

We present simultaneous Thomson-scattering measurements of light scattered from ion-acoustic and electron plasma fluctuations in a N₂ gas jet plasma. By varying the plasma density and temperature we observe the transition from the collective regime to the non-collective regime for the electron feature. In the collective regime high electron plasma wave phase velocities lead to mildly-relativistic scattering and first order v/c corrections in the Thomson-scattering form factor must be taken into account. We propose future experiments in the fully-relativistic regime at the Omega Laser Facility to study the relativistic effects on electron screening.

Thomson scattering measurements in the collective and non-collective regime in laser produced plasmas

J. S. Ross^{1,2}, L. Divol¹, S. H. Glenzer¹, J. P. Levesque¹, J. Palastro¹, B. B. Pollock^{1,2}, D. Price¹, G. R. Tynan² and D. H. Froula¹

¹Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551 ²Mechanical and Aerospace Engineering Department, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411

First order relativistic correction

Average charge state vs. Temperature The measured average charge state is compared to the Thomas-Fermi

