On the fielding of a High Gain Shock Ignition Target on NIF

G. Schurtz,X. Ribeyre, A Casner, M. Lafon, J.Perkins, S. Craxton, W.Theobald S. Atzeni *CELIA/LLNL/LLE/Un. Roma*

Shock Ignition is Shock Assisted Central Ignition Idea : boost up central pressure → non isobaric HS

 $\mathbf{E}_{\mathbf{L}}$ laser energy

Rosen model shows the low threshold and high gain possibility of a non-isobaric configuration

(1) M.D. Rosen and J.D. Lindl (1984) UCRL-50021-83

(1) Ribeyre et al. : PPCF (2009)

AS FI, SI separates Ignition from compression

+ Requires only standard laser technology

− → achievable on NIF/LMJ class laser

- Needs higher implosion velocity than FI
 - → Stability and symmetry constraints apply (Absorbed) Spike Power at ignition threshold

Absorbing > 100 TW requires dedicated beams focused at $R_0/2$

Compression beams focused at R_0

Ignition beams focused at $\sim R_0/2$

→ Allows 75% reduction in incident power

(1) Betti R. et al. : PRL 98 (2007)

using a composite drive on NIF limits the power requirement to 350 TW

SI on NIF is achievable at low damage threshold (<1.8 TW/beam)

A SYMMETRIC COMPRESSION REQUIRES POLAR DRIVE

Design Constraints

- Composite drive
 - $R_c \sim R_0/2$ at launch time
 - → Spike beams on small focal spots : R_{sp}=R_c
 - → Compression beams on best focal spots for uniformity : R_{comp}
- ~200 TW are required for ignition
 - Maximum power / beam is 1.8 TW (350/192)
 - ~96 ignition beams required + contribution from compression beams
 - → total « 1D equivalent » power

$$W = 1.8 (N_{sp} + (192 - N_{sp})(R_{sp} / R_{comp})^2)$$

− Eg : N_s=N_c=96, R_{sp}=R_{comp}/2 → W_{eq}=216 TW

• Quads must have same pulse shape

We are now studying various PDD designs for SI

Initial NIF polar drive simulations with SAGE indicates that a good degree of uniformity may be attainable (from S.Craxton LLE)

24 spots with 96 beams

 $\sigma_{\rm rms}$ < 1% for a > 0.9 (Gaussian)

Cone	Repointing	Power/beam at 100 TW
30°	30° unsplit	0.7
50°	69.5° :4+4 unsplit	1.2

48 and 96 beams patterns go 1/2/4 : cannot be directly achieved with 24 quads

Ideal 96 beams pattern

Approximated by 32 quads, 128 beams

128 comp beams + 64 ign beams

Cone	Repointing	Power/beam at 100 TW		
23°5	23°5 : 16 splitted	0.56		
44°5	44°5 : 16 splitted	0.65		
50°	75° : 32 splitted	0.95		

Indicators for
$$R_{spot}=0.75$$

 $\sigma_{rms:} 0.82\%$
Abs efficiency : 73%
SPIKE
 $1.8x64 = 115 \text{ TW}$
 $R_{spot}=1.5_{Rspike}$
Abs = 32% (~75 TW)
=> Total spike=190 TW

40 quads / 160 Compression beams :

mixed Polar/direct drive

Consequences for target design

• P_{spike}~200 TW

→Implosion velocity>250 km/s

(Absorbed) Spike Power at ignition threshold

- 200 TW, 250 km/s is close to threshold if τ_{abs} =50%
 - Absorption must be > 60 % → CH , CHDT, SiO2 ablator
 - DT will need 270 km/s

Little space remains for target design

power

- Conf 1 (24 spots, 2cones, 69° PDD).
 - External beams require 1.9 TW for 100 TW comp
- Conf 2, 3
 - 1TW for 100 TW but extra margin required for time dependant symmetry

→ Compression power < 90 TW

LPI issues : limit compression intensity to ~ 8 $10^{14}\,W/cm^2$

→ Target Radius
$$R_{100\mu m} \ge P_{TW}^{1/2}$$

~.9 mm for 80 TW

NIF PDD Shock Ignition target

PDD Summary

Conf	N _{comp}	N _{spike}	R _{comp} /R 0	σ _{rms} %	τ _{abs} %	P _{comp} TW	P _{spike} TW	
Unsplit Ω _{like}	4x24	96	0.95	0.84	63 24	80	217	bipolar
96-like	128	64	0.75	0.82	73 32	100	190	
mix	160	32	0.6	0.64	88 60	100	230	Needs CH

PDD

-2 rings PDD is the simplest, but will need a 24 quads bipolar shock drive

-3 rings PDD involves more than 24 quads

-Mix drive gives the best uniformity for the smallest focal spots.

→Uneven (as 40/8) composite drives may perform better than even 24/24

→192 compression beams with R_{comp}=0.55 gives >200TW for the spike ! Target

.7mg, AR=3.3 seems the limit. .64mg, AR=4 performs well at 80 TW 30 microns CH performs better than 10 (absorption, X-ray shielding) Amenable to Br or Ge doping if an Au IR protection is used

Rayleigh-Taylor instability (RTI)
for low mode asymmetry (irradiation)Density evolution during the stagnationWithout shockWith shock

A Symmetrical shock may be obtained from a non uniform drive Symmetrical compression p 3.982e+15 3.884e+15 3.787e+15 3,690e+15 3,593e+15 3.496e+15 3.399e+15 3.802e+15 3.205e+15 3.108e+15 3.010e+15 2.913e+15 2.816e+15 2.719e+15 2.622e+15 2.525e+15 2.428e+15 **Bi-polar** 2.931e+15 2.2340+15 2.136e+15 2,033e+15 ignitors 1,942e+15 1.845+15 1.748e+15 1.6510+15 1.554e+15 1,4570+15 1.360e+15 1.262e+15 1,165e+15 1,068e+15 9.711e+14 8,740e+14 7.769e+14 6.798e+14

 $a_l(R_{ab}) \prec a_l(R_{cri}) \left[\frac{R_a}{R_c}\right]^l$

 $\frac{R_a}{R_c} \approx 0.5$

Cloudy Day model

Fichier Hol362

Date: 24/04/2009 18:15

Nomiribeur

Version: V4

Temps: 10,96996ns

Cucle: 16591

5,827e+14 4,856e+14 3,884e+14

2.913e+14 1.942e+14

9.712e+13

7.563e+09

horus/Lagrange

Cas:

Shock Symmetry issues will be investiated on Omega

Summary

- Shock Ignition is considered for HiPER as well as Fast Ignition
 - → needs demonstration
 - → down selection on a risk/cost analysis basis
- NIF is achievable in the near term on NIF using D1 hardware : X-Ray pattern + RPP
- Main Physical issues are investigated on Omega