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Fast and shock ignition are investigated  
on the Omega Laser Facility 
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Summary

FSC

•	 Integrated	cone-in-shell	fast-ignition	experiments	with	up	to	1.3	kJ	 
of short-pulse energy and ~18 kJ of long-pulse energy have begun.

•	 A	significant	increase	in	x-ray	emission	is	measured	with	the	higher	
OMEGA EP laser energy. 

•	 Neutron	measurements	are	challenging	due	to	a	strong	x-ray	background	
and mitigation techniques are discussed.

•	 Experiments	with	shock-ignition	pulses	show	a	4× improvement in yield 
and 30% more areal density compared to conventional pulses.

•	 Shock-ignition	experiments	with	40	beams	for	fuel	assembly	and	 
20	delayed	high-intensity	beams	show	significant	coupling	of	shock-	 
and fast-electron energy into the target.

Two-step	ignition	processes	offer	the	possibility	 
of	higher	target	gain	for	a	fixed	laser	energy.
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Fast and shock ignition can trigger ignition
in massive (slow) targets leading to high gains
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Integrated	fast-ignition	experiments	with	re-entrant	cone	
targets have begun at the Omega/Omega EP Laser Facility
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The	cone	has	to	withstand	the	plasma	pressure	up	to	
peak compression, ensuring a plasma-free path for  
the short-pulse beam
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•	 Streaked	optical	pyrometer	
(SOP) measures the breakout 
through 15-nm-thick cone tip

•	 Shock	breakout	at	3.50±0.05 ns 
is close to peak compression

•		Areal	density	from	2-D	
hydrocode simulations

•	 Time	of	(tR)max is close to 
optimum injection time for  
fast electrons
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Pointing and timing of the short-pulse beam  
was	achieved	with	~20-nm and ~50-ps accuracy
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•	 The	neutron	temporal	diagnostic	
operating in hard x-ray mode 
provides temporal information

•	 Measured	time	of	short-pulse	
interaction: 3.50±0.05 nsTwo	orthogonal	x-ray	pinhole	camera	

views	provide	the	spatial	information



A	significant	increase	in	x-ray	emission	 
is	measured	with	higher	OMEGA	EP	laser	energy

E17739

FSC

OMEGA EP = 0 J 
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Time-integrated x-ray pinhole images EPh = 2 to 7 keV, Dt = 3.5 ns
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No	significant	change	in	x-ray	emission	was	measured	
for various time delays and 500 J short-pulse energy
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Neutron measurements are challenging in fast-ignition 
integrated experiments because of a strong x-ray 
background
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Fast electrons streaming through the high-Z	cone	material	produce	a	significant	
c	pulse	that	overwhelms	the	neutron	time-of-flight	diagnostics	for	E > 500 J.
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The neutron detectors are strongly affected  
by the hard-x-ray background
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Integrated 2-D hydrodynamic DRACO/LSP simulations 
were	performed	for	various	experimental	conditions
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•	 20º	half-divergence	angle	 
of electron beam

•	 Calculations	do	not	 
account for transport  
through	cone	wall

•	 15-nm	gold	wall	thickness	 
will	have	significant	effect	 
on energy transport

•	 The	expected	n	yields	
	 below	1	kJ	are	in	the	
 range of the current 
 noise level of 12-m NTOF
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A	liquid	scintillator	neutron	time-of-flight	detector	 
is being developed to suppress the x-ray background  
induced	fluorescence

E17745

Liquid	scintillators	with	a	molecular	O2 quenching agent have a fast decay 
time and are promising detectors to measure the D2 neutron yield

Courtesy of Ronald Lauck, PTB (Physikalisch  
Technische	Bundesanstalt,	Braunschweig,	Germany).
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Copper	cone	targets	will	be	tested	 
in future experiments
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•	 Reduced	x-ray	bremsstrahlung	emission

•	 Improved	fast-electron	energy	transport	through	cone	wall	 
for	lower-Z elements

Cone
type  

t (nm) 
wall

thickness  

d (nm) 
tip

diameter   

U (º) 
full cone  

angle
I 20 20 34
II 25 40 40
III 30 60 46

t

t

dz
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A	Kirkpatrick–Baez	x-ray	microscope	with	a	WB4C 
multilayer	mirror	will	image	the	Cu	K-shell	emission

E17747 F. J. Marshall and G. R. Benett, Rev. Sci. Instrum. 70, 617 (1999).
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Core and cone tip heated with
OMEGA EP beam (1 kJ, 10 ps)
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Ka	emission	from	Cu-doped	CH	shells	will	be	used	 
to infer fast-electron heating
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•	 ITS	Monte	Carlo	
code simulations by 
A. MacKinnon and  
D. Hey assuming  
1% atomic Cu in  
40 nm CH shell

•	 Predicted	good	
signal level for 

 KB instrument
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Shock ignition relies on a shaped laser pulse  
with	a	trailing	high-intensity	spike
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The	ignitor	shock	wave	significantly	increases	its	strength	
as it propagates through the converging shell.
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CH shells have been imploded on OMEGA to test
the performance of shock-ignition pulse shapes 
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The	neutron	yield	increases	considerably	when	 
a shock is launched at the end of the pulse. 
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The	shock-ignition	pulse-shape	implosions	show	 
improved areal densities and neutron yields
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•	 The	measured-to-calculated	neutron-yield	ratios	are	
close to 10% for a hot-spot convergence ratio of 30.
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Laser–plasma interaction during the spike pulse and hot- 
electron generation are important issues for shock ignition
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Hot e–	with	Maxwellian	Thot = 150 keV, Ehot = 17% of spike 
energy, treated using a multigroup diffusion model*

*LILAC simulations by C. D. Zhou and R. Betti
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Hot-electron generation and laser–plasma instabilities 
are studied at ignition-relevant spike intensities 
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•	 60	OMEGA	beams	are	split	into	40	low-intensity	 
drive beams and 20 tightly focused, delayed beams  
(up to 2 × 1016 W/cm2) 

•	 Hydrodynamic	performance	and	laser	backscattering	
are studied

•	 Preliminary	results	are	moderate	Thot ~ 45 keV,  
~10% conversion efficiency Espike → Ehot, 
~20% backscattering at 5 × 1015 W/cm2 (SRS + SBS)
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A	significant	coupling	of	high-intensity-pulse	energy	
into the capsule is measured, despite a large 
target-illumination nonuniformity 
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X-ray pinhole images
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40 + 20 beam,  
13.6 + 4.8 kJ = 18.4 kJ
nonuniform ill.
N yield: 3.7 × 109

Shot 52490
•	 ~10%	power	imbalance	 

in current experiment

•	 Repointing	the	beams	
will	reduce	power	
imbalance to 2%,  
similar to spherical  
60-beam illumination 
conditions
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Summary/Conclusions
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Fast and shock ignition are investigated  
on the Omega Laser Facility 

•	 Integrated	cone-in-shell	fast-ignition	experiments	with	up	to	1.3	kJ	 
of short-pulse energy and ~18 kJ of long-pulse energy have begun.

•	 A	significant	increase	in	x-ray	emission	is	measured	with	the	higher	
OMEGA EP laser energy. 

•	 Neutron	measurements	are	challenging	due	to	a	strong	x-ray	background	
and mitigation techniques are discussed.

•	 Experiments	with	shock-ignition	pulses	show	a	4× improvement in yield 
and 30% more areal density compared to conventional pulses.

•	 Shock-ignition	experiments	with	40	beams	for	fuel	assembly	and	 
20	delayed	high-intensity	beams	show	significant	coupling	of	shock-	 
and fast-electron energy into the target.

Two-step	ignition	processes	offer	the	possibility	 
of	higher	target	gain	for	a	fixed	laser	energy.




