Developing magnetic platforms for basic HED Science

 $B_0 r_0^2 = B r^2$

[∎][™]Magnetization of plasma electrons inhibits heat-conduction losses

The seed B field is created by a compact, self-contained magnetic field generator

- MIFEDS–Magnetized Inertial Fusion Electrical Discharge System
- · Various coils were tested
- Seed fields up to 150 kG can be obtained (depends on the coil size and geometry)

O. V. Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009).

MIFEDS is installed in an OMEGA Diagnostic Inserter

E19779

Compressed magnetic fields up to 30 MG were inferred in cylindrical implosions using proton deflectometry

Field compression of ~ 550 has been achieved. Agrees with flux conservation

*A. D. Sakharov, Sov. Phys. Usp. 9, 294 (1966) **F. S. Felber *et al.*, Phys. Fluids **31**, 2053 (1988)

4

O. V. Gotchev et al., Phys. Rev. Lett. <u>103</u>, 215004 (2009). E19780

Single-coil B field was used for fusion-enhancement measurements in spherical geometry

 Single-coil provides stronger seed fields (80 kG), less interference with laser beam

FSC

- 40 beams (18 kJ/1 ns) were used for compression
- Implosion uniformity is diagnosed using x-ray BL radiography
- nTOF diagnostic was used for Ti and neutron-yield measurements

The fusion enhancement is thought to be limited by the openfield line geometry

 Ratio of open field-lines area to target– surface area ~1/2, so less than 50% of conduction losses is reduced

FSC

- Challenge: create closed-flux surfaces inside the shell
- Could be done (for example) by driving current through the target

Closed magnetic field lines can be created by driving current through the target

