#### The OMEGA EP 4ω Probe Diagnostic



D. H. Froula University of Rochester Laboratory for Laser Energetics Omega Laser Facility Users' Group Workshop Rochester, NY 27–29 April 2011

#### Summary

# The $4\omega$ diagnostic on OMEGA EP will be activated by the end of FY11 and be ready for users by January 2012



- interferometry
- Design presents options for expanded optical diagnostics
- Advanced optical-design tools are being adapted to provide synthetic diagnostic images for experimental setup and analysis

The three diagnostics coupled with detailed optical modeling of the system will provide a novel diagnostic platform for detailed plasma measurements.

#### The $4\omega$ team



| W. Theobald                      |
|----------------------------------|
| C. Stoeckl                       |
| R. S. Craxton                    |
| W. Seka                          |
| S. Ivancic (UR-Graduate Student) |
| M. Rushford (LLNL)               |
| N. Kugland (LLNL-Post Doc)       |
|                                  |

- B. Boni
- **D. Weiner**
- R. Jungquist
- F. Ehrne
- M. Bedzyk
- M. J. Shoup III
- T. Duffy
- J. Puth
- **R. Brown**
- R. G. Roides

# A 263-nm (4 $\omega$ ) laser is currently being qualified on OMEGA EP and will be operational this summer



#### The laser system will deliver a 5-mm spot to target chamber center with high spatial uniformity



### The optical collection system will provide access to high density laser-produced plasmas

An *f*/4 system:

- long-pulse plasmas  $(L_x/L_z \sim 2)$ :  $n_e = 10^{21}$  cm<sup>-3</sup>
- prepulse plasmas ( $L_{\rm X}/L_{\rm Z}$  ~ 6):  $n_{\rm e}$  = 4 × 10<sup>20</sup> cm<sup>-3</sup>

UR 🔌



An f/4 system will provide access to highly refractive plasmas.

#### The f/4 collection system will provide <5 $\mu$ m resolution over the 5-mm field of view

UR



E19829

### The optical transport accommodates multiple diagnostics and has built-in flexibility



LL

The 55-sq-ft diagnostic table provides space for diagnostic expansion.

# Modeling indicates the schlieren optical design can produce 1- $\mu$ m resolution in the plasma plane

- Convolved with the CCD pixels and alignment realities, a <10- $\mu$ m resolution is anticipated
- A magnification of M = 7 provides a ~2.5-mm field of view



The system is designed to produce high resolution over the 2.5-mm field of view.

# A complete analysis package is being developed to provide experimental design and complex data reduction

UR 🔌



data analysis, and advanced diagnostic design.

#### Interferometry is limited to electron densities below $\sim$ 4 $\times$ 10<sup>20</sup> cm<sup>-3</sup> in laser-produced plasmas

- Interferometry has been designed for 5- $\mu$ m resolution
- A magnification of 15 provides a 1.8-mm field of view

#### **Experimental design considerations**

- Probe beam must overlap plasma with vacuum
- Polarization will be rotated to align fringes with experimental configuration
- Scale lengths  $(L_x, L_z)$  limit the maximum accessible density



E19798

### Optical modeling can be used to optimize experimental design and identify limitations



#### **Optical model**

- Used to identify diagnostic limitations
- Used to optimize experimental design
- Used for advanced post-shot analysis
  - optical model includes refraction



See poster by N. Kugland

# Grid-imaging refractometry (GIR) measures the refraction of beamlets at three locations within the plasma



\*R. S. Craxton et al., Phys. Fluids B 5, 4419 (1993).

UR 🔌

#### Summary/Conclusions

# The $4\omega$ diagnostic on OMEGA EP will be activated by the end of FY11 and be ready for users by January 2012



- interferometry
- Design presents options for expanded optical diagnostics
- Advanced optical-design tools are being adapted to provide synthetic diagnostic images for experimental setup and analysis

The three diagnostics coupled with detailed optical modeling of the system will provide a novel diagnostic platform for detailed plasma measurements.

\*R. S. Craxton et al., Phys. Fluids B 5, 4419 (1993).