Yield and Ion Temperature Measurements in Exploding Pusher Experiments at OMEGA in Preparation for NIF Experiments

M.J. Rosenberg, A. B. Zylstra, N. Sinenian, C.K. Li, F.H. Seguin, J.A. Frenje, R. D. Petrasso Plasma Science and Fusion Center, Massachusetts Institute of Technology

> P. McKenty, T. C. Sangster, V. Glebov, C. Stoeckl Laboratory for Laser Energetics

> J. R. Rygg, A. MacKinnon, D. Hicks, S. Friedrich Lawrence Livermore National Laboratory

OLUG Workshop 4/28/10 J. Kilkenny General Atomics

INTRODUCTION AND MOTIVATION

Abstract

We have compared measurements of yield and ion temperature from a variety of diagnostics used in our March 4 2010 exploding pusher experiments at OMEGA. This work was conducted in preparation for their application at the NIF. In particular, we have compared ion temperatures inferred from the Doppler width of the D³He-proton spectrum and from the ratio of DD- and D³He-proton yields. In addition, we have assessed the consistency of yield measurements from several nuclear diagnostics that will be employed in the upcoming campaign at the NIF.

This work was supported in part by the U.S. Department of Energy, the Fusion Science Center at the University of Rochester, the National Laser Users Facility, Lawrence Livermore National Laboratory, and the Laboratory for Laser Energetics at the University of Rochester.

Accurate measurements of the ion temperature – in addition to ρR – will be essential for guiding the National Ignition Campaign (NIC) towards ignition and gain

The marginal ignition criterion is defined by two quantities: pR and T_i

Several fusion products are used in the measurement of yield and ion temperature

We are developing the capability to make accurate yield and temperature measurements at the NIF by cross-calibrating measurements from several fusion product diagnostics at OMEGA

F.H. Seguin, et al. Rev. Sci. Inst. 74 2 (2003), V. Yu. Glebov, et al. Rev. Sci. Inst. 77 (2006)

MEASUREMENT TECHNIQUES

Technique 1

Ion temperatures can be inferred from the ratio of DD and D³He yields because the DD and D³He reactivities depend differently on T_i

C.K. Li, et al. Phys. Plasmas. 7 6 (2000), F.H. Seguin, et al. Rev. Sci. Inst. 74 2 (2003)

The ion temperature can also be determined from the Dopplerbroadened D³He-proton spectrum

Absolute measurements of the DD-p and D³He-p spectra, using several diagnostics, were compared to each other to evaluate the fidelity of the different techniques

An ion temperature can be accurately inferred from the linewidth of the D³He-proton spectrum if the other broadening mechanisms are well characterized

$\sigma^2_{\text{total}} = \sigma^2_{\text{thermal}} +$	σ ² other	
	Source**	σ (keV)
	Instrumental Broadening	150-190
	High mode pR modulations	10-20
	Low mode pR modulations	5-10
	ρR Temporal Evolution	10-20
	Geometric Broadening	~ 25
	ρR Dispersion	25
	ρR Straggling	18
	Electric Field Evolution	?
	Ablated Mass	?

EXPLODING PUSHER DATA

March 4 2010 yield data determined from several diagnostics are in good agreement

March 4 2010 temperature data determined from the ratio method and from Doppler broadening are in relatively good agreement

March 4 2010 Ion Temperature

CPS Yield Ratio Ion Temperature (keV)

A comparison of yield and T_i data suggests that nTOF provides a reliable yield measurement and that WRFs provide reliable ion temperatures

DD Yield	
Diagnostic	Average (x10 ⁹)
nTOF	1.6 <u>+</u> 0.2
CPS	1.5 <u>+</u> 0.2

D ³ He Yield		
Diagnostic	Average (x10 ⁸)	
CPS	7.0 <u>+</u> 1.0	
PTD	6.9 <u>+</u> 1.4	
WRF	***	

Ti		
Diagnostic	Average	
WRF (Doppler)	9.0 <u>+</u> 1.8 keV	
CPS (Ratio)	7.8 <u>+</u> 0.8 keV	
nTOF	12.3 <u>+</u> 11.9 keV	

Differences in the ion temperatures inferred from the ratio method and the Doppler method may be the result of other broadening mechanisms' contributing to the total linewidth

** See A.B. Zylstra poster

FUTURE WORK AT NIF

The upcoming NIF campaign consists of several types of experiments, including the direct-drive D³He exploding pushers** and indrect-drive SymCaps, THD, and more

**Exploding pushers will be used for the commissioning of the ignition diagnostic suite

Several of the diagnostics employed at OMEGA will be used in these NIF experiments, including WRF spectrometers along both polar and equatorial views

We will field WRFs at both the pole and at the equator, with multiple WRFs in a single DIM

Accurate measurements of the ion temperature will be essential for guiding the NIC towards ignition and gain; we have demonstrated the viability of several independent T_i measurement techniques

The marginal ignition criterion is defined by two quantities: ρR and T_i

Conclusions

- We have cross-calibrated at OMEGA several diagnostics used to measure yields and ion temperatures
- Using data from our March 4 2010 D³He exploding pusher experiment, we have compared DD yields, D³He yields, and ion temperatures measured by WRFs, CPS, and nTOF
- We have established the fidelity of WRF-based temperature measurements and have confirmed the reliability of nTOF yield measurements
- Many of these techniques for diagnosing the ion temperature and yield will be applied at the NIF