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(Pro- Outline
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* Motivations:
—Shock Physics - Plastic Flow and Phase Transitions.

- (Quasi-) Isentropic Compression Experiments (ICE) - New
Avenues in High-Pressure Solid-State Physics.

 Experiments.

* Modelling.

* Initial Successes.
* Future work....



Plasma Parameters (1)

position of ablation surface position of critical surface Vv

deposition of laser energy



(Q"f“d Laser Ablation Pressure
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A VERY simple model would
say a good fraction of the
irradiance, |, flows down the
temperature gradient to
produce more plasma at the
ablation surface. In steady
state this produces a kinetic
energy flow at the critical
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High Pressure Research with Lasers

e We have seen that nanosecond lasers can create multi-megabar
pressures.

* Ways of applying that pressure:

— Shock Compression

- 'Quasi’ Isentropic Compression (slow - but how slow?)
* Applications:

- Basi¢ shock physics:

- Plastic flow

— Shock Induced Phase Transitions

- Equations of State

- X-ray diffraction to observe the abhove at the lattice level
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As the speed of sound generally increases with
compression, a strong compression wave will
steepen into a shock, where there is a
discontinuity in density, temperature, and
energy across the shock front.



3 equations, 5 unknowns (Us, Up, P, p, E).

Measure two of these, the others can be calculated.



How do we measure the equation of state and H
transport properties

VISAR measures
velocity and reflectance
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Conservation relations => P =p, U U,
plp, = 1/(1-U/U,)

Temperature needs to be measured separately
Slide from Rip Collins



Schematic Diagram of Shock
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Where does Omega fit in?

* Major problems in shock physics:
- How do solid materials ‘flow’ like a liquid (hydrostatic compression)?
— Where do the defects come from (and where do they go)?
— Interplay between defects/twinning and other deformation mechanisms.
- How quickly ¢can various phase transitions take place?
- How well do we understand the equation of state at ultra-high pressures?

* All of these issues necessitate, or greatly henefit from, a knowledge
of what is happening at the lattice level.

* Answer: Ultra-short-pulse X-ray diffraction during the laser-driven
shock

e Three Geometries:

- "Diverging Beam” (monochromatic X-rays, single crystals, large range of
angles - tells us lattice spacings (strains) and new phase (if single crystal).

- "Debye-Scherrer”, monochromatic collimated X-rays, polycrystalline material,
tells us lattice spacings (strains) and phases, and information on response of
grains with varying orientation.

- "White Light Laue”, polychromatic collimated X-rays, single crystal, tells us
about defects, elastic strain, new phases.



View Phase Transition in Iron

NB Ramp compression along the Earth’s
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Isentrope may resolve existence of a' phase
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wlord X-ray Diffraction
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(Qy’fjfj Multi-Plane X-ray Diffraction

Diffracted X-rays /*
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Post-processed from MD Simulation

Experiment (Kimminau et al J. Phys. Condens. Matter 20, 505203 (2008))
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Diffraction from Polycrystalline Materials
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15t LCLS Experiments will use Nanocrystalline Samples

Unshocked Shocked

Polycrystalline target

Collimated, monochromatic X-ray beam



Diffraction from Shocked Polycrystalline Iron
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Hawreliak et al, submitted to Phys. Rev. B



White Light Lave

Diffracted X-rays
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Single crystal target
Collimated, polychromatic, X-ray beam

19



(P White Light Lave Demonstrated
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M. Suggit et al, Review Sci. Instrum., to be published

| |
20090520 Shot 1
20090520 Shot 3

Intensity / a.u.
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1-nsec pulse of ‘white light’ X-rays
created by laser heating of a ‘cocktail’

target on Janus.
On Omega higher white light energies
are formed at the peak of a capsule

implosion.

Single crystal silicon target
Collimated, polychromatic, X-ray beam



er (001) Mishin MD, Shocked to 50 GPa
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Shock Compression: Pros and Cons

* A steady shock is a relatively simple way to compress materials to
high densities.

 An accurate point on the PV diagram can be located if shock and
particde velocity can be measured.

 Only get a point on the ‘Hugoniot’ - a single line in PV space - that
is very limited EOS information.

 Shocks are irreversible, highly entropic events. The sample is heated
to very high temperatures.

e Typical metals will melt under shock compression at pressures of
order 1 -2 Mbar (note a diamond anvil cell keeps matter solid, and
up to 3 Mbar).

* Planetary cores at high pressure are much cooler (probably solid)
than the conditions we reach on the Hugoniot.

e CONCLUSION: We also wish to compress matter without the shock
heating - for this we need to compress it more slowly.



(Qy’f;f The ‘Standard’ Technique: DAC

Observation

I B eryllium plate
i Dﬁmond anvil

Gasket

Inside of a diamond anvil cell

Sample goes here From http://www hpdo.com/intro.html (Virginia Tech Crystallography Laboratory, USA)

In Diamond Anvil Cells matter can be statically compressed to a few (™ 3)Mbars




(N« Matter at P>>100 GPa (1 Mbar) is quite common
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(Q’f;f When is a compression wave a shock?
y

* With plastic flow, shock waves have finite thickness (due to an
effective “viscosity’).

* The Swegle-Grady relation states that the strain-rate at the shock is
proportional to the 4™ power of the peak stress.

* Note the constunt of proportionality is different for different
materials.

* The SG relation is not fully understood, and is an area of active
research.

* However, it does imply that to keep a given material close to an
isentrope (and thus cooler), we must apply the pressure more slowly
than in the shock (for a given peak stress).

e This cun be achieved by
— Pulse-shaping.

- “"Smart” targets.




Fracture Stress ( MPa)
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Grady & Lipkin, Geophys. Res. Lett., 7, 255 (1980).
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1-D Elastic Shock/Ramp
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MD simulations: ramp vs shock

Cu Mishin [001], 25x25x5000 fcc cells (1.8 um), 300 ps ramp,

U =3.5 km/s = P~2.5 Mbar
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Laser produced isentrope is generated by a
stagnating plasma and measured with line VISAR

Target design VISAR image
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Smith et al., APS DPP, 2004



Sandwich Ramp-Compression

the LiF or Diamond interfacial pressure is the same
as in sample

If we know the EOS of LiF or Diamond we can find the
Pressure in the sample using the VISAR diagnostic

Using this target design, we believe we can ramp
compress samples to ~30 Mbar, Hold the state for
several ns, Determine the pressure, and Make a
measurement.

Laser Drive
Ablation
verberati

Shock
VISAR

XRD, XAFS, XANES, Reflectivity, . . .. Temperature
remains the most important parameter that we do
e not know how to measure.

i
Lawrence Livermore l!l_

National Laboratory




s54206, Fe X-ray Diffraction
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Strain rate is very high, ~108 s1.
Looks like temperature is low.

What does diffraction look like?
Lawrence Livermore
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X-Ray Diffraction at Omega Laser

Fe or Cu
backlighter

Back Plate

Lawrence Livermore l!l_

National Laboratory



(P-oe Future Work
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o Shock Physics:

- Understanding plasticity in body-centred-cubic materials
(twinning).

- Fundamentals of plasticity as a function of strain rate
(shock pressure).

—~Phase transitions - What are the transition times?

* High Pressure Isentropic Compression.
-N.B. - Completely new regime:
- Can we produce and recover a new phase of Carbon?
- New material properties as core electrons overlap?

- Can we recreate und understand giant-planet and super-
earth core conditions?

~Various platforms (Janus/Omega/NIF) all have their role
to play...



