Tuning Low-Adiabat Cryogenic Implosions on OMEGA

V. N. Goncharov University of Rochester Laboratory for Laser Energetics Omega Laser Facility Users' Group Workshop Rochester, NY 27–29 April 2011

Modeling of cryogenic implosions on OMEGA is approaching precision required for ignition

• The majority of the observables are consistent with calculations when the nonlocal thermal transport is used and the effect of cross-beam energy transfer is taken into account in the laser-deposition modeling

- Areal densities measured in cryogenic implosions are in agreement with 1-D predictions
- At current levels of nonuniformity sources (offset, ice roughness, condensables, ablator finish), measured ion temperature is lower than 1-D calculation by ~20% and yield is ~5% to 10% of 1-D predictions
- With improved nonuniformity, cryogenic implosions on OMEGA are predicted to achieve YOC ~15% to 20% with $\langle T_i \rangle ~~90\% \langle T_i \rangle_{1-D}$

Ignition condition depends on fuel areal density, ion temperature, and yield

Minimum shell kinetic energy required for ignition¹

$$E \sim V^{-6} \alpha^4$$
 $\alpha = \frac{P}{P_{\text{Fermi}}}$

• Threshold factor²—measured conditions at neutron-production time

$$\chi = \langle \rho R \rangle^{0.8} \left(\frac{\langle T_i \rangle}{4.7 \, \text{keV}} \right)^{1.6} \text{YOC}^{0.5}$$
 $\chi > 1$ required for ignition

One of the main goals of the cryogenic campaign on OMEGA is to validate modeling of $\langle \rho R \rangle$, $\langle T_i \rangle$, and yield.

¹S. Haan et al., "Point Design Targets, Specifications, and Requirements for the 2010 Ignition Campaign on the National Ignition Facility," submitted to Phys. Plasmas ²R. Betti et al., Phys. Plasmas <u>17</u>, 058102 (2010).

Low-adiabat cryogenic implosions on OMEGA are driven using $\alpha = 2.0$ and $\alpha = 2.5$ target designs

Measured areal density is determined by in-flight shell adiabat, laser coupling, and neutron sampling

• Maximum areal density in a DT implosion*

$$ho R_{\rm max} = 2.6 \frac{E_{L,\rm MJ}^{1/3}}{\alpha^{0.54}}$$

- This is the absolute maximum in areal density assuming perfectly tuned implosion and
 - thin plastic overcoat ("all-DT" design)
 - laser is deposited due to inverse bremsstrahlung (no hot e⁻ or other LPI)
 - flux-limited thermal transport with f = 0.06
 - no coasting phase

Coasting phase leads to a reduced areal density

Shell decompresses during coasting phase

- Return shock sets the shell on higher adiabat $(\alpha_{\rm stag})$ if shell density is lower, leading to lower peak ρR
- In-flight density is reduced by coasting phase or higher in-flight α
 - in-flight adiabat is set by shocks launched at the beginning of drive
 - duration of coasting phase is determined by drive efficiency

Areal Density

Measured areal density is determined by in-flight shell adiabat, laser coupling, and neutron sampling

UR 🔌

Hydro time scale during deceleration $\frac{1}{2}\Delta t_{\rho R} \approx \frac{r_{\text{hs}}}{V_{\text{imp}}} \approx \frac{20 \times 10^{-4}}{3 \times 10^{7}} = 70 \text{ ps}$

> Timing and width of dn/dt relative to ρR curve depends on 3-D effects, laser coupling, adiabat, etc.

In-flight shell adiabat is tuned using VISAR shockvelocity measurements with cone targets

The nonlocal transport model* is used to simulate shock-velocity data

Simulations reproduce shock-velocity data very well for a variety of picket energies and picket timings

LLE

Accuracy in shock-velocity prediction meets the ignition requirement.

Velocities up to 135 $\mu m/ns$ were measured for the shock launched by the main pulse

LLE

To account for shell decompression during coasting, laser coupling must be accurately modeled

Diagnostics to verify hydrodynamic efficiency ($E_{k, \text{ shell}}/E_{\text{laser}}$)

- NTD timing
 - PROs
 - sensitive to small variations in implosion velocity
 - CONs
 - time-integrated effect, not a unique shell-velocity solution

- Scattered-light measurement
 - PROs
 - time-resolved measurement
 - CONs
 - not all absorbed light contributes to the drivenot a direct measurement of hydro-efficiency

Areal Density

The measured bang time is later than predictions for both designs

Scattered light measurements show a reduced laser energy absorption

Beam-to-beam energy transfer leads to a reduction in laser coupling¹

The transfer of energy from (1) to (2) is due to SBS before deposition²

¹ I. V. Igumenshchev *et al.*, "Cross-Beam Energy Transfer

in ICF Implosions on OMEGA," submitted to Phys. Plasmas.

²C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids <u>24</u>, 1474 (1981).

Combination of cross-beam transfer and nonlocal model reproduce bang time measurements

UR

Combination of cross-beam transfer and nonlocal model reproduce scattered light measurements

UR

Areal Density

Deviations in scattered-light data from predictions at late time correlate with excitation of TPD instability

Deviations start earlier when drive intensity is higher

UR

LL

SN//

Areal Density

Areal density in a cryogenic-DT implosion is measured using a magnetic recoil spectrometer

Areal density in a single-view MRS measurement is averaged over solid angle $\Omega \approx$ 3/2 π

Areal Density

Offset > 10 μ m or ice roughness with $\sigma_{\ell} \leq 2$ > 1 μ m makes ρR measurement direction-dependent

• $\delta \langle \rho R \rangle$ for 10- μ m offset $\approx \delta \langle \rho R \rangle$ for ice roughness $\sigma_{\ell} \leq 2 > 1 \ \mu$ m

Areal Density

The measured areal density in triple-picket cryogenic implosions agrees with predictions

UR

The areal-density measurements confirm accuracy of shock tuning and shell stability to short-wavelength perturbations.

5-μm-thick CD shells are considered to take advantage of higher hydrodynamic efficiency of DT ablator

LLE

Thermal conduction ~1/Z DT is more efficient ablator

Predicted and measured scattered light power disagree after CD burns through

$2\omega_p$ parameter is larger for DT ablator because of lower T_e and higher intensity at n=n_c/4

Simulations predict higher perturbation growth at CD-DT interface for thin-CD ablators*

UR

* I. Igumenshchev, APS 2010

Simulations predict higher perturbation growth at CD-DT interface for thin-CD ablators

Cryogenic target in the middle of the main pulse: magnetic fields at CH ablation surface*

CH is all ablated: magnetic fields at CH–D interface

Modeling of cryogenic implosions on OMEGA is approaching precision required for ignition

• The majority of the observables are consistent with calculations when the nonlocal thermal transport is used and the effect of cross-beam energy transfer is taken into account in the laser-deposition modeling

UR 🔌

- Areal densities measured in cryogenic implosions are in agreement with 1-D predictions
- At current levels of nonuniformity sources (offset, ice roughness, condensables, ablator finish), measured ion temperature is lower than 1-D calculation by ~20% and yield is ~5% to 10% of 1-D predictions
- With improved nonuniformity, cryogenic implosions on OMEGA are predicted to achieve YOC ~15% to 20% with $\langle T_i \rangle ~~90\% \langle T_i \rangle_{1-D}$

With the best smoothing, the measured ion temperature is ~20% lower than the predicted value

Ion temperature is inferred from the temporal width of neutron time of flight (nTOF)

Only two parameters: fall slope and detector response for each nTOF

$$m(t) = \frac{A}{2\tau} \exp\left[-\frac{(t-t_1)}{\tau}\right] \times \exp\left(\frac{\sigma^2}{2}\right) \left\{1 + \exp\left[\frac{(t-t_1) - \sigma^2/\tau}{\sqrt{2\sigma^2}}\right]\right\}^*$$

UR 🔌

Neutron spectrum broadening is caused by thermal ion motion and bulk fluid motion

Flow with spherical symmetry leads to spectral broadening

T_i calculated from reaction-averaged neutron energy width must be compared with $\langle T_i \rangle_n$

$$\langle T_{i} \rangle_{n} = \frac{\int dt \int dV n^{2} \langle \sigma \nu \rangle T_{i}}{\int dt \int dV n^{2} \langle \sigma \nu \rangle}$$

$$\langle f \rangle = \frac{\int dt \int dV n^{2} \langle \sigma \nu \rangle f}{\int dt \int dV n^{2} \langle \sigma \nu \rangle} \propto \exp \left[-4 \log(2) \left(\frac{E - E_{0}}{\Delta E_{fit}} \right)^{2} \right]$$

$$\langle T_{i} \rangle_{fit} (keV) = \left(\frac{\Delta E_{fit} (keV)}{177} \right)^{2}$$

For a spherically symmetric implosion

Temperature gradient inside the hot spot leads to a reduction in $\langle T \rangle_{fit}$ with respect to $\langle T \rangle_n$

UR 👐

Radial flow leads to an increase in $\langle T \rangle_{fit}$ with respect to $\langle T \rangle_{n}$

$$f(E) = \frac{\sqrt{\pi}}{2M_a} \left[\operatorname{erf} \left(\frac{E - E_0}{\Delta E} + M_a \right) - \operatorname{erf} \left(\frac{E - E_0}{\Delta E} + M_a \right) \right]$$
$$M_a \ll 1$$

$$f(E) \propto \exp\left\{-\left(\frac{E-E_0}{\Delta E_{\text{fit}}}\right)\right\} \Rightarrow \left\langle T_i \right\rangle_{\text{fit}} = T_i + \frac{2}{3}m_i V_f^2$$
$$m_i = 2.5 m_p, V_f = 3 \times 10^7 \text{ cm/s}, \frac{2}{3}m_i V_f^2 = 1.6 \text{ keV}$$

- Effect of the flow is reduced because the peak in dn/dt is close to stagnation
- Effect of flow is stronger for implosions with large offset

For a typical low-adiabat cryogenic implosion with small offset $\langle T \rangle_{fit} \sim 95\% \langle T_i \rangle_n$

⟨ <i>T</i> _i ⟩ _n	<i>∖T</i> ⟩ _{fit}	<i>∖T</i> ⟩ _{fit}
keV	no flow	with flow
2.7	2.5	2.6

Ion temperature and yield are reduced because of hot-spot distortion growth

¹P. Kishony and D. Shvarts, Phys. Plasmas <u>8</u>, 4925 (2001).

For a typical low-adiabat cryogenic implosion with small offset $\langle T \rangle_{fit} \sim 95\% \langle T_i \rangle_n$

UR

Moderate-size amplitude of $\ell = 2$ increases effective hot-spot region

UR

As the hot-spot deformations grow, effective volume reduction caused by short wavelengths compete with volume increase because of $\ell = 2$ growth

IIE

Increased hot-spot volume caused by $\ell = 2$ broadens the neutron rate

