

Fusion Gamma-ray Measurements using Gas Cherenkov Detector

Yongho Kim

Los Alamos National Laboratory, Los Alamos, NM

GRH Team

Hans Herrmann, Scott Evans, James Langenbrunner, Carlton Young, Joe Mack, Tom Sedillo, and Aaron McEvoy (LANL) Colin Horsfield and Michael Rubery (AWE) Lucille Dauffy and Wolfgang Stoeffl (LLNL)

First OMEGA User's Group Workshop, April 29 – May 1, 2009

GCD/GRH has been developed by LANL in collaboration with AWE and LLNL

 Gas Cherenkov Detector (GCD)

- Omega (TIM-based)
- Threshold Energy = down to 6.3 MeV (CO2 @ 100 psi)
- PMT & Streak Camerabased (tested)
- ~10¹¹ min. n-yield @ 20 cm

 Gamma-ray Reaction History (GRH)

- Threshold Energy = down to 3.5 MeV (SF6 @ 200 psi)
- PMT & Streak Camerabased
- 3×10¹³ min. n-yield @ 6m

Threshold GCD captures 16.75 MeV DT Fusion Gamma-rays

Two stage converter

GRH is an essential instrument for NIF fusion reaction studies

Bang Time Accuracy

	GRH6m	GRH15m
THD(1e14)	< 25 ps	
THD(1e16)	< 25 ps	< 20 ps
DT(1e19)		< 20 ps

Burn Width Accuracy

	GRH6m	GRH15m
THD(1e14)	< 10 ps	
THD(1e16)	< 10 ps	< 3 ps
DT(1e19)		< 3 ps

A challenge faced by the GRH is potential interference of γ_{p} with various γ_{s}

- NIF indirect implosions generate various gamma-rays
- Fusion gammas (γ_p)
 - DT (16.75 MeV)
 - HT (19.8 MeV)
- n-induced secondary gammas (γ_s): (n, γ), (n,n') γ , (n,p) γ ...
 - Capsule materials (12C @ 4.44 MeV, 16O @ 6.1 MeV)
 - May be used to bolster GRH signal (~synchronous)
 - Possible time-dependent pR diagnostic
 - Hohlraum materials (Au, U, Al, Si)
 - May also be used to bolster signal, but must be aware of BT shift (< 60 ps)

N-induced Secondary Gamms from Hohlraum & TMP can be thresholded out (calculation by Lucille Dauffy)

- ~100x more Secondary γ's than Fusion γ's
 - Cross sections uncertain, needs experimental validation
- ~60 ps delay between Fusion & Secondaries γ's
- Insignificant Bang Time shift (<10 ps) down to ~6 MeV threshold

Hohlraum γ 's never dominate the signal (by Hans)

Experimental goal is to simulate γ_s from a NIF hohlraum & Proximity Sources

- NIF hohraum simulation experiment at OMEGA
 - GRH performance study (threshold response)
 - Gamma interference study (bang time, burn width)
 - Code (MCNP/ACCEPT) validation
 - <u>If</u> neutron rate and (n,γ) cross-sections are known, γ_s can be a GRH code validation source
 - cf) Calibrated 'electron' (LINAC) and 'gamma' (HIGS) source are also used for validation
 - Uncertainty in fusion gamma branching ratio
- γ_s as a GRH calibration source
 - $-\gamma_s$ serves as in-situ GRH calibration source
 - $-\gamma_s$ serves as a broad energy source
 - various puck materials are available (AI, Al2O3, Cu,...)
 - Provide one method for Branching Ratio $(=T(d,\gamma)/T(d,n))$ determination
 - Multiple methods needed to reduce uncertainty

'Hockey Puck' experiments are conducted at the OMEGA laser facility (Nov. 2008 and April 2009)

Diameter of Al puck = 3 cm Thickness of Al puck = 0.5 cm (+ 0.2 cm holder side)

GCD Signal Configuration

Clean Signals but improperly located puck

Data Analysis: Primary/Secondary ratio & timing (by Hans)

- Secondary/Primary ratio = 21.6%
- Secondary signal shifted by 704 ps
 - γ's: c= 29.98 cm/ns (33 ps/cm); 14.1 MeV n's: v_n= 5.19 cm/ns (193 ps/cm)
 > Neutrons are delayed 160 ps/cm relative to γ's
 - Face of Puck is at 704/160 = 4.40 cm
 - Back end of secondary signal should be smeared out by ~90 ps relative to the primary signal (80 ps for 0.5 cm thick puck + 10 ps for Doppler spreading), but appears to only be smeared by ~20 ps

Secondary gamma production and Primary gamma attenuation are observed

Secondary/Primary Ration and Time Delay

 $\gamma s / \gamma p$ (Al, 100psi) = 0.107, $\gamma s / \gamma p$ (Al2O3, 100psi) = 0.076 $\gamma s / \gamma p$ (Al, 65 psi) ~ 0.017, 992ps/160ps = 6.2 cm

Summary

- Successful day at OMEGA on Nov. 2008
 - Aluminum puck (D = 3 cm, t = 0.5 cm) at two locations
 - $-\gamma_s/\gamma_p \sim 0.216$ and $\gamma_s/\gamma_{po} \sim 0.198$ @ 4.4 cm or less location
- Successful day at OMEGA on April 8, 2009
 - $-\gamma_{\rm s}/\gamma_{\rm p} \sim 0.107$ at AI, 6 MeV
 - $-\gamma_{\rm s}/\gamma_{\rm p}$ ~ 0.076 at Al2O3, 6 MeV
 - $-\gamma_{\rm s}/\gamma_{\rm p}$ ~ 0.017 at AI, 8 MeV
- Next OMEGA shot day on May 13-14 or later
 - Additional puck materials (Cu, Si, SiO2)
- A coupled MCNP/ACCEPT calculation (by Jamie, Carl, Joe)
 - Provide one method for Branching Ratio (= $T(d,\gamma)/T(d,n)$) determination