Low density plasma experiments investigating laser propagation and proton acceleration

L Willingale, K Krushelnick, A Maksimchuk Center for Ultrafast Optical Science, University of Michigan, USA W Nazarov University of St Andrews, UK PM Nilson, C Stoeckl, TC Sangster LLE, University of Rochester, USA

Motivation

- Laser propagation and channeling in near critical densities is important for the hole boring fast ignition scheme
- Ion acceleration at near-critical densities has been shown to be an interesting regime for producing high energy ion beams

Previous work – using proton acceleration to diagnose laser propagation

• Vulcan experiments investigated laser propagation in the relativistic transparent regime, $a_0 = 35$, (500 J, $\tau_L = 600$ fs, 5 µm focal spot) using proton acceleration as a diagnostic.

• Omega EP experiment is lower intensity, $a_0 = 3$, but longer pulse length, $\tau_L = 10$ ps, where hole boring through the plasma is expected to be important for the channel formation and laser propagation.

Experimental setup

Michigan Engineering

Summary and Future work

- Summary of data so far:
 - Density scan around the critical density has been shot on Omega EP
 - High energy proton beams were measured
 - Consistent trends observed with different diagnostics
- Future work:
 - Run 2D particle-in-cell (PIC) code for Omega EP conditions
 - Investigate the how much laser energy is transmitted through the foam, but shifted out of the bandwidth of the filter