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Summary

• D2 was compressed to high pressure (>6 Mbar) at low temperature 
(<1 eV) using multiple reverberating shocks at OMEGA(<1 eV) using multiple reverberating shocks at OMEGA

• Determined D2 pressure and temperature by simultaneous 
velocimetry and emissivity measurementsvelocimetry and emissivity measurements

• Obtained electrical conductivity from measured D2 optical absorption 
at 0.15 MBar

• Obtained conductivities from measured D2 reflectivity at ~6 MBar

• Comparison to previous experiments suggests that D2 conductivity 
near 0.5 eV has no density dependence up to 2.7 g/cm3
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3Motivation: Thermal conductivity has important 
consequences for ICF implosion performance

E.g., conductivity affects the density 
gradient at the fuel/pusher interface…

… and the density gradient directly 
impacts high-mode stability.
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Figure 1b*: Variation in the profiles for 0 3 (dot) 10 μm
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Figure 1b : Variation in the profiles for 0.3 (dot),
1.0 (solid), and 3.0 (dash) times the nominal
thermal conductivity (Lee-More).
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4Motivation: Thermal conductivity is not well 
understood in the WDM regime

Electron thermal conductivity**

E.g., conductivity affects the density 
gradient at the fuel/pusher interface…

… yet theoretical values differ by 
nearly an order of magnitude.
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• Conductivity errors of 30% are 
significant for performance*

Figure 1b : Variation in the profiles for 0.3 (dot),
1.0 (solid), and 3.0 (dash) times the nominal
thermal conductivity (Lee-More).
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5The D2 layer was characterized by velocity, 
reflectivity, and emissivity measurements

D2 layer (23 μm)
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Velocity, reflectivity and temperature histories
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7Pressure is inferred using EOS tables and 
imposing continuity at LiF-D2 interface
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8Previous gas-gun driven shock reverberations
produce D2 states near that after the 2nd pulse
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9Electrical conductivity is inferred from optical 
absorption of 1st shock propagating through D2
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10Conductivity is inferred from the reflectivity
of the final shocked state
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Measured reflectivity (16%) requires deuterium 
ionization fraction* of ~25%
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*assuming electron relaxation time τe time is at Ioffe-Regel limit 
KcmWLT  /3.000 

And from the Weidemann-Franz relation, the 
thermal conductivity is:



11Strong T dependence of σe is seen when 
combining this data with previous experiments

0 7 /ρ ~ 0.7 g/cc
ρ ~ 2.7 g/cc



12Electron thermal conductivity is inferred by 
applying Wiedemann-Franz relation


