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Abstract Experimental Setup

We present the first x-ray Thomson scattering measurements from inertial confinement fusion targets.
Spectrally resolved x-ray Thomson scattering has been applied at the Omega Laser Facility to investigate the
capsule adiabat of cone-in-shell inertial confinement fusion targets. Here the technique of scattering from

from the nse lasers (¢

113°and recorded using a HOPG Bragg spectrometer (ZSPEC).
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< The non-collective, or microscopic behavior of the plasma, was probed with XRTS of Zn He-alpha x-rays at id
a scattering angle of 113°. Diagnostics: >
< For these degenerate plasmas, the width of the inelastic scattering peak is proportional to the Fermi ii&f&.':"l.‘;"&‘: recordthe o N TR L

energy, and thus the electron density. The electron temperature is obtained from the measured intensities
of the elastic and inelastic features (assuming T,=T;) due to dependency of the elastic scattering intensity
on ion temperature. The calculated adiabat ( (n, (245T.(T, /T,) + (3/5)T,) + nT)/(n,(3/5)T;) ) is dependent on
T, T,and T,
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Theoretical fis to in-flight scattering measurements yield electron densities ranging from 0.06 to
1.1x1024cm and temperatures ranging from 6 to 11 eV for varying drive conditions (pulse shaping and
drive energy) . The corresponding adiabats ranged from ~10 for the weakly driven, high adiabat
implosion, to ~1.2 for a low adiabat, highly compressed implosion
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