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Hydrocarbon EOS experiments were performed  
using laser-driven shock waves on OMEGA
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•	 Experiments used laser energies between 200 to 1130 J delivered  
in a nominally 2-ns square pulse.

•	 Average laser irradiances on target were 0.3 to 1.1 × 1014 W/cm2

VISAR* has time resolution of <30 ps and shock-velocity precision of ~1%.
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EOS data are obtained from the  
impedance-matching technique
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Higher precision is obtained with a transparent standard 
compared to an opaque standard
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Random Errors

•	 Only information 
is transit time

•	 Can use only 
integrated shock 

•	 No knowledge of 
shock stability
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Precision EOS data tightly constrain polystyrene (CH) 
and polypropylene EOS models
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The polystyrene results have higher precision  
than previous studies
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Shocked CH and CH2 become reflective 
at 1 to 2 Mbar
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Expected behavior of dielectrics undergoing
insulator-conductor transition.

•  Reflectivity measurements are needed for temperature calculations
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The measured brightness temperatures are consistent  
with models; but differences among models are too small  
to be discerned
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This provides a complete EOS of CH and CH2.

Polystyrene (CH) double-shock data are in agreement 
with single-shock results
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Inferred principal Hugoniot results for polystyrene 
from reshock data are consistent with single-shock 
measurements
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Accuracy of the inversion method is tested by using  
the effective gamma and shows to be in agreement  
with single-shock states, as predicted by models
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Reflected shocks are used to create  
double shock states in CH
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Small differences in models are amplified using reshock to move off the Hugoniot.
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a-quartz’s experimental principal Hugoniot is used, 
and its release isentrope is approximated using  
the Mie-Grüneisen EOS
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1	D. G. Hicks et al., Phys. Plasmas 	
	 12, 082702 (2005).

Systematic Errors
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Hugoniot

•	 C describes pressure differences between 
equal volume states on 

	 the Principal Hugoniot

•	 Combining the above with the first law of 
thermodynamics, dE = TdS – PdV, with 
dS = 0, leads to a recursion relation describing 
a loci of isentropes in the P–V plane

•	 Based on models, C is assumed to be 
constant in the high-pressure fluid regime, 
with value C = 0.64±0.11                       

V
dE
dP

v
C = b l

Precision equation-of-state (EOS) measurements 
are obtained on various hydrocarbons at 1 to 10 Mbar
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Summary/Conclusions

•	 Precise knowledge of ablator EOS is required for ICF target designs

•	 Laser-driven shock waves produce EOS data using the impedance-
matching (IM) method

•	 CH data allows for model discrimination, favoring SESAME 7592
      	–	 mild softening is not accounted for between 2 to 4 Mbar
      	–	 single- and double-shock results display similar behavior

–	 inferred single-shock results from double-shock data is in 
agreement with principal Hugoniot measurements

•	 Stoichiometry effects between CH and CH2 are well-predicted by models 

•	 Both CH and CH2 reach similar compressions and temperatures 
as a function of pressure

Single-shock states are inferred from double-shock data 
via an inversion method
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Hugoniot relations for single- and re-shock states

–U U Us p s1 1 1 10t t=_ i –ZU U U U2 s p s p2 2 1 2 1t t=_ _i i

– –ZP U U U UP2 s p pp1 2 1 2 11 t= _ _i iP U U0 s p1 1 1t=
5 unknowns

Hugoniot equation:
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Abstract

The equation of state (EOS) of polystyrene and polypropylene was 
measured using laser-driven shock waves with pressures from 1 to  
10 Mbar. Precision data resulting from the use of a-quartz as an impedance-
matching (IM) standard tightly constrains the EOS of these hydrocarbons, 
even with the inclusion of systematic errors inherent to IM. The temperature 
at these high pressures was measured, which, combined with kinematic 
measurements, provide a complete shock EOS. Both hydrocarbons were 
observed to reach similar compressions and temperatures as a function 
of pressure. The materials were observed to transition from transparent 
insulators to reflecting conductors at pressures of 1 to 2 Mbar.
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