Status of OMEGA EP: An Experimentalist's Perspective

C. Stoeckl University of Rochester Laboratory for Laser Energetics Omega Laser Facility Users' Group Workshop Rochester, NY 29 April – 1 May 2009

Summary

The experimental capabilities of OMEGA EP have significantly evolved since April 2008

- Energy
 - from 400 J to 1400 J
- Pointing
 - stability <50- μ m rms long term
- Cross-timing
 - OMEGA to OMEGA EP <10 ps
 - OMEGA EP long-short ~100 ps
- Focusing
- Diagnostics
 - UFXRSC ps x-ray streak camera
 - DC-HOPG, ZVH, XRS3 <10-keV time-integrated spectrometers
 - DCS

- <100-keV time-integrated spectrometer
- PFP, WRF, TPIE
- Activation
- HERIE, XRCCDBUB
- proton imager and spectrometer
- >100-keV time-integrated spectrometer
- static x-ray imagers

The energy available in the short-pulse beam improved quickly and has stayed approximately constant

Energy (J) Date

Pointing stability in the OMEGA EP target chamber is better than 50 μ m

Results of three shots with x-ray images from fixed x-ray pinhole cameras superposed **XPHC port 39** XPHC port 52 Shot 2777 Shot 2777 Shot 2805 Shot 2805 90 µm 83 µm 70 μm 70 µm Shot 2802 Shot 2802

View angle = 32°

NTD/PTD was used for cross-timing OMEGA and OMEGA EP to better than 10-ps rms

Setup of the neutron temporal diagnostic (NTD)*

*R. A. Lerche, Rev. Sci. Instrum. <u>66</u>, 1 (1995).

Cross-timing stability of OMEGA and OMEGA EP is below the measurement uncertainty of 5 ps

The POTTS system provides low-jitter trigger and timing-fiducial signals

Cross-timing between the OMEGA EP short- and longpulse beams is established using a scintillator detector

The OMEGA EP focal spot typically has $R_{80} < 25 \ \mu m$ and is improving

LLE

A 2-ps time-resolution, ultrafast x-ray streak camera has been tested and is available

UR 🔌 LLE

The experimental capabilities of OMEGA EP will continue to expand in the near future

- Energy
 - 2.6 kJ ramp in FY09
- Pointing
 - stability verification in FY10
- Cross-timing
 - UV-SP with streak camera by FY10

UR 🔌

- Focusing
- Diagnostics
 - SPC May 2009
 - HXRD May 2009
 - ASBO May 2009
 - 4ω probe laser December 2009
 - Streaked spectrometer December 2009
 - Crystal Imager May 2010

Cross-timing will be transferred to the UROSS and UVROSS streak cameras

UR

A modern 20-ps-resolution x-ray streak camera is available for UV short-pulse cross timing (PJX)

An x-ray CCD camera is mounted in an air bubble for insertion into the target chamber (XCCDBUB)

An x-ray CCD in single-photon-counting mode is an attractive option for x-ray spectroscopy up to ~40 keV

The mechanical design of the OMEGA EP single-photon-counting spectrometer is complete

The experimental capabilities of the OMEGA EP facility have significantly evolved since April 2008

- Energy
 - from 400 J to 1400 J
- Pointing
 - stability <50- μ m rms long term
- Cross-timing
 - OMEGA to OMEGA EP <10 ps
 - OMEGA EP long-short ~100 ps
- Focusing
- Diagnostics
 - UFXRSC ps x-ray streak camera
 - DC-HOPG, ZVH, XRS3 <10-keV time-integrated spectrometers</p>
 - DCS

<100-keV time-integrated spectrometer

- PFP, WRF, TPIE
- Activation
- HERIE, XRCCDBUB
- proton imager and spectrometer
- >100-keV time-integrated spectrometer
- B static x-ray imagers