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The radiation-reaction force can significantly alter electron
trajectories at laser intensities above 1023 W/cm?2
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The effects of the radiation-reaction (RR) ; -
force have been simulated for two scenarios Highly Charged lon Counterpropagatlng Electron Beam

* Highly charged ion scenario
— little difference with and without RR

* Counter-propagating electron-beam scenario

_ significant difference with and without RR The electron stays bound to the highly charged ion until A 1-GeV beam of electrons is aimed to meet the peak
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Proposed laser developments promise to deliver

ultrahigh laser intensities above 1023 W/cm?2
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Recent developments in high-power laser technology make focused laser - re12760 in the z direction -
intensities from 1022 W/cm2 to 1025 W/cm?2 feasible in the near future,
opening up the study of the superintense laser acceleration of electrons
to tens of GeV energies. Previous work on this subject has not accounted
for the radiation-reaction force, which is the recoil force caused by the
electromagnetic radiation emitted by an accelerating charged particle.

In this work, two possible scenarios (an electron originally bound in a
highly charged ion and a counter-propagating 1-GeV electron pulse)

were simulated. In the first scenario, little difference was found between
simulations with and without the radiation-reaction force. In contrast, the
second scenario, involving the counter-propagating 1-GeV electron pulse,
showed the electrons losing significant amounts of energy when the
radiation-reaction force was taken into account.
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The radiation-reaction force can significantly alter electron

trajectories at laser intensities above 1023 W/cm?
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The effects of the radiation-reaction (RR)
force have been simulated for two scenarios

* Highly charged ion scenario
— little difference with and without RR

e Counter-propagating electron-beam scenario
— significant difference with and without RR
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Electron trajectories were calculated
using the relativistic equation of motion

including the radiation-reaction force
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Coulomb field if present

The radiation-reaction force* is given by
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A fifth-order expansion of Maxwell’s equations was used
for the focused laser field (Ej, By )™
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Abstract
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Recent developments in high-power laser technology make focused laser
intensities from 1022 W/cm?2 to 1025 W/cm?2 feasible in the near future,
opening up the study of the superintense laser acceleration of electrons
to tens of GeV energies. Previous work on this subject has not accounted
for the radiation-reaction force, which is the recoil force caused by the
electromagnetic radiation emitted by an accelerating charged particle.

In this work, two possible scenarios (an electron originally bound in a
highly charged ion and a counter-propagating 1-GeV electron puilse)

were simulated. In the first scenario, little difference was found between
simulations with and without the radiation-reaction force. In contrast, the
second scenario, involving the counter-propagating 1-GeV electron pulse,
showed the electrons losing significant amounts of energy when the
radiation-reaction force was taken into account.



The electron stays bound to the highly charged ion until

the laser pulse reaches its peak intensity
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* The electron also experiences the Coulomb force of the ion
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Single-trajectory simulations of electron accelerations
from highly charged ions show little difference even

at laser intensities of 1024 W/cm?2
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The radiation-reaction effects are just noticeable
at 1025 W/cm?2
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Monte Carlo simulations at 1022 W/cm?2 also show little

difference when radiation reaction is included
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The highest-energy electrons
have small ejection angles
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A 1-GeV beam of electrons is aimed to meet the peak

of the laser pulse atz =0
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Single-trajectory simulations show significant differences

at 1023 W/cm?2 with or without radiation reaction
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The electron is turned around and reaccelerated

at 1024 W/cm2 with radiation reaction included
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Monte Carlo simulations at 1023 W/cm?2 with radiation
reaction show the scattering of electrons
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* The electrons were chosen to meet the peak of the laser pulse
at random points within the same 20 x 4-um region

* The electrons were also given a 2% momentum spread
in the z direction
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Most electrons are turned around at 1024 W/cm?2
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