
L. H. XIAO,* R. S. CRAXTON, D. BARNAK, and J. R. DAVIES

Simulations of Laser-Driven Magnetized Liner Inertial Fusion

Abstract

TC13358

 In magnetized liner inertial fusion (MagLIF), a high electric current is 
run through a cylindrical metal shell (or liner) containing deuterium fuel, 
forming a strong magnetic fi eld that causes the cylinder to implode.
A preheating laser beam is fi red down the axis of the cylinder to heat the 
deuterium so that when the cylinder implodes, compressing the deuterium, 
the deuterium is able to reach the high temperatures needed for fusion. 
Simulations using the hydrodynamics code SAGE were conducted to help 
understand the physics of MagLIF. Simulations of laser-driven MagLIF 
experiments on OMEGA without the preheating beam have demonstrated 
agreement with experimental data for the implosion of the cylinder. 
Simulations of preheat-only experiments with large-scale targets on 
the Sandia Z machine using a 0.5-nm laser beam are consistent with 
the experimental observations in four shots, a reference shot and three 
variations. Simulations of a Z-scale target with a higher deuterium density 
and a 0.35-nm laser beam, as may be desired for future experiments, show 
that near-uniform heating along the axis is achieved through the formation 
of a whole-beam self-focusing density channel.
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When adjusted for the 47-nm separation, the experimental 
and simulated profi les agree closely
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The experimental shell implosion velocity agrees 
with the simulated velocity
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When the beam diameter increases, the x-ray emission 
is lower and the penetration is less
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When the gas density is lowered, the heating beam 
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Runs 1203, 1204

A compression-only MagLIF shot (79495) 
on OMEGA was modeled
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Run 1134

• This shot used a 1.5-ns fl at pulse
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Z-machine x-ray emission images showed heating 
distributions for various parameters*
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Shot H39 (Reference) H40 H41 H42 H43

Energy (kJ) 2 4 2 2

Phase-plate diameter (mm) 0.75 1.1 1.10.75

Fill pressure (psi) 60 60 60 45

Fill density (cm–3) 2.2 × 1020 2.2 × 1020 2.2 × 1020 1.7 × 1020

• All use D2 + 0.1% 
atomic Ar and

 a 2-ns 2~ 
preheat beam
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Experimental x-ray self-emission images have been 
compared with predictions of the shell center of mass
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• Based on Spect3D post-processing of a SAGE run, the inner edge of 
the x-ray emission is expected to be ~47 nm from the center of mass

X-ray self-emission images from shot 79495
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When the beam energy is doubled, the heating 
penetrates to the end wall and creates a hot spot
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Runs 1201, 1202
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Z-scale simulations with higher-density D2 have been 
performed using laser drive rather than magnetic drive
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• The laser energies and pointing were optimized to give a uniform 
implosion with the desired speed (implosion at 80 ns)Run 1139

SAGE has been used to model shots 
with the preheating beam
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A whole-beam self-focusing density channel is created by 
the expansion of laser-heated deuterium away from the axis
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• When a ray encounters the high density at the edge 
of the channel, it is refracted back toward the axis.
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Run 1100

A 1-D lineout in the radial direction shows a hot region 
confi ned to the density channel
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OMEGA Experiments Without a Preheat Beam Z-Machine Experiments Future Z-Scale Experiments OMEGA Experiments With a Preheat Beam

A variety of magnetized liner inertial fusion (MagLIF) 
experiments have been modeled

Summary

• OMEGA experiments without a preheat beam

– the shape and speed of the imploding cylinder agrees
 with observations

• Sandia’s Z machine experiments

– qualitative agreement is found between simulations and experiments 
for various parameter variations

• Future Z-scale experiments with high-density gas and 3~ preheat beam

– a whole-beam self-focusing channel helps to provide uniform heating

• OMEGA experiments with a preheat beam

– a D2 temperature of ~400 eV is predicted
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Full MagLIF experiments on OMEGA include 
a magnetic field generated by coils
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	 In magnetized liner inertial fusion (MagLIF), a high electric current is 
run through a cylindrical metal shell (or liner) containing deuterium fuel, 
forming a strong magnetic field that causes the cylinder to implode.
A preheating laser beam is fired down the axis of the cylinder to heat the 
deuterium so that when the cylinder implodes, compressing the deuterium, 
the deuterium is able to reach the high temperatures needed for fusion. 
Simulations using the hydrodynamics code SAGE were conducted to help 
understand the physics of MagLIF. Simulations of laser-driven MagLIF 
experiments on OMEGA without the preheating beam have demonstrated 
agreement with experimental data for the implosion of the cylinder. 
Simulations of preheat-only experiments with large-scale targets on 
the Sandia Z machine using a 0.5-nm laser beam are consistent with 
the experimental observations in four shots, a reference shot and three 
variations. Simulations of a Z-scale target with a higher deuterium density 
and a 0.35-nm laser beam, as may be desired for future experiments, show 
that near-uniform heating along the axis is achieved through the formation 
of a whole-beam self-focusing density channel.



A compression-only MagLIF shot (79495) 
on OMEGA was modeled
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Run 1134

•	 This shot used a 1.5-ns flat pulse
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Experimental x-ray self-emission images have been 
compared with predictions of the shell center of mass

TC13360

•	 Based on Spect3D post-processing of a SAGE run, the inner edge of 
the x-ray emission is expected to be ~47 nm from the center of mass

X-ray self-emission images from shot 79495

Run 1134
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When adjusted for the 47-nm separation, the experimental 
and simulated profiles agree closely
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The experimental shell implosion velocity agrees 
with the simulated velocity
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Z-machine x-ray emission images showed heating 
distributions for various parameters*

TC13363 *A. Harvey–Thompson (Sandia National Laboratories).

Shot H39 (Reference) H40 H41 H42 H43

Energy (kJ) 2 4 2 2

Phase-plate diameter (mm) 0.75 1.1 1.10.75

Fill pressure (psi) 60 60 60 45

Fill density (cm–3) 2.2 × 1020 2.2 × 1020 2.2 × 1020 1.7 × 1020

•	 All use D2 + 0.1% 
atomic Ar and

	 a 2-ns 2~ 
preheat beam
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When the beam energy is doubled, the heating 
penetrates to the end wall and creates a hot spot
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is lower and the penetration is less
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Runs 1201, 1203
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Z-scale simulations with higher-density D2 have been 
performed using laser drive rather than magnetic drive
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•	 The laser energies and pointing were optimized to give a uniform 
implosion with the desired speed (implosion at 80 ns)Run 1139



A whole-beam self-focusing density channel is created by 
the expansion of laser-heated deuterium away from the axis
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•	 When a ray encounters the high density at the edge 
of the channel, it is refracted back toward the axis.
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A 1-D lineout in the radial direction shows a hot region 
confined to the density channel
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Temperature contour graphs illustrate the evolution 
of the self-focusing density channel
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SAGE has been used to model shots 
with the preheating beam
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