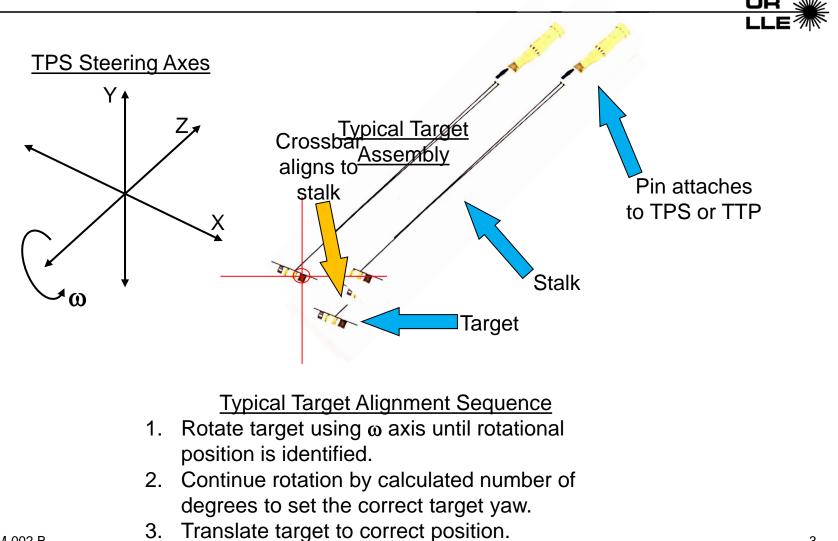
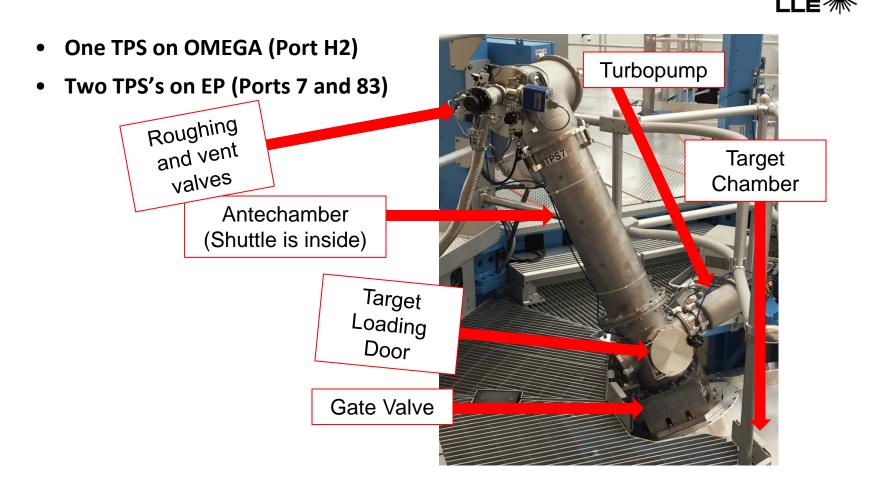


#### OMEGA Principal Investigator Training Experimental Operations


Greg Pien M-UD-M-002 B

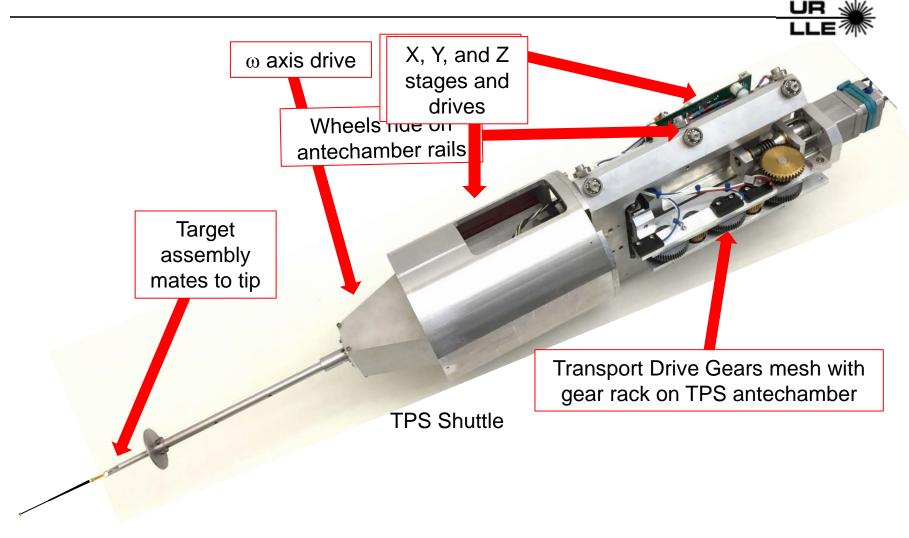
#### **Experimental Operations Group And Your Experiment**

- Target Positioning Systems Concepts and Systems
- Target Viewing Systems Concepts and System
- Target Alignment Procedures
- Diagnostic Support Infrastructure
- Diagnostic Operations Deliverables
- SRF accuracy
- Prioritization of Diagnostics
- Communications



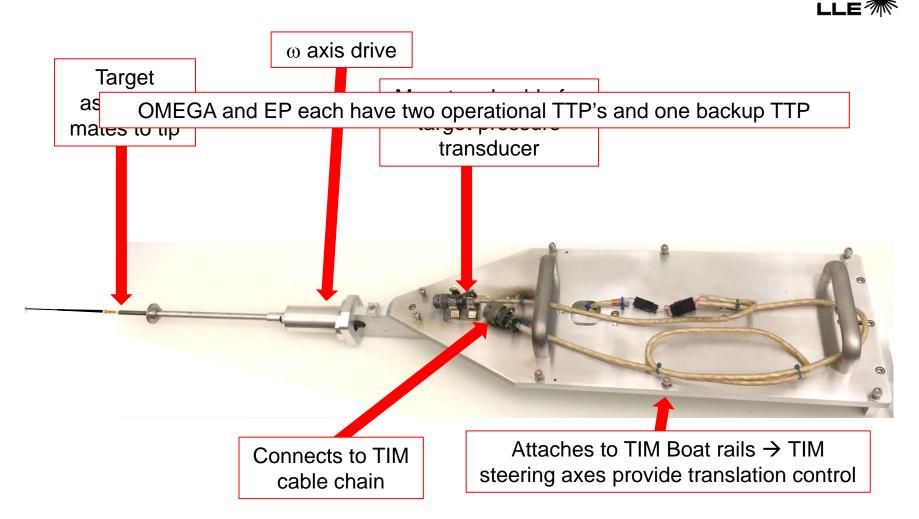

#### Target Positioning Systems (TPS or TTP) hold a target and move it to the desired location using four degrees of freedom






# The fixed Target Positioning System (TPS) mounts directly to the Target Chambers

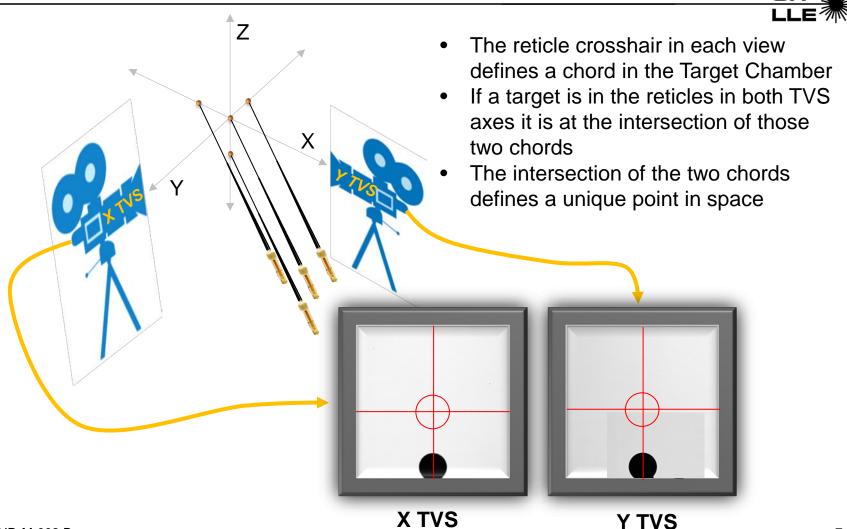





### The TPS Shuttle rides inside the TPS antechamber weldment and supports the target






### The TIM Target Positioner (TTP) mounts in a TIM and uses the TIM steering axes for target translation



UR

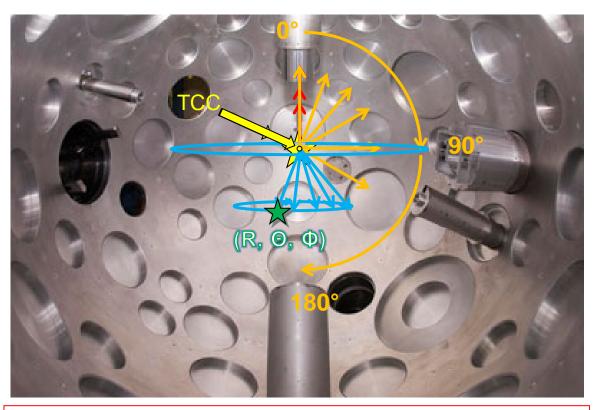


### Points in 3-D space can be located using two camera views that are perpendicular to each other





### The OMEGA and EP Target Viewing Systems (TVS) are shadowgraphs

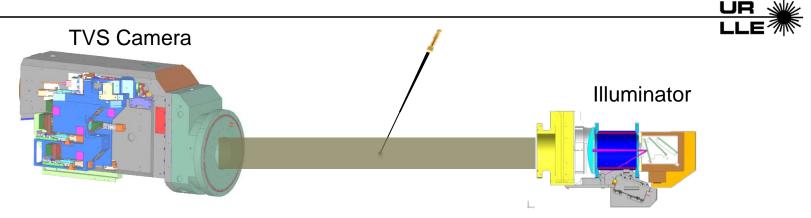

- Could see surface detail if front sided illumination was available
- Our viewing systems are backlit only a silhouette is displayed

UR



### Locations in the Target Chambers are described by spherical coordinates

- Three coordinates
  - (R, Θ, Φ)
- Origin at Target Chamber Center (TCC)
- R = distance from TCC
- O declination from straight up
  - Never >180° !
- Φ azimuth (angle around the equator)
  - North = 0°
  - Increases CCW
     looking down on
     TC

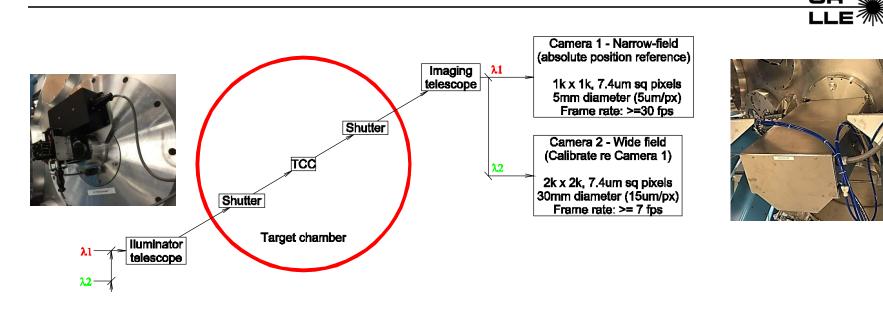



Each (R,  $\Theta$ ,  $\Phi$ ) identifies a unique location in 3-D space

Each (R,  $\Theta$ ,  $\Phi$ ) maps to a unique X TVS / Y TVS reticle pair



#### Each OMEGA Target Viewing System (TVS) axis has 4 channels and on-shot capability




- Target is imaged by a reflective telescope
- Images are sent to 4 camera channels
- Each camera channel is filtered for its own illuminator color
- Each camera acquires only when its illuminator is firing
- All optics are outside TC vacuum except the vacuum window
- TVS cameras acquire images up until M-UD-M-002 B shot time

- Spatially combines the output pulses from 4 different color, sequentially firing LED's
- Supports independent control of illumination intensity for each camera channel
- Pulsed illumination lowers thermal load on the target
- LED's are fired at non-overlapping times to eliminate cross talk
- Output beam is collimated to ~50 mm diameter



### EP Target Viewing System (TVS) has two channels but does not have on-shot capability

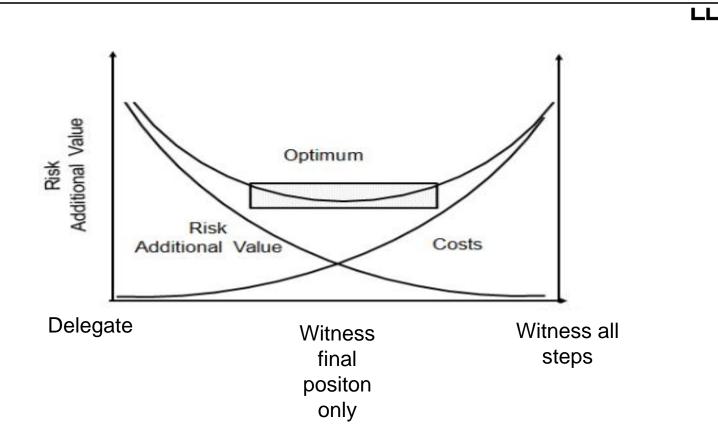


- Illuminators have 2 pulsed-LED's
- Imaging is by a refractive telescope
- 2 camera channels per axis
- Shutters must be closed before CHARGE to protect lenses near TCC



- 1. Target is designed with alignment features
- 2. Plan to align procedure is developed by Experimental Operations (XOPS) and the PI
  - Use VisRad model to communicate target specifics
  - Procedure (written by XOPS) is negotiated to meet requirements of LLE and the PI
    - Each procedure has a unique name
    - Each procedure is used only once, although subsequent campaigns may use archived procedures as a basis
  - Procedure is approved and countersigned by both the PI and LLE
  - Procedure name is added to SRF Target specification sheets by XOPS
- 3. Operators use the procedure to align the target
- 4. PI must approve final position of each target prior to shot

### Target positioning procedures meet the requirements of both the PI and the facility


- Unique for each target configuration
- Jointly developed by LLE and PI
- Published by LLE
- PI and LLE must sign off on each procedure
- Revised and reviewed for each shot day

| TARGET POSITIONING PROCEDURE # TPS_P6P7_Cyl_09-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TARGET POSITIONING PROCEDURE # TPS_P6P7_Cyl_09-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TARGET POSITIONING PROCEDURE #     TPS P6P7_Cyl 09-11 <b>jummay:</b> This procedure is to be used to position cylindrical tube targets without rotation reference features for LLNL F & S-hall and Solar Call E3D target hots: Target bodies are aligned on the P6-P7 axis, centered at TCC. This procedure has been modified for straget shots scheduled for 91-12-11 EdK Cylinder Roticles for final alignment of cylinder targets at TCC. Roticle Postage Identification:       Retice Package Identification:     Targets_09-12-11 EdK Cylinder Roticle for final alignment of cylinder targets at TCC. Roticles for the X-tiles fatture 2,100 and 3,010-µm circles in the Y view.       Procedure:     1. Start with the target mounted on TPS 2, inserted to near TCC. | INTEGET POSITIONING PROCEDURE       TES POPT Col 0.011         INTEGET POSITIONING PROCEDURE       INTEGET POSITIONING PROCEDURE         INTEGET POSITIONING PROCEDURE       INTEGET POSITIONING PROCEDURE |  |  |  |  |
| The State Frage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ol> <li>Load the Beamlines reticles for the current RID and confirm that all beams intercept the<br/>target.</li> <li>Authorization:</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Figure 1: Target Rousion Alignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| <ol> <li>Rotate target using @ axis until the Cylinder body appears breesighted through its LEHs, as<br/>shown in figure 1. Ensure that your final moves in the CW direction.</li> <li>Nete: Some cylinder may be filled with a volument that oppears capages in the Narrow<br/>view. Use the TVS view (Wide'Narrow Cyvo) that gives maximum light transmission for<br/>rotation alignment. If no TVS view gives adequate transmission, use the outside of the<br/>cylinder as the rotation reference.</li> </ol>                                                                                                                                                                                                                                                            | Manager, Experimental Operations Date Principal Investigator Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 3. Continue rotate the target $120^{\circ}\mathrm{CW}$ to align it on the P6-P7 axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

#### **Target Positioning Deliverables**

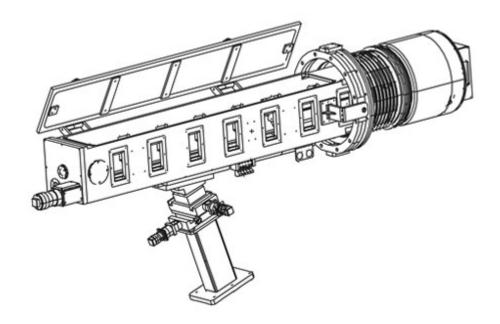
| When                     | Principle Investigator                                                                                                                  | LLE (Experimental Operations)                                                                                                                                                                          |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| > 2 weeks to shot day    | <ul> <li>VisRad file</li> <li>Other info on target location<br/>and geometry</li> <li>Consult with LLE on<br/>alignment plan</li> </ul> | <ul> <li>Consults with PI on target alignment<br/>method and features</li> <li>Generate draft positioning procedure</li> </ul>                                                                         |
| 2 days prior to shot day | Detailed Target Metrology data                                                                                                          | Target Metrology Data Verification                                                                                                                                                                     |
| 1 day prior to shot day  | Sign-off on positioning procedure                                                                                                       | <ul> <li>Publish positioning procedure</li> <li>Sign-off on positioning procedure</li> <li>Assign procedures to shot in SRF</li> <li>Generate TVS reticles</li> <li>Brief crew on procedure</li> </ul> |
| Day of Shot              | Verify/approve positioning of each target                                                                                               | <ul> <li>Position each target</li> <li>Verify / approve positioning of each target</li> </ul>                                                                                                          |

## Your choice of target approval method is part of your strategy to balance shot rate and risk mitigation



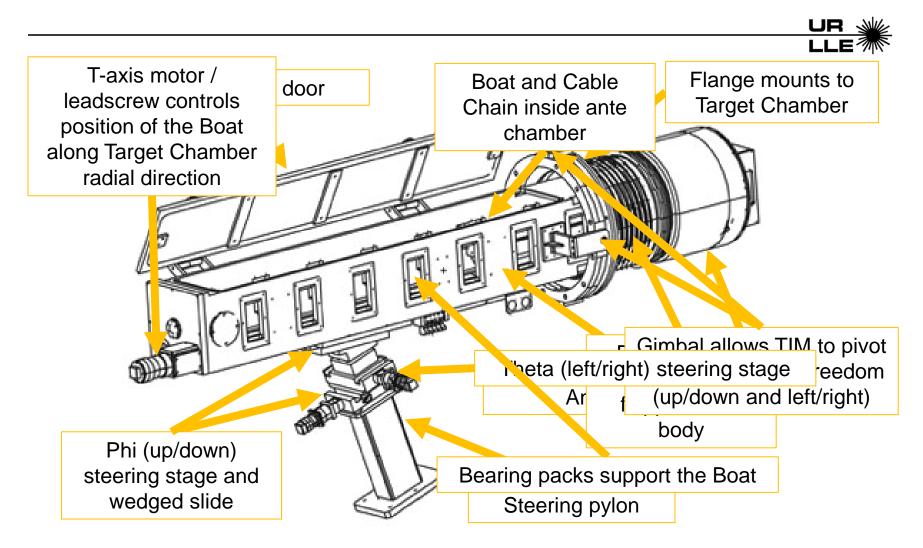


### XOPS operates and maintains a variety of infrastructure to support target diagnostic operation


- Mechanical support
  - Target Chamber ports
  - Ten Inch Manipulators
  - Target Area Structures
- Controls, cooling systems, and power management
- Triggers and timing monitor systems

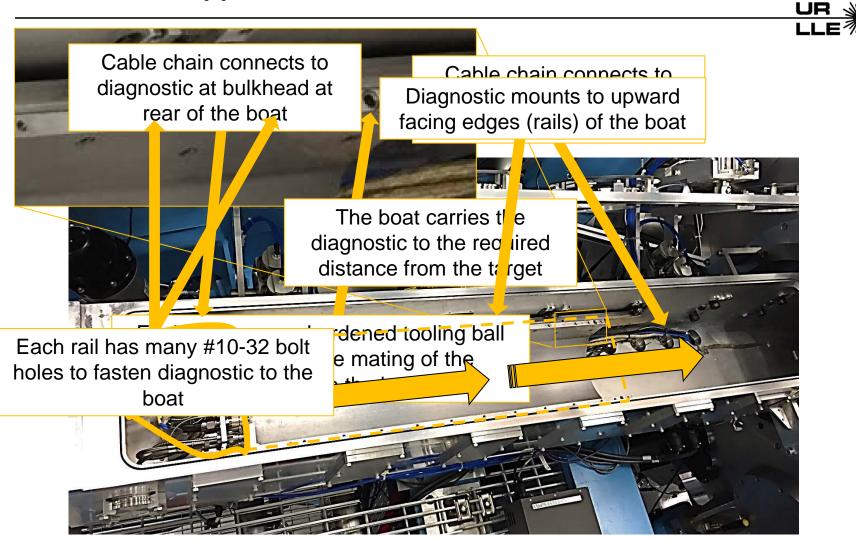


# The Ten Inch Manipulator (TIM) is host to over 100 different currently operational diagnostic types


A TIM can provide:

- Mechanical support
- Three axis alignment to the target
- Antechamber (airlock) to the Target Chamber
- Electrical power
- Trigger
- Timing Monitor
- Timing fiducial
- Communications
- Control
- Cooling

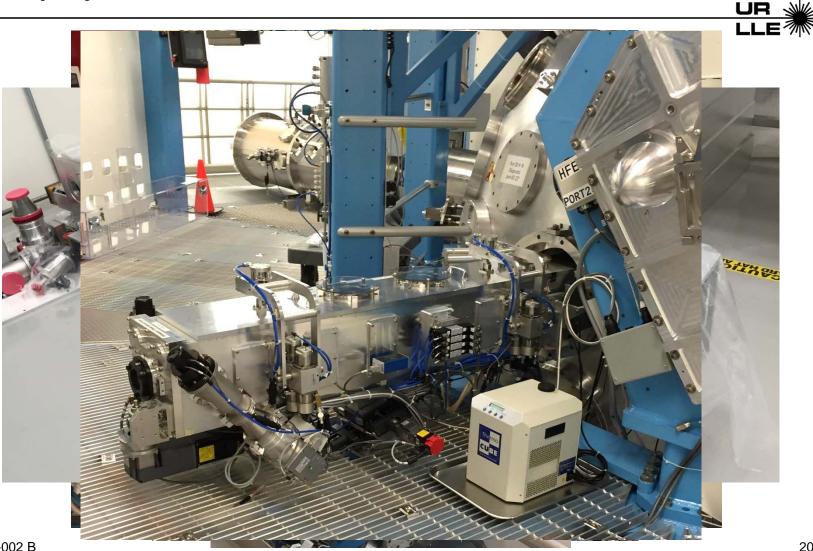





#### Major components of the TIM

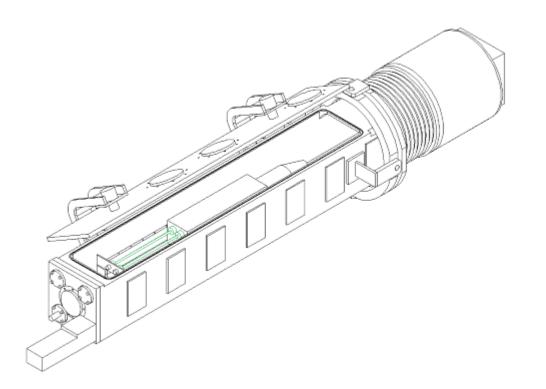





### Diagnostics mount to the TIM boat, which provides utilities and mechanical support

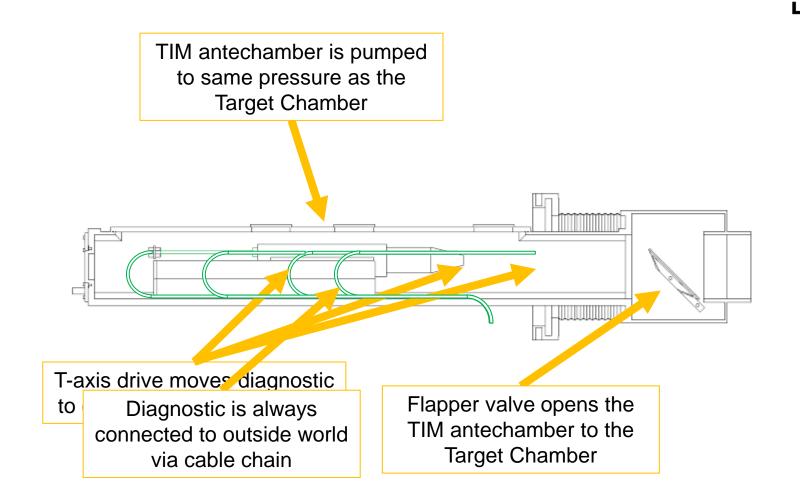


M-UD-M-002 B



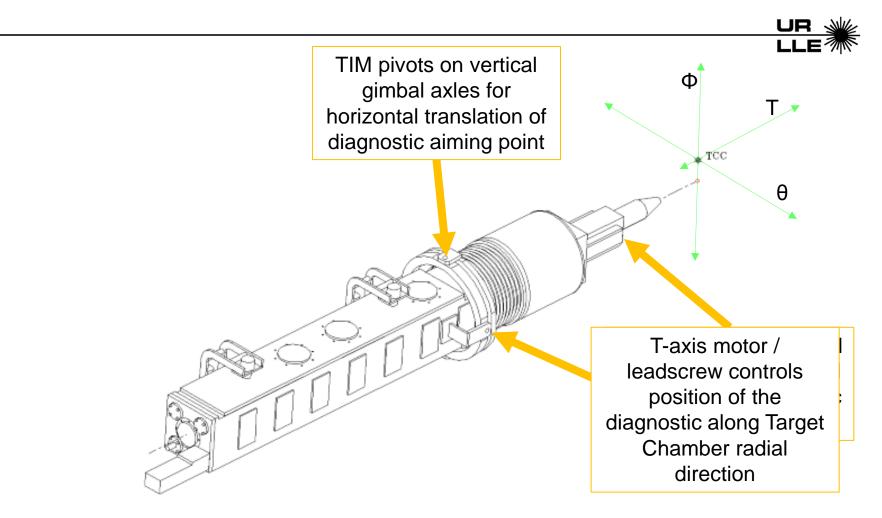

#### Six TIM's are deployed on OMEGA (1-6) and five TIM's (10-14) are deployed on EP






### The diagnostic loads into the TIM boat through the top door while the Target Chamber is at vacuum






## The TIM antechamber is pumped to TC pressure and the T-axis is used to position the diagnostic at the correct distance to TCC



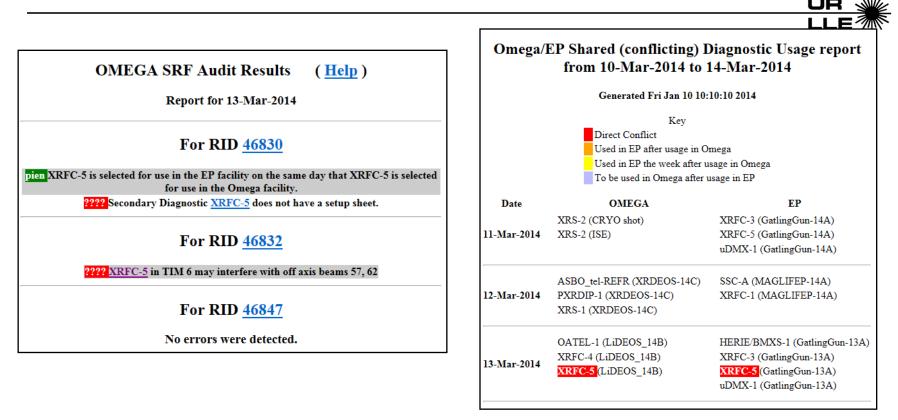


#### The diagnostics is aligned using the TIM's three steering axes



#### **Diagnostic Deliverables**

| When                   | Principle Investigator                                                                                                                                          | LLE (Experimental Operations)                                                                                                                                                                                                                                                        |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| > 3 months to shot day | <ul> <li>Declare any new diagnostics<br/>or modifications to existing<br/>diagnostics</li> <li>Create and maintain accurate<br/>SRFs for preparation</li> </ul> | <ul> <li>Track and support qualification of<br/>new diagnostics</li> <li>Review SRFs and consult on<br/>instrument / experiment plan</li> </ul>                                                                                                                                      |  |  |
| 0-1 week prior to shot | <ul> <li>Final review of plan at 2 week<br/>and 1 week reviews</li> <li>All SRFs accurate and<br/>complete</li> <li>SRF auditor checks verified</li> </ul>      | <ul> <li>Final review of SRFs, auditor, and overall plan</li> <li>Make logistics arrangements</li> <li>Coordinate Instrument Specialists, PIs and facility assets</li> </ul>                                                                                                         |  |  |
| Day of Shot            | <ul> <li>Consult with LLE on<br/>diagnostic details as<br/>necessary</li> <li>Review data and advise<br/>changes</li> </ul>                                     | <ul> <li>Operate diagnostics</li> <li>Make requested changes to<br/>diagnostic sections of SRF</li> <li>Implement requested changes to<br/>diagnostics</li> <li>Review data, consult with PI,<br/>implement changes</li> <li>Deliver physical data to PI as<br/>necessary</li> </ul> |  |  |


UR 🔌

#### The Shot Request Form (SRF) is your contract with Experimental Operations Group

- Feasibility assessment and long term preparations are based on SRF's submitted at the 3-month proposal stage
- Final preparation for shots is performed to meet requirements set in final SRF's as available at 00:00 on the Friday prior to your shot week
- Unintended specifications on SRF's are likely to be propagated to the actual shot implementation

Complete and accurate Shot Request Forms are necessary to efficient conduct of shot operations

#### Conflicts are identified by evaluating SRF data using the SRF Auditor and the Shared Diagnostic Usage Report



- The SRF Auditor Checks for Global inconsistencies
- The Shared Diagnostic Usage Report shows request conflicts for diagnostics that are used in both OMEGA and OMEGA EP

## Prioritizing diagnostics (primary, secondary, or ride-along) is an important element in your strategy to maximize your results

| OMEGA Shot<br>Request Form | LLE                                           | odified: 05-Mar-20  | <b>D#:</b> 52156<br>15 11:28:51<br><u>ms &gt; TIM &gt; Fixed</u> > | Neutronics           |               | Facility Stat<br>Comments/I<br>XOPS Be<br>Help |        |  |
|----------------------------|-----------------------------------------------|---------------------|--------------------------------------------------------------------|----------------------|---------------|------------------------------------------------|--------|--|
|                            | TIM Configura                                 | ition <u>(Help)</u> | <u>XRFC Swap</u>                                                   | XRS Swap             |               |                                                |        |  |
| Dia                        | gnostic description                           | Setup pages are not | needed for TSSAC<br>agnostic                                       | Priority             | Port On       | oosing por                                     |        |  |
|                            | dge Range Filter Module 1 (WRFM)              | • Other a           | agnostic                                                           | Primary •            | гог Орр<br>РЗ | P10                                            | Set up |  |
|                            | S Alignment Carts 2 (TSSAC)                   | •                   |                                                                    | Primary T            | 13            | H18                                            | Set up |  |
| TIM 3 Mag                  | gneto-Inertial Fusion Energy Delivery 2 (MIFE | DS) T               |                                                                    | Primary •            | HI.8          | H3                                             | Set up |  |
| TIM 4 TIM                  | Target Positioner 4 (TTP)                     | •                   |                                                                    | Primary •            | P5            | <b>P</b> 7                                     | Set up |  |
| TIM 5 XR                   | Framing Camera 4 (XRFC)                       | •                   |                                                                    | Secondary 🔻          | Н 4           | H7                                             | Set up |  |
| TIM 6 Tho                  | mson Scattering System 1 (TSS)                | ▼                   |                                                                    | Primary<br>Secondary | <b>F</b> 7    | P6                                             | Set up |  |
| TIM 6 Tho                  | mson Scattering System 1 (TSS)                | •                   |                                                                    |                      |               | P6                                             | Set up |  |

| Priority   | Fault at Start of Charge | Fault during Charge |
|------------|--------------------------|---------------------|
| Primary    | Hold until operational   | Abort shot          |
| Secondary  | Hold until operational   | Continue shot       |
| Ride-Along | Continue shot            | Continue shot       |
| Alignment  | N/A                      | N/A                 |

### The Experimental System Operator (ESO) is your interface to Omega Experimental Systems on shot day

- Target alignment
- Diagnostic operations
- Changes to diagnostic sections of SRF
- Implementation of changes to diagnostics



- Clear lines of communication are necessary
  - Establish a single point of contact from the scientific group to communicate diagnostic changes to the Experimental System Operator (ESO)
  - Insist on a read-back for verification of all verbal instructions to the ESO
  - Use written instructions for diagnostic changes when possible
  - All diagnostics SRF changes are performed at your request by the ESO
  - All target SRF changes are performed at your request by the Shot Director
- You must be available in the control room immediately prior to the shot
- Good planning and communication will improve our results