Diagnostic Status on OMEGA/OMEGA EP

T. C. Sangster University of Rochester Laboratory for Laser Energetics Omega Laser Facility Users' Group Workshop Rochester, NY 29 April – 1 May 2009

Summary

The target diagnostics capabilities on OMEGA/ OMEGA EP (or any other laser) drive the scientific productivity

- Users have access to a broad spectrum of facility diagnostics
 - Approximately 200 diagnostics are available on OMEGA and 50 on OMEGA EP
- The status of the facility diagnostics is available online and is frequently updated

UR 🔬

- The diagnostic configuration for every shot is established in the Shot Request Form (SRF; available on the OMEGA Operations page)
- Most data can be accessed within minutes following a shot
- LLE maintains a number of diagnostic support facilities

LLE has a fully documented process for the qualification of new and the upgrade of existing diagnostics (G. Pien).

The OMEGA Facility maintains approximately 200 unique diagnostic configurations

UR 🔌

- Facility diagnostics include optical, x-ray, and nuclear instrumentation
- Diagnostics are classified as FIXED, TIM-based, and Neutronics
- Diagnostic specialists can help with the experimental requirements, operations, analysis, and calibration (if appropriate) of the facility diagnostics

Approximately 10 to 20 diagnostics are being qualified at any given time.

Up-to-date information on the availability and expertise associated with the diagnostics is available online

LLE

For FIXED Diagnostics:

ID	Diagnostic	Specialist	Operator	Technician	Status	Note
208	3-omega Transmitted Beam FIXED (3wTBD)	D. Froula	V. Rekow	C. Sorce	Available	Requires technical support from LLNL
97	3/2 Spectrometer 1 (3HALF)	C. Stoeckl		R. Bahr	Available	
1	Active Shock Break Out Diagnostic F (ASBO)	T. Boehly	A. Sorce	W. Armstrong	Available	LIE is rether seronym
96	CEA XR Diode Array 1 (DMX)	B. Villette	J. Bourgade		Available	LLE IS rather acronyin
56	Charged Particle Spectrometer 1 (CPS)	R. Petrasso	M. Burke		Available	intensive
57	Charged Particle Spectrometer 2 (CPS)	R. Petrasso	M. Burke		Available	
176	Cryogenic Target Characterization 1 (CTCD)	W. Seka		R. Bahr	Available	
68	Dante 1 (DANTE)	K. Widmann]	C. Sorce	Available	Requires LLNL technical support to operate
242	EMP Monitor 1 (EMPMON)	W. Bittle]	W. Bittle	Available	
89	Full Aperture Backscatter System 1 (FABS)	W. Seka		R. Bahr	Available	3wSRS streak camera upgraded 8-21-07. 3wSBS streak camera upgraded 10-01-07.
90	Full Aperture Backscatter System 2 (FABS)	W. Seka		R. Bahr	Available	3wSRS & 3wSBS streak cameras upgraded to ROSS cameras w/ calibration modules.
179	Full Aperture Backscatter System 2w (FABS)	D. Froula		R. Bahr	Available	
70	Gated Microscope XR Imager 1 (GMXI)	F. Marshall]	F. Marshall	Available	Moved to port H12 September 2006
94	Hard XR Detector 1-4 (HXRD)	C. Stoeckl]		Available	
63	Henway XR Spectrometer 1 (HXRSP)		C. Sorce	C. Sorce	Available	Requires LLNL support
261	High-Speed Video 1 (HSVideo)	D. Jacobs- Perkins			Available	
66	Kirkpatrick Baez XR Microscope 3 (KBMICRO)	F. Marshall]	F. Marshall	Available	
262	LANL Gamma Reaction History Diagnostic 1 (GRH)	H. Herrmann	S. Evans		Available	
236	Magnetic Recoil Spectrometer 1 (MRS)				Available	
181	Near Backscatter Imager 2w (NBI)	D. Froula		C. Sorce	Available	Requires LLNL Tech Support
180	Near Backscatter Imager 3w (NBI)	R Bahr		R Bahr	Available	

http://omegaops.lle.rochester.edu/diagStatus

Up-to-date information on the availability and expertise associated with the diagnostics is available online

ID	Diagnostic	Specialist	Operator	Technician	Status	Note	
247	CVD Neutron Bang-Time Detector 1 (CVDNBT)	V. Glebov			Available		
258	H15 Re-entrant Tube CVD 1-4 (H15DCVD)	T. Duffy			Available		
212	High Yield Neutron Bang-Time Detector 1 (HYNBT)	W. Armstrong		W. Armstrong	Available		
214	LANL LDRD Beta Mix P4G (BMIX)	G. Pien		S. Evans	Available		
216	LANL LDRD Beta Mix SCNT (BMIX)	G. Pien		S. Evans	Available		
215	LANL LDRD Beta Mix SiTel (BMIX)	G. Pien		S. Evans	Available		
238	NIF nTOF detector 1 (NIF-NTOF)	V. Glebov			Available		
41	Neutron Bang-Time Detectors LLE (BTDET)	V. Glebov			Available		
47	Neutron Temporal Diagnostic 1 (NTD)	V. Glebov	C. Stoeckl		Available]	
152	Particle Temporal Diagnostic N (PTD)			M. Cruz	Available]	
121	Scintillator Counter C 3M NTOF (SCC)	V. Glebov		V. Glebov	Available]	
122	Scintillator Counter D 5.4M NTOF (SCC)	V. Glebov		V. Glebov	Available	Cannot be used concurrently with TLDs selected	
124	Scintillator Counter E 1.7M NTOF (SCC)	V. Glebov		V. Glebov	Available		
182	Scintillator Counter F 12M NTOF L (SCC)	V. Glebov		V. Glebov	Available		
183	Scintillator Counter G 12M NTOF H (SCC)	V. Glebov		V. Glebov	Available		
255	Scintillator Counter H 2M LARD (SCC)	V. Glebov		V. Glebov	Available		
153	1020 Detector Array 1 (1020_Array)				No Longer Used		
40	Activation Retractor Indium (ACTR)	V. Glebov			No Longer Used		
234	LLNL H7 Gamma Detector 1 (H7GD)				No Longer Used	Basically just	on
75	MEDUSA 1 (MEDUSA)	V. Glebov			No Longer Used	name to remor	nh
184	Neutron Fluence Array 1 (NFA)	V. Glebov			No Longer Used	name to remen	un
118	Neutron Temporal Diagnostic Cryo (NTD)	V. Glebov		C. Stoeckl	No Longer Used		
123	Scintillator Counter E 20M NTOF (SCC)	V. Glebov		T. Duffy	No Longer Used		
125	Scintillator Counter F 7.5 Neutron (SCC)	C. Stoeckl		T. Duffy	No Longer Used		
117	Activation Retractor Carbon (ACTR)	V. Glebov			Unavailable		
39	Activation Retractor Copper (ACTR)	V. Glebov			Unavailable		
119	Scintillator Counter A 3M LARD (SCC)	V. Glebov		T. Duffy	Unavailable		
120	Scintillator Counter B 2x2 (SCC)	V. Glebov		T. Duffy	Unavailable		

For NEUTRON Diagnostics:

Up-to-date information on the availability and expertise associated with the diagnostics is available online

ID	Diagnostic	Specialist	Operator	Technician	Status	Note
186	3-Module Wedge Range Filter Array 1 (WRFMA3)	M. Burke			Available	
187	3-Module Wedge Range Filter Array 2 (WRFMA3)	M. Burke			Available	
188	3-Module Wedge Range Filter Array 3 (WRFMA3)	M. Burke			Available	
189	3-Module Wedge Range Filter Array 4 (WRFMA3)	M. Burke			Available	
190	3-Module Wedge Range Filter Array 5 (WRFMA3)	M. Burke			Available	
191	3-Module Wedge Range Filter Array 6 (WRFMA3)	M. Burke			Available	
207	3-omega Transmitted Beam TIM (3wTBD)	C. Sorce			Available	
192	7-Module Wedge Range Filter Array 1 (WRFMA7)	M. Burke			Available	
193	7-Module Wedge Range Filter Array 2 (WRFMA7)	M. Burke			Available	
194	7-Module Wedge Range Filter Array 3 (WRFMA7)	M. Burke			Available	
195	7-Module Wedge Range Filter Array 4 (WRFMA7)	M. Burke			Available	
96	7-Module Wedge Range Filter Array 5 (WRFMA7)	M. Burke			Available	Identical versions of som
97	7-Module Wedge Range Filter Array 6 (WRFMA7)	M. Burke			Available	diagnactice are evallable
160	ASBO Telescope REFR (ASBO_tel)	T. Boehly		W. Armstrong	Available	diagnostics are available
221	AWE SGEMP Detector 1 (AWE_SGEMP)	W. Armstrong			Available	for multiple TIM's
222	AWE SGEMP Detector 2 (AWE_SGEMP)	W. Armstrong			Available	for manapie rim e
223	AWE SGEMP Detector 3 (AWE_SGEMP)	W. Armstrong			Available	
224	AWE SGEMP Detector 4 (AWE_SGEMP)	W. Armstrong			Available	
225	AWE SGEMP Detector 5 (AWE_SGEMP)	W. Armstrong			Available	
226	AWE SGEMP Detector 6 (AWE_SGEMP)	W. Armstrong			Available	
213	Air Bubble CVD 1 (CVD_AB)	V. Glebov			Available	
218	Air Bubble CVD 2 (CVD_AB)	V. Glebov			Available	
219	Air Bubble CVD 3 (CVD_AB)	V. Glebov			Available	
231	CEA Vulnerability Diagnostic 1 (CEAVD)				Available	
148	CVD Diamond Detector 1 (DD-RIC)	V. Glebov]		Available	
149	CVD Diamond Detector 2 (DD-RIC)	V. Glebov			Available	
150	CVD Diamond Detector 3 (DD-RIC)	V. Glebov]		Available	
151	CVD Diamond Detector 4 (DD-RIC)	V. Glebov]		Available	
260	Clear LOS to LaCave 1 (Clear_LOS)				Available	
264	Diamond Amril Call Target Positioner 1 (DACTP)	C Seree	1	i	A	

For TIM Diagnostics:

LLE

Past experience with similar configurations is a good place to start.

The user interface with the facility is via the Shot Request Form (SRF)

- The laser and diagnostic configurations are specified for each shot using a unique SRF
- Data access is established via the PI fields in the SRF (i.e., the PI's "own" the data)
- Diagnostic priorities include Primary, Secondary, and Ridealong
 - Primary: essential for the experiment (delay shot cycle to fix)
 - Secondary: important for the experiment (consult PI for delay)
 - Ridealong: test mode; operation does not affect schedule
- K. Thorp will describe the SRF interface to the laser

The available TIM-based diagnostics can be viewed from within the SRF

UR

Most diagnostics require the completion of a specialized setup sheet

Setup for GXI-3 (framing camera)

Optics				
	Make selections in c	one column only		
Nosecone Type	⊙ LLE		O LLNL	
Magnification	Сгуо6Х-16 🖌			
Pinhole Size	8um 🖌			
Blast Shield	None 🖌			
Frame Type	Straight 💌		✓	
Stand-off Distance		in.		in.
Roll Angle	Degrees		Degrees	
Pinhole Substrate	.001" 💌		~	
Rear Filter	1 mil Be			
	5	XR Rear Filter		

Interstrip Timing

Strip#	Requested delay (ns)					
1	0	*				
2	0.3	~				
3	0.4	*				
4	0.6	~				

Internal Settings

Phosphor	3000 Volts				
MCP Bias	0 🔽 Volts				
PFM Type	200 ps				

Misc

Acquisition start time (relative to T-0)	3.7 ns
Power Supply	18V DC
Monitor Atten.	-9 dB
Trigger Atten.	-10 dB

Comments/Requirements

Bang	time	expected	about	4.0ns	

Steering

Ma	Make selections in one row only								
۲	Target Chamber Center								
0	Radius um Theta Phi								
0	Distance um toward Port 💌								

UR

Instrument specialists can help!

Most data can be accessed immediately following the shot (and from "home") using a web interface

- All of the facility diagnostic data is recorded in the database
- Database access is granted individually on a shot-by-shot basis
- Film is processed on-site, typically within 30 min of the shot; common to hold the next shot until the film has been examined

UR 🛓

- Post-shot software routines are generally available to look at data immediately (may need to contact the instrument specialists)
- Instrument specialists can help with routines to access and analyze data remotely, apply calibrations, timing, pulse shape, etc.
- Ultimately, the Principal Investigator is responsible for the analysis and interpretation of his/her data
 - This may include devoting shots for calibration/flat-fielding, sensitivity response, timing setup, etc.

Much of the OMEGA data can be accessed after the shot on the Shot Summary page

LLE

OMEGA Shot Images and Reports				
§ Site contents: - 🗀 Laser Reports		Omega Shot St	ummary	
Laser Images Experimental Reports Experimental Images CTCD DANTE GXI KB-CID mxi 53066 a cid hdf		Shot: 5 Date: 09-Dec-2 Shot Type: Target Shot Status: Syst	3066 008 17:22:29 High Yield em Shot	
gmxi_53066_b_cid.hdf		Requested	On Shot	Associated Report
gmxi_53066_c_cid.hdf	Shot Request Form ID:	260	534	`
	Experiment:	CR	YO	
- DBI_3w_SRS	Principal Investigators:	Sangster, Gonc	harov, Smalyuk	Original Shot
NTD	Target ID(s):	CRYO-2097-1304	CRYO-2097-1304	Request Form
	Target Desc:	Strong CD[9.6]DT(6	57.5) 879.4 Spherical	
	Crvo Cart:	MCTC 3		-
	Pulse shape(s):	SSD: SG3801T	SSD: SG3801T	PGR/Driver Report
SRS_STREAK	SSD Modulation:	max x max	1.46 x 10.92	
TMON TPD_STREAK TVL	Number of Beams On Target:	60	60	Beam Termination Diagram
	On-Target Energy Delivered:	22000.0 J	22513.2 J	Energy Report for Beams on Target
La XRS2	Neutron Information:	Neutron Yield: 5.76E+12 Secondary Yield: 0.00E+00 Ion Temperature: Bang Time: 41: Burn Width: 15	2 +/- 2.19E+10 (12mntofh) 0 +/- 0.00E+00 () 1 +/- 0.5 (12mntofh) 57 +/- 50 (NTD) 4 +/- 25 (NTD)	
		Visible Gated Microsc 3/2 Spec Magnetic Reco Gated X NIF nTOI NIF nTOF6, 3 Kirkpatrick Baez	Camera ope XR Imager trometer il Spectrometer R Imager F detector -petal detector - XR Microscope	<u>Online Target</u> Diagnostics Report

Fully analyzed neutronics data can be obtained directly from V. Glebov, M. Cruz, or C. Stoeckl

UR

Not all diagnostics can be operated on a given shot

UR

- Only six TIM's available on OMEGA (there will soon be six TIM's on OMEGA EP)
- Contamination issues limit the use of some instruments (tritium and beryllium)
- Conflicts with the short-pulse beam paths in OMEGA and OMEGA EP limit what can be put where in the target chambers (conflicts are noted in the SRF's)
- Personnel support may be unavailable (e.g., limited bandwidth to acquire and analyze charged-particle data, set up ASBO, etc.)
- Infrequently, the same diagnostic may be requested on both facilities
- In general, shot time is most effectively utilized by operating only the diagnostics needed to do the science!

Diagnostic support facilities are available for staging the development of new instrumentation

- X-ray lab (absolute dc source up to 20 keV)
- Diagnostic TIM (test fit, pump down, data acquisition, and HTS channel)
- "Ray's lab" with Manson source, bench space, tools, etc.
- Particle diagnostics lab (CR-39 etch/scan)
- X-ray/optical film-processing lab
- Film-digitization lab (film to electronic images)
- Nuclear lab (Nal arrays for Cu/C counting)

The target diagnostics capabilities on OMEGA/ OMEGA EP (or any other laser) drive the scientific productivity

- Users have access to a broad spectrum of facility diagnostics
 - Approximately 200 diagnostics are available on OMEGA and 50 on OMEGA EP
- The status of the facility diagnostics is available online and is frequently updated

UR 🔬

- The diagnostic configuration for every shot is established in the Shot Request Form (SRF; available on the OMEGA Operations page)
- Most data can be accessed within minutes following a shot
- LLE maintains a number of diagnostic support facilities

LLE has a fully documented process for the qualification of new and the upgrade of existing diagnostics (G. Pien).