Stability and collisions of spatial vector solitons 

Spatial solitons have heen investigatcd extensively recently bccause of thcir 

potential applications i n  all-optical switching and processing.~3-50 Most prcvious 



investigations have concentrated on collisions of scalar solitons with the same 

polarization and wavelength. Relatively little attention has been given to the propagation 

and interaction of spatial solitons with different polarization or wavelength. The 

propagation of scalar solitons is governed by NSE, while the propagation of vector 

solitons is governed by a pair of coupled NSE's. 

The governing equations for the propagation of two light tields with different 

polarization are51 

where A1 and A2 arc the wave amplitudes in the two polarization, normalized to 
112 

(2no / n2k2w(2) ; is the linear mfractivc index of the medium; n2 is the nonlinear 

refractive index; k = n0(2sr1h) is the wave numbcr; h is the wavelength of lascr in 

vacuum; vg is beam width; z is the propagation axis, normalizcd to the diffraction 

length q, = kwi:  and x is the transvcrsc coordinate normalized to ~ h c  bcam width wo. 

8 is the nor~iializcd incident angle of each bcarn, 8 = kwo(kx / k,), k, and k, arc the x 

and z component oC the k vector. R = 4kwg. IC the bcam width wo is much larger than 

the wavelength, or Re  >> I ,  lhcn the four-wave [nixing terms in Eq. (4.1-2) can bc 

neglected. In this Section, we assunie Re >>I. We considcr the collisions between two 

solitons that lravcl in two orthogonally polarized modcs, that is, e = 213. Here thc 

medium is assunicd to be the isotropic Kcrr nicdiurn with instantaneous nonlincar 

rcsponsc. and [he incidcnl angles of each beam an: very small, f (k, / k,) << I .  

It is interesting to note that Ecl. (4.40) becomes identical to Eq. (4. I )  and (4.2) 

under thc condition that Re  >> 1, which is true for most practical applications. Hcncc 



the governing equations of temporal and spatial solitons are mathematically equivalent if 

this condition is satisfied. The results we obtained in Sections 4.2 and 4.3 can be 

applied here to spatial solitons with the following correspondance: the longitudinal 

propagation distance t in tenlporal solitons is rcplaced by z that has the same physical 

meaning; the local tinlc variable x i n  temporal solitons now has a nleaning of transverse 

coordinate of light beams; thc linear bircfringencc 6 in  temporal solitons is replaccd by 

the intersection angle 8 bctwccn two intcrsccting or colliding light beams. 

4 .4 .1  Fusion threshold of spatial vector solitons 

Unlike temporal solitons in optical fibcrs in which birctiingcnce is unavoidable, 

and therefore the problcm of soliton stability undcr the splitting cl'fcct of birefringence 

is naturally an important issue, spatial solitons do not suffcr from such an effcct since 

the propagation distancc is usually nli~ch slllallcr than that of optical fibcrs. However, 

the results of tcnlporal soliton stability has an important application in spatial soliton 

collision, that is, the fusion of spatial solitons. When lwo spatial soliton beams collidc 

with each othcr with an angle of 28, then according to the analogy between temporal 

and spatial solitons. thcy will trap each othcr if 8 is smallcr than a thrcshold value for a 

given intcnsity. As a result of this 111utua1 trapping, thcy propagate along a common 

direction that is diCfcrcnt Cronl the original directions of both soliton beams. Replacing 

6 with 8 in Eq. (4.30), we get thc thrcshold condition for fusion of spatial solitons 

More general conditions for thc l'i~sion thrcshold of nonsynlmetric solitons (A1 > or < 

A2) can be obtained using Eq. (4.28). It' condition (4.4 1 ) is met, then two solitons with 



equal amplitudes will merge as a single soliton beam. This property of spatial solitons 

can be used to control a light bean1 with another light beam, a process that has 

applications i n  optical bean1 steerins and optical switching. 

4.4 .2  All-optical switching via collisions of spatial vector solitons 

In  this section, we arc going to discuss a vcry important issue in photonic 

device, that is, all-optical switching. Spatial solitons are easier to understand than 

temporal solitons, since the former can be understood within the concept of the 

refractive index. Spatial solitons arc self-induced waveguides and the reti-active indcx 

changc is made by nonlinear refraction. The collision of spatial solitons can also be 

i~ndcrstood i n  terms of a rcfractivc indcx change. For example, in the case of collisions 

of two spatial solitons with some intcrscction angle, in the intersection region one bcam 

will see a spatially varying refractive indcx generated by anothcr bcam. It  is wcll- 

known in optics that an inhomogcncity i n  rcl'ractive indcx will cause the incident beam 

to split into two parts: nnc is reflected and the other transmitted. Only for vcry special 

index profiles, the reflection is It is interesting to mention that onc of these 

special indcx profile has cxi~ctly the shape of a hyperbolic secant. Therefore 111ost 

phenomena of collisions of spatial solitons can be interpreted in tcrnls of reflection, 

transmission, total internal rcflcction, and so on. After a collision, spatial solitons arc 

usually split into two. The transmission or reflection varies l'rom 0 to 1 depending on 

soliton intcnsity and intcrscction angle, which makes i t  possible to control one beam 

with anothcr i n  a variety of ways. In  this section, ive will find how collisions of spatial 

solitons can be uscd in  all-optical switching. 

Before collidins, two incident spatial solitons arc wcll separated, and arc described by 



Fig. 4.11 Dynamic bchavior of a soliton collision in thc sccond rcgimc with 8 = 

0.301. A. = 1. (a) PI-opagation of thc intensity profile of componcnt Al .  (b) 

Varialion ol'm(z) vcrsus propagalion distance 2. 



Ai(z = 0, x) = A~ sec h [ ~ ~ ( x  + xO)] , A i  = 0 , 
(4.42) 

A?(Z = 0, x) = A~ sec h [ ~ ~ ( x  - xO)] . A T = ( ) ,  

Two solitons (labeled hy Ai ,  A i ,  and A;', A:) are assumed to have equal 

amplitudes; x,, is equal to 5 in all lhc simulations; and A. is the initial amplitude. The 

initial conditions arc chosen in such a way that the two colliding solitons are well 

separated bcforc the collision. 

Similar to temporal solitons, the collision of spatial solitons can be classified 

into thrcc kinds depending on ~ h c  v:lluc ol' incidcnt angle and intensity. For given 

incidcnt intensities ol' both colliding solitons, the collision can be classiticd according to 

the value of Lhe incidcnt angle, just like the situation of temporal solitons. From section 

4.3, we already know Lhat there arc thrcc diUl'erent regions of interactions; (a) soliton 

fusion or trapping rcgion when 0 c 0.27. In this case, two colliding solitons form a 

breathcr-like trapping state. M oscillates hctwccn I and another high value (>0.5), and 

there is no asymptotic value of h4; (b)  resonant rcgion when 0.27 < 0 < 0.304. In this 

region, the two colliding solitons interact strongly, bouncing back and forth several 

times and then separating eventually. M is wcll-dclincd; the line structure of this regime 

is shown in Fig. 4.4(h). Complicated oscillations occur in this region. S ~ l ~ a l l  changes in 

0 generate very dil'l'crcnt final statcs. (h) pcrturbative region when 0 > 0.305. M 

decays exponentially with increasing 0 approxilnatcly as e-loe. After collision, cach 

colliding soliton is no Iongcr linearly polarized as bcforc collision. Both solitons arc 

elliptically polal-ized al'tcr collision. The change ol' propagation direction of cach soliton 

after collision is similar to Lhc change ol' vclocity o f  temporal solitons, therefore Fig. 

4.5 can also bc uscd to dcscrihc the direction change ol'cach soliton after collision with 

different incident angles. 



Fic. 4.12 Dynamic behavior of a solilon collision in the third regime wilh 0 = 0.35, 

A. = 1 .  (a) Propagation of' the intensity profile of component A,. (h)  

Variation ol' m(z) vcrsus propagation distance 2. (c) Variation of center of 

mass of onc soliton vcrsus propagation distance 2. 



The fact that soliton collisions are inelaslic is very important for many potential 

applications in all-optical switching and oplical logic gates. The inelasticity of soliton 

collision manifests itself by changing the propagation direction and the polarization 

state. Here the propagation direction is free to change as long as the momentum of the 

system is conserved. Fig. 4.5(a) shows the dependence of deflection angle 

A0 = Oil, - Oout on 

It is easy to see from Fig. 4.5 that the change in angle Ae(A6) can be either 

larger and smaller than the incident angle Oill(6). This means that the center of niass can 

move toward the right and left wilh respect to the z-axis. This can be seen more clearly 

if we focus on the propagalion of one of Lhc colliding solitons-for example, the one 

that initially propagates from ~ h c  left to the right. The propagation of the other 

component is symmetric due to the iniiial conditions. Figure 4.1 1(a) shows the 

propagation of the coniponcnt A I in the second regime with 0 = 0.30 1, Au = I. Before 

the collision, i t  nioves as a soliton. Al'tcr collision i t  has been split into two sub-beams 

that propagate as solitary waves along opposite directions because of the mutual 

guiding of Al and A2. It is obvious [hat the two sub-beams have nearly the same 

amplitude. Since A2 is spatially overlapped with A 1  to form solitary waves, the 

polarization along each sub-hcani is elliptical. On the other hand, the two sub-beams 

propagate along very difl'crcnt directions from the incident ones. Figure 4.1 l(b) shows 

the dynamic change of  he overlapping or niixing parameter ni(z). Initially, the two 

colliding solitons are well separated, n~ (z )  = 0; m(z) approaches 1 during collision; and 

M is constant after collision. I n  fact, M = 0.87 means that the niixing of two 

polarization is very large; i n  olhcr words, the energy carried by each polarizalion is 

coniparahle to the other. The ratio ol'cnergies carried by each sub-bcani is measured to 

be 2:3 in Fig. 4.1 l(a). Figure 4.12 shows the propagation in the third regime with 0 = 

0.35, A. = 1-the niixing is smaller but there is still a large beam deflection. Figure 



4.12(a) shows the propagation of  the beam profile. There is a small amount of energy 

carried away by the soliton with perpendicular polarization. In fact, the sub-beam 

moving toward the left carries 14% of the input energy. Figure 4.12(b) shows the 

change of the mixing parameter m(z). Figure 4.12(c) shows the trajectory of the center 

of mass, which is close to that of the sub-beam moving toward the right. It is clear 

from both Figs. 4.12(a) and 4.12(c) that the incident beam is significantly detlected. 

Figure 4.13 shows that the beam can even be completely switched into another channel. 

The parameters of Fig. 4.13 are 8 = 0.3002, A. = 1, that is, in the second regime. 

Initially, the beam propagates from the left to right and is totally reflected after collision. 

Both incident soliton beams experience total internal retlcction because of the nonlinear 

refraction. The mixing is small; in other words, the beam is still linearly polarized. 

Physically, the soliton interactions can be understood based on the refractive index 

changes caused by light bcams. Usually, any disturbance in the refractive index will 

split a incoming bcam into two parts, rctlectcd and transmitted. However, this is not 

true for the case when the refractive index change has a hyperbolic secant profile. It is 

well known that there is no retlcction in this case. For soliton collisions with larger 

incident angle, the intensity profiles of both beams do not change much, therefor the 

refractive index changes seen by each beam arc still of the form of a hyperbolic secant, 

thus the reflection is very small. However, there are large distortions in intensity 

profilcs of both beams when thc incident angle is small, which causes large retlection 

of each beam. Under some conditions, thc reflectivity of each bcam can be as large as 

100% (Fig. 4.13). The largest detlcction corresponds to this total retlection, which 

depends on detailed resonant conditions. 



X XI 0 ' 
Fig. 4.13 Dynamic behavior of soliton collision in  the second regime with 0 = 

0.3002, A. = 1. Each soliton is totally reflected by the other because of the 

nonlinear refraction. 

4.5 Conclusions 

In this chapter, we studied the interaction of two orthogonally-polarized laser 

pulses in a birefringent optical liber. The spatio-temporal evolution of the two partial 

pulses is governed by a pair of coupled NSE's. Several conservation laws associated 

with thcse equations were foi~nd and uscd to determine a one-parameter family of 

solitary-wave solutions in which the partial pulses have identical profiles. Among them 

is the conservation of momentuln, which implies that each partial pulse shifts its 

frequency in  such a way that the total shift is zero, since the total frequency shift is 

proportional to the total momentum change. This frequency shift is crucial to a physical 



understanding of soliton collisions involving the walk-off effect. For these solitary- 

waves, the walk-off effect is negated by frequency and wave-number shifts, which 

modify the group velocities of the partial pulses so that they propagate at a common 

velocity. A similar physical mechanism underlines the attraction and entrainment of two 

partial pulses whose centers are offset. The Kerr nonlinearity allows each partial pulse 

to first alter the other's averase frequency and wave number. GVD then modifies the 

velocity of thc pulses so that they attract each other. The entrainment of two partial 

pulses vas discussed quantitatively using a virial theorem. By analyzing the virial 

theorem, we obtained the relation between the threshold anlplitude for soliton formation 

and the linear birefringence. Our analytic result agrees well with numerical simulations. 

We were able to study the oscillating pulse interactions, and found that they can be 

described by a nonlinear oscillator with gain or loss depending on the sign of a 

constant, when the partial pulses do not change their shape during the interaction. This 

assumption is not a good one when there is loss, since no collapse can occur in one 

spatial dimension. Thus each partial pulse has to change its shape in such a way that 

loss is saturated, or loss becomes gain to make the whole system oscillate nonlinearly. 

We estimated the oscillation frequency and found that i t  is proportional to the pulse 

intensity. 

The effects of linear birefringence on soliton propagation i n  optical fibers can 

be controlled by choosing thc inpu t  power correctly. As long as the input power is 

greater than a ccrtain threshold value, but  is less that the power required to generate 

higher-order solitons, thc fundamental soliton will not suffer from walk-off or pulse- 

splitting due to the presence of bircfringencc, and can be used as an information bit in 

soliton-based con~munication systems. In practice, even polarization-preserved fibers 

suffer from temperature, stress and other inhomogeneities, and the linear birefringence 

may not be constant. Although some altention has been paid to this problem,28 the 



issue of how randomly changing birefringence affects soliton propagation in optical 

fibers is not yet understood completely. 

Since the same coupled NSE's can be used to describe obliquely interacting 

vaves.*l this soliton solution is also valid for spatial solitons in one perpendicular 

direction with the linear birefringence replaced by the perpendicular velocities. We 

showed in section 4.4 that there exists such an analogy between the temporal and 

spatial solitons, and all the results of temporal solitons found in this section carry over 

to the spatial solitons. The collisions of spatial vector solitons have also been 

investigated numerically. It is found that there are three regimes of interaction in the 

parameter space of the normalized incident angle 0. The first regime is [he a trapping 

regime, in which the nonlinear refraction is strong enough to negate the divergence of 

the two colliding solitons. From the point of view of optical switching, this region can 

be used as Y-conjunctions. The second regime is called the resonant region, in which 

solitons interact strongly with each other. Two colliding solitons separate from each 

other after collision. Because of the inelasticity of the collision, each beam is split into 

two sub-beams that propagate as solitary waves due to the effect of XPM. Both the 

polarization and propagation directions are changed after collision, which could be 

useful in the applications of all-optical switching. The third regime is the weak 

interaction region. Both the polarization mixing and the beam detlection become 

exponentially smaller us 0 increases. It should be pointed out that there are several 

advantages to using vector solitons over scalar solitons as switching devices. First, 

using different polarization allows one to obtain high switching contrast. Secondly, 

since there is no interference between two perpendicularly polarized light waves, the 

switching will be phase insensitive, while scalar solitons have strict requirements for 

the phases of the colliding solitons. Finally, i t  should be mentioned that the behavior of 



soliton collisions depends sensitively on the angle of incidence, which may be a 

drawback of this method. 
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Chapter 5 

Self-defocusing of ultraintense laser pulses in a low pressure gas target 

In this chapter, we study ionization-induced defocusing of laser beam in a thin 

gas target. It is found that the self-defocusing can be significant a t  a pressure as low as 

2 torr. By developing a simple thin lens approximation, we are able to understand this 

experimental finding. The reason that self-defocusing can be important at such low 

pressure is due to the f*-dependence of self-defocusing. The experimental results at 

different focal geometry, or f# agree with the thin lens approximation. It is also found 

that the thin lens approximation can't explain all of the experimental data, especially the 

formation of ring structures in the intensity distribution. The experimental data showed 

that there are two foci in the image plane, which corresponds to an intensity distribution 

of a cone with a central spot. Based on the thin lens approximation, we have developed 

an improved computer model to explain the cone formation. The computer simulation 

shows that the cone formation is caused by the saturation of the electron density at the 

beam center. Good agreement was obtained between computer simulation and 

experiment. 



5 . 1  Introduction 

Nonlinear propagation of short pulses in an ionized gas or plasma has become a 

new research area for nonlinear optics dealing with high intensity laser-matter 

interaction since highly ionized plasmas represents the only practical optical material at 

intensities above 10'3 w/cm2. One of the important phenomenon is the self-defocusing 

due to the nonlinear refraction generated by the ionized electrons. This self-defocusing 

limits the maximum intensity and has a significant effect on multiphoton ionization, 

high harmonic generation, relativistic self-focusing and coherent x-ray generation, as 

we have discussed in Ch. 1. It can also strongly distort the beam characteristics. 

Recently new interest has been stimulated by the potential applications of ultrashort 

intense laser pulses in underdense plasmas, both experimental in~esti~ationsl-5 and 

computer sim~lation3.~?6,7 have been done. All these studies have been performed at 

relatively high pressure, for example, > 10 torr for high harmonic generation, > 1 bar 

for x-ray recombination lasers and plasma-based accelerators. It was found recently that 

self-defocusing could be important at a pressure as low as 3 torr with an intensity of the 

order of 10'4 ~ l c m 2  and f# = 70.8 The focal spot increased three times compared with 

case in vacuum.8 The significance of this finding is that it shows that self-defocusing 

may play a more important role than previously expected. For example, both works of 

Auguste et a1 and Rae were performed in a situation that a backfilled gas tank at 

pressure larger than 15 torr were used. Rae found that the tighter the focus, or the 

smaller the f-number or, f# of the focusing system, the larger the maximum electron 

density. Intuitively, more severe self-defocusing is expected for smaller f#, since the 

change in refractive index is proportional to Np. However, both the effective interaction 

length and ionized volume will be smaller for a beam with tighter focus, which results 

in a less accumulated phase distortion. Therefore, the self-defocusing will be less 

significant for smaller f#. Although Rae's result is consistent with Ref.@), it is still 



surprising to see self-defocusing at a pressure as low as one torr in a thin target. In 

order to understand this, we developed a thin lens approximation. It is found that the 

significant self-defocusing at pressure as low as a few ton. can be explained by the f# 

dependence of self-defocusing. We also found that the saturation of focal shifts can be 

explained by this model. On the other hand, the experimental data clearly shows the 

cone formation in the laser intensity distribution, which is beyond the thin lens 

approximation. However, an improved model based on thin lens approximation can be 

used to explain the cone formation. Since this improved model is more complicated 

than the thin lens approximation, we can only obtain results by computer simulation, 

instead of analytic results. 

Since most experiments on high order harmonics generation are performed at 

low pressure, the phase front distortion due to the self-defocusing may have an 

important effect on the phase matching of H H G . ~  All the previous experimental 

observations of focal shifts were done by looking at the florescence generated by the 

plasma. 1-5 The observed focal shifts don't have to be the same as those of laser beam, 

since the plasmas don't contain all the information of the laser beam, and the 

fluorescence usually last much longer than the laser duration. In this work, we measure 

the laser beam directly using an equivalent target plane(ETP) measurement. Starting 

from a thin lens approximation, we can study the dependence of self-defocusing on 

different foal geometry, or more explicitly, the f-number(t*) of the laser system. It is 

found that this model can explain the recent finding that self-defocusing could be 

important at a pressure as low as a few t o r 8  Our simulation results confirm the 

existence of cone formation found in our experiments. Both our experimental method 

and theoretical models have the advantage of separating the self-defocusing from the 

complicated processes of ionization, therefore detailed understanding of self-defocusing 

becomes possible. 



Fig. 5.1 A top-view schematic of the vacuum chamber. The distance from the lens 

to the focus is approximately 1.5 m.8 

The organization of this chapter is as follows. After the Introduction, we 

discuss the experimental setup in Sec. 5.2. In Sec. 5.3, we show our experimental 

results. We discuss the theory and computer simulations in Sec.5.4. We also make 

detailed comparison between theory and experiment in this section. Finally, the results 

are summarized in Sec. 5.5 

5 . 2  Experimental setup 

Fig. 5.1 shows a top-view schematic of the vacuum chamber.* The laser beam 

enters the system through a 153cm lens which is mounted on the end of a long tube. 

The laser focuses to the middle of the central tank where the gas target is positioned. 

The chamber is evacuated by a diffusion pump. The background pressure is below 10-6 
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Fig. 5.2 Schematic of the chirped-pulse-amplification laser ~ ~ s t e m . 8  
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Ton. Ncar thc focus, thc lascr beam intersects a thin gas target which provides a low- 

density gas distribution. A magnified figure of the cross-section of the target is also 

shown in Fig. (5.1). More detailcd information about the target design and properties 

of the gas target can be found in Ref.(9). 

The laser which has been described in dctails elsewhere is a neodymium glass 

system which operates on the principle of chirped-pulse amplification.lO~l l Fig. 5.2 

shows a schematic experimental setup of the whole laser system. The oscillator is an 

actively mode-locked Nd:YLF laser working at wavelength of 1.053 pm. The 

oscillator produces a train of pulses with 100 MHz repetition rate, each pulse is 50 ps in 

duration with about 1 nJ energy. The average output power of the oscillator is about 

Spatial Spatial 
filter filter 236 to 

7 diagnostics 



0.5 W. The bandwidth of each pulse is increased from 0.03nm to 3.5nm due to the 

presence of self-phase modulation. Due to the group velocity dispersion(GVD) of the 

optical fiber, the pulse width is broadened from 50 ps to 120 ps at the output of the 

fiber. The stretcher consists of a pair of grating and a telescope sitting between the two 

gratings. The spectral-broadened pulses can be stretched to 300ps by the stretcher. A 

Pockel cell is used to switch a single pulse to seed a Q-switched regenerative amplifier. 

Another Pockel cell is used to switch out the amplified pulse with an energy about 0.3 

mJ. Gain narrowing of the glass amplifier causes a reduction of the bandwidth from 

3.5nm to 1.6nm. A spatial filter located between the regenerative amplifier and the 9- 

mm-amplifier is used to improve the beam quality. This 200cm air spatial filter has a 

magnification of 3, which increases the beam diameter from 2.0mm to 6.0mm. The 

beam is then coupled into the 9-mm-amplifier with a total gain of 150. The schematic 

setup of the 9-mm-amplifier system is shown in Fig. (5.3). The diffraction caused by 

the hard aperture of the amplifier rod is removed by the 90cm vacuum spatial filter with 

a magnification of 1. The pulse coming out of the 9-mm-amplifier has an energy of 

50mJ and a duration about 300ps. After passing through a 160cm vacuum spatial filter 

with a magnification of 3, the lascr pulse is aligned to the 30-mm-amplifier with a gain 

up to 60. The 30-mm-amplifier is followed by another vacuum spatial filter with a 

length of 275cm. magnification of 1.2. At this point, the laser bcam has a diamcter of 

22mm, it can be either up-collimated to 58mm using a Galiliean up-collimator with 

magnification 813, or kept thc same size before coupled into the optical pulse 

compressor which can compress the pulse to Ips. The compressor consists of a pair of 

gold holographic gratings (1740 lineslmm) sitting parallel to each other. A lcm glass 

plate is used to split 2% of the encrgy for diagnostics, such as pulse duration and pulse 

energy. The pulse energy is measured by a PIN diode which is connected to a digitizer 

and a PC. A background free single-shot autocorrelator is used to measure the pulse 



width. The autocorrelator is based on the second harmonic generation(SHG) in a lmm- 

thick nonlinear crystal (LiI03). The autocorrelator has different calibrations for beams 

with different sizes. 
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Fig. 5.3 A schematic setup of 9mm amplifier system8 

A schematic experimental setup for measuring the self-defocusing is shown in 

Fig.(5.4), it is similar to that of equivalent target plane(ETP) experiments. In order to 

understand why this setup can be used to measure the effect of self-defocusing, we 

need to understand the effect of self-defocusing. As we discussed in the Introduction, 

the self-defocusing is induced by ionization. The presence of the ionized electrons 

reduce the refractive index. Since the electron density is expected to be higher on axis 

than at edges, the refractive index is lower at the center of the beam. As a consequence 



of this, the gas target becomes a negative lens, which causes the beam to diverge faster 

than it would in vacuum. Therefore the beam size will be larger than the beam size 

when the beam propagates in vacuum. The ionization-generated negative lens 

CCD 
camera 

Fig. 5.4 A schematic experimental setup for measuring the self-defocusing effect. 

makes the beam to be equivalent to a beam focused before the actual geometric focal 

point. If we use an image lens to image the focus, this virtual focus becomes a real 

focal point in the sense that the intensity is largest, or the beam size is the smallest. 

Hence, in the image space, we will find that the focus is shifted from the original 

geometric focal point to a new position that corresponds to the virtual focal point inside 



the tank. Since the virtual focus is located at a point before the actual geometric focal 

point, the virtual focal spot is smaller than that if the beam propagates in vacuum. In the 

image plane, we will see (a) a shift of focus, (b) a smaller focal spot. These two related 

effects can be equally understood from the point of view of geometric optics. A more 

divergent beam will be focused tighter and nearer. The self-defocusing causes the 

image beam to 'self-focus' instead of defocus in the image plane. 

Measuring the focal shifts or the magnification gives us information about the 

phase front distortion, or electron density profile induced by ionization. An imaging 

lens with a magnification of 4 is used to image the focus onto a CCD camera. A single 

frame of intensity distribution is captured by the CCD camera, which is connected to an 

IBM PC. The picture takcn from thc CCD camera can bc stored and analyzed on the 

computer. By scanning the CCD camera along the direction of beam propagation, we 

can obtain a serial of intensity distributions at different positions. The available 

computer software enables us to calculate the radius (to the lle2 intensity level) 

assuming a Gaussian distribution. In this way, we can determine the position of the 

focal point and the beam divergence. Comparing the results of scans with different 

gas(Xcnon) pressures. we can mcasurc thc focal shifts caused hy the self-defocusing. 

The peak intensity of a spatially and temporally Gaussian laser pulse is given 

very nearly by b=EI(AlleTfwhm) where E is the pulse energy, Alle is the focal spot area 

inside the lle intensity contour, and Tfwhm is the full-width-at-half-maximum of the 

pulse duration. The relative uncertainty in the energy measurements is about lo%, and 

the absolute uncertainty is about 20%. The pulse duration is monitored also on each 

shot using an autocorrelator. For most of the experiments, the pulse duration was 

about 1.6ps with a fluctuation of about 25%. The focal-spot arca is not measured evcry 

shot. However, when thc area was measured, it was observed that it fluctuated very 

little from shot to shot (St%). The focal area depends on the f-number of the optical 



Fig. 5.5 Focal shifts at different pressure due to the effect of self-defocusing. The 

vertical axis represents the radius of the beam, while the horizontal axis is 

the relative position along the beam propagating direction. The solid curve 

corresponds to the case of p = 0 torr, the dashed curve represents p = 2 tom, 

and the dashed and dot curve corresponds to p = 5 torr. 



system. In the experiment the f-number can be adjusted to be either 70 or 25 by 

changing the beam diameter. For fl70 system, the measured focal area for the beam 

used in the experiments was about 5500pm2 with an uncertainty of about 10%. The 

focal area for f/25 is measured to be 3200 pm2. The fl70 beam is 1.2 times diffraction 

limited. Together, the different uncertainties give an absolute uncertainty for the laser 

intensity of about 35% and a relative uncertainty of about 25%. 

5 . 3  Experimental results 

In the experiment, the laser intensity was controiled to be within 10% accuracy 

by selecting puises with appropriate pulse width and energy. By scanning the CCD 

camera along the beam propagation direction, we obtained magnified images of the 

focus inside the vacuum tank. Each image was stored and analyzed on an IBM PC. In 

the image space, one expects that the self-defocusing causes the beam size and the focal 

position to be different than those when there is no self-defocusing. In order to measure 

the changes in the focal spot and the focal position due to the effect of self-defocusing, 

we measured the intcnsity distribution as a function of the positions along the beam 

axis, as shown schematically in Fig. (5.4). For simplicity, the image point of the 

geometric focus in vacuum is denoted by z = 0. First, we measured the beam size (lle 

radius) at diffcrent positions with no gas, and obtained the image of the geometric focal 

point z = 0. Then we did the same measurcmcnts with different gas pressures. Fig. 

(5.5) shows the variations of beam radius as a function of position or z at pressure p = 

0, 2, and 5 torr. The vertical axis represents the radius of the beam in units of pm, 

while the horizontal axis is the distance from the geometric focal point(in image space) 

in units of cm. The solid curve with tilled circles corresponds to the case of p = 0 torr, 

the dashed curve with squares represents p = 2 torr, and the dashed and dot curve with 



filled triangles corresponds to p = 5 tom. The peak intensity in vacuum was 2.5 x 1014 

~ I c m 2 ,  the pulse width was measured to be 1.6 ps using a single shot autocorrelator. 

In the experiment of Fig. (5.5). the beam size was 22mm, which gives rise to f# =70. 

The thickness of the target was 2 mm, much less than the confocal parameter 12.5 mm. 

Fig. (5.5) appears to consist of two parts. At z < 0, the beam radius of both p = 

2 and 5 torr are very different from that of p = 0 ton, while at z > 20, the differences in 

beam radius for different pressures are small. The region 0 < z < 20 is a transitional 

region. At z < 0, both curves with p = 2 and 5 torr are very similar to a Gaussian beam 

with confocal parameters smallcr than that of p = 0 torr. If the phase distortion 

generated by the effect of self-defocusing is exactly the phase distortion of a negative 

lens, then we will only expect to observe the region of z < 0. Hence this part of the data 

shows the characteristics of the effect of self-defocusing. It is easy to see from Fig. 

(5.5) that the radius for p = 2 and 5 torr are smaller than that of p = 0 ton, and the focal 

points are shifted to z = -27. The beam will continue to diverge after z > 35, although 

the experimental data is limited to z < 35. It is evident in Fig. (5.5) that all three beams 

are diverging at z > 35. Therefore, the defocused beams (p =2 and 5 torr) have two 

minimum radius or beam sizes, one experiences self-defocusing and has its focal point 

shifted towards the lens, the other experiences virtually no self-defocusing. Since the 

self-defocusing results from non-uniform electron density distribution in the transverse 

plane, the double-foci means that there are two different electron density scale lengths. 

Hence, the electron density profile does not follow that of laser intensity distribution, 

which is well known in previous experiments. l-5 

The laser intensity distributions of p = 0 and 5 torr at distance z = 36 cm are 

shown in Fig. (5.6). When propagating in vacuum (p =O torr), the laser beam remains 

close to a Gaussian beam, no extra structure was observed, as shown in Fig. (5.6a). 

When p = 5 torr, as shown in Fig. (5.6b), a ring structure was observed. This cone 



formation in Fig. (5.6b) is consistent with the double-foci in Fig. (5.5). Since the 

double-foci implies the existence of double scale length in the electron density 

distribution, and each scale length corresponds to an effective focal length, the cone 

formation can be understood as a result of two negative lenses with different radii. It 

should be mentioned that the effective focal shifts in the image space at p = 2 and 5 torr 

are very close to each other. From Fig. (5.5). we can see that the focal shifts of P = 2 

and 5 torr are almost the same, but the beam sizes are very different from each other. In 

other words, the beam divergence caused by self-defocusing are different at p =2 and 5 

ton. It is expected that the larger the pressure, the more divergent the beam becomes. 

However, it is not intuitively clear why the focal shifts are saturated at a pressure as 

low as 2 torr. 

Previous experiments and simulations showed that self-defocusing become 

significant at pressures much higher than 2 t ~ r r . ~ - ~  The most important difference 

between our experiment and previous experiments and simulations is the focal 

geometry of the optical system. In our experiment, the fl70 system was used, while 

previous experiments and simulations used beams focused much tighter, typically, f# < 

20. In order to confirm the effcct of focal geometry on self-defocusing, we also 

performed the same experiment as that of Fig. (5.3, except the beam size was changed 

to 58mm using the Galilcan up-collimator. The f* is correspondingly changed to 25. 

Fig. (5.7) shows the experimental results at pressure p = 0, 2, and 5 torr. No self- 

defocusing was observed, which is consistent with previous investigations. 

Our experimental results can be summarized as follows: (a) the self-defocusing 

strongly depends on the focal geometry or the f# of the focal system, (b) the self- 

defocusing becomes significant at a pressure as low as 2 torr for an U70 system. (c) the 

focal shifts in the image space is saturated at pressure p = 2 ton. (d) the focal 



Fig. The intensity dismbution of p = 0 and 5 tom at normalized distance z = 1.2 

are shown. When propagating in vacuum, the laser beam remains close to a 

Gaussian beam, no extra structure was observed. as shown in Fig. (5.6a). 

When p = 5 tom, as shown in Fig. (5.6b), the cone formation is evident. 



spots in the image space, or the divergence in real space without the presence of the 

image lens are very different for different pressures. (e) the double-foci, or the cone 

formation is related to the electron density distribution in the transverse plane. In order 

to understand the experimental results, we need to compare these results with 

theoretical predictions. The full dynamics of ionization-induced self-defocusing is a 

very complicated process. In the next section, we are going to develop two simplified 

model to explain our experimental results. 

5.4 Theoretical model and computer simulations 

The governing equation of self-defocusing of laser pulses can be 

derived from Maxwell's equations. Here we apply the formal theory of self-focusing of 

shen12 to describe the nonlinear propagation of intense laser pulses in a gas target. The 

electric field is described by the nonlinear wave equation 

where E is the electric ficld amplitude, c is the speed of light in vacuum, no is the 

refractive index of gas target, An is the nonlinear refractive index change due to the 

presence of ionized electrons. Introducing a slowly-varying envelope function 

and making the paraxial approximation, in which the second-order derivatives of A 

with respect to z and t are neglected, we obtain 



Fig. 5. 7 Focal shifts at different pressure due to the effect of self-defocusing. The 

vertical axis represents the radius of the beam, while the horizontal axis is 

the relative position along the beam propagating direction. The solid curve 

corresponds to the case of p = 0 ton, the dashed curve represents p = 2 tom, 

and the dashed and dot curve corresponds to p = 5 tom. f# = 25. 



where k is the wavenumber k =noolc, o is the laser frequency; z is the propagation 

direction, x and y are two transverse coordinates, V: = a' lax2 + a' lay2 is the 

transverse Laplacian operator. From Drude's model,6 the refractive index is given by 

where Ne = Ne(x,y,t ) is the electron density, and Nc = mo2/4ne2 is the critical 

density. Substitution of Eq. (5.4) into Eq. (5.3) gives 

where no = 1 has been assumed for low pressure gas medium. The time-dependent 

electron density N,(x,y,t) depends on the dynamics of ionization. It can be formally 

described by7 

where No is the initial density of neutral gas, R is the cycle-averaged rate of ionization. 

For hydrogen, the tunneling rate is given by13 



where Eg = 5.14 x 1011 Vlm is the atomic unit for electric field, og = 4.16 x 1016 is 

the atomic unit of frequency. For intensity of I = 3 x 1014 w1cm2, R = 4 x 1014 s-1. 

The atoms will be ionized in a few optical cycles. In the above derivations, the 

ionization loss is neglected. 

Rae solved Eq. (5.3-5.7) numerically assuming a cylindrical ~~mmeuy.7 In his 

simulation, the laser wavelength is 1 pm, laser pulse width is 1 ps. The laser beam was 

focused in a backfilled tank with pressure ranging from 7.5 torr to 750 torr. The peak 

vacuum intensity was 1015 w/cm2. He found that there was little self-defocusing until 

the backing pressure was increased to 75 torr with a focusing geometry of fl10. He also 

found that the self-defocusing is more significant for larger f-number of the laser beam. 

It should be mentioned that the equation for electron generation (Eq. (5.6)) in Rae's 

simulation7 was incorrect. The right-hand-side of Eq. (5.6) should be R(No - N,), 

while it was R(N,-NO) in Rae's ~imulation.~ 

Although Eqs. (5.3-5.7) contain all of the physics of the nonlinear propagation 

of ultraintense optical pulses in gases, they are still too complicated to be helpful in 

understanding the self-defocusing. Here we are going to develop a simplified model 

based on our understanding of the physics, and have experimental investigations to 

check the validity of the theoretical model. According to Eq. (5.4), the higher the 

electron density, the smaller the refractive density. Since the electron density is 

expected to maximum on the beam axis, the transverse refractive index will be like a 

negative lens. N,(r) is a function of intensity I(r), depending on the ionization model. 

In the situations when the thickness of the gas target is much smaller than the confocal 

parameter or, the Rayleigh range of the focused beam, we can ignore diffractive effects 

during the nonlinear propagation of short pulses in the gas. In other words, there will 

be no intensity variation during the propagation inside the gas target, only the phase 



front of incident beam is distorted. This is just like passing through a thin negative lens. 

This approximation is called thin lens approximation if the electron density profile is 

also approximated by a parabolic profrle, which will gives rise to a phase front identical 

to the phase front generated by a thin lens. In order to gain the physical insight without 

complications resulting from exact ionization mechanisms, we simply assume the 

electron density decreases quadratically off axis. This approximation is referred as thin 

lens approximation in this thesis. The ratio of the divergence angle in the cases with and 

without self-defocusing can be obtained from the Gaussian beam analysis, the result is 

as following 

where M is the magnification of the plasma negative lens, it measures the reduction of 

focal spot in the image plan due to the effect of the self-defocusing. fg is the effective 

focal length of the plasma lens generated by ionization, Np is the peak electron density, 

while p is the scale length of the electron density variation. L is the effective interaction 

distance within which most phase distortion occurs. y) = 112 kw02 is half the Rayleigh 

range, k is the wavenumber of laser light in vacuum, and wo is the beam waist in 

vacuum. Therefore, the effective focal length generated by the self-defocusing can be 

measured by either measuring the magnification M or the shift of the focal position. The 

electron density Ne(r) is assumed to be Ne = Np (1-r2/p2 ). It is easy to see that M is 

always smaller than 1, therefore the image spot will be always smaller when there is 

self-defocusing. It should be mentioned that the effective interaction distance L is 

approximately equal to the thickness d of the gas target if zo >> d, while L can be 

approximated by y) if d >> y). A simple estimate of defocusing was given by Auguste 



et al.2 their result is identical to ours when the second term in the bracket [(Eq.(5.8)] is 

much larger than 1. Our result is more general in the sense that it is valid for small self- 

defocusing. p is dependent on the ionization mechanisms, the smaller the value of p, 

the smaller the effective focal length fg, thus the larger the divergence 8/80. 

Using the same thin lens approximation as above, we can also find the 

relationship between the effective focal lens generated by the ionized gas target and the 

shifts in the focal position. It is straightforward to obtain this relationship from the 

theory of Gaussian beams, 

Eq. (5.9) shows the effective focal shift inside the gas target due to the self-defocusing 

induced by ionization. Az is in fact the virtual focal point defined as the distance at 

which the beam size is smallest or the intensity is the highest. Since fg ( = - k p 2 ~ & ~ ~ )  

is negative, the virtual focus is located at a position nearer towards the focal lens than 

the original focal point without self-defocusing. The interesting thing is that Az is 

different from the effective focal length fg, which is not expected for most experiments 

involving optical lenses. However Az = fg when y) >> fg. In most real experiments, 

the sizes of optical beams are much larger than the wavelength, so that the Rayleigh 

range is much larger than the focal lens used, then we have Az = the focal length. In the 

experiment here, the effective plasma lens is located at the focus, the beam size is 

comparable to wavelength, zo is of the same order of magnitude as fg, therefore from 

Eq. (5.9), we can see that Az can be very different from fg. Secondly, it is easy to from 

that the maximum focal shift is Adz0 = 0.5. This is similar to the following question: 

Given a plane Gaussian beam of size D = 2w0, and a optical lens with arbitrary focal 



length, what is the maximum distance one can focus the beam? The answer is that the 

maximum focal distance one can obtain with any lens is half the Rayleigh range of the 

incident beam. The consequence of this result on our experiment is that the focal shift 

can be saturated. 

Let's assume that fg >> y), then the plasma lens is just like a transparent planar 

plate, the beam is basically unaffected by it, resulting in a null result in focal shift. On 

the other hand, if fg << q, the divergence of the beam becomes so large that the 

imaginary focus approaches the original beam waist as the divergence angle becomes 

larger and larger. Hence, there exists a value of fg such that the effective focal shift is 

the largest. Finally, Eq. (5.9) also tells us the f#-dependence of the focal shift. For 

Gaussian beams, the relationship between f# and q is given by q = (8/k)(f#)2. Since 

(Az),, = 0 . 5 ~  = (2p)*/k, the focal shift increases quadratically with f#. For example, 

the maximum focal shift of a f170 system will be 8 times larger than that of a f125 

system. Aside from the purely geometric effect of the f# -dependence discussed above, 

the focal shift also depends on the f# since the value of fg depends on both the 

ionization processes and the focal geometry. For small values of the f#, y) can be 

smaller than the thickness of the gas target, such that the effective interaction distance L 

< d, which results in a larger value of fg. Hence the focal shifts can decrease faster than 

quadratically with decreasing f#, resulting in a even less noticeable self-defocusing. It 

should be kept in mind that the model is correct in the thin lens approximation. In 

reality, the electron density profile might be very different from a parabolic distribution. 

The width of the electron density distribution can be much smaller than that of the laser 

beam, especially when multiple ionization occurs. If this is the case, multiple focal 

points are possible. An improved model should take this into consideration, and 

hopefully provides information about the dynamics of the ionization. 

We found experimentally that the focal shift of the primary focus can be 



explained by the theory of thin lens approximation, while the phenomenon of cone 

formation and double foci are beyond of prediction of the theory. Hence, an improved 

model is needed to fully explain the data. We argue that the dynamics of ionization can 

be ignored since the majority of the laser pulse is propagating in a plasma generated by 

the pulse front. For instance, from Eq. (5.7). the ionization rate R is about 4 x  1014 s-1 

for an intensity I = 3.0 x 1014 w/cm2, wavelength h = 1.053 pm. In other words, an 

atom will be ionized in less than a few optical cycles. The problem of self-defocusing 

can be investigated in a pre-formed plasma with some specific electron density profile 

determined by the ionization processes. Mathematically, this means that we can separate 

the coupled equations Eq. (5.5) and Eq. (5.6). the information of ionization is implied 

in Ne(x,y). By doing so, we can study the self-defocusing without complicating 

ourselves with detailed ionization processes. On the other hand, this assumption has 

solid foundations since the ionization rate R is so large that the ionization process 

saturates very quickly, and the majority of the laser pulse no longer participates in 

modifying the electron density. As a result of this assumption, we can separate the 

process of ionization from the self-defocusing. Unlike the thin lens approximation, Eq. 

(5.5) is by no means simple to solve. Here we extend the ID split-step method used in 

Ch. 4 to 2D. Thc numerical method is given in Appendix. The code has taken into 

account diffraction, defocusing or refraction generated by Ne, and also the whole image 

system used in the experiment. First, an Gaussian beam propagates through the p r e  

formed plasma with given electron density profile, then the beam propagates freely 

from the exit of the gas target to the image lens, finally the beam is focused by this 

image lens, and images is obtained in the image space. A grid size of 256 x256 in the 

transverse plane is used in all simulations. All the parameters are the same as those used 

in experiment if not mentioned explicitly. The program was run at CRAY-YMP at LLE. 



5.4.1 Comparison of experimental results with thin lens approximation 

It should be mentioned that Fig. (5.5) is obtained by fitting the intensity 

distribution with a Gaussian profile. The result is accurate only when the intensity 

distribution is close to a Gaussian profile. Since the intensity distribution is far from a 

Gaussian at points far away from the two foci, it is difficult to make a quantitative 

comparison between the experimental results and the prediction of the thin lens 

approximation, since a perfect Gaussian beam is assumed in the thin lens 

approximation. However, it is still meaningful to make a qualitative comparison. A 

qualitative comparison can be made for the first part. Firstly, the saturation of the focal 

shifts in Fig. (5.5) can be explained by the prediction of thin lens approximation(Eq. 

(5.9)). From the experimental data of Fig. (5.3, the focal shifts of pressure p = 2, 5 

tom are very close to Ma = 0.6. If we take into account of the fact that the beam is 1.2 

times diffraction limited, and that the laser beam is strongly distorted after passing 

through the gas target, the agreement between experimental results and the prediction of 

thin lens approximation is very good. In fact, the experimental results are within 20% 

of the prediction of thin lens approximation. Secondly, according to Eq. (5.8). the 

magnification M decreases as the gas pressure increases, there is no saturation. The 

experimental results in Fig. (5.5) are consistent with Eq. (5.8). Although the focal 

shifts are almost the same for p =2 and 5 torr, the corresponding focal spots in image 

plane are different from each other. It is easy to see from Fig. (5.5) that the higher the 

pressure, the smaller the focal spot, or the smaller the magnification M. Thirdly, as we 

discussed before, the thin lens approximation predicts that the focal shift decreases at 

least quadratically with f*. Therefore, the focal shift of f/25 system will be nearly 8 

times smaller than that of fnO system. According to Eq. (5.9). the expected focal shift 

A d z 0  = 1/16, assuming that the focal shift for f/70 system is at maximum. This 

prediction is consistent with experimental results shown in Fig. (5.7). where we did 
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Fig. 5.8 Fig. (5.8a) shows intensity distribution during the propasation assuming a 

Gaussian distribution in the electron density. Fig. (5.8b) shows the same 

intensity distribution . but with a super-Gaussian electron density profile. 

Fig. (5.8a) shows a sn~ooth variation with a single peak distribution, while 

Fig. (5.8b) clearly shows that there are two peaks corresponding to a ring 

structure in 2D 



not find noticeable self-defocusing with a focal geometry of f725. 

5.4.2 Comparison of experimental results with computer simulation 

Although the thin lens approximation is helpful in understanding the saturation 

of focal shifts, the pressure-dependence of magnification, and the f#-dependence of 

self-defocusing, it can not explain the double foci observed in our experiment The thin 

lens approximation is based on the assumption that the electron density profile can be 

approximated by a parabolic distribution. However, in reality the electron density 

profile is closer to a super-Gaussian, or a square-top profile when laser intensity is 

above the ionization threshold.6,7 The reason is due to the saturation of ionization near 

the center of the beam. In other words, once all the atoms are ionized at center of beam, 

the electron density becomes saturated. A more realistic model should take this into 

account. 

In order to understand the physics of the cone formation, we need to study the 

nonlinear refraction more accurately than the thin lens approximation. Since the laser 

beam is divided into two parts, refracted and not refracted, it is reasonable to relate 

these two parts to the transverse locations at the entrance plane of the gas target. A 

reasonable assumption is that the central part of beam does not experience self- 

defocusing, while the outside part is refracted due to self-defocusing. Since diffraction 

or refraction depends not only on the total nonlinear phase distortion in the transverse 

plane, but also the gradient of this transverse phase distortion, we argue that the 

gradient of phase distortion must be small at the center, and large near the edge of the 

beam so that the center part is unaffected, while the rest experiences strong self- 

defocusing. The phase distortion is proportional to electron density, the electron density 

should have a transverse profile similar to a super-Gaussian, which is expected when 

the ionization is saturated at the center of the beam.3,4-6y7 In order to explain the cone 



Fig. 5.9 shows the variation of  l/I(O..O.) durins the propagation in the image space, 

assuming that the electron density profile is a super-Gaussian. At p = 0, 

there is no effect of self-dcfocusin,n, the corresponding curve shows a 

smooth variation. At p =2, 5 torr, we can see strong self-defocusing, as 

well as the existence ot' two t'oci, very similar to Fig. (5.5). 
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formation found in our experiment, we solve the paraxial equation (5.3) numerically 

assuming that the laser is propagating in the pre-formed plasma. In the simulation, we 

also assume that the target is much thinner than the confocal distance. The only 

difference between the thin lens approximation is that the transverse electron density is 

arbitrary instead of parabolic. 

The simulation was carried out using the same physical parameters as the 

experiment, the pressure was assumed to be 5 torr. The electron density profile is 

assumed to be a super-Gaussian, 

where p = wd2, m =3. Since the laser intensity is slightly above the ionization 

threshold of second charge state, it is reasonable to assume that the electron density is 

saturated till laser intensity is half the maximum. Since the dependence of ionization rate 

on laser intensity is strongly nonlinear, the electron density fall off much faster than 

laser intensity. For Xenon, the ionization intensity thresholds is approximately 

1 x 1014, and the intensity in our experiment was 2.5 x 1014 wlcm2, just above the 

ionization threshold of second charge state. l4 therefore the edge-to-edge width of the 

electron density profile is approximately the laser diameter where the intensity equals to 

l/e times of the peak intensity. Hence, it is a good approximation to use p = wd2. We 

assume that the ionization is dominated by the multiphoton ionization at the edges of 

electron density profile, then we have, Ne --> F, where m is the number of photons 

needed for an electron to be ionized. In our simulations, we take m =3 in Eq. (5.12) as 

a demonstration of the effect of saturation of electron density. For pulses of duration of 

1.6 ps, the ionized electrons do not have time to move, since their energies are about 

tens of eV. Therefore, the electron density gradient remains steep during the laser 



Fig. 5.10 Cvmputer simulation rcsults of intensity distribution at z = 0.8. (a) p = 0 

torr; (h) p = 5 torr. 



pulse. The actual gradient could be steeper than m = 3, but the refraction will be 

similar. 

If the ionization is not saturated at the center of the beam, the electron density 

distribution is still Gaussian-like, the scale length is uniform across the density profile, 

hence the whole beam will experience self-defocusing, there will be no cone formation. 

In order to c o n f m  this, we performed two simulations at the same conditions except 

the electron density profiles are different. The parameters used in the simulations are: p 

= 5 tom, gas target thickness L = 2mm, f# = 70. Fig. (5.8a) shows intensity 

distribution during the propagation assuming a Gaussian distribution(m=l) in the 

electron density. Fig. (5.8b) shows the same intensity distribution , but with a super- 

Gaussian(m=3) electron density profile. Fig. (5.8a) shows a smooth variation with a 

single peak distribution, while Fig. (5.8b) clearly shows that there are two peaks 

corresponding to a ring structure in 2D. Both Fig. (5.8a.b) show that the focal points 

are shifted towards the lens. The simulations of Fig. (5.8) were done in 2D, we only 

showed the intensity distribution along x-axis for the sake of simplicity. 

Fig. (5.9) shows the variation of the inverse intensity on axis, l/I(O.,O.), during 

the propagation in the image space, assuming that the electron density protile is a super- 

Gaussian(m=3). At p = 0, there is no effect of self-defocusing, the corresponding 

curve shows a smooth variation. At p =2,5 tom, we can see strong self-defocusing, as 

well as the existence of two foci, very similar to Fig. (5.5). The result of the simulation 

agrees very well with that of experimental data, as can be seen by comparing Fig. (5.5) 

and Fig. (5.9). Both of them show the saturation of the focal shifts, both show the 

existence of double foci. In order to see the cone formation more clearly, we show the 

transverse intensity in Fig. (5.10). The cone formation can be seen from Fig. (5.10b), 

while Fig. (5.10a) shows smooth intensity variation. The corresponding distance is z = 

0.8. Both computer simulation and experimental data show clearly the cone formation. 



Fig. 11 3D plot of intensity distributions at different pressures. (a) p =5 torr. (b) p = 

0 torr. 



The cone formation of the computer simulation in Fig. (5.10) can be seen more clearly 

in Fig. (5.11). in which 3D surfaces of intensity distribution are plotted. Fig. (5.1 la)  

corresponds to the case of p = 5 torr, while Fig. (5.11b) corresponds to p = 0 torr. 

According to Eq. (5.8). the self-focusing depends strongly on the focal 

geometry, or the f# of the laser beam. In Fig. (5.12), we show the focal shifts of 

different f# assuming p =5 torr, p = wo, m = 1 in the numerical simulation. The five 

curves correspond to f# = 70, 50, 30, 10. For f# = 10, there is little focal shift. This 

result was experimentally confirmed, as shown in Fig. (5.7). There were no focal 

shifts for both p = 2 and 5 torr when the f# was 25. In our experiment, the 

corresponding Rayleigh range is 1.6 mm, which is smaller than the thickness of the gas 

target. Since the maximum focal shift is a quarter of the Rayleigh range, the focal shift 

is expected much smaller than the case of f# = 70. The simulations are consistent with 

our experiments. 

5 . 5  Conclusion 

In conclusion, we have studied ionization-induced defocusing of laser beam 

in a thin gas target. It is found that the self-defocusing can be significant at a pressure 

as low as 2 torr. By developing a simple model (thin lens approximation), we were able 

to understand this experimental finding. The reason that self-defocusing can be 

important at such low pressure is due to the f#-dependence of self-defocusing. The 

experimental results at different focal geometry, or f# agree with the thin lens 

approximation. It is also found that the thin lens approximation can't explain all of the 

experimental data, especially the formation of ring structures in the intensity 

distribution. The experimental data showed that there are two foci in the image plane, 

which corresponds to a intensity distribution of a cone with a center spot. Based on the 

thin lens approximation, we developed an improved model to explain the cone 



formation. The computer simulation shows that the cone formation is caused by the 

saturation of the electron density at the beam center. Good agreement was obtained 

between computer simulation and experiment. 

Fig. 5.12 t* -dependence of effective focal shifts. The vertical axis is the peak 

intensity, the horizontal axis is the relative distance from the geomeuic focal 

point when p = O tori-. 
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CHAPTER 6 

Summary 

In this thesis, the nonlinear propagation of short optical pulses has been 

investigated both experimentally and theoretically. We have concentrated on two kinds 

of nonlinearities that have an alniost instantaneous nonlinear response, that is, the 

optical Kerr effect and the dynamic nonlinearity in ionizing gas media. We have studied 

the nonlinear propagation of short pulses under the effect of the first kind of 

nonlinearity in Chapters 3 and 4, and the second kind nonlinearity in Chapter 5. 

Chapter 2 was devoted to a new method for measuring the group velocity walkoff of 

short pulses in birefringent media. Thc following results have been obtained in this 

thesis: 

(1). In Chapter 2, we developed a new technique [frequency-domain 

interferometry(FD1)l for the nieasurement of the group velocity walkoff (GVW) of 

short pulscs caused by polarization mode dispersion (PMD) in birefringent optical 

fibers, or linear birefringence in crystals. This technique (FDI) has been successfully 

used to measure the PMD or GVW and its advantages over other method have been 

discussed in detail. 

(2) In Chapter 3, nonlinear birefringence in optical fibers has been investigated 

both experimentally and theoretically. Good agreement has been found between 

experiment and theory. The theoretical dependence of the nonlinear transmission on the 

incident polarization angle has becn experimentally confirmed for the first time. It has 

been shown that it is possible to optimize the nonlinear transmission of devices based 

on the nonlinear birefringence. Applications of nonlinear birefringence in ultrafast 

optical pulse shaping have been discussed. A more efficient scheme of pulse shaping 

based on nonlinear birel'ringcnce has been proposed and analyzed. It is found that the 



polarization ellipticity of incident beam can be used to optimize the efficiency of 

nonlinear transmission. 

(3). In Chapter 4, soliton stability and soliton collisions in birefringent optical 

fibers have been investigated analytically and numerically. The virial theorem has been 

obtained for the dynamics of temporal vector solitons. The nonlinear dependence of 

soliton formation threshold on birefringence has been obtained for the first time. This 

has been confirmed by computer simulation. Collisions of vector temporal and spatial 

solitons have been studied numerically. It has been found that vector soliton collisions 

can classified into three different regimes: (i) soliton fusion; (ii) resonant collision; (c) 

perturbative regime. The application of collisions of vector solitons in all-optical 

switching has also been discusscd. 

(4). In Chapter 5, the self-defocusing of 1 ps laser pulses in a thin gas target 

has been investigated experimentally. It has been found that self-defocusing depends 

strongly on the focal geometry of the optical system (or f#). It was found that the 

intensity profile of the laser beam was strongly modified, double foci or cone formation 

have been observed at a pressure of 2 tom. In order to understand our experin~ental 

findings, we have developed two theoretical models, a thin lens approximation and a 

numerical model. Both the saturation of effective focal shifts and the cone formation 

found in our experiment are in good agreement wilh theoretical predictions. 



APPENDIX 

Numerical methods 

The propagation equations (4.1-2) and (5.5) are nonlinear partial differential 

equations. Many methods can used to solve these equations numerically. One of the 

most efficient methods is the well-known split-step method ( s s M ) . ~ ~ ~  It has been 

showned that SSM can be faster than most finite-difference schemes by up to two 

orders of magni t~de.~ The SSM has been applied to a wide variety of optical problems 

including wave propagation in the a m t o ~ ~ h e r e , ~ . 5  graded-index fibers.6.7 and 

semiconductor l ase r~ .~- lO It is often referred to as the beam-propagation method677 

when applied to the case of laser beam propagation. We have successfully used this 

method in many simulations such as, those involving the spatial-temporal self-focusing 

of chirped optical pulses, induced self-focusing of two intersecting laser beams,l2 

spatial-temporal optical turbulcnce, l3  soliton beam steering,14 and collisions of vector 

solitons. 15 

Mathematically, the only difference between Eq. (4.1). (4.2) and (5.5) is the 

dimensionality. Here we concentrate on Eqs.(4.1) and (4.2). It is straightforward to 

change the program from one dimension to two dimension. Eq. (4.1). (4.2) and (5.5) 

can be written formally in the form l6 

where A is the field amplitude, z is the propagation distance, i is a linear operator that 

accounts for dispersion in Eq. (4.1) and (4.2), or diffraction in Eq. (5.5), and fiis a 

nonlinear operator that accounts for self-, and cross-phase modulations in Eq. (4.1) and 



(4.2), or nonlinear refraction induced by ionization in Eq. (5.5). The explicit 

expressions for i and 6J are given by 

(a) for Eq. (4.1) and (4.2) 

where A I , ~  are the field an~plitudes of the two waves in Eq. (4.1) and (4.2), and i 1.2, 

fi 1.2 are the corresponding linear and nonlinear operators for the two waves. 

(b) for Eq. (5.5) 

Note that the role of z in Eq. (A. l )  is not the same as the z in Eq. (5.5). It is 

straightforward to write Eq. (5.5) in the form of Eq. (A.l) by changing the coordinate 

system of z, t in Eq. (5.5) to a new one moving with the speed of light, c. 

The solution of Eq. (A. 1) can be formally written as  

where h is a small integration interval. The basic idea of SSM is to approximate the 

operator exp[h( i+ fi)] by exp[h i]exp[h h], or in other words, to obtain an 

approximate solution by assuming that in propagating the optical field over a small 



distance h, the dispersive and nonlinear effects can be treated independently. What the 

linear propagation (diffraction or dispersion) does is to convert the phase distortion to 

amplitude distortion, while nonlinear propagation converts amplitude distortion to 

phase distortion. The SSM divides a propagation step h into two substeps: first the field 

is propagated linearly with the nonlinear effect frozen, then the field is propagated 

nonlinearly with linear effect frozen. Mathematically, 

Up to this point, there is little improvement or advantage compared to other methods. 

The heart of SSM is the calculation of the linear propagation using the fast-Fourier 

transform (FFT) technique. In spectral space, the linear operator i (a) becomes an 

algebraic multiplier since i(o) is obtained by replacing 3 Iax  by iw, where w is the 

frequency in the Fourier domain. For example, i ( w )  = iw8-iw2 Therefore, in the 

spectral domain, the linear propagation can be calculated simply by multiplying each 

frequency component A(z,w) by a factor of exp[h i (a)], or mathematically, 

The pulse shape A(z,t) can be obtained by taking an inverse Fouricr transform of 

A(z,o). Since the nonlinear operator is already a simple multiplier in physical space, 

the nonlinear propagation is performed in physical space. The splitting of Eq. (A.7) is 

accurate to the second order in the integration step h; the accuracy can be improved by 

using better splitting schemes. In our simulations, we used a scheme known as the 

symmetrized S S M , ~  which is accurate to the third order in h. Mathematically, it can be 

written as 



Physically, Eq. (A.9) can be expressed as following: The field A(z) is propagated 

linearly for a distance of N2. At the midplane z+h/2, the field is propagated nonlinearly 

for the whole length h, and then the field is linearly propagated for a distance of N2 

again. This schcme is called the symmetrized SSM because the nonlinear propagation 

begins at z+h/2, while linear propagation begins at z and z+h, located symmetrically 

around the nonlinear propagation. 

The implementation of Eq. (A.9) is straightforward. It should be mentioned that 

there are several things that need to be kept in mind when testing and running the 

numerical code. The simulation box should be large enough to ensure the periodic 

boundary conditions requircd by the FFT, otherwise high frequency noise will cause 

numerical instability. For bandwidth-limited pulses, it is important to have enough grid 

points to ensure that all frequency co~nponents are sampled accurately, and the spectral 

resolution is ~ o o d  enough for Lhe practical applications. It is well known that the 

nonlinear Schrodinger ccluation (NSE) supports the so-called modulational instability 

( ~ 1 ) . 1 6  If the spcctrum of nurncrical noise is located inside the bandwidth of MI, the 

noise will be amplified, resulting in numerical instability. Usually, this numerical 

instability can be avoided if the relationship h < T2/nN2 is satisfied, where T is the 

length of simulation box, and N is the number of grid points.17 
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