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Abstract

In this thesis, nonlinear birefringence in optical fibers has been investigated
both experimentally and theoretically. Good agreement has been found between
experiment and theory. Its applications in ultrafast optical pulse shaping has been
discussed. A more efficient scheme of pulse shaping based on nonlinear
birefringence has been proposed and analyzed. It was found that the ellipticity of
incident beam can be used to optimize the efficiency of nonlinear transmission.

Soliton stability and soliton collisions in birefringent optical fibers were
investigated analytically and numerically. A virial theorem for the dynamics of
vector temporal solitons was obtained. The nonlinear dependence of the soliton-fusion
threshold on the birefringence was obtained for the first time, and was confirmed by
computer simulation. The collisions of vector temporal and spatial solitons was
studied numerically. It was found that vector soliton collisions can be classified into
three different regimes: (i) soliton fusion; (ii) resonant collision; (iii) perturbative
regime. The application of collisions of vector solitons in all-optical switching has
also been discussed.

Finally, the self-defocusing of I ps laser pulses in a thin gas target was
investigated experimentally. It was found that self-defocusing depends strongly on the
focal geometry of the optical system (or f#). It was found that the intensity profile of
laser beam was strongly modified, double foci or cone formation was observed at a
pressure of 2 torr. Both the saturation of effective focal shifts and the cone formation

are in agreement with theoretical predictions.
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CHAPTER 1

Introduction

1.1  Origins of optical nonlinearities

Traditionally, the response of an optical medium to applied laser radiation
becomes nonlinear when the polarizations density of the medium depends nonlinearly
on the laser field. According to Maxwell's equations, this nonlinear polarizations will
be a source of new radiation. It is well known in nonlinear optics that the nonlinear
polarizability is responsible for many important phenomena such as harmonic
generation, frequency mixing, stimulated Raman scattering (SRS), stimulated
Brillouin scattering (SBS), phase conjugation, and nonlinear refraction. 17 The
origins of this nonlinear polarizations can be microscopic, or macroscopic, depending
on whether the nonlincar responsc is from electronic excitation within an atom or a
molecule, or from acoustic excitations of the bulk medium. Sometimes, the
temperature of the medium rises due to linear and nonlinear absorption, which
modifies its optical propertics and thus causes a nonlinear response. Since different
excitations have different response times, the corresponding nonlinearities also have
different response times. For example, electronic polarizations is almost
instantaneous, molecular oricntation has a response time of picoseconds,
electrostriction has a response time of nanoscconds, saturated atomic absorption has a
time scale of 10 nanoseconds, while thermal effects have response times of
milliseconds.”’

Among the variety of nonlinear mechanisms, only electronic polarizations is
nearly instantaneous. This ultrafast nonlinearity has found more and more

applications in fields such as selt mode-locked lasers, or the Kerr-lens mode locking



(KLM) laser, 8.9 optical switching and optical computing.10 The purpose of this
thesis is to investigate the nonlinear propagation of ultrashort pulses and their
applications. We are particularly interested in nonlinearities resulting from the
instantaneous electronic response. All other kinds of nonlinear contributions will be
ignored due to their finite response time. The mechanisms of nonlinear electronic
polarizations can be further classified into two subgroups depending on whether the
nonlinearity comes from (a) the anharmonic motion ot bound electrons under the
influence of an applied field or (b) the field-generated free electrons or free-carriers.
It should be pointed out that the second kind of nonlinearity does not come trom the
free electrons themselves, since the response of free clectrons will become nonlinear
only when the laser intensity is relativistically high (> 1018 W/cm2).11 The
nonlinearity comes from the fact that the ionization changes the free electron density
in the medium, and thus changes the refractive index. When the free-carrier or
electron densities are changed by optical excitations, we are concerned with real
transitions. The resulting nonlinear processes proceed via a real exchange of energy
from the optical field to the medium, and are often reterred as 'dynamic nonlinearities’
in the ficld of semiconductors.12:13 This kind of nonlinear response occurs in
semiconductors when free electrons or carriers arc generated by an applied field, or
in gases and bulk media when ionization occurs. For bound electrons, the nonlinearity
comes from the virtual transitions between the ground state and other virtual states
when the laser wavelength is far away from any resonance.’ From the Heisenberg
uncertainty principle, we know the response time is inversely proportional to the
energy difference between the ground state and the excited states, which corresponds
to a time scale around 10716 seconds, almost instantaneous. The tunneling rate for
hydrogen is approximately 1014 s-1 at an intensity of 1014 W/cm2, which corresponds

a response time of a few optical cycles for 1 pm wavelength light. It should be



mentioned that the dynamic nonlinearity in a gas medium is much simpler than that in
semiconductors, in which the collective effects of electrons, energy band structure,
and Coulomb shielding effects play very important roles in modifying the nonlinear
response. In this thesis, the only dynamic nonlinearity we consider is that in low-
density gases. Although the nonlinearities of bound electrons and ionized free
electrons all have a fast response, they have different properties. In this thesis, we
study the eftects of these two nonlinearities on the propagation of ultrashort pulses

and their practical applications.

1.2  Significance of nonlinear propagation of ultrashort pulses

The propagation of lascr radiation becomes nonlinear when the optical
properties of a medium are modified due to the presence of intense light. The most
important optical property that affects light propagation is the refractive index.
Therefore, nonlinear propagation usually means that the refractive index becomes a
function of the intensity of applied field, or mathematically, n = ng+ An(I), where n is
the total refractive index, ng is the linear refractive index, An is the nonlinear
refractive index. In most applications in which the nonlinear etfect is relatively weak,
Ancan be expanded as An = npl +n412+. . ., where npl >> ny4l2.

It is very important to study the nonlinear propagation of ultrashort pulses.
Nonlinear refraction is universal tor all nonlinear media. Nonlinear propagation has
strong effects on other kinds of nonlinear interactions such as three and four-wave
mixing, SRS and SBS. For instance, it can detune the three and four-wave mixing
processes,14v15 reduce the threshold of SRS, and change the characteristics of high-
order harmonic generation.!® Second, nonlinear refraction is a phase-insensitive
process in the sense that it depends only upon laser intensity, it does not require any

phase matching. Third, it provides an important method for controlling light with light



more rapidly than is possible with ahy electronic device can provide. In recent years,
many a[;plicalions have been found in the area of optical switching, optical
compuﬁng, and optical communications. 10

For most applications in which the nonlinear effect is weak, the refractive
index can be truncated as n = ng + nz I. The values of ny can be either positive or
negative, depending on the detailed nonlinear mechanisms. For the electronic
polarizations in which we are interested in this thesis, np is positive for nonlinearity
coming from bound electrons, and negative for ionized free electrons. Aside from the
sign of np, there is another important factor which causes very difterent behaviors of
nonlinear propagation of short pulses; dispersion. Since we are interested in pulse
widths less than 10 ps, chromatic dispersion may play an important role in the
propagation of short pulses. Chromatic dispersion is usually described by group
velocity dispersion (GVD).l The combination of nonlinear refraction and GVD
generates a variety of phenomena such as optical solitons, spatial-temporal self-
focusing or dark solitons, or/and self-dcfocusing.lv17 The spatial analogy of GVD is
diffraction, and the combination of nonlinear refraction with diffraction is responsible
for spatial solitons, self-focusing, and sclf-defocusing. In this thesis, we study
ditfercnt cases depending on whether GVD or diffraction is important, or the sign of
ny is positive or negative. Difterent combinations of np, GVD and diffraction can

generate very different spatial and temporal behaviors.

1.3  Nonlinear birefringence and its applications

In an isotropic nonlinear medium, the nonlinear refraction manifests itself in
many ways. Nonlinear birefringence (or nonlinear polarizations rotation) is one of the
more interesting phenomena.l In a birefringent medium, the polarizations state of an

incident laser beam will change as it propagates if the initial polarizations state is not



one of the polarizations eigenstates of the birefringent medium. Nonlinear
birefringence means that the medium becomes birefringent due to the presence of
intense light, and the polarizations state will change during propagation through the
medium. Nonlinear birefringence can be best understood in terms of self-phase
modulation (SPM) and cross-phase modulation (XPM).l When there are two or more
laser beams copropagating in a medium, each beam experiences some amount of
nonlinear phase modulation due to the eftect of nonlinear refraction. There are two
contributions to the nonlinear phase modulations, one comes from the presence of the
beam itself, the other is from all the other copropagating beams. The nonlinear phase-
modulation due to the beam is referred as SPM, while those due to the presence of
other intense beams is referred as XPM. An elliptically polarized beam can be
described by two linearly and orthogonally polarized beams. In a nonlinear Kerr
medium, the effect of SPM and XPM generates a phase difference between these two
orthogonally polarized components, similar to the situation in which a light beam
passes through a birefringent medium. The difference is that in the former case, the
phase difference is intensity-dependent, and that is why it is called nonlinear
birefringence. The physical reason for this phase difference comes from that fact that
SPM and XPM have different strengths cven if the beams have the same intensity.
Since its first discovery in 1964,18 nonlinear birefringence has been found
very useful in many applications. Basically, there are two reasons that make nonlinear
birefringence practical. One comes from that fact that its nonlinear response is almost
instantaneous, which makes it very desirable in broadband optical devices such as
optical switches with THz bandwidths. 10 The other reason is related to the advanced
technology of optical fibers. The small mode size and extremely low loss of optical
fibers provide an ideal nonlinear medium. The small mode size makes it possible to

obtain high intensity with relatively low power, while low loss makes it possible to



use longer lengths of optical fiber so that enough nonlinear phase modulation can be
accumulated. Furthermore, it is difficult to separate nonlinear birefringence from self-
focusing in a bulk medium, while there is no self-focusing in optical fibers. Nonlinear
birefringence or self-induced birefringence in optical Kerr media has found many
applications since its discovery by Maker et al.18 For example, nonlinear
birefringence has been used in optical shutters and optical modulators with
picosecond response times, 19 pulse shaping or intensity discriminators,20 optical
pulse cleaners,21-23 fiber-optic logic gateslo’24’25 high-resolution distributed fiber
sensors, 26 and for passive mode locking of fiber lasers. 27-30

One goal of this work is to perform more detailed investigations of nonlinear
birefringence, and try to tind optimal conditions for using nonlinear birefringence.
Since residual birefringence always exists in optical fibers, the polarizations rotation
depends on both linear and nonlinear birefringence in a very complicated manner.
From the point of view of practical applications, there are two very interesting cascs:
one is the case in which nonlinear birefringence dominates, the other is the case in
which linear birefringence dominates. In the former case, Maker et al 18 found there
are two nonlinear eigenstates of polarizations that will not change with propagation,
the linearly and circularly polarized states. For a given incident laser intensity, the
nonlinear polarizations rotation is a function of the polarizations ellipticity. Since
linear and circular polarizations are eigenstates, there must exist an optimal ellipticity
for which the nonlinear birefringence is the largest. In the latter case, the effect of
nonlinear birefringence can be understood in the following way. If the angle between
the polarizations direction of the incident laser light and the fast axis of the optical
fiber is not zero, the electric fields along both fast and slow axes will not be zero.

Therefore, both components induce refractive index changes not only along their own



axis but also along the other axis, that is, the refractive index change along one axis is
due to both self-phase modulation and cross-phase modulation. As a consequence of
this nonlinear birefringence, the polarizations of the total electric field rotates, and the
electric field polarizations will in general be elliptical. If the linear birefringence is
compensated for and a polarizer is used to block low intensity light that does not have
a polarizations rotation, then the transmitted light will depend on the incident power
and polarizations direction. Previous experiments31’32 only confirmed the power
dependence of the transmission; discrepancies were found in the relation between
transmission and input polarizations. For example, when the incident polarizations is
along one of the'optical axes, there is no electric tield along the other axis. Thus, there
should be no nonlinear birefringence and, hence, zero transmission. Previous
experimental results showed that the nonlinear birefringence was not zero, and no
experiment confirmed the overall behavior of transmission with respect to the
polarizations direction. This discrepancy was believed to be due to the random
fluctuations of the birefringent axis and the misalignment of the incident polarizations
vector in the experiments. One disadvantage of previous investigations was the low
switching contrast since the residual birefringence of optical fibers was not
compensated, and the transmission was not optimized. In this thesis, we investigate
the nonlinear transmission under a variety of conditions, and find the optimal

conditions.

1.4  Soliton stability and collisions in birefringent optical fibers

In 1973, Hasegawa and Tappert rcalized that optical fibers exhibit both the
optical Kerr effect and negative GVD at wavelengths longer than 1.3 mm. 33 Thus
they predicted optical fibers could satisfy the mathematical requirements for the

propagation of optical solitons, or nonlinear pulses that do not suffer from any



distortion of the pulse shape as they propagate. The broadening caused by linear
dispersién associated with any short pulses is compensated for by nonlinear effects.
Seven years after the prediction by Hasegawa and Tappert, Mollenauer et al.34
succeeded in the generation and transmission of optical solitons in a fiber for the first
time. One of the important applications of optical solitons is in high bit-rate optical
transmission systems. Since solitons are not distorted by fiber dispersion, they can be
transmitted for an extended distance only by providing amplification to compensate
for the fiber loss. Since fibers can be converted to amplifiers by appropriate doping,
35 this property of a soliton can be used to construct an all-optical transmission
system, which is much more economical and reliable than a conventional sysiem that
requires repeaters involving both photonics and clectronics in order to reshape the
optical pulse distorted by the fiber dispersion. The early experiments were carried out
using Raman amplification. With the development of diode-pumped Erbium-Doped-
Fiber-Amplit‘iers(EDFA)35, a much more practical amplifier became available. All
long-distance-fiber-propagation experiments are currently done with such amplifiers.
Mollenauer36-40 demonstrated this repeaterless transmission system over distances
of 12,000 km. Another important application of optical solitons is for all optical-
switching. The aim ot all optical-switching is to effect the travel of one optical pulse
by another, the 'signal’ pulse by the 'control’ pulselo. Islam used the properties of
soliton collisions in a birefringent fiber to build all-optical switching devices, called
soliton-dragging devices.10 The advantage of using solitons instead of ordinary
optical pulses comes from the unique properties of solitons. Since solitons can adjust
themselves in such a way that the phase is uniform across the whole pulse, they can
be switched as a whole unit, while for non-soliton pulses only high intensity part will
be switched, and the pulse shape will be distorted due to the intensity-dependent

transmission.



Real fibers always have some residual birefringence due to manufacturing
processes such as stress, twisting, and environmental conditions such as thermal
effects. It has been found that it is always possible to find two principal states of
polarizations (PSP) in birefringent fibers.4! When the incident polarizations direction
is aligned to one of the PSP’s, there will be no change in the exit polarizations state.
For short pulses, birefringence combined with GVD causes a pulse to split in the time
domain because of the difference in the group velocities of polarizations components
along the two birefringent axes. This group velocity difference of pulses with their
polarizations aligned to different birefringent axes of a fiber is referred to as
polarizations mode dispersion (PMD). Just as nonlinear refraction can negate linear
birefringence to form solitons in isotropic medium, the same nonlinearity can also be
used to compensate for the polarizations mode dispersion, and regain the property of
soliton propagation in an optical fiber. The penalty is a higher amplitude threshold for
generating stable solitons. Menyuk numerically studied soliton stability under the
effect of PMD,42:43 and found that a soliton with sulficient energy can still be robust
in the presence of substantial birefringence. It was tound that when a pulse consisting
of both polarizations is injected into an optical fiber, each polarizations component
shifts its central frequency in such a way that the two polarizations self-trap and move
down the fiber with the same average velocity. If the power or amplitude of the initial
injected optical pulse is below a certain threshold, the two polarizations will not be
able to trap each other, they will separate from each other after propagating some
distance. However, they change each other's phase after separation. The problem of
soliton stability in a birefringent fiber was later analyzed by Kivshar using a
perturbation method.44 His results showed a linear dependence of the soliton
threshold amplitude on lincar birefringence or PMD, which is in agreement with

computer simulations when the PMD is small. Menyuk's simulation showed that this
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dependence is nonlinear, and there is a significant deviation for larger PMD. In this
thesis, we use a new method to study the problem of soliton stability. We are able to
find an analytic result for the soliton threshold, which agrees very well with computer
simulations.4> It provides a useful criteria for practical system design.

PMD not only changes the soliton threshold, it also changes the fundamental
physical properties of the system. In an isotropic medium (PMD = 0), solitons are
described by the Nonlinear Schrodinger equation(NSE),33 which is integrable in the
sense that there is an infinite number of constants of motion. Soliton propagation in
birefringent optical fibers is described by two coupled nonlinear Schrodinger
equations [NSE’s], 46,47 which are known to be nonintegrable by means of the
inverse-scattering method.47 The most important difference between an integrable
nonlinear wave equation and a nonintegrable one is that the collision between solitary
waves is elastic in the former case and inelastic in the latter. 46,47 There is always
radiation emitted during solitary wave collisions in a nonintegrable system such as the
system governed by the coupled NSE’s. In this thesis, we study the details ot soliton
collisions in birefringent optical fibers and their applications. This subject attracts
great current interest due to its scientitic importancc42’43’48v49 and its potential
applications to optical logic devices.10,50,51 1t the amplitudes of two colliding
solitons with orthogonal polarizations directions are below a threshold value, the two
solitons will separate from each other atter the collision. Each soliton will be strongly
changed after the collision with the other, although each still propagates as a soliton.
The most important changes include polarizations mixing, central frequency shifts
and velocity changes. In this thesis, it is found that the relative contribution to the
total polarizations state varies over a large range and depends very sensitively on the
linear birefringence. By linearizing the coupled nonlinear Schrodinger equations,

Malomed and Wabnitz92 found that there exists a critical value of linear
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birefringence for which the soliton collision is resonant in the sense that the spatial
frequency of the soliton shadow equals that of the soliton with much larger amplitude.
When the linear birefringence is above this critical value, the interaction between two
solitons is small and each soliton picks up a shadow after a collision. Most of the
previous work on soliton collisions was in the nonresonant regime, and the mixing
effect was very small. In this thesis it is found that the resonant regime is more subtle
in that it consists of bound states and unbound states. In an integrable system, solitons
will not change their velocities after a collision. However, the velocities of two
colliding solitons generally change after a collision in a nonintegrable system. We
also investigate this aspect by numerical simulation. It is found that both the velocity
change and the amount of mixing measured by means of cross-correlation depend
strongly on the linear birefringence. The XPM between two colliding pulses generates
nonlinear frequency shifts and, thus, velocity changes due to group velocity
dispersion. The dependence of the velocity changes on the linear birefringence is
similar to that of the mixing on the lincar birefringence. None of the previous work on
soliton collisions was concerned with the dependence on the linear birefringence. It is
not surprising that only very small mixing has been found, since the linear
birefringence chosen in previous work was very large, and the collisions were in the
nonresonant regime. The entire range of parameler space in the magnitude of the
linear birefringence is investigated in this thesis. A variety of phenomena in soliton
collisions are found in this thesis and their application to all-optical switching is

discussed in detail.

1.5  Self-defocusing of short pulse in gases
When nj is negative, an intense laser beam will experience self-defocusing

when propagaling in a bulk or gas medium. Like su:lf-t‘ocusing,S sclf-defocusing is an
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intensity-ihduced lens effect. For a beam with a Gaussian-like transverse profile, the
central pﬁrt of the beam having a larger intensity experiences less refractive index
than thé edges due to the presence of free electrons, and therefore the center region
travels at a faster velocity than the edges. Consequently, the wavefront distortion is
similar to that generated by a negative lens, and the beam appears to defocus by itself.

Among many nonlinear mechanisms that give rise to negative np, we are
particularly interested in the dynamical nonlinearity, that is, the nonlinear refraction
resulting from ionization of a gas medjum or free-carrier generation in
semiconductors. In this thesis, we concentrate on self-defocusing in gas media,
although the physics is also valid for the other case. Since the invention of the chirped
pulse amplification system (CPA),33.54 the availability of ultrahigh intensity lasers
opened a new era for both nonlinear optics and high-field atomic physics. Currently,
CPA systems are able to provide pulses with 54 TW peak power and an intensity of
1019 - 1020 W/cm? at focus.d3 With such high power lasers, a variety of new
phenomena can be investigated experimentally. These phenomena include (i) wake-
field acceleration,36-61 (i) relativistic optical guiding or selt-focusing, 62-64 (iij)
laser frequency amplificali(m,65»66 (iv) relativistic harmonic generation, 67 (v)
nonlinear Thomson scattcring,1 1,68 (vi) multiphoton ionization09-72 (vii) above-
threshold ionization,73’74 (viii) high-harmonic generation in gases,75 (ix) and X-ray
lasers.”6:77 A common factor of all these applications of high-power laser systems is
that almost all the media used in these experiments are gases or plasmas, since only
gases or plasmas don't have the problem of material damage. A direct consequence of
this fact is the self-defocusing associated with the dynamical nonlinear response. All
these experiments require nonlinear propagation of laser pulses in a gas target with
intensities ranging from 1013 W/cm?2 to 1019 W/em2. Tt is well-known that the laser-

generated plasma decreases the refractive index, or in other words has a negative nj.
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As a result of this laser-generated negative lens, the laser beam may begin to defocus
before the beam reaches the geometric focal point in vacuum, which greatly limits the
maximum intensity achievable in a gas target. The ionized gas or plasma can have a
drastic effect on the propagation of the laser pulse due to self-defocusing. The effect
of self-defocusing in an ionized gas is not new. In 1974, Feit and Fleck used this
phenomenon to explain the dependence of the breakdown threshold of gases on focal
spot size.78 Borger and Smith found that the threshold increases as the spot size is
decreased.”9 Self-defocusing causes a signilicant portion of the laser energy to be
refracted, resulting in a reduction in absorption. As the spot size is reduced, this effect
becomes more important. Recently, new interests have been stimulated by the
potential applications of ultrashort intense laser pulses in underdense plasmas: both
experimental inves[igations80‘84 and computer simulations®2,83.85.86 have been
done. All these studies concern relatively high pressure, for example, > 10 torr for
high-harmonic generation, > 1 bar for x-ray recombination lasers and plasma-based
accelerators. It was tound recently that self-defocusing could be important at a
pressure as low as 3 torr with an intensity of the order of 1014 W/cm2.16 The focal
spot was three times larger than that associated with vacuum propagation. This
finding shows that self-detocusing may play a more important role than previously
expected. For example, the work of Auguste et al. 81 and Rae 86 were performed
with backfilled gas tanks at pressures larger than 15 torr. Rae found that the tighter
the focus, or the smaller the f¥, the larger the maximum electron density. Intuitively,
more severe self-defocusing is expected for smaller f#, since the change in refractive
index is proportional to Np,. However, both the eftfective interaction length and ionized
volume will be smaller for a beam with tighter focus, which results in less
accumulated phase distortion. Therefore, the self-defocusing will be less significant

for smaller *. Tn order to understand this, we developed a thin lens model. It is tound
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that the significant self-defocusing at pressure as low as a few torr can be explained
by the t# dependence of self-defocusing. We also found that the saturation of focal
shifts can be explained by this model. On the other hand, the experimental data
clearly showed the formation of a cone in the laser intensity distribution, which is
beyond the thin lens approximation. However, an improved model based on the thin
lens approximation can be used to explain the cone formation. Since this improved
model is more complicated than the thin lens approximation, we can only obtain

results by computer simulation, instead of analytic results.

1.6 Outline

Chapter 2 describes an experimental technique called frequency-domain
interferometery(FDI) . This technique has been used to measure polarizations mode
dispersion (PMD) in optical fibers, since PMD has strong etfects on soliton stability
and soliton collisions in bircfringent optical fibers. Detailed working principles of
FDI have been given in this chapter, as well as the experimental results.

Chapter 3 is devoted to the experimental investigations of nonlincar
biretringence and its application in optical pulse clcaning. Nonlinear transmission has
been measured as a function of the incident polarizations angle for the first time, and
good agreement between theory and experiment has been found. The possible
applications of nonlinear birefringence are also discussed.

Chapter 4 describes numerical studies of the effects of PMD on the stability
and collisions of temporal solitons in birc{ringent optical fibers. An analytic result for
the soliton threshold has been obtained by using a virial theorem. This result is the
only one that is consistent with computer simulation for the whole range of PMD.

Collisions of vector solitons have been numerically investigated in detail. Many new
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properties have been found, and their possible applications in all-optical switching
have been discussed.

Chapter 5 describes the propagation of intense laser pulses in a thin gas target.
After describing the experimental setup, we show several experimental results. It has
been tound that the self-defocusing induced by ionization can be explained by the thin
lens approximation. The theoretical predictions of the thin lens approximation, such
as effective focal shifts in the image plane and the saturation of the focal shifts, have
been confirmed experimentally. Tt has been found experimentally that there are two
foci in the image plane, which give rise to the formation of a cone in the transverse
intensity distribution. Based on the thin lens approximation, we have developed an
improved model to explain the cone tormation. The physical mechanism of cone
formation has been discussed.

Finally, this work is summarized in Chapter 6.
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CHAPTER 2
Frequency-Domain Interferometer for Measurements of Polarization Mode

Dispersion in Birefringent Media

In this chapter, we discuss one of the most important properties of optical
fibers, the polarization mode dispersion (PMD). Polarization mode dispersion causes
a short optical pulse to split into two components, each propagates with its
polarization aligned to one of the two principal polarization states of the fiber. PMD
limits the transmission bandwidth in fiber communication systems, increases the
soliton threshold in optical fibers, and changes the characteristics of soliton collisions
in optical fibers. There are many mcthods for measuring PMD, we have developed a
new method based on the frequency-domain interferometry (FDI). In this chapter, we
have discussed the fundamentals of FDI, and its applications in measuring PMD in
optical fibers and group velocity walkaway in nonlinear crystals. This technique is
based on the spectral interterence of two short pulses in the frequency domain. In the
freQuency domain, two temporally separated pulses interfere in the same way that two
waves with different trequencies beat in time domain. Measuring the interference

fringes in the frequency domain gives the temporal delay of two short pulses.
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2.1. Introduction

Single-mode optical fibers have been increasingly used in (coherent) optical
transmission systems and as polarization-dependent fiber-optic sensors. In these
applications, it is of fundamental importance to know the polarization properties of
single-mode fibers because these properties govern the degree and state of the
polarization of the radiation. It is well-known that birefringence in optical fibers can
be induced by built-in stress or by geometric deformation of the fiber core.l-2 The
most important parameters characterizing birefringent fibers are the polarization mode
dispersion (PMD) and modal birefringence (MB). PMD is the group delay time
difference between two orthogonally polarized HE|; modes, while MB is the
refractive index difference between these two modes. Unlike birefringence in crystals,
optical fibers suffer from the random coupling of two polarization modes due to the
uncontrollable random changes of local birefringence axes. Depending on the relative
length of optical fiber compared to the mode coupling length, PMD shows very
different characteristics. For instance, the average PMD is linearly proportional to the
propagation distance when the fiber length is much shorter than the mode coupling
length, while PMD is proportional to the square root of fiber length when the fiber
length is much longer than the mode coupling length. In the later case, the random
mode coupling can be described through statistical picture.3 PMD is a fundamental
characteristic of a fiber or a device that describe its propensity to split a narrow-band
optical input pulse into two temporally separate output pulses according to its state of
polarization, which results in bandwidth limitations.4 PMD has two contributions:
one is the phase delay, which is proportional to MB; the other arises from dispersion
difference between two modes. Since the first experimental verifications of PMD in
birefringent optical fibers made by Rashleigh and Ulrich,d many methods for

measuring PMD in single-mode fibers have been reported.6'24 These methods fall
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into six categories: (i) optical short-pulse methods,8 (i) frequency domain
techniques,?> 10 (iii) interferometric methods,3- 9-17 (iv) optical heterodyne
techniques.18-19 (v) Jones matrix eigenanalysis 20-22 (vj) wavelength scanning 23,-
25 The white-light interferometric method has proved to be very accurate and
applicable to meter-length samples, 5,17 and better results can be obtained by the
method of Jones matrix eigenanalysis with a resolution of roughly 50 attoseconds (50
x 10-185), 22

Recently, PMD has attracted many investigations due to its important impact
on fiber communications.20-25 In this thesis, we will focus on other important effects
of PMD on the nonlinear propagation of short pulses in optical fibers. Previously,
people concentrated on the measurement of PMD and its effects on the linear
propagation of short pulses. To the first order, PMD causes a short pulse to be split
into two. However in the nonlinear regime, especially in the system of soliton
propagation, this pulse-splitting effect raise the question of soliton stability in soliton
communication systems. On the other hand, PMD also strongly changes the
characteristics of soliton collisions in birefringent optical fibers. In this chapter, we
will describe a new method of measuring PMD, while studying the effects of PMD on
nonlinear propagation of short pulses in Ch. 4. This new method is based on
frequency-domain interferometry. There are several advantages of this new method
compared to previous methods. First of all, this method provides a dynamic
measurement of PMD without tedious calculations and curve fitting. For instance, the
method of Jones matrix eigenanalysis provides very good resolution, but requires
solution of eigenvalues of the Jones matrix based on three different steps of
measurements. In the method of wavelength scanning, the wavelength resolution is
usually poor (>0.5 nm), which results in low resolution in the case of high

birefringence. However, our new method provides a dynamic measurement as well as
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high resolution for the measurement PMD in high birefringent fibers. Finally, this
method is even ideal for the applications involving propagation of short pulses, since
the same short pulses can be used to measure PMD, thus the results are immediately
relevant for the application.

This new method has many other applications. In this chapter, we apply this
technique in the measurement of group velocity walkaway in nonlinear crystals,
which is a very important factor in determining the wavelength conversion efficiency
of short pulses in nonlinear crystal. Frequency conversion in nonlinear crystals has
been an important method for obtaining coherent radiation sources with wavelengths
not covered by lasers. This is especially true in applications involving ultrashort laser
pulses. Frequency conversion includes second, and higher harmonic generation,26'28
and optical parametric oscillators (OPO) and amplifiers (OPA).29.30 A major
limitation to ultrashort frequency conversion is the group-velocity walkaway( GVW)
between the ordinary (o-wave) and extraordinary (e-wave) waves due to the different
group velocities for the two pola.rizations.31 Since birefringence and dispersion exist
in all nonlinear crystals, the GVW effect becomes a fundamental factor in
determining the frequency conversion efficiency on applications involving short
pulses. The walkaway has been used to increase the conversion efficiency of type II
doubling of 1 um, 1 ps laser pulse by using a second crystal to predelay the
extraordinary wave relative to the ordinary wave.26.27 It was also found that the
pulse duration could be reduced from 1 ps to 200 fs.32 Chien et al. 28 have studied
the conversion efficiency of high power ultrashort pulses and have found that the
GVW between two polarization causes reconversion of the second harmonic back to
the fundamental frequency.

Typically, the walkaway is inferred by measuring the refractive indices and

the dispersion of the e- and o-waves. In this work we report on the first direct
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measurement of the GVW between the e- and 0- waves in a birefringent crystal. The
same ultrashort pulse which is to be frequency converted can be used for the these
measurements. Most values of the refractive index have been obtained by the
minimum-deviation method(MDM), and are accurate to the fifth decimal place.33
Extensive measurements of refractive indices of nonlinear crystals isomorphic to
KH7PO4 have been made by Kirby and DeShazer.34 Although MDM provides an
accurate measurement of the refractive indices of e- and o- waves, it is not convenient
for many applications involving nonlinear frequency conversion. Since the MDM
measurement requires a high quality prism made of the sample crystal, this method
can be expensive and impractical for ordinary trequency conversion applications. The
dispersion properties are usually obtained by fitting to the Sellmeier or Zernike
formula, 3536 which requires multiple measurements with different light frequencies.
Since narrow spectral lines of diffcrent lamps are used in MDM, it is possible that no
experimental data exists for some specific wavelength that is used in frequency
conversion experiments. Another disadvantage of this method is that the refractive
indices of o- and e- waves is a function of propagation direction. All the calculations
require the relative angle between the propagation direction and the optical axis to be
known precisely. Hence precise locations of optical axes and propagation angle are
required before the final calculations can be made.

There are several other advantages of technique presented here for nonlinear
frequency conversion. In practical applications of frequency conversion involving
short pulses, it is desirable to know the walkaway parameter for the laser frequency
involved. The walkaway can be measured using the same laser pulses that will be
used in frequency conversion, therefore the measured data about the walkaway is
immediately relevant. For the applications involving cascade processes of frequency

conversion of short pulses, it is crucial to know the polarization direction, or the
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crystal orientation which correspond to the minimum walkaway, so that the
orientations of nonlinear crystal for the next stage of frequency conversion can be
optimized.32 Our method provides real time information about the GVW, its
simplicity will be helpful in the system design of devices of nonlinear frequency
conversion. To our knowledge, this method provides the first direct measurement of

angular dependence of the GVW.

2.2  Basics of frequency-domain interferometer

In this chapter, a new technique based on frequency-domain interferometry
(FDI) 37.38 has been used to measure the PMD, or the group-velocity walkaway of
short pulses in birefringent media. As the name implies, this technique is based on the
spectral interference of two short pulses in the frequency domain. The intrinsic phase
delay between the fast and slow modes of a birefringent medium is used. Due to the
different group delays, the two pulses launched along the fast and slow arms will
come out of the medium at different times. In the frequency domain, two temporally
separated pulses interfere in the same way that two waves with different frequencies
beat in time domain. In the frequency-domain interferometer described in this work,
the measurement of the modulation period of the interterence fringes in frequency
domain gives the group-velocity walkaway (GVW) directly without further
assumptions about the properties of the light source. By analogy with an ordinary
interferometer, the two axes of the birefringent medium can be regarded as two
interfering arms, while a polarizer placed at the output end of the medium combines
the two field components to generate interference fringes in frequency domain.
Temporally separated pulses can interfere owing to the linear dispersion of the grating
in a spectrometer.37v38 Different frequency components propagate along different

directions, which results in a frequency-dependent time delay. Therefore, two
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temporally separated pulses can physically overlap on the detector surface of the
spectrometer. Compared with other methods, the experimental setup of our
interferometer is quite simple; the alignment is also very easy. More importantly, the
experimental data is directly related to the GVW; no further curve fitting is needed.

In order to understand the physics of the frequency-domain interferometer, we
need to understand the properties of a spectrometer. A simplified version of a
spectrometer is shown in Fig. (2.1). The incident beam is collimated, and has a
diameter D. The incident angle to the grating is i, while the diffracted angle is .
Assuming two pulses with pulse width T are separated by T, we find that the energy
fronts, or the amplitude fronts of these two pulses are no longer parailel to the phase
fronts. At the focus of the image lens, each pulse is temporally stretched to a duration
of DNA/cos(i)c, where N is the groove number of the grating, A is the wavelength of
the pulses, ¢ is the speed of light. It is casy to see that two separate pulses can
physically overlap with each other at the focal plane, or the frequency plane. Note that
no such overlapping is possible if the original separation T is greater than the grating
stretching DNA/cos(i)c, as can be seen in Fig. (2.1).

The configuration of the frequency-domain interferometer is shown
schematically in Fig. (2.1). The birefringent axes are labeled as x and y; the laser light
propagates along the z direction. Two identical pulses temporally displaced by T are
launched into the birefringent fiber with their polarization directions aligned to the x
and y axes, respectively. At the input planc (z = 0), the electric fields of these two

pulses can be expressed by
E (t,z=0)=E(t)exp(i wg ¢)

Ey(t,z=0)= E(t-T)expi wo(t-T)] , .1
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Fig. 2.1 Temporal stretching of short pulses in a spectrometer.
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where E(t) is the slowly varying envelope of the two pulses and wy is the carrier

frequency of the laser pulses. At the exit end of the fiber, the Fourier transformations

of the electric fields are

OPTICAL FIBER

M2 X P

MO MO
|—| z M
I_| \’ 0> \

y

A2

computer digitizer spectrometer / M

Fig. 2.2 The experimental setup. Wherc A/2 means half-wave plate, MO
microscope objectives, P polarizer, and M mirror. The linearly polarized
light is coupled into the optical fiber with the polarization direction aligned

to 45° with respect to fiber axes.

E (w,z = L)= E(w-wg)exp[—i B (o) L]

E,(0.z = L) = E(w — o )exp[-i By(®) L]exp(~i @ T) , 2.2)
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where E(w-w) is the Fourier transform of E(t) and Bx(®) and By(w) are
propagation constants of the x and y modes.
A polarizer with its transmission axis set to be 45° with respect to the x and y

axis combines the two electric fields,

1
Epy(0z=L)= E[Ex (@.z=L)+Ey(@,z=L)] . 2.3)

The power spectrum detected by a spectrometer can be expressed as

I(w)= %|E((o - (no)'2 {1+ cos[AB(w)L + wT]} , (2.4)

where AB(w)=p,(w)-PBy(w) is the modal birefringence and can be expanded as
follows:
dAB(w)

_ 1 d%AB(wo) ,

where dAB/dw is the polarization mode dispersion. The third term in Eq. (2.5) is the
difference of the group velocity dispersion (GVD), which describes the difference of
the pulse spreading in two principal axes. For subpicosecond pulses, the dispersion
distance (the distance at which pulse width becomes twice the initial value) can be
shorter than 1 m.39 However, as pointed out in Ref. (5), this term can be ignored
since the temporal spreading is almost the same for each mode; in other words, the
difference of temporal spreading due to GVD is still negligible. Substituting Eq. (2.5)

into Eq. (2.4) gives
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(o) = %|E((o —~ o)’ {1 +cos[AB(wo) + Tay + (%?L + T)Aw]}. (2.6)

From Eq. (2.6), it is easy to find that the periodicity of the interference fringes is

given by

Q= 27%(@“ Tj . @7

dw

The polarization mode dispersion can be determined in terms of measured quantity €,

that is, the fringe spacing in frequency domain. From Eq. (72.), we have

ﬂ=(2_“_ ]/
(T 2.8)

Note that Eq. (2.8) provides two ways of measuring PMD. First, no optical delay is
needed, which means T = 0. Measuring the fiber length L and interference spacing
gives the required result of PMD. This method is very simple to implement. On the
other hand, it is possible to adjust the temporal delay such that Q = infinity, then
PMD = -T/L. Physically, this means that the predelay T is set such that two pulses
come out of the fiber at same time; therefore there will be no interference in

frequency domain.

2.3  Experimental results
The experimental setup is shown in Fig. (2.2). The laser beam originates from

an actively mode-locked Nd:YLF oscillator that produces a 50-ps pulse train at a
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wavelength of 1054 nm with a repetition rate of 100 MHz. The pulse train goes
through an 800-m, single-mode optical fiber that increases the bandwidth from 0.3 A
to 31.6 A through the combined effects of self-phase-modulation (SPM) and GVD.39
The pulses are then temporally compressed to 1 ps by a double-pass grating pair. Two
microscope objectives are used to couple the laser beam into and out of a highly
birefringent fiber (3M product, FS-HB-5651). A A/2-wave plate placed in front of the
fiber was used to control the polarization direction of the incident laser beam. A
polarizer placed at the exit end of fiber was used to combine the electric field
components of the fast and slow modes. Finally the collimated output beam was sent
to the spectrometer with an optical multichannel analyzer (OMA). Another A/2-wave
plate placed in front of the spectrometer was used to match the polarization direction
of the laser beam to that of the grating inside the spectrometer. The waveguide

parameters of the fiber used in the experiment are listed in Table 2.1.

The input spectrum I:IE(co—(nO)Iz] is shown in Fig. (2.3). The power

spectrum has nearly a squarc-top shape with a width about 31.60 A. In the
experiment, the input polarization direction was adjusted to be 45° with respect to the
fast and slow axes of the birefringent fiber. The polarizer was also aligned to the same
angle as described in Eq. (2.3). The frequency-domain interference fringes are shown
in Fig. (2.4). Least squares method is used to fit Fig. (2.4) using Eq. (2.6); Q was
found to be 22.7 + 0.1 pixels, giving a modulational period of the interference
fringes of 9.13% 0.04 A, corresponding to a temporal delay of 3.91 +0.04 ps. The
length of the fiber was measured with an accuracy of 1 mm. According to Eq. (2.8),
the PMD is found to be 1.42 ps/m with an accuracy of 1%. It is well known that

dAB/dw can be expressed as
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Fig. 2.3  The spectrum of the incident pulses. The spectrum shape is typical of the

combined effects of SPM and GVD. The peak-peak width is 31.60 A.

the PMD is found to be 1.42 ps/m with an accuracy of 1%. It is well known that

dAB/dw can be expressed as
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do ¢ ¢ do’ 29)
where An is the modal birefringence. Table 1 shows that the first term on the right-
hand side of Eq. (2.9) equals 1.3+0.1 ps/m (the uncertainty comes from the fact that
there is not enough information about the sample fiber, see Table 2.1), which is very
close to the measured PMD. This means that the contribution of the second term in
Eq. (2.9) is much smaller than the first term, which is true in most stress induced
birefringent fibers. 40,411n fact, it is easy to show that the first term in Eq. (2.9) takes

approximately 90% of the total group delay in the case studied here.

Table 2.1: Waveguide Parameters of the Fiber Used in the Experiment.

fiber length 2.750 m
mode field diameter 6.8 um
fiber diameter 100 um
operating wavelength 1.060 pm
cutoff wavelength 1.000 um
birefringence 4 x 104
loss <2 dB/km
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Table 2.2 Parameters of Nonlinear Crystals and Measured Walk-off

Crystal | Cutangle | Length |walk-off (8)|Walk-off (P)
x2 (cm) (ps/cm) (ps/icm)
CDAI 85° 2.50 1.00+0.01 1.01
KDP*II | 53.7° 150 [0.94+0.02| g7
KDPII | 59.2° 190  [1.35+0.02| 433
KDP I 41.2° 1.029+0.005 0.79

(a) measured results
(b) calculated results34

From Eq. (2.4), the power spectrum dctected in the spectrometer takes

following form

(o) = —}IIE(m ‘“’o)ﬂl + cos(9, + AtAm)]

(2.10)

where E((o—(oo) is the spectrum of the incident pulse; ¢¢ is a constant, At is the

temporal delay between the two pulses traveling along the fast and slow axes of

birefringent medium; A®w = @ -wq. Theretore the GVW is just the periodicity of the

interference pattern in frequency domain.

The experimental setup is similar to Fig. (2.2), except the fiber is replaced by a

nonlinear crystal. The frequency-domain intcrference fringes for a 2.5 cm thick CDA

crystal are shown in Fig.(2. 5). A least squares method is used to fit Fig. (2.5) using
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Eq. (2.10), as shown in dashed curve. There are three sources of error in the
measurements, the error in measuring the lengths of the crystals, the error in
calibrating the spectrometer, and the error in determining the spacing of the
interference fringes. The uncertainty of the thickness measurement is 1 %. The
calibration was performed using five spectral lines of Rubidium lamp ranging from
1053 nm to 1073 nm. The spectral lines were fitted with Lorentzian line shape, and
the overall uncertainty in the calibration was found to be 0.2 %. The least square fit
for the interference fringes gives an error of 0.3 %. The largest uncertainty comes
from the measurement of the thickness of the crystals. After taking into account of
these three error sources, we found that the error in determining the temporal
walkaway is about 1 %. The GVW parameters of several commonly used nonlinear
crystals have been measured, the results are listed in Table 2.2. The cut angles and
lengths of the tested crystals arc also listcd. The last column of Table 2.2. shows the
calculated values of the GVW based on the dispersion data of Ref.[34]. The measured
results are very close to the calculated ones, as can be seen from Table 2.2.

It is well-known that the refractive index of extraordinary wave is a function
of propagation direction, which mcans that the GVW is also a function of propagation
direction. Fig.(2.6) shows the dependence of walkaway on the propagation angle. The
angle is measured with respect to the phase-matching angle of the crystal (KDPII) in
YZ plane. The scattered triangles are experimental data, the solid curve is the
theoretical prediction based on material dispersion34. The experimental data fits the
theory, with an accuracy of 1%. It should be mentioned that the angle in Fig. 6 is the
angle inside the crystal, that is, Snell's law has been used to obtain the internal angle.
Since the crystal is cubic, the propagation distance is also a function of angle, which

has been taken into account in Fig. (2.6).
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Fig. 2.5 Frequency-domain interference fringes of sample CDA I The fringe
spacing is measured to be 6.7 A. The solid line is the experimental data,

while the dashed line is the theoretical fitting.
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24  Conclusions

In conclusion, a new technique based on frequency-domain interferometry has
been used to measure the polarization mode dispersion of birefringent media. In
contrast to the usual interferometric methods that measure the interference visibility
as a function of optical delay between two interfering arms, we measure the
periodicity of the interference fringes in frequency domain by using short broadband
optical pulses. No curve fitting is needed to find the values of PMD since the
measured modulation period of the fringes is directly related to PMD, as shown in Eq.
(2.8). Two different schemes of measurement have been discussed in detail. These
two methods differ from each other in that one needs an optical delay line, while the
other does not. The method without an optical delay line has been demonstrated
experimentally. There are several advantages of this new method for measuring the
GVW in a birefringent medium. First of all, the measurement is direct. The group-
velocity walkaway can be measured in real time, which is useful for applications in
which the GVW can be controlled by tuning the crystals. Secondly, for most
applications of frequency conversion, this method provides the values of GVW at the
appropriate wavelength, since the source is the same source that is used in the
nonlinear frequency conversion. Thirdly, this method makes it possible to measure the
angular dependence of GVW, which is useful for experiments involving serial
frequency conversion. The walkaway can be compensated for in the second crystal.
32 Our method can be used to align the crystal by monitor the compensation.
Compared to other methods, our method provides reasonably good accuracy, as well
as experimental simplicity. It should be mentioned that our method is linear in the
sense that it does not depend on the laser power. In our experiment, the pulses were

not transform limited, in other words, the pulses are slightly chirped. It is believed
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that the chirp may be responsible for the finite visibility of the interference patterns,

so it could affect the accuracy of the measurements when the visibility is poor.
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Fig. 2.6  Dependence of the group-velocity walkaway on the propagation direction.

The angle is measured with respect to the phase-matching angle of the

sample (KDPII).
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CHAPTER 3

Nonlinear Birefringence and its Applications

In recent years, nonlinear birefringence has been found many applications in
ultrafast optical pulse shaping or cleaning, and all-optical switching. Optical fibers are
the idea media for the study of nonlinear birefringence. In this chapter, we
investigated nonlinear birefringence in two ditferent regimes: (a) linear birefringence
dominates nonlinear biretringence; (b) nonlinear birefringence dominates. In the first
case, we experimentally contirmed the dependence of nonlinear transmission on the
incident polarization direction with respect to the biretringent axes. The existence of
an optimal incident polarization angle will be usetul in the optimization of nonlincar
transmission. We also proposed and analyzed an improved scheme of pulse shaping
using nonlincar polarization rotation. It was found that our improved scheme is much
more efficicnt than the previous scheme. The peak transmission can be incrcased
more than three times, from 7% to 24% lor a incident power that is cquivalent to that
of generating a self-phase modulation(¢spm) of ®. For Ospm = 2%, the gain in nonlinear
transmission is about 2.5 times, corresponding an increase from 23% to 57%. For
higher power, the gain becomes saturated. Since stimulated Raman and Brillouin
scattering limit the power level that can be used, this improved scheme will be very

useful for many applications involving moderate power levels.
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3.1  The origin of nonlinear birefringence

Birefringence is an optical property of an anisotropic optical medium when its
refractive index depend on the polarization states of an incident optical radiation. For
a given propagation direction, there arc two polarization eigenstates that have
different refractive index. This birefringence is referred as linear birefringence
compared to the nonlinear birefringence we are going to study in this chapter. Linear
birefringence is a property of an optical medium itself, typical of anisotropic media
such as crystals. Nonlincar birefringence, however, is a birefringence induced by the
intense optical radiation that propagates in the medium, it can exist in all nonlinear
media. Nonlinear bircfringence is simply a vectoral representation of nonlincar
refraction, thus it is a universal phenomenon for all nonlinear media, both isotropic
and anisotropic. In order to compare lincar and nonlinear birefringence, we first
review the basic results of lincar birefringence. In a biretringent medium, there cxist
two polarization eigenstates ot a incident laser beam that will not change during the
propagation along a given dircction in the medium. The corresponding refractive
index and thus propagation velocitics are ditferent tor cach eigenstate. Usually, an
cigenstate with larger(smaller) relractive index is called slow(fast) mode since the
group velocity is smaller(higher). It these polarization cigenstates arc linearly
(circularly) polarized states, then the medivm is called linearly(circularly)
birefringent. It can also be elliptically bircfringent if the eigenstates are elliptically
polarized. Nonlinear birefringence has similar characteristics in the scnse of
polarization cigenstates. However, there are several important difference between
linear and nonlinear birefringence. First of all, as mentioned previously, the physical
origin of lincar and nonlinear birefringence is different, linear birefringence comes
from the material asymmetry, while nonlinear birefringence is due to the vectoral

aspects of nonlincar refraction, independent ot material structure. Secondly, linear
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birefringence is usually dominated by onc type of birefringence, in other words, it is
either lincarly birefringent or circularly birefringent. Nonlinear birefringence can
support simultaneously two kinds of nonlinear eigenstates, both linearly and circularly
polarized eigenstates.! If the incident polarization state is either linear or circular,
then the output polarization state will be the same as the incident polarization state.
Thirdly, the evolution of polarization states is very different for linear and nonlinear
birefringence. In a medium with linear bircfringence, the polarization state changes
periodically from lincarly polarized to clliptically or circularly polarized, and then
back to linearly polarizcd, the polarization ellipticity evolves periodically between
zero and 1. However in the case of nonlinear biretringence, the ellipticity is a constant
of motion, only the oricntation of the polarization ellipse changes periodically with
propagation distance. The distance at which the polarization state go through a
complete cycle is called beat length in the case of lincar birefringence, and is given by
AAn, where A is the wavelength of the optical radiation, An is the refractive index
difference between the two cigenstates. In the case of nonlincar birefringence, the
output ellipticity is thc same as the input, it is the azimuth orientation of the
polarization cllipsce that changes periodically with a constant angular velocity
determined by both the laser intensity and the polarization ellipticity. In fact,
nonlincar birelringence is very different from linear birefringence, which is why
nonlincar birefringence is sometimes called nonlincar polarization rotation or ellipse
rotation Lo emphasize the fact that nonlincar biretringence mainly causes a rigid
rotation of Lhe polarization ellipse. Nonlincar biretringence is more like optical
activity than linear birctringence.

As wc¢ mentioned before, nonlinear birefringence is just a vectoral
representation of nonlinear refraction, therefore nonlinear birefringence will appear at

the same time as nonlincar refraction is observed. In other words, nonlinear
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birefringence will be accompanied by selt-focusing or self-defocusing in a bulk
medium. Since selt-focusing (sclf-defocusing) results in an increase(decrease) in peak
intensity or a reduction(increase) in beam size, the nonlinear phase modulation or
polarization state will also be modified in a bulk medium. In order to prevent the
complication of nonlinear transversc effects, one needs to limit the medium length to
be smaller than selt-tocusing (self-detfocusing) distance. Since the nonlinear
polarization rotation is proportional to the product of incident power and the effective
interaction distance, this limitation of medium length increases the power
requirecments, which limits its practical applications. The advances in optical fiber
fabrication have made it possible to obtain single-mode tibers with small core size
and extremely low loss. The small core size makes it possible to obtain high intensity
with relatively low incident average power, while low loss makes is possible for an
optical pulsc to propagates thousands of meters without significant reduction in peak
power. On the other hand, the transverse cffect is absent in optical fibers due to their
waveguide nature. Theretore, a significant amount of nonlinear phase modulation is
possible tor very low input power, which is very usetul in practical applications. All
these advantages make optical fibers an idea medium for the study of nonlinear
birefringence and its practical applications.

Optical fibers can be classitied into two categorics according to whether they
arc bircfringent or not. The ditference in refractive indices of two polarization
eigenmodes or bircfringent axes, An, is usually used to characterize the significance
of lincar birefringence. For instances, an optical tiber with An > 10-3 is usually called
high birefringent fiber, while it is called low biretringent fiber when An < 10-6 or 10-
7. In fact, no optical fiber is (ree of birefringence. It is well-known that biretringence
in optical fibers is due Lo the presence of asymmetric stress or geometric

deformation.2.3 Biretringence can be present it the fiber core is not perfect circular,
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or if the fiber is bent, twisted, or under external pressure. Since linear birefringence is
unavoidable in optical fibers, we should consider both linear and nonlinear
birefringence when we are going to study the polarization evolution in optical fibers.
It turns out that the absolute value of linear birefringence is not relevant in describing
the polarization evolution in birefringent optical fibers. It is the relative strength of
linear and nonlinear birefringence that is important in determining the dynamics of
polarization. The power under which nonlincar birefringence is cqual to linear
birefringence is defined as the critical power p¢r. There are two extreme cases that we
are inlerested in this chapter: (a) low birefringent. In this case, the input power P >>
Pcr, or in order words, the nonlinear birefringence dominates the linear biretringence
so that the medium can be considered as a medium with negligible linear
birefringence; (b) high birefringent. In this case, P << P¢r. The nonlincar birefringence
is much smatler than the linear birefringence, the polarization dynamics is dominated
by lincar bircfringence, the nonlinear birefringence is only a small perturbation. The
reason for choosing these two extreme cases is that the polarization dynamics show
much simpler behaviors than the case when the nonlinear birefringence is comparable
to lincar birefringence. There is an instability known as polarization instability when
P is comparable to Pcr.4‘(‘

Nonlincar birefringence or self-induced biretringence in optical Kerr media
has found many applications since it's discovery made by Maker at al.! For example,
nonlinear biretringence has been used in optical shutter or optical modulators with
picosecond response time,’ pulse shaping or intensity discrimination,8 optical pulse
clcaning,9'1 L liber-optic logic gzllcs,|2v13 high-resolution distributed fiber sensor, 14
passive mode locking of fiber lasers. 15 - 18, Recently, J.-L. Tapié and G. Mourou
used this eltect to remove the pedestal associated with the pulses compressed by a

fiber-pulse compressor, and a contrast ratio as high as 107 was obtained.! I Due to the
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complication of self-focusing of intense laser beam in bulk Kerr media, which is
closely related to nonlinear birefringence, most investigations have been made in
single mode optical fibers.

The purpose of our work is twofold. First we want to conduct turther
experimental investigation of nonlinear birctringence, and find a way to optimize the
nonlinear transmission in a scheme similar to Stolen et al's.8 Previous experimental
investigation only partially confirmed the theorctic predictions of Ref. (8), it was
confirmed that the nonlinear transmission increases quardractically with incident
power. 14.16 However, according to Stolen ct al's theory, 8 the nonlinear transmission
is also a function of incident polarization angle with respect to the biretringent axes,
and there is an optimal incident angle such that the nonlinear transmission is the
largest. It is the purpose of this work to test the existence of this optimization, which
will be very helptul to many other applications based on nonlinear polarization
rotation. Sccondly, we are also interested in looking for improved schemes of pulse
cleaning bascd on nonlinear polarization rotation. The theory of Stolen et al 8 is valid
for high birefringent cases, it is also interesting to study the low birefringent casc.

The outline of this chapter is as follows. In Sec. (3.2), we arc going to study
the nonlincar biretringence in the high birefringent regime. The existence of optimal
nonlinear transmission, as well as the overall angular-dependence of nonlincar
transmission, has been conlirmed experimentally. In Sec. (3.3), a improved scheme of
ultrafast pulse cleaning device based on nonlinear polarization rotation in the low
birefringent rcgime is analyzed in detailed. Comparison between our improved
scheme and that of Stolen et al's has been made, it is found that our improved scheme
is much more citicient than that ot Stolen ct al'. Finally, we summarize our results and

discussions in Sec. (3.4).
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3.2  Nonlinear birefringence in high birefringent optical fibers

When the intensity of a light wave propagating in a birefringent optical fiber is
large enough, the refractive indices of the fast and slow axes are changed by different
amounts depending on the polarization direction of incident light wave. This
phenomenon, referred to as nonlincar bircfringence or self-induced birefringence, has
many applications.

If the angle between the polarization of incident laser light and fast axis of
optical fiber is not zero, the electric ficlds along both fast and slow axes will not be
zero; therefore both components induce refractive index changes not only along its
own axis but also along the other axis, that is, the refractive index change along one
axis is duc to both sclf-phasc modulation and cross-phase modulation. As a
conscquence of this nonlincar birefringence, the polarization of the total clectric field
rotates, and the electric ficld polarization will be elliptical in gencral. If the linear
birefringence is compensated for and a polarizer is used to block low intensity light
that does not have a polarization rotation, then the transmitted light will depend on the
incident power and polarization direction. Previous experiments 14-16 only confirmed
the power dependence ol the transmission; discrepancics were found in the relation
between transmission and input polarization. For example, when incident polarization
is along one of the optical axes, there is no electric ficld along the other axis, thus
there should be no nonlincar birelringence, hence, zero transmission. Experimental
results showed that the nonlincar birclringence was not zero, and no experimental
results confirmed the overall behavior of ransmission with respect to the polarization
direction. This discrepancy was belicved to be due to the random fluctuations of the
bircfringent axis and the misalignment of the incident polarization angle in the
cxperiments. An elliptical rotation of polarization due to the four-wave mixing was

also considered important for low birefringent fibers.19 However, it is shown in this
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paper that this discrepancy is not physical, and good agreement between theory and
experiment is verified.

The experimental setup is shown in Fig. (3.1). A 50-ps Nd:YLF laser pulse
(A =1.053 pm) was coupled into a 800-m single-mode optical fiber. A chirped pulse
with spectrum broaden to 2.4 nm is formed due to self-phase modulation. A double-
pass grating was then used to compress the chirped pulse to [ ps before being coupled
into a 3-m single-mode fiber ol type FS-LB-4211 (product of 3M company) by a
micro-scope objective. The core diameter of the fiber is 4 um. Another microscope
objective was used to collimate the output laser light. A quarter wave plate was used
to compensatce tor the lincar birefringence ot the optical fiber. A polarizer was
positioned to block the low intensity light. For high intensity light, the polarization
direction of the light pulse will rotate a tinite angle depending on light intensity and
fiber length. Therefore, part of high intensity pulse is expected to pass through the

polarizer. The transmission induced by nonlinear birefringence is given by3
T=sin2[YPyLcos(28)/6]sin2(286), (3.1)

where Py is the input power and 9 is the incident polarization angle with respect to the
fast axis of the fiber. y =2mny /AA ¢ and A is the effective fiber cross section. n,
is the Kerr parameter of optical fiber. For tused silica, ny =3.2 * 10_l6cn12/W.

In our experiment, as much as 50% ol incident light was coupled into the low
birefringent ftiber, which gave a peak power of 150-300 W depending on the pulse
width. It was not difficult to find the two optical axes. The extinction ratio was
measured to be about 400. It was found that the linear birct‘ringence fluctuates
randomly for different values of 6. Tt is important to compensate the linear

birefringence as much as possible, otherwise the transmission will sufter a large
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deviation. Figure (3.2) shows the experimental result. The fiber was wound on a drum
of a diameter of 20.5 cm with some axial twisting introduced. The vertical axis is the
transmission, and the horizontal axis is the incident polarization angle 8. The smooth
curve is tit using Eq. (3.1) with Py = 150W and L = 3 m. It should be pointed out that
the transmission T strongly depends on the optical power or oy =YPoL, a 50% change
in ¢, will cause T to be three times smaller in the weak nonlinear regime studied
here. Although the transmission is nonzero throughout, the overall behavior is
consistent with the theory. The data points in Fig. 2 are 5° apart.

Fig. (3.3) shows the transmission with more data points (every 2° apart) and
different winding. The overall behavior is the same to that of Fig. (3.2). Fig. (3.3) was
obtaincd with the fiber loosely placed on an optical table with the bending and
twisting reduced as much as possible. The main difference between Fig.(3.2) and Fig.
(3.3) was the absolute values of the transmission. From the theory, the higher the
nonlincarity, the larger the transmission. [t was confirmed that the nonlinearity of
fiber can be increased by introducing axial twisting of the fiber. The fine scale
fluctuations in Fig. (3.2) and Fig. (3.3) arc belicved to be due to the error in adjusting
the polarization angle and the incident laser power. In order to compensate the linear
birefringence, we need to reduce the incident laser power to make sure that the
nonlincar effect is negligible. Since both the A/2 waveplate for the control of incident
power and the A/4 waveplate used to compensate the linear biretringence are adjusted
manually, an crror of a significant traction of 19 is ¢xpected. From Eq. (3.1), an error
of 5% in transmission is possible if an crror of 0.5° is introduced in adjusting the
polarization angle. It is found that the transmission is very sensitive to the polarization
angle. It is also very difficult to compensate the lincar birefringence completely due to

the finite extinction ratio of the polarizer and the error in adjusting the polarization
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angle. A more precisc control ol the waveplate and polarizer is needed to obtain a
better result with less fluctuations.

Both Fig. (3.2) and Fig. (3.3) show that the transmission is always nonzero.
However, this is not considered as a large discrepancy between theory and
experiment, since the overall behavior of experimental result is so close to that of
theory. It is believed that the error in the compensation of the linear biretringence, the
finite c¢xtinction ratio of the polarizer, and the angular misalignment of incident
polarization angle could be the important reasons tor the nonzero transmission at 8 =
0°, 45°, 90°, 135°, and 180°. It scems that nonlincar elliptical rotation is not as
important as the lactors mentioned above. In fact, any failure compensate the linear

birefringence could destroy the observed results completely.

3.3 Nonlinear birefringence in low birefringent optical fibers

Nonlincar birefringence is also known as nonlinear polarization rotation in
some of the applications mentioned above. Maker ct all found that the direction of the
major axis ol an intense, clliptically polarized laser beam will change after
propagating through a nonlincar Kerr medium. The ellipticity of the polarization
ellipse will not change. In order to use this sclf-induced modilication of the
polarization state, pcople usually place the nonlincar medium between a crossed
polarizer-analyzer pair. Low intensity radiation will not transmit, while high intensity
component experiences polarization rotation, part of the high intensity component
transmit. In the perturbative regime, the nonlinear transmission increases
quardractically with the incident peak powcr.8 Stolen worked out the theory that laid

down the foundation for most practical upplications.8 Experimental confirmation of
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A4 Optical fiber A4 Polarizer

Fig. 3.4 Experimental setup. x and y are the axes of the first quarter wave plate: 6

is the angle between x and the polarization vector; P-polarizer.
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Stolen's theoretical predictions had been made by Nikolaus et al,14 Kitayama et al,16
and Cao and Meyerhofer.20 There are two factors that prevent investigators from
obtaining high values of nonlinear transmission. First most laser systems do not
provide the high power required by the theory. Secondly, stimulated Raman
scattering(SRS) and stimulated Brillouin scattering(SBS) will become important
when the incident power is above the threshold of SRS or SBS.21 This power
requircment has greatly limited the practical applications of nonlincar birefringence. It
should be pointed out that Stolen et al's thcory8 is valid for a birefringent medium,
although his analysis did not include explicitly any parameter characterizing the linear
birefringence. There has been some contusion in applying Stolen et al's 8 theory.
Since Stolen et al ® considered lincarly polarized laser beams, the nonlincar
transmission has been incorrectly interpreted as the polarization rotation of a linearly
polarized light. Maker ct al Ishowed that there will be no polarization rotation for a
linearly polarized laser beam in an isotropic Kerr medium. The fact that there still
exists nonlincar transmission is due to the presence of linear birefringence, which
changes the polarization state from linear to clliptical. The reason that this linear
birefringence did not appear in final analysis is due to the rapid oscillation of
polarization statc caused by the linear birefringence. In other words, when the beat
length is much shorter than the nonlinear beat length, only the average effect of lincar
birefringence is left. When the beat length is comparable to the nonlincar length, the
interplay of lincar and nonlincar birctringence has to be taken into consideration. 19

It is well known that the nonlinear polarization rotation depends on not only
the incident power, but also the polarization state, or the ellipticity of the incident
bcam. In a isotropic Kerr medium, there exist two nonlincar cigenstates of

polarization, that is, linearly and circularly polarized states. In order words, there will
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be no polarization change if the incident bcam is either linearly or circularly
polarized. Since linearly polarized light was used in the scheme of Stolen et al,8 there
should be no nonlinear transmission. However, as mentioned previously, the finite
nonlincar transmission in the scheme of Stolen et al 8 is due to the presence of linear
birefringence that changes the polarization state periodically from linear and circular.
Since there arc no nonlinear transmission for both linearly and circularly polarized
light, there should be an optimal choice for the polarization state of the incident beam.
[t is the purpose of this work to find out this optimum polarization state that gives the
largest nonlincar transmission.

In our improved scheme, the incident polarization is assumed to be elliptical in
general. Since most previous applications were based on the scheme of Stolen et al,8
it will be helptul to make direct comparison of these two schemes. Therefore, we start
with a linearly polarized light, then change the polarization to elliptical using a
quarter waveplate(A/4) as shown in Fig.(3.4). An analyzer consisting of another
quarter waveplate and a polarnizer is placed at the exit of a nonlinear Kerr medium.
The analyzer is adjusted in a way such that there will be no transmission for light with
low intensity. The polarization ellipse of high intensity component will rotate an angle
after passing through the nonlinear medium, which causes finite amount of nonlinear
transmission. The axes of the first quarter wave plate is along x and y axis as shown.
The angle between fast axis(x) and the polarization direction of the incident beam is
6. Our scheme is very similar to that ot Stolen et al, 8 except the polarization states.

The nonlinear polarization of an isotropic Kerr medium is given byl

BINL) _ A (5 B- l & 2\
P = A(E E)E+ZB(E E)E (3.2)
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where A= Y1122, B=%1221- Eand E* are the amplitude of the electric field and its
complex conjugate, respectively. For medium like fused silica, in which the
nonlinearity comes from the nonresonant electronic response, A = B.22 B/A =6 for
nonlinearity of molecular orientation, B/A = 0 for electrostriction. Since the
nonresonant electronic nonlinearity is almost instantaneous, we concentrate on this
kind of nonlinearity in this work. There will be no coherent coupling terms between
components of orthogonal basis il the basis arc chosen to be circular polarized states.
The intensity-dependent refractive indices of right- and left-hand polarized beams are
given hy22

t

n,=n +—-[A\E [+ (a+BE] (33)

where E_ = (EX * iEy)/ﬁ are the electric ficld components of right- and left-hand

polarized basis. The rotation angle of the polarization ellipse equal to half the phase

difference between the two components, and is given by2

¢——L(|E " -ES ) (3.4)

wherc ng is the lincar retractive index of optical liber, w is the frequency of incident
laser. L is the Ilcngth of the nonlincar medium. It is straightforward to calculate the

nonlincar transmission due to the rotation of the polarization cllipse, and it is given by

T = ¢0s2(28) sin2[$gpsin(20)/3], (3.5)
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where ¢spm = YPoL is the self-phase modulation of a linearly polarized beam with
equal amount of power or intensity, Py is the input power, y = 6m2wAefr/ngc and Aggp
is the effective fiber cross section. The dependence of nonlinear transmission of both
schemes on the incidence polarization angle are plotted in Fig. (3.5) for ¢spm = n. The
peak values of the nonlinear transmission are functions of incident angle of
polarization direction and power. The upper curve is obtained from Eq. (3.5), while
the lower one is from Eq. (3.1). It is obvious that our improved scheme provides a
much larger transmission. The peak transmission of Stolen et al is about 6.5% for
¢spm = m, while it reaches 24% in the improved scheme. The peak nonlinear
transmission as a function of incident power or ¢spm are plotted in Fig. (3.6). Again,
the upper curve is obtained tfrom Eqg. (3.5), while the lower one corresponds to Eq.
(3.1). When ¢spm = 2%, the corresponding peak transmissions are 57% and 23%
respectively; When ¢spm = 37. the peak transmission our improved scheme
approaches 78%, showing the characteristics of saturation, while the peak
transmission of the scheme of Stolen ct al is about 42%. The gain in the nonlinear
transmission of our improved scheme is tremendous, which is expected to reduce the
power requirement in many applications signiticantly.

Since the polarization ellipticity is related to 8 by e = tan(6) when 0 < 0 < n/4,
e = ctan(8) when /4 < 0 <n/2. Fig. (3.4) also shows the dependence of nonlinear
transmission on the incident cllipticity e. The transmission curve is mirror-symmetric
around 0 = 459, we concentrate on the first half of the transmission curve, or 0 < 0 <
w/4. As 0 incrcases from 0 to 459, the ellipticity e also increases from 0 to 1. Fig. (3.4)
shows that there is an optimal value of ellipticity such that the nonlinear transmission
is the largest. It turns out that this optimal ellipticity eope depends on the incident

power. Fig. (3.7) shows the variation of eqp [or different incident power indicated by
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dspm. At low power level, dspm< T, Copt is approximately 0.414, corresponding an
incident angle 6 = n/8. At high power level, dspm>> T, €opt approaches a constant of
0.057, corresponding 6 = 3.3°. The higher the input power, the smaller the optimal
ellipticity, and thus the smaller the incident polarization angle. It should be mentioned
that the nonlinear transmission T is a periodic function of ¢spm, therefore there are
multiple peaks in the transmission curve. Correspondingly, there are multiple optimal
values of eqpt When Gspm >> 7. As long as ¢spm is less than 40, the optimal ellipticity
eopt in Fig. (3.7) still corresponds to the highest transmission, although it is possible
that other pcaks arc comparable to this one. Theretore, the regime of n/8 < 0 < 3n/8 or

0.414 < ¢ < 1 should always be avoided in order to obtain higher transmission.

3.4 Conclusion

In conclusion, the nonlinear birefringence of low birefringent fiber has bcen
studied experimentally. It is found that the earlier discrepancics between experimental
results and theory could be due to the failure to compensate the lincar bircfringence,
and the experimental results obtained in this paper are consistent with theory. It
should be mentioned that the dependence of nonlinear transmission on the
polarization angle could be used to optimize the nonlinear transmission in pulse
shaping, optical switching, and other applications as well. A improved scheme of
pulse shaping using nonlinear transmission has been analyzed in detail. It is found
that the nonlinear transmission of this improved scheme is much larger than that of
previous scheme. The peak transmission can be increased more than three times, from
7% 10 24% for a incident power that is equivalent to that of generating a self-phase
modulation of r. For ¢spm = 2, the gain in nonlinear transmission is about 2.5 times,

corresponding an increase trom 23% to 57%. For high power, the gain becomes
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saturated. Since stimulated Raman and Brillouin scattering limit the power level that
can be used, this improved scheme will be very useful for many applications
involving moderate power levels. For the same power as used in Fig. (3.3), the
nonlinear transmission can be increased from 20% to nearly 60% by using our
improved scheme. Similar improvement can be obtained in the pulse shaping
experiment of Tapié and Mourou. !l As for the pulse shaping experiment, our
improved scheme has two advantages compared to that of Ref.(11). First, the
enhanced nonlinear transmission will provide a better contrast. Second, there is no
need to compensate for the linear birefringence in our improved scheme, which
strongly affects the contrast in the scheme of Tapié and Mouroull It is found that
there is a optimal polarization ellipticity for the maximum nonlinear transmission.
The value of eop depends on the incident power. It is also found that the polarization
ellipticity should always kept smaller than 0.414 so that higher nonlinear transmission
can be obtained. For high power, the gain becomes saturated. Since stimulated Raman
and Brillouin scattering limit the power level that can be used, this improved scheme

will be very uscful for many applications involving moderate power levels.
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CHAPTER 4

Soliton Stability and Soliton Collisions in Birefringent Optical Fibers

In previous chapters, we have studied the effects of linear and nonlinear
birefringence on the propagation of short pulses. Linear birefringence or polarization
mode dispersion (PMD) causes a short pulse to split into two components. However,
we neglected the etfects of the group velocity dispersion (GVD) in chapters 2 and 3. [n
this chapter, we study the nonlincar propagation of short pulses in optical fibers when
linear birefringence, nonlincar birctringence (or nonlinear retraction), and GVD arc
important. The combination ol nonlincar refraction and GVD gives rise to a very
important phenomenon, that is, optical solitons. Linear bircfringence can destroy the
soliton propagation since it causes a short pulse to split.

In this chapter, we study the eltects of linear birelringence on soliton stability
and collisions. Scveral conservation laws are found and used to determine a one-
parameter tamily of solitary-wave solutions. Soliton stability is discussed quantitatively
using a virial theorem. By analyzing the virial thcorem, we obtain the relationship
between the threshold amplitude and the linear birefringence. Our analytic result agrees
well with numerical simulations.

The cffects of linear birelringence on the collisions of solitons are studiced
numerically. It is found that there are three regions of interaction in the parameter space
of lincar birefringence. It has been shown that the governing cquations for Lhe temporal
solitons in a birefringent optical fiber are mathematically equivalent to those for vector
spatial solitons. The collisions of vector spatial solitons is investigated numerically.
The applications of spatial vector solitons in all-optical switching are investigated

numcrically.
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4.1 Introduction

In most discussions of optical solitons, it is assumed that the input pulses are
linearly polarized, and remain so throughout their propagation. The state ot polarization
plays no role in the nonlincar pmpa:.'alion.l'2 However, there are more general
situations in which the state of polarization is important. For example, when optical
pulses or beams are elliptically polarized, we know from chapter 3 that nonlinear
refraction can result in polarization rotation if the light is elliptically polarized.
Therefore, the electric tield amplitude can't be described by a single ficld component,
and a vector description is required. The corresponding solitons are referred to as
vector solitons to emphasize the fact that an input pulse maintains not only its intensity
profile but also its state of polarization.3 Vector solitons are fundamentally different
from the usual scalar solitons, they possess many new properties that can't be found in
scalar solitons. It is these new properties that make vector solitons have more potential
applications than scalar solitons.

There are two kinds of optical solitons, that is, temporal and spatial solitons.
Temporal solitons are nonlincar pulses that can maintain their pulse shape or width
without distortion during their propagation, while spatial solitons are light becams that
can maintain their beam shapes or sizes without broadening. In a waveguide such as an
optical fiber, the spatial intensity protile is fixed and only the pulse width is allowed to
change duc to chromatic and polarization dispersions. In such cases, we can have
temporal solitons if sclt-phase modulation (SPM) or cross-phase modulation (XPM)
can negale the elfect of lincar dispersion. As tor the propagation of CW laser beams in
planar waveguides, there is no temporal variation, but the beam size is allowed to
change with distance under the elffect of diffraction. In such cases, spatial solitons are

possible if nontinear refraction can cancel ditfraction so that the beams can propagate
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without changing their sizes. Both spatial and temporal solitons can be either scalar or
vector solitons depending on whether the polarization of the light ficld comes into play.
It should be emphasized that temporal solitons are more likely to be vector solitons in
optical fibers due to the presence of the residual birefringence which causes the
polarization to evolve periodically. Since most optical solitons are realized in optical
fibers, the effect of biretringence on temporal solitons is becoming a very important
issue . These effects include the issue of soliton stability and soliton collisions. In other
words, it is interesting to know whether solitons can survive the influence of
birefringence, and how birefringence atfects the soliton collisions. Although the same
questions can also be asked for spatial solitons, the effect of birefringence in planar
waveguides is not as important as in optical fibers. However, it was found that the role
of bircfringence in temporal solitons is replaced by another paramcter in spatial
solitons, that is, the intersection angle between two vector soliton beams. Interestingly,
the spatial and temporal solitons are mathematically equivalent if the term describing
birctringence in temporal solitons interchanged with the intersection angle in spatial
solitons. This makes it possible to study both spatial and temporal solitons using the
same governing cquations. and the spatial-temporal analogy is very helpful in
understanding the underlying physics. In this chapter, we study the stability and
collisions of vector solitons in a unified way so that the results are applicable to both
spatial and temporal solitons.

The organization of this chapter is as follows. We discuss the soliton stability in
Section 4.2, collisions of temporal vector solitons in Section 4.3 and collisions of

spatial vector solitons in Scection 4.4. The results are summarized in Section 4.5.
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4.2 Stability of vector solitons in birefringent optical fibers

Optical solitons are nonlincar pulses that propagate without distortion and can
be described by a nonlinear Schrodinger equation (NSE)4 for the wave amplitude.
Bright solitons in optical fibers were first observed more than ten years ago.>.6
Soliton-based communication systems have a tremendous information handling
capacity compared with cven the most advanced conventional optical systems.4
However, solitons suffer from mutual intcractions, or collisions, since the same Kerr
nonlincarity uscd to compensate for dispersion also results in interactions among
neighboring solitons. This kind of collision limits the bit rate of soliton-based
communication systems. Soliton collisions in lossless fibers have been studied both
theorctically and cxpcrilmnlally;z’7 both attractive and repulsive interaction forces were
found. To avoid such interactions, the distance between solitons has to be sufficiently
large, usually ten times larger than the pulse width. This requirement significantly limits
the achicvable transmission rate.

Another important factor which altects soliton propagation is the optical
birefringcm:c.&9 The work described above rests on the assumption that single-mode
fibers contain only one propagating mode. However, single-mode fibers are really
bimodal because of the presence of optical birefringence. These two modes are
orthogonally polarized and propagate with dilterent group velocitics. When the
birefringence is weak, its main cftect is the polarization instability, since the critical
power for the polarization instability is quite small for weak birefringence. 10 However,
birefringence is usually not weak in optical tibers.8:9 The resulting difference in group
velocities leads to pulse splitting, which is undesirable in communication applications.
Just as the Kerr nonlincarity can be used to compensate tor linear dispersion and
generate solitons,* Mcnyuk8 showed that the same nonlinearity can also negate the

walk-ofl effect and entrain the solitons. He found that the threshold amplitude for



74

mutually trapped solitons increases with increasing biretringence; solitary light pulses
can still be obtained providing their amplitudes exceed this threshold. Using a pseudo-
particle model, Caglioti, Crosignani and Di Porto showed that the threshold amplitude
depends quadratically on the lincar birct’ringence.11 Based on the model and the
numerical results of Mcnyukx, Kivshar!2 predicted that the threshold amplitude
depends lincarly on the lincar bircfringence. The method used by Kivshar is the
reduced variational method (RVM) developed by Anderson, Bondeson, and Lisak. 13-
L5 In fact, these authors had considered the same model and had obtained a similar
potential form. 13 They also pointed out that the perturbed Lagrangean formalism is
only valid when the separation between the partial solitons and the birefringence are
both relatively small. Our computer simulation shows that the threshold amplitude tends
to a finite value as the lincar birefringence approaches zero. Kivsharl2 correctly
predicted the existence of this gap, while the result of Caglioti, Crosignani and Di
Portol | has no such gap.

In this scction, the virial thcorem is used to study soliton collisions in
biretringent optical fibers. Zakharov, Sobolev, and Synakhl6 were the first to apply
the virial theorem of Vlasov, Petrishchev and Talanov!7 to the nonlinear Schrédinger
equation. Subsequently, a remarkable analogy has been tound between the behavior of
NSE and the N-body problem in celestial mechanics. I8 The virial theorem was first
extended to coupled NSE's by McKinstrie and Russell.19 A closely related method is
the reduced variational method. 13 The method of Caglioti, Crosignani and Di Porto! ]
is closer to the RVM than to the virial theory. In this section, an equation governing the
behavior of the partial solitons is derived. It is found that the amplitudes of the
symmetric partial pulses and their initial separation are both critical factors in the wave
evolution. Below threshold, the partial solitons will eventually scparate; no mutual

trapping exists. Above threshold, trapped states exist in which the partial pulses
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oscillate around a common center and which can therefore be regarded as quasi-
solitons. Unlike the case of a single NSE mentioned earlier, the intcraction force does
not depend on the relative phasc between the partial pulses. The threshold amplitude is
found to depend nonlinearly on the birctringence, not lincarly as predicted by
Kivshar. |2 The predictions of this section show a better agreement with the numerical
results of Menyuk® than do those of Kivshar.12 The numerical simulations of
Menyuk8 have been supplemented to show the dependence of threshold amplitude on

the birefringence more clearly and to confirm the presence of the gap.
4.2.1 Derivation of the Virial theorem
Pulse propagation in a birelringent optical fiber is described by the coupled

NSE's8.9

0, (4.11)

. 1
(9, +89y) Al +533xA1 + (lAl i +*‘?|A2|2) Al

, [52 2 2

(9= 89¢) Az + g A +(|A2| +e|Ay )A2 0, (4.2)
where d, =d/dL,d, = d/9x. A} and A, are the amplitudes of the two polarization
components of the waves. The normalized strength of linear birefringence is denoted by

d and is given by /2 (VLTII - V(_._I)T(,/Zd, where Vg 2 are the group velocities of the

fast and slow modes, respectively; T, is normalization time and is equal to 0.568
Trwim of the soliton pulse; Zg is the dispersion distance T?,/Bz , used for spatial
normalization; and B> =(d2k/dw2) is the GVD parameter. The relation between  and
the lincar birefringence An is & = AnT/(2¢Zy), where ¢ is the speed of light in vacuum.

In Egs. (4.1) and (4-2), tis the distance along the fiber, and x is the local time in a
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frame moving with the average velocity of the tast mode and the slow mode. The
parameter € describes the strength of XPM relative to SPM.8.9 For birefringent fibers
with lincarly polarized eigenmodes € = 2/3, whereas for circularly polarized modes, € =
2; with clliptically polarized eigenmodes, 2/3 < € < 2. In this chapter the tiber modes
are assumed to be lincarly polarized, so € = 2/3. In Egs.(4.1) and (4.2), the roles of t
and x are interchanged relative to Ref. 8. This interchange facilitatecs comparisons with
the related problem of the nonlinear focusing of two light waves intersecting at a finite
angle,21 in which 28 is the approach velocity of the waves and one-dimensional
dispersion is replaced by two-dimensional diffraction. We will discuss this issue in
detail in Scction 4. 4 when discussing spatial vector solitons. The four-wave-mixing
terms in Eqgs. (4.1) and (4.2) have been neglected since they are highly oscillating terms
in most practical situations.89

The spatio-temporal evolution ol the wave amplitudes is governed by the

Lagrangean density13.19

. * * 1 * *
L= —;-X(Aaa[/\a - Aqa[Aa) + '2‘5(1 (Aaaan - Aaaan

l * , (4.3)
- T)'(aan) (aan) +Q
where Ay and A; arc the canonical variables, and the potential Q is given by
Q=lAl* + Sl +elaiflagf (4.4)

Summation over repeated indices in Eq. (4.3) is impliced.

Application of the Euler-Lagrangean cquations
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d_ 9 9 oL 3L
dtAIAL/A) Ix AIAG/Ix) JAy

=0 (4.5)

to the Lagrangean generates the coupled NSE's (4.1) and (4.2).

Since Q is real, no enerey is exchanged between the two waves. Thus, each wave action
- g,y A

N =J |Ag[* dx (4.6)

is conserved. Additional conservation laws can be deduced from the momentum-energy

[
tensor19.22

J L . | QL
TH=A + Ay | ——|[-¢!L , 4.7
Y a.vl:aAa‘u:l a,v aAa.u v

where the subscripts L and v denote &/9xH and 8/8xV, respectively. In our case here

x0 =, x! = x. The momentum-energy conservation equation is

oy TH =-d,L - (4.8)

If L doesn’t depend explicitly on t, and x, then the following two quantities are
conscrved:
(a) The total wave momentum
P =.[ 7O Ux

‘. * *
2.[5 (AddxAq — AqdxAg ) dx- (4.9)

(b) The total wave energy



78

H= JTS dx
L 2
= 3P+ | [E|aan| —Q] dx, (4.10)

where 8| = §, and &7 = 4.

In the moment approuch,lé the average value of a physical quantity F is detined by

J Ag|* F dx
(F)= S e 4.11)
J |Ag|” dx
Of particular interest here is the pulse separation
(8x%) =(x?) - (x)? - (4.12)
It is easy to show that
2 /5.2 2 2
a7 (8x%) = af(x2) - 2[d ()* - 2(x) a3 (x) . (4.13)

where dy=d/dt and dy=d2/d12. The quantities of interest, (x) and (x2), are the tirst and
second moments of the wave action. The general idea of the moment approach is to use
the conservation laws (4.8) to integrate the moments by parts and relate them to the

known constants N, P, and H. For example,

Nd,(x)zd,J‘ x|Ag|* dx

=_[ xd;[Ag|* dx (4.14)

=NgOy +P
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Thus, the second term in Eq. (4.13) is a constant of the motion, and the third term is
equal to zero. Although the algebra is lengthy, the first term in Eq. (4.13) can be
evaluated in a similar fashion. The result is

1

2/62\ -4 e lnos2 + Lr o Lnf Bt Nadg
a8 >_N H+ NG5 +-R 2N(

2
, 4.
N j (4.15)

where all terms on the right-hand side are constants except the remainder term

R=Jde . 4.16)

Equation (4.15) is called the virial thecorem and is exact. For the special case in which
birefringence is absent, Eq. (4.15) reduces to the virial equation of McKinstrie and
Russell. 19

If the polarization of incident wave is aligned to onc of the birefringent axes, or,
in other words, only a single mode is present, one can choose a new reference frame
that moves with the group velocity of the wave. The virial equation can then be recast

as

Ndf (8x* ) =4T+2V, (4.17)

where T=JEI|0XA|2 dx is the kinctic cnergy and V =—J Q dx is the potential

energy.

For soliton solutions, one obtains
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dﬁ<5x2>= 0. (4.18)
It is found that
1
T+>v=0. (4.19)
Written in {ull, Eg. (4.19) beccomes
F{A}=T+%V=J‘[%IOXA|2—211—|A|4]dx=0. (4.20)

Equation (4.20) is a necessary condition for a soliton solution, since we have other
conservation laws which impose other constraints on the solutions. In the classical N-
body problem, the virial theory of Eq. (4.19) represents a circular orbit around the
center of the mass, and the soliton selutions of the NSE correspond to the stationary
trapped orbits of the classical N-body problem. !8 In Ref. 18, the authors showed that
in higher dimensional cases (D > 1), the collapse of nonlincar light waves is analogous
to the gravitational collapse; both phenomena have the same collapse criteria and

behavior of the singularity.

4.2.2 Solitary-Wave solutions
A solitary-wave solution has been given by Kivshar 2 when there is no lincar
birefringence. Based on Kivshar's solution, a one-parameter family of solitary-wave

solutions of Egs. (4.1) and (4.2) 1s given by

A exp(iij—iwjt)
77 JI+€ cosh[A(x - vi)]

4.21)
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where v is the difference between the solitary-wave velocity and the carrier-wave group
velocity, A is the solitary-wave amplitude, @j = (v2- A2)/2, k) =v, and kp = v.

One way to determine a solitary-wave solution to Egs. (4.1) and (4.2) when the
linear birefringence is not zero is to usc an ansatz with several free parameters, which
can be chosen to satisty Egs. (4.1) and (4.2). In general, the correct relation between
the tree parameters is not obvious. A key part of this procedure is Lhe ansatz. Since the
etfect of birefringence is to change the linear dispersion characteristics of each mode,
one might suspect that Eq. (4.21) will be a solitary-wave solution ot Egs. (4.1) and
(4.2), even in the presence of birefringence, if it is modificd to allowed for additional
shifts in the mode [requencies and wave numbers. There are several conserved
quantitics associated with Eqs. (4.1) and (4.2), as was shown above. The wavenumber
shift of cach partial wave is proportional to the momentum carried by the wave, so the
momentum conservation law limits the wave-number shift of each wave in such a way
that the total shift of both waves 1s a constant. A straightforward way to dctermine the
free parameters in the ansatz of Eq. (4.21) is to substitute Eq. (4.21) directly into Egs.
(4.1) and (4.2). Tt is casy to show thatk) =-8 + v, ko =8 + v, and @ = w2 = (v2 -

52 — A2)/2. Putting these results together gives

P
<

A cxp[i( FO+vV)x+ i(A

- v+ 82)u2]
Ajp = . 4.22

27 Ji+e cosh[A(x = v)] (4.22)
Equation (4.21) can be anticipated on purely physical grounds. The linear

propagation characteristics of cach mode siem {rom a dispersion relation of the form

o =t6k+%k2, (4.23)
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for which the associated group velocity

99 _ 454k, (4.24)
dk

Suppose first that v = 0. The original solitary-wave ansatz (4.21) has an average wave
number of zero, for which the group velocities arc & and -8, respectively. If the
average mode wave numbers were shifted by -8 and 8 correspondingly, the new group
velocities would both be cqual to zero. Correspondingly, both modes would acquire a
frequency shift of —82/2, as found in solution (4.22). Since this physical mechanism
relics solely on GVD, coupled solitary waves of arbitrary amplitude exist. Now
suppose that v # 0 At first glance, Equation (4.22) appears to represent two light
pulses traveling at some velocity other than the linear group velocity of their carrier
waves. [nterest in the general issue of nonlincar group velocity has been rekindled
recently by Mori ct al.23 However, consideration of the frequency (v2) and wave
number (v) shifts associated with linite v shows that the total solitary-wave velocity (vq
+v) is cqual to the lincar group velocity dw/dk cvaluated at (wg+v2, ko+v). In other
words, changing the parameter v corresponds to making the SVEA, on which the
coupled NSE's are based, relative (o a different carrier Irequency and wuvclcnglh.37 A
specific solution, in which A = | and v = 0, was obtained by Menyuk,? who explained
the physical signiticance of his solution in a later pupcr.zO Some analytical solutions of
coupled NSE's were also tound independently by Murawski.24 and by Tratnik and

Sipe,25 and many others.

4.2.3 Relationship Between Threshold Amplitude and Birefringence
In Sec. 4.2.2, it was found that solitary waves exist when both partial waves

have the same pulse shape, and overlap exactly in time. However, it is well known that
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each partial wave can separate a small distance and form a quasi-stable state.8:9 In this
section, the virial theorem is used to study the trapping behavior for arbitrary pulse
shape and separation.

The threshold behavior can be obtained by analyzing Eq. (4.15). The only term
that changes is R; all the other terms are either constants of motion or free parameters.

From Eq. (4.15) and Eq. (4.4), we obtain

1 l
R= [[ LA Slaal +elafiaaf o (4.25)

[f the right hand side Eq. (4.15) is negative, then (8x2) will be bounded; thus we have
a bound state, or trapping state. We know that the energy ol cach pulse is conserved,
the intcraction between cach pulse only changes the pulse phase and pulse shape, a
well-known result for XPM. The magnitude of R increases when the relative distance

between the two pulses decreases. When the two pulses are well separated, we have

R =J[%|Al|4+%|A2|4j|dx. (4.26)

Under this condition, il the RHS of Eq. (4.15) is positive, then the two pulses will
pass through cach other and go to the infinity. On the other hand, if the RHS of Eq.
(4.15) is negative. the two pulses will attract cach other and form a mutual trapping
state. Therelore the condition for trapping state is that the RHS of Eq. (4.15) is
ncgative when the two pulses are well separated.

Using the Cauchy-Schwaltz inequality, we obtain the following estimates for

the value of R when the relative distance between them is large,
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S 138

2
N |
R > el I , 4.27
1 2

| —
r|z
N

where Ny and N3 are the wave actions and L and L are the distances over which the
pulses extend in space. Note that Ly and Ly are not sharply detined, because cven a
soliton with a hyperbolic sccant pulse shape does not have a well defined temporal
extent. Therefore, it is understood that Ly and Ly are parameters related to the pulse
width in which most of the pulse cnergy is located. Using this result, we obtain the

sufficient condition tor the trapping state:

2 2
H+-l—Na8é+-l— Ng _iN(ELGSG) <0 - (4.28)
2 4l Ly ) 2 N

It is important that all the terms involved in the above relation are constants of motion;
thus, we can analyze the whole situation simply by considering these constants, no
matter how the pulse shape changes. In order to gain some insight to this rclation, we

consider the symmetric input following the specific case of Mcnyuk&9

A=Ay = %scch( X ). (4.29)

From Eq. (4.27) and Eq. (4.28), the threshold condition is found to be

to | —

1 +382
. [1+e—3/L] 30

In order to compare our results with the results of Menyuk and Kivshar, we

plot Eq. (4.30) in Fig. 4.1 with € = 2/3. Using the reduced variational method and the
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soliton stability argument trom inverse scattering theory, Kivshar obtained his linear
relationship between Ay, and 8, which is denoted by the solid line in Fig. 4.1. The
dashed line is the estimate of Hasegawa,26 who used a quantum mechanical analogy to
the coupled NSE’s. The numerical results of Menyuk are denoted by filled circles.
Kivshar’s results agree with the numerical simulations only when the linear
birefringence is small, which is just the assumption he made in his method, and this
assumption limits the range of validity of his method. Hasegawa’s result gives an upper
bound tor the threshold amplitude. The band bounded by two solid curves is our result
calculated from Eq. (4.30) by taking L = &, and L = 4, respectively. The cnergics
contained in hyperbolic secant pulses with symmetric extensions of L=4 and L = 8 are
96% and 99.96%, respectively. The simulation results clearly show a nonlincar
dependence of the threshold condition on the strength of lincar biretringence. The
unfilled circles are our numerical simulations, which are very close (o the results of
Menyuk’s. We solved Eq. (4.1) and (4.2) using the split-step method,2 which is
described in detail in the Appendix. We used 2048 grid points in our simulation. In
order to determine the threshold more accurately, our propagation distance of 50 soliton
units is much longer than the propagation distance of Mcnyuk's.8 The uncertainty in
determining the threshold value is 0.05. 1t is casy o see the agreement between our
simulation with L = 8 and the prediction given by Eq. (4.30) when the birefringence
parameter & < (0.5. When & > 0.5 simulation results approach the curve of L = 4,
Finally, we want to point out that McKinstrie and Luther?7 showed that the lincar
modulational instability ot waves governed by coupled NSE’s can only occur in infinite
media when the normalized convection velocity 8 < Ag. This is the same scaling we
obtain in this scction for the threshold amplitude Ay, when 6 is comparable o 1.
Theretore, although the lincar modulational instability is different from soliton

entrainment, the scaling is the same, which suggests that the underlying physics is
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Threshold amplitude (Ay)

Birefringence (9)

The solid line shows the analytical result of Kivshar; the dashed line is the
estimation ol Hascgawa; the numerical result of Menyuk is given by filled
circles; the band bounded by two solid curves is plotted according to Eq.
(4.30) with L =8, and L =4, respectively, corresponding to 99.96% and
96% ol the cnergy‘in a soliton pulse; the unfilled circles are our numerical

simulations, € = 2/3.



87

similar. Associated with the nonlincar trequency shifts are corresponding shifts in the
wave number and group velocity. Conscquently, the entrainment ot modulations or
partial pulses is only possible over a certain range of 3. Since a minimum energy is
required to generate a nonlincar frequency shiftt large enough to compensate the linear
dispersion even in single NSE, the coupled NSE’s also require a minimum energy to
form a soliton: a threshold gap at & = (} is expected and is confirmed by Eq. (4.30) and
Fig. (4.1).

In our result, the threshold amplitude gap is a natural consequence ot our
analysis. But in the reduced variational approach of Kivshar, 12 this threshold eap
cannot be obtained directly. In fact, Kivshar!2 made the assumptions that the coupled
NSE’s can support such quasi-solitons and that these quasi-solitons possess the same
stability property as do the solitons of single NSE. Using a result from the inverse
scattering method (ISM) about the stability of solitons, Kivsharl2 was able to obtain
the threshold gap. However, we obtain this threshold gap from the virial thcorem
directly. In fact, the virial thcorem can be utilized o study other aspects of the behavior
of intcracting solitons. Since the information about evolution is contained in R,
analyzing R is sufficicnt to understand the interaction process. For example, if we
assume that the partial pulses do not change their shape during the interaction, which is

valid for small 3,13 we have
d%(8x%) = ua?, 4.31)
since the relative distance (3x2) differs from A2 only by a constant, where A is the

distance between the pulses measured from the center of cach pulse. Making use ot

Eqs. (4.21) and (4.29) as the pulse profile, we get
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Fig. 4.2 The partial solitons arc separated while experience nonlinear oscillations

along their own paths.
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dx
R=Rp+C , 4.32)
0 J.coshz(x)coshz(x—2'r1A)
7 4 | T | 1 ]
d (A H+—=N6“+—=Ry+—-CI(A)|, 4.33
N[ > 5 Ro+2 (4) (4.33)
where
3 3
8¢ 32
C= il 5 Ry = 1 3
(L+¢) (1+¢)
and
)= | , (4.34)
_cosh (x)cosh (x -2n4)
8 2
when A <<, I(A)———G(ZnA) ) (4.35)

Equation (4.33) describes a nonlincar oscillator with gain or loss depending on the sign
of the constant term on the RHS ol Eq. (4.33). Thus, the oscillating term in Eq. (4.33)

is given by

2
64
0242 =S4T (4.36)
ISN
The oscillation [requency is
4
2 641
Woge = —. 4.37
T 15(1+e) 4.37)

We note that the oscillation {requency is proportional to the pulse intensity, a result
carlier obtained previously by Kivshar |2 and Lisak, er af.15
Below the threshold, we have an amplilied oscillator, and cach pulse will be

separated while oscillating around their uncoupled trajectory, as shown in Fig. (4.2).
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Fig. 4.3 The partial solitons bounce back and forth while propagating, and form a

trapped state.
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While above threshold, the colliding pulses will form a trapped state as shown in Fig.

(4.3).

4.3 Collision of temporal vector solitons in birefringent optical fibers

This section is devoted to the study of soliton collisions in a nonlinear
birefringent tiber. This subject attracts great current interest due to its scientific
importanccgv9v12v20~29'32 and its potential applications to optical logic devices.33.34
Pulse propagation in birefringent optical fibers is described by two coupled
NSE,8.9.20 which are known to be nonintegrable by means of the inverse-scattering
method [ISM].35 The most important difference between an integrable nonlinear wave
equation and a nonintegrable one is that the collision between solitary waves is elastic in
the former case and ineclastic in the latter.35.36 There is always radiation emitted during
the solitary wave collisions in a nonintegrable system such as the system governed by
the coupled NSE’s.

In this section, it is found that strong radiation emission, which has some
similarity to Cerenkov emission, is associated with the bound state. It the amplitudes of
the two colliding solitons are below a threshold value, the two solitons will separate
from cach other atter the collision. However, cach soliton emerges from the collision in
a mixed polarization. The component with smaller amplitude or energy is called the
soliton shadow.9 Although the same phenomena as the soliton shadow is studied in
this section, it is found that the amplitude of the shadow is not always much smaller
than the other component, thus the word shadow is not an appropriate concept here.
This phenomena is simply called mixing here without emphasizing the dominant
contribution to the total polarization state. This kind of mixing also exists in the
parametric intcraction between solitons with diflerent wavelenglhs.38 Recently, Wang

et al.39 studied this mixing effect (soliton shadow) in birefringent optical fibers. They
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found that the amplitude of the shadow is much smaller than that of the component that
traps the shadow. The dependence of the shadow amplitudes, widths, and shapes on
the initial separation of the colliding solitons has been studied in some detail. In this
section, it is found that the relative contribution to the total polarization state varies in a
large range and depends very sensitively on the linear birefringence. By linearizing the
coupled NSE's, Malomed and Wabnitz40 found that there exists a critical value of
linear birefringence for which the soliton collision is resonant in the sense that the
spatial frequency of the soliton shadow cquals that ot the soliton with much larger
amplitude. Under the conditions of resonance, solitons collide with each other much
more strongly, and show many ncw phcnomena. When the linear birefringence is
above this critical valuc, the interaction between two solitons is weak and each soliton
picks up a shadow after a collision. Most of the previous work on soliton collisions
was in the nonresonant regime, and the mixing etfect was very small. In this section it
is found that the resonant regime is more subtle in that it consists of bound states and
unbound states. Therelore, the parameter space of linear birefringence is divided into
three regimes corresponding to bound, unbound resonant, and unbound nonresonant
states. In an integrable system, solitons do not change their velocities after a collision,
However, in a nonintegrable system, the velocities of two colliding solitons generally
change after a collision. We also investigate this phenomenon by numerical simulation.
It is found that both the velocity change and the amount of mixing measurcd by means
of cross-correlation depend strongly on the lincar biretringence. The XPM between two
colliding pulses generates nonlincar frequency shifts and, hence, velocity changes due
to GVD. The dependence of the velocity changes on the linear birefringence is similar
to that of the mixing on the lincar bircfringence. None of previous work on soliton
collisions was concerned with the dependence on the linear biretringence. It is not

surprising that only very small mixing has been found, since the linear birefringence
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chosen in previous work was very large, and the collisions were nonresonant. The
entire range of the linear birefringence is investigated in this section.

The governing equations have already been given in a previous section [Eq.
(4.1) and (4.2) ]. We consider collisions bctween two solitons that travel in two

orthogonally polarized modes. Initially, the two solitons are represented as follows: 41

Ai (Z = 0,[) = AO SeCh[AO ([ + [0)]’ A,z = O'

A3(z=0,t) = Agsech[Ag(t- )], A =0 (4.38)

The two solitons, labcled by A}, A3, and Ay A5 are assumed to have equal

amplitudes; t, is equal to 5 in all the simulations, and Ay =(1 +ey V2

. The initial
conditions arc chosen in such a way that the two colliding solitons are well separated
before the collision. In this section, the propagation distance along fiber is denoted by
z, whilc the local time variable is denoted by t.

Soliton collisions in a nonintegrable system, such as the one described by Eq.
(4.38), have many interesting propertics that do not appear in an integrable system.
Among them are the mixing of two colliding solitons and the frequency shifts after
collision. The frequency shilts are most important in the application ol soliton logic
devices. In dispersive media, the frequency shifts will result in time shilts due to the
GVD. In order to investigate the mixing process quantitatively, the following parameter

is introduced:

o0
[T lai@ Az
m(z) = =" - (34.9)
J_w |A((z=0.t)"dt
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Since most of the energy of a soliton is localized, it is easy to see that

M = Lim m(z) measures the overlap of two solitons after collision. When two identical
A A

solitons overlap exactly, M = 1; while they are well separated, M = 0. When above the
threshold amplitude,8'9'12v20 two solitons overlap with each other, and M will be
very large (approaching 1). It is easy to understand that high values of M exist when
two solitons form a bound state after collision. The important thing is how M changes
when there is no trapping. In an integrable system, there is no mixing after a collision;
therefore, M will be 0 after the collision of two solitons. However, in the nonintegrable
system studied in this section, it is found that M approaches a well-defined value after
two colliding solitons are well separated from each other. In order to calculate M, we
solve Eq. (4.1) and (4.2) numerically using the well-known split-step method (see
Appendix). The initial conditions are given by Eq. (4.38), which guarantees that the
two colliding solitons are well separated before collision. The linear birefringence
parameter J is used as a control parameter. Numerical simulations show that the mixing
parameter M depends on the linear birefringence & in a complicated way. There are
three kinds of behavior depending on the values of 8. This can be seen from Fig.
4.4(a). The first regime is 0 < 8 < (.27, corresponding to the trapping state. In this
case, two partial solitons form a breather-like trapping state, M oscillates between 1 and
another high value (>0.5), and there is no asymptotic value of M. In this regime the
soliton fusion is evident. Note that we leave this regime blank in Fig. 4.4(a) since M is
not well defined in this region. The second regime is denoted by 0.27 < § < 0.305. In
this regime, the two colliding solitons interact strongly, bouncing back and forth
around each other for several times and then separate trom each other eventually. M

value is well-defined; the fine structure of this regime is shown in Fig. 4.4(b).
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Complicated oscillations occur in this regime. Small changes in 6 generate very
different final states. The third regime is represented by & > 0.305. M decays
exponentially with increasing & approximately as e~108_ This behavior is casy to
understand, since the larger the approaching velocity, the smaller the interaction.

The fact that soliton collisions in bircfringent fibers are inclastic is very
important for many potential applications in all-optical switching and optical logic gates.
The inclasicity of soliton collision manitests itself by shifting the central frequencics
and the velocitics ot the colliding solitons. In fact, the velocity changes are closely
related to the trequency shifts by the GVD. Furthermore, the velocity change results in

a time shilt upon propagation along the liber, which is the major mechanism
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Fig. 4.8 There is no mixing when velocitics of colliding solitons are large. 8 = 2.
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of soliton-dragging logic gates.33»34 No such change is possible for a single NSE
system because of its integrability. Here the velocity is tree to change as long as the
momentum of the system is conserved. Betore collision, the two solitons will shift £8
in time respectively, after propagating a unit distance. In general, the time shifts per unit
distance after a collision will no longer be £8. In this work, the time shift per unit
distance of one soliton is labeled by v. As mentioned above, the time shift is closely
related to the frequency shift due to the effect of GVD. In general, it is impossible to
obtain a dircction relationship between v and AQ( (the center frequency ot one soliton)

duc to the presence of SPM. However, 1t was tound that the
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Fig. 4.9 A new kinds of soliton generated by soliton collision. § = 0.304. After
200 soliton periods, one of the outgoing solitons is used as the initial

condition for the next simulation,
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relationship between v and A€ is determined by the linear dispersion relation of Eq.
(4.1) and (4.2) for colliding solitons,37 and is given by AQ¢==x(v - ). The center-
frequency shifts of the colliding solitons are equal to each other, but have a different
sign. In this work, v — d is calculated numerically. Figure 4.5(a) shows the
dependence of Av =v -3 on d. It is easy to see that the dependence is similar to Fig.
4.4 as there are also three different regimes of behaviors. Figure 4.5(b) shows the fine
structure of Av in the second regime. [t is cvident that there is some correlation between
Av and M, and Av shows similar structure as M. In the first section, that is & < (.27,
two colliding solitons trap cach other and a bound state is formed; Av is not defined. In
the sccond regime, Av shows rapid oscillations. I[n the third regime, Av decreases
cxponentially in the same manner as M. [tis interesting to note that the peaks in Av are
anticorrelated with those of M; that is, a maximum of Av corresponds to a minimum of
M. It is believed that M is closely related to Av. The center frequencics of both solitons
are shifted due to XPM, and their group velocities are changed according to lincar
GVD. |2

As an example, the dynamic behavior of m in a typical simulation is shown in
Fig. 4.6(a). The simulation is done in the second regime with & = 0.298 and a
propagation distance of 240 soliton periods. I[nitially the two solitons are well-
separated, and the value of m is 0. As they approach cach other, m increases almost to
1. The reason that m is less than | is because the collision is inclastic. At the moment
just before total overlap, cach soliton is split into two parts; the small part near the other
soliton moves away rapidly and is trapped by the other soliton. After a quasi-bound
period, the two colliding solitons separate from cach other with a well-defined value of
M. This means the linal state ol cach outgoing soliton is a mixture ol both polarization.

The collision process can be seen more clearly in Fig. 4.6(b), in which the motion of
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the center of mass <T> of one soliton is plotted. Initially, both solitons move with
constant velocity 0.298; they interact strongly during the quasi-bound state. It is easy to
see that the two solitons trap each other and move back and forth through each other
four times until Z = 140. After Z = 140, they scparate from each other with velocity
about 0.03. Figure 4.7 shows the collision bechavior in the third regime with 8 = 0.304.
In this case, two solitons pass through each other and change their final velocities.
Something interesting happens when the two colliding solitons are separating from each
other, part of one soliton is taken away by the other. The larger the linear birefringence
9, the less the mixing. In fact this mixing decreascs exponentially with increasing 6, as
shown in Fig. (4.4). Figure 4.8 shows m for a nearly noninteracting situation with 8 =
2. m increases to | and then drops to zero after collision. Av approaches zero after the
collision.

Linear thcory predicts that there is only one bound state and the amplitude ratio
between the trapping pulse and the trapped pulse is large.9 The simulations in this
section show that this is true in the third regime, especially tor large values of d.
However, the situation changes quite a lot in the second regime or small , large values
of mixing M exist as shown in Fig. 4.4. In order to show the evolution of an individual
soliton, we plot the evolution of both solitons on top of each other in Fig. 4.9, that is,
IA 112 and 1A212 are plotted individually in Fig. 4.9, not the total intensity 1A (12 + 1A212.
By doing this, the evolution of each polarization component can be seen more clearly.
The parameters used in Fig. 4.9 are the same as that of Fig. 4.8. It is casy to see that
the amplitude ratio between the trapping and the trapped pulses can be as large as 1.
Another interesting feature is that this amplitude ratio is not a constant; it oscillates
periodically. Careful examination shows that both the pulse width and pulse location of
the trapping and trapped pulses can be dilferent from cach other. In fact the trapped

pulse is moving back and forth in the potential well, generated by the stronger trapping
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pulse. The amplitude of the strong pulse is also oscillating with the same period. The
simulation is interrupted at position Z = 200 soliton periods, and the result is used as
the initial condition for the next simulation of the same propagation distance. In the
second simulation, the left soliton is taken away, only the right soliton of the previous
simulation is allowed to evolve continuously. Calculation of M shows that it remains
the same. This means that after collision the two outgoing mixed pulses move
independently. After the collision, each pulse consists of both polarization. The energy
confined in each pulse remains localized forever, hence they can be termed solitons.
However, this kind of soliton has periodic internal motions, both the amplitude and
pulse width of cach polarization component are oscillating periodically, as shown in
Fig. 4.9. Since lincar theory assumes a fixed pulse shape, the mixing state here cannot
be explained by linear theory. It is well known that there is no energy exchange
between pulses with difterent polarization; therefore, the oscillations associated with
pulse width, amplitude, and location is solcly due to XPM between the trapping and
trapped pulses. To the best knowledge ol the author, this kind of soliton was not
known before. Although there is no energy exchange between two pulses, the
amplitude ratio can change from | to a very large value, since the pulse shape can
change quite a lot. That is to say, by changing the phases of the two pulses, the
amplitude ratio can be controlled at the end of fiber. This property could be useful in
all-optical switches.

Since the system is nonintegrable, radiation is expected to exist. It is found that
the trapping is not characterized by a particle model in the sensc that each soliton cmits
photons through tunncling processes, while a particle model predicts two mechanical
balls moving around each other.#2 1t is found that the breather formed by two trapping
solitons suffers spontaneous decay by emitting dispersive waves, which have

characteristics of Cerenkov emission. Figure 4.10(a) shows the Cerenkov emission is
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Fig. 4.10 Cerenkov emission generated by two colliding solitons in the sccond

regime. & = 0.2, propagation distance Z = 200 soliton periods. (a) The
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the center part. The radiation field is amplified 1000 times. (b) Radiation
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formed by two mutual trapping solitons. The radiation ficld has been magnified by a
factor of 103; the center part is the trapping arca. The initial velocities of colliding
solitons is & = 0.2; it is found that the radiation moves three times faster than that of
initial soliton velocities. Figure 4.10(b) shows the Cerenkov emission detected at a
position far from the trapping region as a function of time. It seems that there is no
correlation between the frequency of oscillating breather and that of the Cerenkov-like
emission.

In summary, the soliton collision in birefringent optical tibers has bcen
investigated numerically. It is found that the collisions can be divided into three regimes
according to different values of linear birefringence 8. The tirst regime is denoted by &
< 0.27, which corresponds to the soliton fusion or mutual trapped states. The sccond
regime, from (.27 to 0.304, is a transition regime. In this regime, two solitons interact
with each other strongly and then separate eventually. The velocitics and the center
frequencies of both solitons arc changed after collision. A quasi-bound state is found in
this region. The third regime is represented by 8 > 0.304. Two colliding solitons pass
through cach other with their final velocities changed slightly. It is found that the center
frequency shitts decrease exponentially as 8 increases. The pulse mixing of different
polarization has characteristics similar to those of the central frequency shifts. A new
kind of soliton is found by numerical simulation, as shown in Fig. 4.8. Strong
radiation is tound to exist in the bound state. The radiation s generated by the internal
motion of a pair of bound solitons. The bound solitons will relax to a final bound state

by eiving away cxtra enerey, as shown in Fige (4.10).
y g1ving g g

4.4  Stability and collisions of spatial vector solitons
Spatial solitons have been investigated extensively recently because of their

potential applications in all-optical switching and processing.43'50 Most previous
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investigations have concentrated on collisions of scalar solitons with the same
polarization and wavelength. Relatively little attention has been given to the propagation
and interaction of spatial solitons with different polarization or wavelength. The
propagation of scalar solitons is governed by NSE, while the propagation of vector
solitons is governed by a pair of coupled NSE's.

The governing equations for the propagation of two light fields with different

polarization are31

i(9, +09.)A, +%V§XA. + (A +elaa)A, +%eA%AI exp(~iRex) = 0 o
2 40)

i(9, -89, )A; + %VixAz + (|A2|2 + e|Al|2)A2 +EIEA12A§ exp(iROx) =0 ,

where Ay and A, arc the wave amplitudes in the two polarization, normalized to

172 . . SR . - . .
(Zno / nzkzwg) » N is the linear refractive index of the medium; ny is the nonlinear
refractive index; k =ng(2n/A) is the wave number; A is the wavelength of lascr in

vacuum; vq is beam width; z is the propagation axis, normalized to the diffraction

length z = kw%; and x is the transverse coordinate normalized to the beam width wy,.
0 is the normalized incident angle of cach beam, 8 = kwg(k, /k,), ky and k, are the x
and z component of the k vector. R = 4kwg. [ the bcam width wg is much larger than
the wavelength, or R8 >> I, then the four-wave mixing terms in Eq. (4.1-2) can be
neglected. In this Scction, we assume R6 >>1. We consider the collisions between two
solitons that travel in two orthogonally polarized modes, that is, € = 2/3. Here the
medium is assumed to be the isotropic Kerr medium with instantaneous nonlincar
response, and the incident angles of cach beam are very small, +(k, /k,) <<l.

It is interesting to note that Eq. (4.40) becomes identical to Eq. (4.1) and (4.2)

under the condition that R8 >> |, which is true for most practical applications. Hence
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the governing equations of temporal and spatial solitons are mathematically equivalent if
this condition is satisfied. The results we obtained in Sections 4.2 and 4.3 can be
applied here to spatial solitons with the following correspondance: the longitudinal
propagation distance t in temporal solitons is replaced by z that has the same physical
meaning; the local time variable x in temporal solitons now has a meaning of transverse
coordinate of light beams; the linear birefringence 6 in temporal solitons is replaced by

the intersection angle 6 between two intersecting or colliding light beams.

4.4.1 Fusion threshold of spatial vector solitons

Unlike temporal solitons in optical fibers in which birefringence is unavoidable,
and therefore the problem of soliton stability under the splitting ctfect of birefringence
is naturally an important issuc, spatial solitons do not sufter from such an effect since
the propagation distance is usually much smaller than that of optical tibers. However,
the results of temporal soliton stability has an important application in spatial soliton
collision, that is, the fusion ol spatial solitons. When (wo spatial soliton becams collide
with each other with an angle of 26, then according to the analogy between temporal
and spatial solitons, they will trap cach other if 8 is smaller than a threshold value tor a
given intensity. As a result of this mutual trapping, they propagate along a common
direction that is difterent from the original directions of both soliton beams. Replacing

S with 0 in Eq. (4.30), we get the threshold condition for fusion of spatial solitons

2] -

PO Pt (4.41)
l+e-3/L

More general conditions for the fusion threshold of nonsymmetric solitons (A > or <

A7) can be obtained using Eq. (4.28). If condition (4.41) is met, then two solitons with
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equal amplitudes will merge as a single soliton beam. This property of spatial solitons
can be used to control a light bcam with another light beam, a process that has

applications in optical beam steering and optical switching.

4.4.2 All-optical switching via collisions of spatial vector solitons

In this scction, we ar¢ going to discuss a very important issue in photonic
device, that is, all-optical switching. Spatial solitons are easier to understand than
temporal solitons, since the former can be understood within the concept of the
refractive index. Spatial solitons are self-induced waveguides and the refractive index
change is made by nonlincar retraction. The collision of spatial solitons can also be
understood in terms of a refractive index change. For example, in the case of collisions
of two spatial solitons with some intersection angle, in the intersection region one bcam
will sce a spatially varying refractive index generated by another beam. It is well-
known in optics that an inhomogeneity in relractive index will cause the incident beam
to split into two parts: one is retlected and the other transmitted. Only for very special
index profiles, the retlection is zerod2. 1t is interesting to mention that one of these
special index profile has exactly the shape of a hyperbolic secant. Therefore most
phenomena of collisions of spatial solitons can be interpreted in terms of retlection,
transmission, total internal refllection, and so on. After a collision, spatial solitons ar¢
usually split into two. The transmission or reflection varies (rom 0 to | depending on
soliton intensity and intersection angle, which makes it possible to control one beam
with another in a varicety of ways. In this section, we will find how collisions of spatial
solitons can be used in all-optical switching.

Before colliding, two incident spatial solitons arc well separated, and are described by
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Dynamic behavior of a soliton collision in the sccond regime with 6 =

0.301, Ay = L. (a) Propagation ot the intensity profile of component Ay (b)

Variation ol m(z) versus propagation distance Z.
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Af(z=0,x)=Agsech[Ag(x+x0)], A3 =0,
(4.42)
A3(z=0,x)= Agsech[Ag(x-xg)] . A{=0,

Two solitons (labeled by Af, A5, and A{, A?%) are assumed to have cqual
amplitudes; x, is cqual to 5 in all the simulations; and Ay is the initial amplitude. The
initial conditions arc choscn in such a way that the two colliding solitons are well
separated betore the collision.

Similar to temporal solitons, the collision of spatial solitons can be classified
into three kinds depending on the value ol incident angle and intensity. For given
incident intensities ol both co]liding solitons, the collision can be classified according to
the value of the incident angle, just like the situation of temporal solitons. From section
4.3, we alrcady know that there are three different regions of interactions; (a) soliton
fusion or trapping region when 8 < 0.27. In this case, two colliding solitons form a
breather-like trapping state, M oscillates between | and another high value (>0.5), and
there is no asymptotic value of M; (b) resonant region when 0.27 < 6 < (0.304. In this
region, the two colliding solitons interact strongly, bouncing back and forth several
times and then separating cventually. M is well-delined; the fine structure of this regime
is shown in Fig. 4.4(b). Complicated oscillations occur in this region. Small changes in
6 gencrate very dillerent (inal states. (b) perturbative region when 6 > 0.305. M
decays exponentially with increasing 8 approximately as ¢=108_ After collision, cach
colliding soliton is no longer lincarty polarized as betore collision. Both solitons arc
clliptically polarized after collision. The change of propagation direction of cach soliton
atter collision is similar to the change of velocity of temporal solitons, therefore Fig.
4.5 can also be used to describe the direction change of cach soliton after collision with

differcnt incident angles.
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Fig. 4.12 Dynamic bchavior ol a soliton collision in the third regime with 6 = 0.35,

Ap = L. (a) Propagation of the intensity profile of component Ay. (b)

Variation of m(z) versus propagation distance Z. (¢) Variation of center of

mass of one soliton versus propagation distance Z.
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The fact that soliton collisions are inelastic is very important for many potential
applications in all-optical switching and optical logic gates. The inelasticity of soliton
collision manitests itself by changing the propagation direction and the polarization
state. Here the propagation direction is free to change as long as the momentum of the
system is conserved. Fig. 4.5(a) shows the dependence of deflection angle
A8 =6;, —Byy; On Oy

It is casy to see from Fig. 4.5 that the change in angle AB(Ad) can be either
larger and smaller than the incident angle 6;,(6). This means that the center of mass can
move toward the right and lett with respect to the z-axis. This can be seen more clearly
if we focus on the propagation ot one of the colliding solitons—for example, the one
that initially propagates from the left to the right. The propagation of the other
component is symmetric due to the initial conditions. Figure 4.11(a) shows the
propagation of the component A in the second regime with 8 = 0.301, Ay = 1. Before
the collision, it moves as a soliton. After collision it has been split into two sub-bcams
that propagate as solitary waves along opposite directions because of the mutual
guiding of Ay and A,. It is obvious that the two sub-beams have nearly the same
amplitude. Since A, is spatially overlapped with Ay to form solitary waves, the
polarization along cach sub-bcam is clliptical. On the other hand, the two sub-beams
propagate along very diflerent directions from the incident ones. Figure 4.11(b) shows
the dynamic change of the overlapping or mixing parameter m(z). Initially, the two
colliding solitons are well scparated, m(z) = 0; m(z) approaches 1 during collision; and
M is constant after collision. In fact, M = 0.87 means that the mixing of two
polarization is very large; in other words, the energy carried by each polarization is
comparable to the other. The ratio of energies carried by each sub-bcam is measured to
be 2:3 in Fig. 4.11(a). Figure 4.12 shows the propagation in the third regime with 8 =

0.35, Ap = I—the mixing is smaller but there is still a large beam deflection. Figure
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4.12(a) shows the propagation of the beam profile. There is a small amount of energy
carried away by the soliton with perpendicular polarization. In fact, the sub-beam
moving toward the left carries 14% of the input energy. Figure 4.12(b) shows the
change of the mixing parameter m(z). Figure 4.12(c) shows the trajectory of the center
of mass, which is close to that ot the sub-beam moving toward the right. It is clear
from both Figs. 4.12(a) and 4.12(c) that the incident beam is significantly deflected.
Figure 4.13 shows that the beam can even be completely switched into another channel.
The parameters of Fig. 4.13 are 8 = 0.3002, Ay = 1, that is, in the second regime.
Initially, the beam propagates from the left to right and is totally reflected after collision.
Both incident soliton bcams experience total internal retlection because of the nonlinear
refraction. The mixing is small; in other words, the beam is still linearly polarized.
Physically, the soliton interactions can be understood based on the refractive index
changes caused by light becams. Usually, any disturbance in the refractive index will
split a incoming beam into two parts, reflected and transmitted. However, this is not
true for the case when the refractive index change has a hyperbolic secant profile. It is
well known that there is no reflection in this case. For soliton collisions with larger
incident angle, the intensity protiles ot both beams do not change much, theretor the
refractive index changes seen by cach beam are still of the form of a hyperbolic secant,
thus the retlection is very small. However, there are large distortions in intensity
profiles of both beams when the incident angle is small, which causes large reflection
of each beam. Under some conditions, the reflectivity of each beam can be as large as
100% (Fig. 4.13). The largest deflection corresponds to this total reflection, which

depends on detailed resonant conditions.
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Fig. 4.13 Dynamic behavior of soliton collision in the second regime with 8 =

0.3002, Ay = 1. Each soliton is totally retlected by the other because of the

nonlinear refraction.

4.5 Conclusions

In this chapter, we studied the interaction of two orthogonally-polarized laser
pulses in a birefringent optical [iber. The spatio-temporal cvolution of the two partial
pulses is governed by a pair of coupled NSE’s. Several conservation laws associated
with these equations were found and used to determine a one-parameter family of
solitary-wave solutions in which the partial pulses have identical protiles. Among them
is the conservation of momentum, which implies that each partial pulse shifts its
frequency in such a way that the total shift is zero, since the total trequency shift is

proportional to the total momentum change. This frequency shift is crucial to a physical
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understanding of soliton collisions involving the walk-off effect. For these solitary-
waves, the walk-off effect is negated by frequency and wave-number shifts, which
modify the group velocities of the partial pulses so that they propagate at a common
velocity. A similar physical mechanism underlines the attraction and entrainment of two
partial pulses whose centers are offset. The Kerr nonlinearity allows each partial pulse
to first alter the other's average frequency and wave number. GVD then modifies the
velocity of the pulses so that they attract each other. The entrainment of two partial
pulses vas discussed quantitatively using a virial theorem. By analyzing the virial
theorem, we obtained the relation between the threshold amplitude for soliton tormation
and the lincar birefringence. Our analytic result agrees well with numerical simulations.
We were able to study the oscillating pulse interactions, and found that they can be
described by a nonlinear oscillator with gain or loss depending on the sign of a
constant, when the partial pulses do not change their shape during the interaction. This
assumption is not a good one when there is loss, since no collapse can occur in one
spatial dimension. Thus each partial pulse has to change its shape in such a way that
loss is saturated, or loss becomes gain to make the whole system oscillate nonlinearly.
We estimated the oscillation frequency and found that it is proportional to the pulse
intensity.

The eftects of linear biretringence on soliton propagation in optical tibers can
be controlled by choosing the input power correctly. As long as the input power is
greater than a certain threshold value, but is less that the power required to generate
higher-order solitons, the fundamental soliton will not suffer from walk-oft or pulse-
splitting due to the presence of birefringence, and can be used as an information bit in
soliton-based communication systems. In practice, even polarization-preserved fibers
suffer from temperature, stress and other inhomogeneities, and the linear birefringence

may not be constant. Although some altention has been paid to this problem,28 the
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issue of how randomly changing birefringence affects soliton propagation in optical
fibers is not yet understood completely.

Since the same coupled NSE's can be used to describe obliquely interacting
vaves,21 this soliton solution is also valid for spatial solitons in one perpendicular
direction with the linear birefringence replaced by the perpendicular velocities. We
showed in section 4.4 that there exists such an analogy between the temporal and
spatial solitons, and all the results of temporal solitons found in this section carry over
to the spatial solitons. The collisions of spatial vector solitons have also been
investigated numerically. It is found that there are three regimes of interaction in the
parameter space ot the normalized incident angle 8. The first regime is the a trapping
regime, in which the nonlinear refraction is strong enough to negate the divergence of
the two colliding solitons. From the point of view of optical switching, this region can
be used as Y-conjunctions. The second regime is called the resonant region, in which
solitons interact strongly with cach other. Two colliding solitons separate from each
other after collision. Because of the inelasticity of the collision, each beam is split into
two sub-beams that propagate as solitary waves due to the effect of XPM. Both the
polarization and propagation directions are changed after collision, which could be
useful in the applications of all-optical switching. The third regime is the weak
interaction region. Both the polarization mixing and the beam detlection become
exponentially smaller as 0 increases. It should be pointed out that there are several
advantages to using vector solitons over scalar solitons as switching devices. First,
using different polarization allows one to obtain high switching contrast. Secondly,
since there is no interference between two perpendicularly polarized light waves, the
switching will be phase insensitive, while scalar solitons have strict requirements tor

the phases of the colliding solitons. Finally, it should be mentioned that the behavior of
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soliton collisions depends sensitively on the angle of incidence, which may be a

drawback of this method.
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Chapter 5

Self-defocusing of ultraintense laser pulses in a low pressure gas target

In this chapter, we study ionization-induced defocusing of laser beam in a thin
gas target. It is found that the self-defocusing can be significant at a pressure as low as
2 torr. By developing a simple thin lens approximation, we are able to understand this
experimental finding. The reason that self-defocusing can be important at such low
pressure is due to the f¥-dependence of self-defocusing. The experimental results at
different focal geometry, or f¥ agree with the thin lens approximation. It is also found
that the thin lens approximation can’t explain all of the experimental data, especially the
formation of ring structures in the intensity distribution. The experimental data showed
that there are two foci in the image plane, which corresponds to an intensity distribution
of a cone with a central spot. Based on the thin lens approximation, we have developed
an improved computer model to explain the cone formation. The computer simulation
shows that the cone formation is caused by the saturation of the electron density at the
beam center. Good agreement was obtained between computer simulation and

experiment.
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5.1 Introduction

Nonlinear propagation of short pulses in an ionized gas or plasma has become a
new research area for nonlinear optics dealing with high intensity laser-matter
interaction since highly ionized plasmas represents the only practical optical material at
intensities above 1013 W/cmZ2. One of the important phenomenon is the self-defocusing
due to the nonlinear refraction generated by the ionized electrons. This self-defocusing
limits the maximum intensity and has a significant effect on multiphoton ionization,
high harmonic generation, relativistic self-focusing and coherent x-ray generation, as
we have discussed in Ch. 1. It can also strongly distort the beam characteristics.
Recently new interest has been stimulated by the potential applications of ultrashort
intense laser pulses in underdense plasmas, both experimental investigationsl'5 and
computer simulation3-4:6,7 have been done. All these studies have been performed at
relatively high pressure, for example, > 10 torr for high harmonic generation, > 1 bar
for x-ray recombination lasers and plasma-based accelerators. It was found recently that
self-defocusing could be important at a pressure as low as 3 torr with an intensity of the
order of 1014 W/cm2 and f# = 70.8 The focal spot increased three times compared with
case in vacuum.8 The significance of this finding is that it shows that self-defocusing
may play a more important role than previously expected. For example, both works of
Auguste et al 2 and Rae 7 were performed in a situation that a backfilled gas tank at
pressure larger than 15 torr were used. Rae found that the tighter the focus, or the
smaller the f-number or, f# of the focusing system, the larger the maximum electron
density. Intuitively, more severe self-defocusing is expected for smaller ¥, since the
change in refractive index is proportional to Np. However, both the effective interaction
lengfh and ionized volume will be smaller for a beam with tighter focus, which results
in a less accumulated phase distortion. Therefore, the self-defocusing will be less

significant for smaller f¥. Although Rae's result is consistent with Ref.(8), it is still



123

surprising to see self-defocusing at a pressure as low as one torr in a thin target. In
order to understand this, we developed a thin lens approximation. It is found that the
significant self-defocusing at pressure as low as a few torr can be explained by the f#
dependence of self-defocusing. We also found that the saturation of focal shifts can be
explained by this model. On the other hand, the experimental data clearly shows the
cone formation in the laser intensity distribution, which is beyond the thin lens
approximation. However, an improved model based on thin lens approximation can be
used to explain the cone formation. Since this improved model is more complicated
than the thin lens approximation, we can only obtain results by computer simulation,
instead of analytic results.

Since most experiments on high order harmonics generation are performed at
low pressure, the phase front distortion due to the self-defocusing may have an
important effect on the phase matching of HHG.8 All the previous experimental
observations of focal shifts were done by looking at the florescence generated by the
plasma.1-3 The observed focal shifts don't have to be the same as those of laser beam,
since the plasmas don't contain all the information of the laser beam, and the
fluorescence usually last much longer than the laser duration. In this work, we measure
the laser beam directly using an equivalent target plane(ETP) measurement. Starting
from a thin lens approximation, we can study the dependence of self-defocusing on
different foal geometry, or more explicitly, the f-number(t#) of the laser system. It is
found that this model can explain the recent finding that self-defocusing could be
important at a pressure as low as a few torr.8 Our simulation results confirm the
existence of cone formation found in our experiments. Both our experimental method
and theoretical models have the advantage of separating the self-defocusing from the
complicated processes of ionization, therefore detailed understanding of self-defocusing

becomes possible.
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Laser To CCD camera
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Lens -“vl

Fig. 5.1 A top-view schematic of the vacuum chamber. The distance from the lens

to the focus is approximately 1.5 m.8

The organization of this chapter is as follows. After the Introduction, we
discuss the experimental setup in Sec. 5.2. In Sec. 5.3, we show our experimental
results. We discuss the theory and computer simulations in Sec.5.4. We also make
detailed comparison between theory and experiment in this section. Finally, the results

are summarized in Sec. 5.5

5.2 Experimental setup

Fig. 5.1 shows a top-view schematic of the vacuum chamber.8 The laser beam
enters the system through a 153cm lens which is mounted on the end of a long tube.
The laser focuses to the middle of the central tank where the gas target is positioned.

The chamber is evacuated by a diffusion pump. The background pressure is below 10-6
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Fig. 5.2  Schematic of the chirped-pulse-amplification laser system.8

Torr. Near the focus, the laser beam intersects a thin gas target which provides a low-
density gas distribution. A magnified figure of the cross-section of the target is also
shown in Fig. (5.1). More detailed information about the target design and properties
of the gas target can be found in Ref.(9).

The laser which has been described in details elsewhere is a neodymium glass
system which operates on the principle of chirped-pulse amplification.10.11 Fig. 5.2
shows a schematic experimental setup of the whole laser system. The oscillator is an
actively mode-locked Nd:YLF laser working at wavelength of 1.053 um. The
oscillator produces a train of pulses with 100 MHz repetition rate, each pulse is 50 ps in

duration with about 1 nJ energy. The average output power of the oscillator is about
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0.5 W. The bandwidth of each pulse is increased from 0.03nm to 3.5nm due to the
presence of self-phase modulation. Due to the group velocity dispersion(GVD) of the
optical fiber, the pulse width is broadened from 50 ps to 120 ps at the output of the
fiber. The stretcher consists of a pair of grating and a telescope sitting between the two
gratings. The spectral-broadened pulses can be stretched to 300ps by the stretcher, A
Pockel cell is used to switch a single pulse to seed a Q-switched regenerative amplifier.
Another Pockel cell is used to switch out the amplified pulse with an energy about 0.3
mJ. Gain narrowing of the glass amplifier causes a reduction of the bandwidth from
3.5nm to 1.6nm. A spatial filter located between the regenerative amplifier and the 9-
mm-amplifier is used to improve the beam quality. This 200cm air spatial filter has a
magnification of 3, which increases the beam diameter from 2.0mm to 6.0mm. The
beam is then coupled into the 9-mm-amplifier with a total gain of 150. The schematic
setup of the 9-mm-amplifier system is shown in Fig. (5.3). The diffraction caused by
the hard aperture of the amplifier rod is removed by the 90cm vacuum spatial filter with
a magnification of 1. The pulse coming out of the 9-mm-amplifier has an energy of
50mJ and a duration about 300ps. After passing through a 160cm vacuum spatial filter
with a magnification of 3, the lascr pulse is aligned to the 30-mm-amplifier with a gain
up to 60. The 30-mm-amplificr is followed by another vacuum spatial filter with a
length of 275cm, magnification of 1.2. At this point, the laser bcam has a diameter of
22mm, it can be either up-collimated to 58mm using a Galiliean up-collimator with
magnification 8/3, or kept thc same size before coupled into the optical pulse
compressor which can compress the pulse to 1ps. The compressor consists of a pair of
gold holographic gratings (1740 lines/mm) sitting parallel to each other. A lcm glass
plate is used to split 2% of the encrgy for diagnostics, such as pulse duration and pulse
energy. The pulse energy is measured by a PIN diode which is connected to a digitizer

and a PC. A background free single-shot autocorrelator is used to measure the pulse
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width. The autocorrelator is based on the second harmonic generation(SHG) in a lmm-
thick nonlinear crystal (LilO3). The autocorrelator has different calibrations for beams

with different sizes.
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Fig. 5.3 A schematic sctup of 9mm amplificr system.8

A schematic experimental sctup for measuring the self-defocusing is shown in
Fig.(5.4), it is similar to that of equivalcnt target plane(ETP) experiments. In order to
understand why this setup can be used to measure the eftect of self-defocusing, we
need to understand the effect of self-defocusing. As we discussed in the Introduction,
the self-defocusing is induced by ionization. The presence of the ionized electrons
reduce the refractive index. Since the electron density is expected to be higher on axis

than at edges, the refractive index is lower at the center of the beam. As a consequence
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of this, the gas target becomes a negative lens, which causes the beam to diverge faster
than it would in vacuum. Therefore the beam size will be larger than the beam size

when the beam propagates in vacuum. The ionization-generated negative lens

CCD
camera

; T
l

Fig. 5.4 A schematic experimental setup for measuring the self-defocusing effect.

makes the beam to be equivalent to a beam focused before the actual geometric focal
point. If we use an image lens to image the focus, this virtual focus becomes a real
focal point in the sense that the intensity is largest, or the beam size is the smallest.
Hence, in the image space, we will find that the focus is shifted from the original

geometric focal point to a new position that corresponds to the virtual focal point inside
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the tank. Since the virtual focus is located at a point before the actual geometric focal
point, the virtual focal spot is smaller than that if the beam propagates in vacuum. In the
image plane, we will see (a) a shift of focus, (b) a smaller focal spot. These two related
effects can be equally understood from the point of view of geometric optics. A more
divergent beam will be focused tighter and nearer. The self-defocusing causes the
image beam to 'self-focus' instead of defocus in the image plane.

Measuring the focal shifts or the magnification gives us information about the
phase front distortion, or electron density profile induced by ionization. An imaging
lens with a magnification of 4 is used to image the focus onto a CCD camera. A single
frame of intensity distribution is captured by the CCD camera, which is connected to an
IBM PC. The picture taken from the CCD camera can be stored and analyzed on the
computer. By scanning the CCD camera along the direction of beam propagation, we
can obtain a serial of intensity distributions at different positions. The available
computer software enables us to calculate the radius (to the 1/e2 intensity level)
assuming a Gaussian distribution. In this way, we can determine the position of the
focal point and the beam divergence. Comparing the results of scans with different
gas(Xcnon) pressures, we can measure the focal shifts caused by the self-defocusing.

The peak intensity of a spatially and temporally Gaussian laser pulse is given
very nearly by [o=E/(A/eTtwhm) Where E is the pulse energy, Ay/e is the focal spot area
inside the 1/e intensity contour, and Tgwhm is the full-width-at-half-maximum of the
pulse duration. The relative uncertainty in the energy measurements is about 10%, and
the absolute uncertainty is about 20%. The pulse duration is monitored also on each
shot using an autocorrelator. For most of the experiments, the pulse duration was
about 1.6ps with a fluctuation of about 25%. The focal-spot arca is not measured every
shot. However, when the area was measured, it was observed that it fluctuated very

little from shot to shot (<4%). The focal area depends on the f-number of the optical
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Fig. 5.5 Focal shifts at different pressure due to the effect of self-defocusing. The
vertical axis represents the radius of the beam, while the horizontal axis is
the relative position along the beam propagating direction. The solid curve
corresponds to the case of p = 0 torr, the dashed curve represents p = 2 torr,

and the dashed and dot curve corresponds to p = 5 torr.
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system. In the experiment the f-number can be adjusted to be either 70 or 25 by
changing the beam diameter. For f/70 system, the measured focal area for the beam
used in the experiments was about 5500im? with an uncertainty of about 10%. The
focal area for /25 is measured to be 3200 pm2. The £/70 beam is 1.2 times diffraction
limited. Together, the different uncertainties give an absolute uncertainty for the laser

intensity of about 35% and a relative uncertainty of about 25%.

5.3 Experimental results

In the experiment, the laser intensity was controlled to be within 10% accuracy
by selecting pulses with appropriate pulse width and energy. By scanning the CCD
camera along the beam propagation direction, we obtained magnified images of the
focus inside the vacuum tank. Each image was stored and analyzed on an IBM PC. In
the image space, one expects that the self-defocusing causes the beam size and the focal
position to be different than those when there is no self-defocusing. In order to measure
the changes in the focal spot and the focal position due to the effect of self-defocusing,
we measured the intensity distribution as a function of the positions along the beam
axis, as shown schematically in Fig. (5.4). For simplicity, the image point of the
geometric focus in vacuum is denoted by z = (. First, we measured the beam size (1/e
radius) at diffcrent positions with no gas, and obtained the image of the geometric focal
point z = 0. Then we did the same measurcments with different gas pressures. Fig.
(5.5) shows the variations of beam radius as a function of position or z at pressure p =
0, 2, and 5 torr. The vertical axis represents the radius of the beam in units of pm,
while the horizontal axis is the distance from the geometric focal point(in image space)
in units of cm. The solid curve with filled circles corresponds to the case of p = 0 torr,

the dashed curve with squares represents p = 2 torr, and the dashed and dot curve with
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filled triangles corresponds to p = 5 torr. The peak intensity in vacuum was 2.5x 1014
W/cm?2, the pulse width was measured to be 1.6 ps using a single shot autocorrelator.
In the experiment of Fig. (5.5), the beam size was 22mm, which gives rise to f# =70.
The thickness of the target was 2 mm, much less than the confocal parameter 12.5 mm.

Fig. (5.5) appears to consist of two parts. At z < 0, the beam radius of both p =
2 and 5 torr are very different from that of p = 0 torr, while at z > 20, the differences in
beam radius for different pressurcs are small. The region () < z < 20 is a transitional
region. At z < 0, both curves with p =2 and 5 torr are very similar to a Gaussian beam
with confocal parameters smaller than that of p = 0 torr. If the phase distortion
generated by the effect of self-defocusing is exactly the phase distortion of a negative
lens, then we will only expect to observe the region of z < 0. Hence this part of the data
shows the characteristics of the effect of self-defocusing. It is easy to see from Fig.
(5.5) that the radius for p = 2 and 5 torr are smaller than that of p = 0 torr, and the focal
points are shifted to z = -27. The beam will continue to diverge after z > 35, although
the experimental data is limited to z < 35. It is evident in Fig. (5.5) that all threce beams
are diverging at z > 35. Therefore, the defocused beams (p =2 and 5 torr) have two
minimum radius or beam sizes, one expericnces sclf-defocusing and has its focal point
shifted towards the lens, the other experiences virtually no self-defocusing. Since the
self-defocusing results from non-uniform electron density distribution in the transverse
plane, the double-foci means that there are two different electron density scale lengths.
Hence, the electron density profile does not follow that of laser intensity distribution,
which is well known in previous experiments. 1-5

The laser intensity distributions of p = 0 and 5 torr at distance z = 36 cm are
shown in Fig. (5.6). When propagating in vacuum (p =0 torr), the laser beam remains
close to a Gaussian beam, no extra structure was observed, as shown in Fig. (5.6a).

When p = 5 torr, as shown in Fig. (5.6b), a ring structure was observed. This cone



133

formation in Fig. (5.6b) is consistent with the double-foci in Fig. (5.5). Since the
double-foci implies the existence of double scale length in the electron density
distribution, and each scale length corresponds to an effective focal length, the cone
formation can be understood as a result of two negative lenses with different radii. It
should be mentioned that the effective focal shifts in the image space at p=2 and 5 torr
are very close to each other. From Fig. (5.5), we can see that the focal shifts of P = 2
and 5 torr are almost the same, but the beam sizes are very different from each other. In
other words, the beam divergence caused by self-defocusing are different at p =2 and 5
torr. It is expected that the larger the pressure, the more divergent the beam becomes.
However, it is not intuitively clear why the focal shifts are saturated at a pressure as
low as 2 torr.

Previous experiments and simulations showed that self-defocusing become
significant at pressures much higher than 2 torr.3-7 The most important difference
between our experiment and previous experiments and simulations is the focal
geometry of the optical system. In our experiment, the £/70 system was used, while
previous experiments and simulations used beams focused much tighter, typically, f# <
20. In order to confirm the effect of focal geometry on self-defocusing, we also
performed the same experiment as that of Fig. (5.5), except the beam size was changed
to 58mm using the Galilcan up-collimator. The f* is correspondingly changed to 25.
Fig. (5.7) shows the experimental results at pressure p = 0, 2, and 5 torr. No self-
defocusing was observed, which is consistent with previous investigations.

Our experimental results can be summarized as follows: (a) the self-defocusing
strongly depends on the focal geometry or the f* of the focal system. (b) the self-
defocusing becomes significant at a pressure as low as 2 torr tor an /70 system. (c) the

focal shifts in the image space is saturated at pressure p = 2 torr. (d) the focal
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(a)

(b)

Fig. 5.6 The intensity distribution of p = 0 and 5 torr at normalized distance z = 1.2
are shown. When propagating in vacuum, the laser beam remains close to a
Gaussian beam, no extra structure was observed, as shown in Fig. (5.6a).

When p = 5 torr, as shown in Fig. (5.6b), the cone formation is evident.
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spots in the image space, or the divergence in real space without the presence of the
image lens are very different for different pressures. (e) the double-foci, or the cone
formation is related to the electron density distribution in the transverse plane. In order
to understand the experimental results, we need to compare these results with
theoretical predictions. The full dynamics of ionization-induced self-defocusing is a
very complicated process. In the next section, we are going to develop two simplified

model to explain our experimental results.

5.4 Theoretical model and computer simulations

The governing equation of self-defocusing of laser pulses can be
derived from Maxwell’s equations. Here we apply the formal theory of self-focusing of
Shenl2 to describe the nonlinear propagation of intense laser pulses in a gas target. The

electric field is described by the nonlinear wave equation

13
VZE—?aT[(nO+An)2E]=O (5.1)

where E is the electric ficld amplitude, ¢ is the speed of light in vacuum, ng is the
refractive index of gas target, An is the nonlincar refractive index change due to the

presence of ionized electrons. Introducing a slowly-varying envelope function
E = A(x,y.z,t) exp[i ( kz-ot)] (5.2)

and making the paraxial approximation, in which the second-order derivatives of A

with respect to z and t are neglected, we obtain



136

600
500
g - \
" I
= :
(-] [ :
=
200 [
[
100 —
-20

Fig. 5. 7 Focal shifts at different pressure due to the effect of self-defocusing. The
vertical axis represents the radius of the beam, while the horizontal axis is
the relative position along the beam propagating direction. The solid curve
corresponds to the case of p =0 torr, the dashed curve represents p = 2 torr,

and the dashed and dot curve corresponds to p = 5 torr. f# = 25.
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{0 19 1 o, An
—+=-—A+—V A+k—A =0 .
1(az catj 2k ¢ n, (5.3)

where k is the wavenumber k =npw/c, ® is the laser frequency; z is the propagation

direction, x and y are two transverse coordinates, V2 = 9’/9x’>+9’ /3y’ is the

transverse Laplacian operator. From Drude’s model,0 the refractive index is given by

n= |[l-—=l-——= (5.4)

where Ne = Ne(x,y,t ) is the electron density, and N¢ = mw?2/4ne? is the critical
density. Substitution of Eq. (5.4) into Eq. (5.3) gives
0 14 1 kN

(2 L0 Ly Ay .
1(az cat] % TN (3:3)

where ng = | has been assumed for low pressure gas medium. The time-dependent
electron density Ne(x,y,t) depends on the dynamics of ionization. It can be formally
described by’

oN

e R(N, -N ) (5.6)

where Np is the initial density of neutral gas, R is the cycle-averaged rate of ionization.

For hydrogen, the tunneling rate is given by!3

R = 4w(E/E) /2 exp( -2E(/3E) 5.7
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where Eg = 5.14 x10!! V/m is the atomic unit for electric field, wg = 4.16 x 1016 is
the atomic unit of frequency. For intensity of I = 3 x 1014 W/cm2, R =4 x1014 5-1,
The atoms will be ionized in a few optical cycles. In the above derivations, the
ionization loss is neglected.

Rae solved Eq. (5.3-5.7) numerically assuming a cylindrical symmetry.7 In his
simulation, the laser wavelength is 1 yum, laser pulse width is 1 ps. The laser beam was
focused in a backfilled tank with pressure ranging from 7.5 torr to 750 torr. The peak
vacuum intensity was 1015 W/cm2. He found that there was little self-defocusing until
the backing pressure was increased to 75 torr with a focusing geometry of £f/10. He also
found that the self-defocusing is more significant for larger f-number of the laser beam.
It should be mentioned that the equation for electron generation (Eq. (5.6)) in Rae's
simulation’ was incorrect. The right-hand-side of Eq. (5.6) should be R(Ng - Ne),
while it was R(Ne-Np) in Rae's simulation.”

Although Egs. (5.3-5.7) contain all of the physics of the nonlinear propagation
of ultraintense optical pulses in gases, they are still too complicated to be helpful in
understanding the sclf-defocusing. Here we are going to develop a simplified model
based on our understanding of the physics, and have experimental investigations to
check the validity of the theoretical model. According to Eq. (5.4), the higher the
electron density, the smaller the refractive density. Since the electron density is
expected to maximum on the beam axis, the transverse refractive index will be like a
negative lens. Ne(r) is a function of intensity I(r), depending on the ionization model.
In the situations when the thickness of the gas target is much smaller than the confocal
parameter or, the Rayleigh range of the focused beam, we can ignore diffractive effects
during the nonlinear propagation of short pulses in the gas. In other words, there will

be no intensity variation during the propagation inside the gas target, only the phase
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front of incident beam is distorted. This is just like passing through a thin negative lens.
This approximation is called thin lens approximation if the electron density profile is
also approximated by a parabolic profile, which will gives rise to a phase front identical
to the phase front generated by a thin lens. In order to gain the physical insight without
complications resulting from exact ionization mechanisms, we simply assume the
electron density decreases quadratically off axis. This approximation is referred as thin
lens approximation in this thesis. The ratio of the divergence angle in the cases with and
without self-defocusing can be obtained from the Gaussian beam analysis, the result is

as following

M1 =8/89 = [1+(fg/20)2 ]1/2 (5.8)
fg = -kpch/LNp

where M is the magnification of the plasma negative lens, it measures the reduction of
focal spot in the image plan due to the effect of the self-defocusing. f, is the effective
focal length of the plasma lens generated by ionization, Np is the peak electron density,
while p is the scale length of the electron density variation. L is the effective interaction
distance within which most phase distortion occurs. zg = 1/2 kwo? is half the Rayleigh
range, k is the wavenumber of laser light in vacuum, and wq is the beam waist in
vacuum. Therefore, the effective focal length generated by the self-defocusing can be
measured by either measuring the magnification M or the shift of the focal position, The
electron density Ne(r) is assumed to be Ne = Np (1-r2/p2 ). It is easy to see that M is
always smaller than 1, therefore the image spot will be always smaller when there is
self-defocusing. It should be mentioned that the effective interaction distance L is
approximately equal to the thickness d of the gas target if zg >> d, while L can be

approximated by zg if d >> zg. A simple estimate of defocusing was given by Auguste
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et al ,2 their result is identical to ours when the second term in the bracket [(Eq.(5.8)] is
much larger than 1. Our result is more general in the sense that it is valid for small self-
defocusing. p is dependent on the ionization mechanisms, the smaller the value of p,
the smaller the effective focal length fy, thus the larger the divergence 6/8.

Using the same thin lens approximation as above, we can also find the
relationship between the effective focal lens generated by the ionized gas target and the
shifts in the focal position. It is straightforward to obtain this relationship from the

theory of Gaussian beams,

—=—t (5.9)

Eq. (5.9) shows the effective focal shift inside the gas target due to the self-defocusing
induced by ionization. Az is in fact the virtual focal point defined as the distance at
which the beam size is smallest or the intensity is the highest. Since fg ( = -kpzNJLNp)
is negative, the virtual focus is located at a position nearer towards the focal lens than
the original focal point without sclf-defocusing. The interesting thing is that Az is
different from the effective focal length fg, which is not expected for most experiments
involving optical lenses. However Az = f; when zg >> fg. In most real experiments,
the sizes of optical beams are much larger than the wavelength, so that the Rayleigh
range is much larger than the focal lens used, then we have Az = the focal length. In the
experiment here, the effective plasma lens is located at the focus, the beam size is
comparable to wavelength, zg is of the same order of magnitude as fg, therefore from
Eq. (5.9), we can see that Az can be very different from f,. Secondly, it is easy to from
that the maximum focal shift is Az/zg = 0.5. This is similar to the following question:

Given a plane Gaussian beam of size D = 2wy, and a optical lens with arbitrary focal
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length, what is the maximum distance one can focus the beam? The answer is that the
maximum focal distance one can obtain with any lens is half the Rayleigh range of the
incident beam. The consequence of this result on our experiment is that the focal shift
can be saturated.

Let’s assume that fy >> 70, then the plasma lens is just like a transparent planar
plate, the beam is basically unaffected by it, resulting in a null result in focal shift. On
the other hand, if fg << zg, the divergence of the beam becomes so large that the
imaginary focus approaches the original beam waist as the divergence angle becomes
larger and larger. Hence, there exists a value of fg such that the effective focal shift is
the largest. Finally, Eq. (5.9) also tells us the f*-dependence of the focal shift. For
Gaussian beams, the relationship between f* and zg is given by zg = (8/k)(f*)2. Since
(AZ)max = 0.5z = (2f¥)2/k, the focal shift increases quadratically with f¥, For example,
the maximum focal shift of a f/70 system will be 8 times larger than that of a /25
system. Aside from the purely geometric effect of the f# -dependence discussed above,
the focal shift also depends on the ¥ since the value of fg depends on both the
ionization processes and the focal geometry. For small values of the f¥, zg can be
smaller than the thickness of the gas target, such that the effective interaction distance L
< d, which results in a larger value of fg. Hence the focal shifts can decrease faster than
quadratically with decreasing f*, resulting in a even less noticeable self-defocusing. It
should be kept in mind that the model is correct in the thin lens approximation. In
reality, the electron density profile might be very different from a parabolic distribution.
The width of the electron density distribution can be much smaller than that of the laser
beam, especially when multiple ionization occurs. If this is the case, multiple focal
points are possible. An improved model should take this into consideration, and
hopefully provides information about the dynamics of the ionization.

We found experimentally that the focal shift of the primary focus can be
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explained by the theory of thin lens approximation, while the phenomenon of cone
formation and double foci are beyond of prediction of the theory. Hence, an improved
model is needed to fully explain the data. We argue that the dynamics of ionization can
be ignored since the majority of the laser pulse is propagating in a plasma generated by
the pulse front. For instance, from Eq. (5.7), the ionization rate R is about 4x 1014 s-1
for an intensity I = 3.0x 1014 W/cm?2, wavelength A = 1.053 um. In other words, an
atom will be ionized in less than a few optical cycles. The problem of self-defocusing
can be investigated in a pre-formed plasma with some specific electron density profile
determined by the ionization processes. Mathematically, this means that we can separate
the coupled equations Eq. (5.5) and Eq. (5.6), the information of ionization is implied
in Ne(x,y). By doing so, we can study the self-defocusing without complicating
ourselves with detailed ionization processes. On the other hand, this assumption has
solid foundations since the ionization rate R is so large that the ionization process
saturates very quickly, and the majority of the laser pulse no longer participates in
modifying the electron density. As a result of this assumption, we can separate the
process of ionization from the self-defocusing. Unlike the thin lens approximation, Eq.
(5.5) is by no means simple to solve. Here we extend the 1D split-step method used in
Ch. 4 to 2D. The numerical method is given in Appendix. The code has taken into
account diffraction, defocusing or refraction generated by N, and also the whole image
system used in the experiment. First, an Gaussian beam propagates through the pre-
formed plasma with given electron density profile, then the beam propagates freely
from the exit of the gas target to the image lens, finally the beam is focused by this
image lens, and images is obtained in the image space. A grid size of 256 X256 in the
ermSverse plane is used in all simulations. All the parameters are the same as those used

in experiment if not mentioned explicitly. The program was run at CRAY-YMP at LLE.
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5.4.1 Comparison of experimental results with thin lens approximation
It should be mentioned that Fig. (5.5) is obtained by fitting the intensity
distribution with a Gaussian profile. The result is accurate only when the intensity
distribution is close to a Gaussian profile. Since the intensity distribution is far from a
Gaussian at points far away from the two foci, it is difficult to make a quantitative
comparison between the experimental results and the prediction of the thin lens
approximation, since a perfect Gaussian beam is assumed in the thin lens
approximation. However, it is still meaningful to make a qualitative comparison. A
qualitative comparison can be made for the first part. Firstly, the saturation of the focal
shifts in Fig. (5.5) can be explained by the prediction of thin lens approximation(Eq.
(5.9)). From the experimental data of Fig. (5.5), the focal shifts of pressure p =2, 5
torr are very close to Az/zg = 0.6. If we take into account of the fact that the beam is 1.2
times diffraction limited, and that the laser beam is strongly distorted after passing
through the gas target, the agreement between experimental results and the prediction of
thin lens approximation is very good. In fact, the experimental results are within 20%
of the prediction of thin lens approximation. Secondly, according to Eq. (5.8), the
magnification M decreases as the gas pressure increases, there is no saturation. The
experimental results in Fig. (5.5) are consistent with Eq. (5.8). Although the focal
shifts are almost the same for p =2 and 5 torr, the corresponding focal spots in image
plane are different from each other. It is easy to see from Fig. (5.5) that the higher the
pressure, the smaller the focal spot, or the smaller the magnification M. Thirdly, as we
discussed before, the thin lens approximation predicts that the focal shift decreases at
least quadratically with f*. Therefore, the focal shift of f/25 system will be nearly 8
times smaller than that of f/70 system. According to Eq. (5.9), the expected focal shift
Az/zg = 1/16, assuming that the focal shift for f/70 system is at maximum. This

prediction is consistent with experimental results shown in Fig. (5.7), where we did
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Fig. 5.8 Fig. (5.8a) shows intensity distribution during the propagation assuming a
Gaussian distribution in the electron density. Fig. (5.8b) shows the same
intensity distribution . but with a super-Gaussian electron density profile.
Fig. (5.8a) shows a smooth variation with a single peak distribution, while
Fig. (5.8b) clearly shows that there are two peaks corresponding to a ring

structure in 2D
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not find noticeable self-defocusing with a focal geometry of £/25.

5.4.2 Comparison of experimental results with computer simulation

Although the thin lens approximation is helpful in understanding the saturation
of focal shifts, the pressure-dependence of magnification, and the f*-dependence of
self-defocusing, it can not explain the double foci observed in our experiment. The thin
lens approximation is based on the assumption that the electron density profile can be
approximated by a parabolic distribution. However, in reality the electron density
profile is closer to a super-Gaussian, or a square-top profile when laser intensity is
above the ionization threshold.0:7 The reason is due to the saturation of ionization near
the center of the beam. In other words, once all the atoms are ionized at center of beam,
the electron density becomes saturated. A more realistic model should take this into
account.

In order to understand the physics of the cone formation, we need to study the
nonlinear refraction more accurately than the thin lens approximation. Since the laser
beam is divided into two parts, refracted and not refracted, it is reasonable to relate
these two parts to the transverse locations at the entrance plane of the gas target. A
reasonable assumption is that the central part of beam does not experience self-
defocusing, while the outside part is refracted due to self-defocusing. Since diffraction
or refraction depends not only on the total nonlinear phase distortion in the transverse
plane, but also the gradient of this transverse phase distortion, we argue that the
gradient of phase distortion must be small at the center, and large near the edge of the
beam so that the center part is unaffected, while the rest experiences strong self-
defocusing. The phase distortion is proportional to electron density, the electron density
should have a transverse profile similar to a super-Gaussian, which is expected when

the ionization is saturated at the center of the beam.3:4.6.7 In order to explain the cone
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shows the variation of [/I(0.,0.) duning the propagation in the image space,
assuming that the electron density profile is a super-Gaussian. At p = 0,
there is no etfect of self-defocusing, the corresponding curve shows a
smooth variation. At p =2, 5 torr, we can see strong self-defocusiang, as

well as the existence of two toci. very similar to Fig. (5.5).
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formation found in our experiment, we solve the paraxial equation (5.3) numerically
assuming that the laser is propagating in the pre-formed plasma. In the simulation, we
also assume that the target is much thinner than the confocal distance. The only
difference between the thin lens approximation is that the transverse electron density is
arbitrary instead of parabolic.

The simulation was carried out using the same physical parameters as the
experiment, the pressure was assumed to be 5 torr. The electron density profile is

assumed to be a super-Gaussian,
Ne(x,y,z =0) = Ng exp[-(t/p)2™] (5.12)

where p = wg/2, m =3. Since the laser intensity is slightly above the ionization
threshold of second charge state, it is reasonable to assume that the electron density is
saturated till laser intensity is half the maximum. Since the dependence of ionization rate
on laser intensity is strongly nonlinear, the electron density fall off much faster than
laser intensity. For Xenon, the ionization intensity thresholds is approximately
1x1014, and the intensity in our experiment was 2.5x 1014 W/cm2, just above the
ionization threshold of second charge state,14 therefore the edge-to-edge width of the
electron density profile is approximately the laser diameter where the intensity equals to
1/e times of the peak intensity. Hence, it is a good approximation to use p = wg/2. We
assume that the ionization is dominated by the multiphoton ionization at the edges of
electron density profile, then we have, Ne --> ™M, where m is the number of photons
needed for an electron to be ionized. In our simulations, we take m =3 in Eq. (5.12) as
a demonstration of the effect of saturation of electron density. For pulses of duration of
1.6 ps, the ionized electrons do not have time to move, since their energies are about

tens of eV. Therefore, the electron density gradient remains steep during the laser
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(b)

Fig. 5.10 Computer simulation results of intensity distribution at z = 0.8. (a) p = 0

torr; (b) p =5 torr.
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pulse. The actual gradient could be steeper than m = 3, but the refraction will be
similar.

If the ionization is not saturated at the center of the beam, the electron density
distribution is still Gaussian-like, the scale length is uniform across the density profile,
hence the whole beam will experience self-defocusing, there will be no cone formation.
In order to confirm this, we performed two simulations at the same conditions except
the electron density profiles are different. The parameters used in the simulations are: p
= 5 torr, gas target thickness L = 2mm, ¥ = 70. Fig. (5.8a) shows intensity
distribution during the propagation assuming a Gaussian distribution(m=1) in the
electron density. Fig. (5.8b) shows the same intensity distribution , but with a super-
Gaussian(m=3) electron density profile. Fig. (5.8a) shows a smooth variation with a
single peak distribution, while Fig. (5.8b) clearly shows that there are two pcaks
corresponding to a ring structure in 2D. Both Fig. (5.8a,b) show that the focal points
are shifted towards the lens. The simulations of Fig. (5.8) were done in 2D, we only
showed the intensity distribution along x-axis for the sake of simplicity.

Fig. (5.9) shows the variation of the inverse intensity on axis, 1/1(0.,0.), during
the propagation in the image space, assuming that the electron density profile is a super-
Gaussian(m=3). At p = 0, there is no effect of self-defocusing, the corresponding
curve shows a smooth variation. At p =2, 5 torr, we can see strong self-defocusing, as
well as the existence of two foci, very similar to Fig. (5.5). The result of the simulation
agrees very well with that of experimental data, as can be seen by comparing Fig. (5.5)
and Fig. (5.9). Both of them show the saturation of the focal shifts, both show the
existence of double foci. In order to see the cone formation more clearly, we show the
transverse intensity in Fig. (5.10). The cone formation can be seen from Fig. (5.10b),
while Fig. (5.10a) shows smooth intensity variation. The corresponding distance is z =

0.8. Both computer simulation and experimental data show clearly the cone formation.
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The cone formation of the computer simulation in Fig. (5.10) can be seen more clearly
in Fig. (5.11), in which 3D surfaces of intensity distribution are plotted. Fig. (5.11a)
corresponds to the case of p = 5 torr, while Fig. (5.11b) corresponds to p = 0 torr.
According to Eq. (5.8), the self-focusing depends strongly on the focal
geometry, or the f* of the laser beam. In Fig. (5.12), we show the focal shifts of
different f* assuming p =5 torr, p = wo, m = 1 in the numerical simulation. The five
curves correspond to f¥ = 70, 50, 30, 10. For f¥ = 10, there is little focal shift. This
result was experimentally confirmed, as shown in Fig. (5.7). There were no focal
shifts for both p = 2 and 5 torr when the f¥ was 25. In our experiment, the
corresponding Rayleigh range is 1.6 mm, which is smaller than the thickness of the gas
target. Since the maximum focal shift is a quarter of the Rayleigh range, the focal shift
is expected much smaller than the case of f# = 70. The simulations are consistent with

our experiments.

5.5 Conclusion

In conclusion, we have studied ionization-induced defocusing of laser beam
in a thin gas target. It is found that the self-defocusing can be significant at a pressure
as low as 2 torr. By developing a simple model (thin lens approximation), we were able
to understand this experimental finding. The reason that self-defocusing can be
important at such low pressure is due to the f#-dependence of self-defocusing. The
experimental results at different focal geometry, or f* agree with the thin lens
approximation. It is also found that the thin lens approximation can't explain all of the
experimental data, especially the formation of ring structures in the intensity
distribution. The experimental data showed that there are two foci in the image plane,
which corresponds to a intensity distribution of a cone with a center spot. Based on the

thin lens approximation, we developed an improved model to explain the cone
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formation. The computer simulation shows that the cone formation is caused by the
saturation of the electron density at the beam center. Good agreement was obtained

between computer simulation and experiment.

1.0

ol
0.6

0.4~

Peak intensity 1(0,0)

0.2

Q.0 A .
-10 -5 0 5 10

Fig. 5.12 f* -dependence of effective focal shifts. The vertical axis is the peak
intensity, the horizontal axis is the relative distance from the geometric focal

point when p = 0 torr.
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CHAPTER 6

Summary

In this thesis, the nonlinear propagation of short optical pulses has been
investigated both experimentally and theoretically. We have concentrated on two kinds
of nonlinearities that have an almost instantaneous nonlinear response, that is, the
optical Kerr effect and the dynamic nonlinearity in ionizing gas media. We have studied
the nonlinear propagation of short pulses under the effect of the first kind of
nonlinearity in Chapters 3 and 4, and the second kind nonlinearity in Chapter S.
Chapter 2 was devoted to a new method tor measuring the group velocity walkoff of
short pulses in birefringent media. The following results have been obtained in this
thesis:

(1). In Chapter 2, we developed a new technique [frequency-domain
interferometry(FDI)] for the measurement of the group velocity walkoff (GVW) of
short pulses caused by polarization mode dispersion (PMD) in birefringent optical
tibers, or linear birefringence in crystals. This technique (FDI) has been successfully
used to measure the PMD or GVW and its advantages over other method have been
discussed in detail.

(2) In Chapter 3, nonlinear birefringence in optical fibers has been investigated
both experimentally and theoretically. Good agreement has been found between
experiment and theory. The theoretical dependence of the nonlinear transmission on the
incident polarization angle has been experimentally contirmed tor the first time. It has
been shown that it is possible to optimize the nonlinear transmission of devices based
on the nonlinear birefringence. Applications of nonlinear biretringence in ultrafast
optical pulse shaping have been discussed. A more efficient scheme of pulse shaping

based on nonlinear birelringence has been proposed and analyzed. It is found that the
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polarization ellipticity of incident beam can be used to optimize the efficiency of

nonlinear transmission,

(3). In Chapter 4, soliton stability and soliton collisions in birefringent optical
fibers have been investigated analytically and numerically. The virial theorem has been
obtained for the dynamics of temporal vector solitons. The nonlinear dependence of
soliton formation threshold on birefringence has been obtained for the first time. This
has been confirmed by computer simulation. Collisions of vector temporal and spatial
solitons have been studied numerically. It has been found that vector soliton collisions
can classified into three different regimes: (i) soliton fusion; (ii) resonant collision; (c)
perturbative regime. The application of collisions of vector solitons in all-optical

switching has also been discussed.

(4). In Chapter 5, the self-defocusing of 1 ps laser pulses in a thin gas target
has been investigated experimentally. It has been found that self-defocusing depends
strongly on the focal geometry of the optical system (or f#). It was found that the
intensity profile of the laser beam was strongly modified, double foci or cone formation
have been observed at a pressure of 2 torr. In order to understand our experimental
findings, we have developed two theoretical models, a thin lens approximation and a
numerical model. Both the saturation of effective focal shifts and the cone formation

found in our experiment are in good agreement with theoretical predictions.
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APPENDIX

Numerical methods

The propagation equations (4.1-2) and (5.5) are nonlinear partial differential
equations. Many methods can used to solve these equations numerically. One of the
most efficient methods is the well-known split-step method (SSM).1.2 It has been
showned that SSM can be faster than most finite-difference schemes by up to two
orders of magnitude.3 The SSM has been applied to a wide variety of optical problems
including wave propagation in the amtosphere,4v5 graded-index fibers,0-7 and
semiconductor lasers.8-10 It is often referred to as the beam-propagation method®.7
when applied to the case of laser beam propagation. We have successfully used this
method in many simulations such as, those involving the spatial-temporal self-focusing
of chirped optical pulses,l I'induced self-focusing of two intersecting laser beams, 12
spatial-temporal optical turbulence, I3 soliton beam steering, 14 and collisions of vector
solitons.13

Mathematically, the only ditference between Eq. (4.1), (4.2) and (5.5) is the
dimensionality. Here we concentrate on Eqs.(4.1) and (4.2). It is straightforward to
change the program from one dimension to two dimension. Eq. (4.1), (4.2) and (5.5)

can be written formally in the form 16

9A _ L +N)A (A.1)
0z

where A is the field amplitude, z is the propagation distance, Lis a linear operator that
accounts for dispersion in Eq. (4.1) and (4.2), or diffraction in Eq. (5.5), and Nis a

nonlinear operator that accounts for self-, and cross-phase modulations in Eq. (4.1) and
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(4.2), or nonlinear refraction induced by ionization in Eq. (5.5). The explicit
expressions for Land Nare given by

(a) for Eq. (4.1) and (4.2)

D, =F50, + %aix, (A.2)

N, =i(A,[ +ea,,). (A.3)

where A 2 are the field amplitudes of the two waves in Eq. (4.1) and (4.2), and L 1,2,
N 1,2 are the corresponding linear and nonlinear operators for the two waves.

(b) for Eq. (5.5)

I R
L=—V-, A4
K (A.4)
N kN (A)
N=-i——m (A.5)
2N

<

Note that the role of z in Eq. (A.1) is not the same as the z in Eq. (5.5). It is
straightforward to write Eq. (5.5) in the form of Eq. (A.1) by changing the coordinate
system of z, t in Eq. (5.5) to a new one moving with the speed of light, c.

The solution of Eq. (A.1) can be formally written as
A(z+h) = exp[h( £+N )] A(z). (A.6)
where h is a small integration interval. The basic idea of SSM is to approximate the

operator exp[h(f,+f¢1)] by exp[hﬁ]exp[h N], or in other words, to obtain an

approximate solution by assuming that in propagating the optical field over a small
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distance h, the dispersive and nonlinear effects can be treated independently. What the
linear propagation (diffraction or dispersion) does is to convert the phase distortion to
amplitude distortion, while nonlinear propagation converts amplitude distortion to
phase distortion. The SSM divides a propagation step h into two substeps: first the field
is propagated linearly with the nonlinear effect frozen, then the field is propagated

nonlinearly with linear effect frozen. Mathematically,

A(z+h) = exp[h L lexp[h N]A(2). (A7)

Up to this point, there is little improvement or advantage compared to other methods.
The heart of SSM is the calculation of the linear propagation using the fast-Fourier
transform (FFT) technique. In spectral space, the linear operator ﬁ(w) becomes an
algebraic multiplier since L (w) is obtained by replacing d/0xby iw, where w is the
frequency in the Fourier domain. For example, L (o) = ind-iw2. Therefore, in the
spectral domain, the linear propagation can be calculated simply by multiplying each

frequency component A(z,w) by a factor of exp[h L ()], or mathematically,

A(z+h,w) = exp[h L(w)] A(z,0) (A.8)

The pulse shape A(z,t) can be obtained by taking an inverse Fouricr transtorm of
A(z,w). Since the nonlinear operator is already a simple multiplier in physical space,
the nonlinear propagation is performed in physical space. The splitting of Eq. (A.7) is
accurate to the second order in the integration step h; the accuracy can be improved by
using better splitting schemes. In our simulations, we used a scheme known as the
symmetrized SSM,# which is accurate to the third order in h. Mathematically, it can be

written as
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A(z+h) = exp[g ﬂ]exp{%[N(z) +N@z + h)]}exp[%ﬁ]A(z) (A.9)

Physically, Eq. (A.9) can be expressed as following: The field A(z) is propagated
linearly for a distance of h/2. At the midplane z+h/2, the field is propagated nonlinearly
for the whole length h, and then the field is linearly propagated for a distance of h/2
again. This scheme is called the symmetrized SSM because the nonlinear propagation
begins at z+h/2, while linear propagation begins at z and z+h, located symmetrically
around the nonlinear propagation.

The implementation of Eq. (A.9) is straightforward. It should be mentioned that
there are several things that need to be kept in mind when testing and running the
numerical code. The simulation box should be large enough to ensure the periodic
boundary conditions required by the FFT, otherwise high frequency noise will cause
numerical instability. For bandwidth-limited pulses, it is important to have enough grid
points to ensure that all frequency components are sampled accurately, and the spectral
resolution is good enough for the practical applications. It is well known that the
nonlinear Schrodinger cquation (NSE) supports the so-called modulational instability
(MI).16 It the spectrum of numerical noise is located inside the bandwidth of MI, the
noise will be amplified, resulting in numerical instability. Usually, this numerical
instability can be avoided if the relationship h < T2/rN? is satisfied, where T is the

length of simulation box, and N is the number of grid points.17
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