

A 60-beam on-shot intensity measurement in the target chamber is needed.

G11657a

On-Shot Focal-Spot Characterization in the OMEGA Target Chamber

L. J. WAXER, M. HEIMBUEGER, J. H. KELLY, S. F. B. MORSE, D. NELSON, D. WEINER, AND G. WESELAK

University of Rochester, Laboratory for Laser Energetics

- the camera in order to obtain an accurate measurement of the near field

A wedged debris shield compensates for aberrations introduced by fourth-order reflection from the wedged vacuum window.

*DPP: distributed phase plate

Final design, acquisition, and assembly are complete

G1160a

The diagnostic will be brought into the target chamber

*CCD: charge-coupled device

A focal-spot diagnostic will introduce some aberrations

12,000 _Estimated OMEGA 10.000spot size 6.000 4.000 -40 -20 0 20 40 x (µm)

Vacuum window wedge	Туре	Nominal value
Surface figure— power at 632.8 nm	Fabrication	0
Surface figure— irregularity at 632.8 nm	Fabrication	0
Center thickness	Fabrication	25.4 mm
Wedge	Fabrication	7.5 ft
Tip/tilt (air space wedge)	Assembly	0
Axial rotation	Assembly	0

LLE

<5λ p–v* <∂/10 p–v ±0.10 mm ±0.3 ft ±0.05

LLE is developing a focal-spot diagnostic to measure the on-shot, on-target fluence of OMEGA beams

- OMEGA laser diagnostics are located upstream of the target chamber
- Experimental results suggest that the intensity balance on target is different than that predicted by laser diagnostics
- This diagnostic will provide a direct measurement of the focal spot at the target location at full energy
- The measurement will be energy calibrated using a calorimeter mounted in the opposing port of the target chamber
- The diagnostic will be TIM-based and have access to 51 different OMEGA beams (one at a time)
- We estimate that aberrations introduced by the diagnostic will be less than the current system aberrations
- The diagnostic aberrations will have a minimal effect on the DPP focal spot, which is of primary interest for experiments

Diagnostic assembly is complete and first shots on OMEGA will be in June 2018.

*p–v: peak-to-valley

G11663a