LENS applications include DD Yield, T_{ion} and ρR measurements, study of non-thermal effects and basic nuclear physics (e.g., T_2)

Design requirements are determined by the planned applications and facility specific constraints

- Energy range to be covered?
 - 0.1-8 MeV
- Resolution?
 - − Of order thermal Doppler broadening for a few keV DD plasma (e.g., T_i =3 keV → Δ E=143 keV, Δ E/E=5.8% FWHM)
- Efficiency and compactness requirements are facility specific
 - − OMEGA: High Y_{DD} ~2e11 → need efficiency of *at least* order 1e-9
 - Should fit in TIM

A ⁶LiF sandwich spectrometer is under development at MIT

1 μm LiF foil with WRF-size area fielded 10.5 cm from TCC would have an efficiency ~2e-8 "Creative processing" would be required to improve S/B

MGJ, OLUG April 25-27, 2012

Recent experiments show that alpha energy separation in CR-39 can be done based on track contrast

MIT accelerator will be used for full-scale proof-of-principle experiments

MGJ, OLUG April 25-27, 2012

A proton recoil spectrometer concept is also being studied

MGJ, OLUG April 25-27, 2012

ILE in Japan is working on an Li scintillator based time-of-flight detector system

2mm × 2mm × 20mm, 400 pixel

Purpose: DD DS-n detector

OMEGA/ILE: Multichannel counting mode

NIF:

Current mode, gating out primary neutron flash