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Fast and shock ignition are investigated  
on the Omega Laser Facility 
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Summary

FSC

•	 Integrated cone-in-shell fast-ignition experiments with up to 1.3 kJ  
of short-pulse energy and ~18 kJ of long-pulse energy have begun.

•	 A significant increase in x-ray emission is measured with the higher 
OMEGA EP laser energy. 

•	 Neutron measurements are challenging due to a strong x-ray background 
and mitigation techniques are discussed.

•	 Experiments with shock-ignition pulses show a 4× improvement in yield 
and 30% more areal density compared to conventional pulses.

•	 Shock-ignition experiments with 40 beams for fuel assembly and  
20 delayed high-intensity beams show significant coupling of shock-  
and fast-electron energy into the target.

Two-step ignition processes offer the possibility  
of higher target gain for a fixed laser energy.
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Fast and shock ignition can trigger ignition
in massive (slow) targets leading to high gains
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Integrated fast-ignition experiments with re-entrant cone 
targets have begun at the Omega/Omega EP Laser Facility
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J. Bromage et al., 
Opt. Express 21, 
16,561 (2008).



The cone has to withstand the plasma pressure up to 
peak compression, ensuring a plasma-free path for  
the short-pulse beam
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•	 Streaked optical pyrometer 
(SOP) measures the breakout 
through 15-nm-thick cone tip

•	 Shock breakout at 3.50±0.05 ns 
is close to peak compression

• 	Areal density from 2-D 
hydrocode simulations

•	 Time of (tR)max is close to 
optimum injection time for  
fast electrons
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Pointing and timing of the short-pulse beam  
was achieved with ~20-nm and ~50-ps accuracy
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•	 The neutron temporal diagnostic 
operating in hard x-ray mode 
provides temporal information

•	 Measured time of short-pulse 
interaction: 3.50±0.05 nsTwo orthogonal x-ray pinhole camera 

views provide the spatial information



A significant increase in x-ray emission  
is measured with higher OMEGA EP laser energy

E17739

FSC

OMEGA EP = 0 J 
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Time-integrated x-ray pinhole images EPh = 2 to 7 keV, Dt = 3.5 ns
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No significant change in x-ray emission was measured 
for various time delays and 500 J short-pulse energy
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Neutron measurements are challenging in fast-ignition 
integrated experiments because of a strong x-ray 
background
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Fast electrons streaming through the high-Z cone material produce a significant 
c pulse that overwhelms the neutron time-of-flight diagnostics for E > 500 J.
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The neutron detectors are strongly affected  
by the hard-x-ray background
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Integrated 2-D hydrodynamic DRACO/LSP simulations 
were performed for various experimental conditions
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•	 20º half-divergence angle  
of electron beam

•	 Calculations do not  
account for transport  
through cone wall

•	 15-nm gold wall thickness  
will have significant effect  
on energy transport

•	 The expected n yields 
	 below 1 kJ are in the 
	 range of the current 
	 noise level of 12-m NTOF
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A liquid scintillator neutron time-of-flight detector  
is being developed to suppress the x-ray background  
induced fluorescence
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Liquid scintillators with a molecular O2 quenching agent have a fast decay 
time and are promising detectors to measure the D2 neutron yield

Courtesy of Ronald Lauck, PTB (Physikalisch  
Technische Bundesanstalt, Braunschweig, Germany).
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Copper cone targets will be tested  
in future experiments
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•	 Reduced x-ray bremsstrahlung emission

•	 Improved fast-electron energy transport through cone wall  
for lower-Z elements

Cone
type  

t (nm) 
wall

thickness  

d (nm) 
tip

diameter   

U (º) 
full cone  

angle
I 20 20 34
II 25 40 40
III 30 60 46

t

t

dz
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A Kirkpatrick–Baez x-ray microscope with a WB4C 
multilayer mirror will image the Cu K-shell emission

E17747 F. J. Marshall and G. R. Benett, Rev. Sci. Instrum. 70, 617 (1999).
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Core and cone tip heated with
OMEGA EP beam (1 kJ, 10 ps)

KB image from gold cone target 
and broadband mirror
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Ka emission from Cu-doped CH shells will be used  
to infer fast-electron heating
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•	 ITS Monte Carlo 
code simulations by 
A. MacKinnon and  
D. Hey assuming  
1% atomic Cu in  
40 nm CH shell

•	 Predicted good 
signal level for 

	 KB instrument
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Ross-pair pinhole image
subtraction at 8 keV

KB microscope
at 8 keV
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Shock ignition relies on a shaped laser pulse  
with a trailing high-intensity spike

E16323c

The ignitor shock wave significantly increases its strength 
as it propagates through the converging shell.
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CH shells have been imploded on OMEGA to test
the performance of shock-ignition pulse shapes 
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The neutron yield increases considerably when  
a shock is launched at the end of the pulse. 
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The shock-ignition pulse-shape implosions show  
improved areal densities and neutron yields

E16133d

•	 The measured-to-calculated neutron-yield ratios are 
close to 10% for a hot-spot convergence ratio of 30.
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Laser–plasma interaction during the spike pulse and hot- 
electron generation are important issues for shock ignition

TC7870c

Hot e– with Maxwellian Thot = 150 keV, Ehot = 17% of spike 
energy, treated using a multigroup diffusion model*

*LILAC simulations by C. D. Zhou and R. Betti

10.0
0

2

3

1

4

5

0

40

60

20

80

100

10.5 11.0

Time (ns)

In
te

n
si

ty
 (

10
15

 W
/c

m
2 )

t
R

 (
m

g
/c

m
2 )

10.2
0

10

40

30

20

50

60

10.4 10.6

Shock-launching time (ns)

Marginally
igniting

(no hot e–)

G
ai

n

tR

tR range of 100 keV  e–

ILaser

Shock-ignition target
with 350-kJ total energy

Boosted
margin

(with hot e–)

1-D
350 kJ

FSC



Hot-electron generation and laser–plasma instabilities 
are studied at ignition-relevant spike intensities 
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•	 60 OMEGA beams are split into 40 low-intensity  
drive beams and 20 tightly focused, delayed beams  
(up to 2 × 1016 W/cm2) 

•	 Hydrodynamic performance and laser backscattering 
are studied

•	 Preliminary results are moderate Thot ~ 45 keV,  
~10% conversion efficiency Espike → Ehot, 
~20% backscattering at 5 × 1015 W/cm2 (SRS + SBS)

FSC



A significant coupling of high-intensity-pulse energy 
into the capsule is measured, despite a large 
target-illumination nonuniformity 
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X-ray pinhole images

View 1 View 2

60 beam, 20.8 kJ
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N yield: 1.3 × 1010

Shot 49068

40 beam, 13.7 kJ
nonuniform ill.
N yield: ~2 × 108

Shot 52480

40 + 20 beam,  
13.6 + 4.8 kJ = 18.4 kJ
nonuniform ill.
N yield: 3.7 × 109

Shot 52490
•	 ~10% power imbalance  

in current experiment

•	 Repointing the beams 
will reduce power 
imbalance to 2%,  
similar to spherical  
60-beam illumination 
conditions
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Summary/Conclusions
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Fast and shock ignition are investigated  
on the Omega Laser Facility 

•	 Integrated cone-in-shell fast-ignition experiments with up to 1.3 kJ  
of short-pulse energy and ~18 kJ of long-pulse energy have begun.

•	 A significant increase in x-ray emission is measured with the higher 
OMEGA EP laser energy. 

•	 Neutron measurements are challenging due to a strong x-ray background 
and mitigation techniques are discussed.

•	 Experiments with shock-ignition pulses show a 4× improvement in yield 
and 30% more areal density compared to conventional pulses.

•	 Shock-ignition experiments with 40 beams for fuel assembly and  
20 delayed high-intensity beams show significant coupling of shock-  
and fast-electron energy into the target.

Two-step ignition processes offer the possibility  
of higher target gain for a fixed laser energy.




