Status of Integrated Fast- and Shock-Ignition Experiments on OMEGA

No short pulse

CD shell	~870- <i>µ</i> m diam	
Driver energy	~18 kJ	
Short pulse	~1.3 kJ	
Pulse duration	~10 ps	
Focus	~40- μ m diam	

With short pulse

W. Theobald University of Rochester Laboratory for Laser Energetics Omega Laser Facility Users' Group Workshop Rochester, NY 29 April – 1 May 2009 Summary

FSC

Fast and shock ignition are investigated on the Omega Laser Facility

- Integrated cone-in-shell fast-ignition experiments with up to 1.3 kJ of short-pulse energy and ~18 kJ of long-pulse energy have begun.
- A significant increase in x-ray emission is measured with the higher OMEGA EP laser energy.
- Neutron measurements are challenging due to a strong x-ray background and mitigation techniques are discussed.
- Experiments with shock-ignition pulses show a 4× improvement in yield and 30% more areal density compared to conventional pulses.
- Shock-ignition experiments with 40 beams for fuel assembly and 20 delayed high-intensity beams show significant coupling of shockand fast-electron energy into the target.

Two-step ignition processes offer the possibility of higher target gain for a fixed laser energy.

Collaborators

FSC

K. S. Anderson, R. Betti,* R. S. Craxton, J. A. Delettrez, V. Yu. Glebov,
O. V. Gotchev, F. J. Marshall, R. L. McCrory,* D. D. Meyerhofer,* J. F. Myatt,
P. M. Nilson, P. B. Radha, C. Ren,* T. C. Sangster, A. A. Solodov,*
C. Stoeckl, M. Storm, and C. D. Zhou

Laboratory for Laser Energetics and Fusion Science Center, University of Rochester *Also Depts. of Mechanical Eng. and Physics, University of Rochester

J. A. Frenje and R. D. Petrasso

Plasma Science and Fusion Center Massachusetts Institute of Technology

P.A. Norreys

Rutherford Appleton Laboratory

D. Hey, A. J. MacKinnon, and P. K. Patel Lawrence Livermore National Laboratory

> R. B. Stephens General Atomics

Fast and shock ignition can trigger ignition in massive (slow) targets leading to high gains

Integrated fast-ignition experiments with re-entrant cone targets have begun at the Omega/Omega EP Laser Facility FSE

Shell material	CD
Shell diameter	~870 <i>µ</i> m
Shell thickness	~40 <i>µ</i> m
Shell fill	Empty
Cone material	Gold

Energy	~18 kJ (54 beams)	
Wavelength	351 nm	
Pulse shape	Low-adiabat, $\alpha \approx$ 1.5	
Pulse duration	~3 ns	
Implosion velocity	\sim 2 \times 10 ⁷ cm/s	

Target focal spot, log scale

Energy	~1.3 kJ
Wavelength	1053 nm
Pulse duration	~10 ps
Intensity	\sim 1 \times 10 ¹⁹ W/cm ²

The cone has to withstand the plasma pressure up to peak compression, ensuring a plasma-free path for the short-pulse beam

Pointing and timing of the short-pulse beam was achieved with ~20- μ m and ~50-ps accuracy

Two orthogonal x-ray pinhole camera interactive views provide the spatial information

• Measured time of short-pulse interaction: 3.50±0.05 ns

UR

A significant increase in x-ray emission is measured with higher OMEGA EP laser energy FSE

Time-integrated x-ray pinhole images E_{Ph} = 2 to 7 keV, Δt = 3.5 ns

E17739

No significant change in x-ray emission was measured for various time delays and 500 J short-pulse energy

Neutron measurements are challenging in fast-ignition integrated experiments because of a strong x-ray background

Fast electrons streaming through the high-Z cone material produce a significant γ pulse that overwhelms the neutron time-of-flight diagnostics for *E* > 500 J.

The neutron detectors are strongly affected by the hard-x-ray background

Integrated 2-D hydrodynamic DRACO/LSP simulations were performed for various experimental conditions FSE

- 20° half-divergence angle of electron beam
- Calculations do not account for transport through cone wall
- 15-µm gold wall thickness will have significant effect on energy transport
- The expected n yields below 1 kJ are in the range of the current noise level of 12-m NTOF

A liquid scintillator neutron time-of-flight detector is being developed to suppress the x-ray background induced fluorescence

Liquid scintillators with a molecular O_2 quenching agent have a fast decay time and are promising detectors to measure the D_2 neutron yield

Courtesy of Ronald Lauck, PTB (Physikalisch Technische Bundesanstalt, Braunschweig, Germany).

FSC

Copper cone targets will be tested in future experiments

- Reduced x-ray bremsstrahlung emission
- Improved fast-electron energy transport through cone wall for lower-Z elements

Cone type	t (μm) wall thickness	d (μm) tip diameter	⊕ (°) full cone angle
Ι	20	20	34
II	25	40	40
III	30	60	46

FSC

A Kirkpatrick–Baez x-ray microscope with a WB_4C multilayer mirror will image the Cu K-shell emission FSE

KB image from gold cone target and broadband mirror

Core and cone tip heated with OMEGA EP beam (1 kJ, 10 ps)

K α emission from Cu-doped CH shells will be used to infer fast-electron heating

- ITS Monte Carlo code simulations by A. MacKinnon and D. Hey assuming 1% atomic Cu in 40 μm CH shell
- Predicted good signal level for KB instrument

Shock ignition relies on a shaped laser pulse with a trailing high-intensity spike

UR 🔌

LLE

The ignitor shock wave significantly increases its strength as it propagates through the converging shell.

CH shells have been imploded on OMEGA to test the performance of shock-ignition pulse shapes FSE

The neutron yield increases considerably when a shock is launched at the end of the pulse.

The shock-ignition pulse-shape implosions show improved areal densities and neutron yields

• The measured-to-calculated neutron-yield ratios are close to 10% for a hot-spot convergence ratio of 30.

Laser–plasma interaction during the spike pulse and hotelectron generation are important issues for shock ignition

Hot-electron generation and laser–plasma instabilities are studied at ignition-relevant spike intensities

LLE

- 60 OMEGA beams are split into 40 low-intensity drive beams and 20 tightly focused, delayed beams (up to 2×10^{16} W/cm²)
- Hydrodynamic performance and laser backscattering are studied
- Preliminary results are moderate T_{hot} ~ 45 keV,
 - ~10% conversion efficiency $E_{spike} \rightarrow E_{hot}$,
 - ~20% backscattering at 5×10^{15} W/cm² (SRS + SBS)

FSC

A significant coupling of high-intensity-pulse energy into the capsule is measured, despite a large target-illumination nonuniformity

Summary/Conclusions

FSC

Fast and shock ignition are investigated on the Omega Laser Facility

- Integrated cone-in-shell fast-ignition experiments with up to 1.3 kJ of short-pulse energy and ~18 kJ of long-pulse energy have begun.
- A significant increase in x-ray emission is measured with the higher OMEGA EP laser energy.
- Neutron measurements are challenging due to a strong x-ray background and mitigation techniques are discussed.
- Experiments with shock-ignition pulses show a 4× improvement in yield and 30% more areal density compared to conventional pulses.
- Shock-ignition experiments with 40 beams for fuel assembly and 20 delayed high-intensity beams show significant coupling of shockand fast-electron energy into the target.

Two-step ignition processes offer the possibility of higher target gain for a fixed laser energy.