Introduction

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF

Present MIT Graduate Students and the MIT Nuclear Products Generator

Omega Laser User's Group 1st Annual Workshop Wednesday, April 29th, 2009

Internal and external users and collaborators

Present Graduate students:	<u>Pa</u>
N. Sinenian	J.
D.T. Casey	J.F
M. Manuel	S.
H.G. Rinderknecht	S.
M.J. Rosenberg	C.
<u>Scientists</u>	<u>Pa</u>
J. A. Frenje	D.
C.K. Li	Μ
F.H. Seguin	R.
R. D. Petrasso	S.
External Users / Collaborators	J.
V. Tang (LLNL)	S.
M. Akselrod (Landauer Inc.)	J

J. Sykora (Oklahoma State University)

<u>ist Graduate students:</u> **DeCiantis (KAPL)** R. Rygg (LLNL) Kurebayashi (Goldman Sachs) Volkmer (Harvard) Chen (LLNL) st Undergraduate students: **B.** Denis (Westinghouse) . Canavan (RPI / PPPL) Leiter McDuffee (Columbia) Perez (senior) Virk (senior) Jacox (senior)

Summary

- The MIT accelerator is capable of producing fusion products and ion beams relevant for Inertial Confinement Fusion (ICF) and Magnetic Confinement Fusion (MCF) applications.
- The accelerator has been very instrumental in designing, optimizing, characterizing several types of fusion-plasma diagnostics**.
- It is currently used to support the development and calibration of new and existing diagnostics for use at OMEGA, OMEGA-EP and the NIF.

^{**} F.H. Séguin *et al.*, Rev. Sci Instrum 74, 975 (2003).

V. Tang *et al.*, Rev. Sci Instrum 77, 083501 (2006)

S. McDuffee et al., Rev. Sci Instrum 79, 043302 (2008)

The MIT nuclear products generator is capable of producing fusion products and beam ions relevant for ICF/MCF diagnostics development

Fusion products produced by the accelerator

The accelerator is capable of producing several fusion products and beam ions

Primary products (kinematics not included):

D + D	\rightarrow	T (1.01 MeV) + p (3.02 MeV)
D + D	\rightarrow	n (2.45 MeV) + ³ He (0.82 MeV)
D + ³ He	\rightarrow	lpha (3.6 MeV) + p (14.7 MeV)

Secondary products:

³He (<0.82 MeV) + D \rightarrow a (6.6 – 1.7 MeV) + p (11.9 – 17.2 MeV)

Beam ions:

D⁺ (<150 keV) ³He⁺ (<150 keV) ³He²⁺ (<300 keV)

Fusion products can be produced by running a D⁺ beam on ³He

Fusion product rates up to ~10⁷/s are readily achieved

Radioactive sources and kinematic calculations are used to characterize the energy of the fusion products

Kinematic effects and ranging filters are exploited to provide fusion products with a large range of energies

Primary Objectives...

The objective with the accelerator is to design and characterize instruments for diagnosing ICF plasmas at OMEGA, OMEGA-EP...

- 60 laser beams delivering 30 kJ on capsule in ~1 ns
- Direct or indirect drive

...and the National Ignition Facility (NIF) at LLNL

- 192 Laser Beams delivering 1.8 MJ on capsule
- Indirect drive or direct drive
- First credible ignition experiments ~2010

Projects on Accelerator

a) Calibration and optimization of an X-ray/EMP immune, CR-39 based detector for the measurement of neutron yields

[1] J.A. Frenje et al., Rev. Sci. Instrum. 73 (2002).

[2] The Optimization of an EMP/X-Ray Immune CR-39 based detector for Sensitive Measurements of Neutron Yields at Omega & the NIF OLUG Workshop, April 29th – May 1st, 2009

b) Calibration of the compact proton spectrometers** currently used on OMEGA

These spectrometers are used extensively at OMEGA for measurements of either primary or secondary protons, from which *rR* and *rR* asymmetries can be determined for a large range of capsule implosions

The old spectrometers were recalibrated on the accelerator to account for any changes from extensive use at OMEGA

Peak:	1	2
Measured (MeV):	10.32	14.35
Anticipated (MeV):	10.3	14.4

No significant changes have occurred during several years of operation at OMEGA

The new proton spectrometers were absolutely calibrated on the accelerator using D³He-protons

Projects... (continued)

c) Optimization of the Coincidence Counting Technique (CCT) for the Magnetic Recoil Spectrometer (MRS)**

^{**} J.A. Frenje *et al.*, Rev. Sci. Instrum. 72, 854 (2001).J.A. Frenje *et al.*, submitted to Rev. Sci. Instrum. (2008).

The CCT for the MRS at OMEGA was developed and optimized using the accelerator

^{*} D.T. Casey *et al.*, to be submitted to Rev. Sci. Instrum. (2008).

^{**} J.A. Frenje *et al.*, Rev. Sci. Instrum. 72, 2597 (2002).

d) Characterization of new sensitive CR-39 planned to be used in proton radiography applications at OMEGA

The energy of D³He-protons from the back lighter must be ranged down to the energy window in which the CR-39 detection efficiency is 100%

J.R. Rygg et al., Science 319, 1223 (2008).

DD-p and D³He-p were used on the accelerator to characterize the response of new sensitive CR-39

^{**} The tracks are made visible through etching in 6M NaOH. In this case, the CR-39 was etched for 6 hours.

Projects... (continued)

e) Characterization of Fluorescent Nuclear Track Detector (FNTD) response to fusion products

FNTD advantages relative to CR-39:

- Superior spatial resolution (< 1 mm)
- Wider range of LET sensitivity (< 1 keV/mm)
- Reusable after annealing

The FNTD response to D³He-p, DD-p and D³He-alpha particles were characterized using the accelerator

f) Calibration of the Compact Neutral Particle Analyzer (CNPA) for the Alcator C-mod Tokamak

Si-diode detectors in pulse-height mode are used to measure energetic hydrogen minority ions with energies between 40 and 350 keV stemming from ion-cyclotron radio-frequency heated D(H) plasmas.

RBS deuterons (40-140 keV) produced by the accelerator were to used to calibrate the CNPA**

Experiments were performed in collaboration with the Alcator C-mod group