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Abstract

The MIFEDS (Magneto-Inertial Fusion Electrical Discharge System) magnetic 
pulse generator represents a user-supplied, compact, and flexible extension 
of the OMEGA laser. It is the current enabling technology for magnetized 
target implosions on OMEGA. It has already been used for magnetic flux 
compression experiments in cylindrical D2-filled plastic shells, achieving tens 
of megagauss compressed fields. The device and experiments are reviewed 
in the context of integrating in a flexible way and with minimum online testing 
a moderate-to-high complexity instrumentation into a production system 
like OMEGA. The execution logic, special considerations, extra measures of 
safety and support and the interaction with the people behind OMEGA before, 
durin, and after the experiments are discussed as a case study. Highlighted 
are the unique conditions and experimental observables in the fielding of the 
MIFEDS experiments on OMEGA, along with some firsts and records. Possible 
improvements and extensions of the infrastructure and the variety/quality of 
HEDP experiments involving external magnetic fields are considered.

This work was supported by the U.S. D.O.E Office of Inertial Confinement Fusion under Cooperative 
Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy 
Research and Development Authority. The support of DOE does not constitute an endorsement by 
DOE of the views expressed in this article.
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Embedding and compressing magnetic fields to record 
values has become an experimental reality
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Conceptual scheme of laser-driven 
flux compression

Experimental data from self-emission 
x rays and backlighter protons
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Cylindrical target implosions have been performed with 
1-ns square pulses from 40 OMEGA beams (~14 kJ)
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•	 D2-filled CH cylinder (40 beams)

•	 D3He-filled SiO2 microballoon,  
9 mm away from cylinder  
(20 beams)

•	 Average on-target intensity 
~3.5 # 1014 W/cm2
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The seed magnetic field is generated in a double-coil 
configuration optimized for OMEGA implosions

E17122b
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MIFEDS seed-field
generator

•	 A TIM-based, self-contained system, MIFEDS 
stores <100 J and is low-voltage powered

•	 Yet, it delivers ~100-kA peak current to the coil 
in a  350-ns pulse

•	 The SG trigger laser delivers 65 mJ in an ~5-ns 
UV (266 nm) pulse for a fast, reliable discharge



MIFEDS is a multicomponent system that, while portable, 
requires careful integration with OMEGA

E17766

•	 The flexibility of a TIM-based instrument is weighted against significant 
installation and a setup effort prior to and during a shot day.
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Charged-particle (proton) deflectometry is used  
as the magnetic-field diagnostic
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•	 The proton source is the D3He fusion 
reaction in a glass microballoon 
filled with D3He mix and driven as  
an exploding pusher

		  D + 3He " 4He + p (14.7 MeV)

•	 This source is:1

		  –	 monoenergetic (DE/E < 0.03)

		  –	 time gated (~150-ps FWHM)

		  –	 point-like (size/object  
distance ~ 6 # 10–3 << 1)

•	 The detector is a CR-39 nuclear track 
media, which, after processing, can 
resolve individual particle tracks and 
their incident energy.2
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1C. K. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006).
2F. H. Séguin et al., Rev. Sci. Instrum 74, 975 (2003).
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Selection of tracks by diameter (energy) is used  
to expose the particles deflected in the amplified field 

E17353a
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•	 A powerful method 
that can help infer the 
core density and field 
profiles and promote 
particles deflected by 
the field peak above 
the background



GEANT4 is instrumental for correct data interpretation
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•	 A C++ framework for particle transport in matter where a multitude  
of physical processes can be switched on demand

•	 In the application created for proton deflectometry, the equation of 
motion is solved for the protons while tracking energy loss and scattering 
events

•	 Multiple scattering model based on the theory of Lewis

•	 The Bethe–Bloch model in combination with tabulated stopping powers 
from ICRU’49 are used for the ionization energy loss

•	 The code uses the hydro-simulation profiles as a starting point to match 
the experiment under the constraint of flux and mass conservation
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Data for a backlit unimploded target show a seed-field 
deflection consistent with simulations
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•	 Density map of all detected protons 
after traversing the target area

•	 The non-axial field near the 
coils distorts the p beam

•	 An offset was introduced to 
match the apparent offset in 
the experimental data
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Field amplification has been observed in all the 
magnetized implosions probed by protons
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Density and field profiles from LILAC-MHD  
(~60% of the initial flux retained    )

FSC

Shot number 49704 51069
Bang time (ns) 3.2 2.8

Initial flux 3.48 × 10–6 T m2

Final flux 2.25 × 10–6 T m2



Removing physics processes and looking at only a single 
vertical fan of protons can help simplify the picture
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•	 The width, depth, and shape of 
the deflected pattern depend on 
tR and B.

•	 To promote the protons 
traversing the high field above 
the background, the tracks with 
diameter outside the “green” 
energy band should be filtered.
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Experimental data at various energy bands 
(paths through the target)
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A strong magnetic field (B > 30 MG) is present in the 
compressed core in low-fill-pressure shot 51069

E17461a

•	 30-MG average core field is the 
lowest value that can match this 
deflection

•	 Matching this deflection with  
B < 30 MG will exceed the seed flux

		  i ~ GrBH, but U ~ Gr2BH
•	 At 60% flux conservation the 

minimum matching field is 50 MG
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Proton fluence and track diameter maps for shot 52535 
show compressed field deflection

E17771
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Lineouts through the proton density map in several 
energy (track-diameter) bands confirm the strong field

E17772
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Shot 52535 (deflection toward stalk)

•	 A realistic core tR 
distribution can be 
recovered by matching 
the partitioning of 
particles in the various 
energy bands.

•	 The minimum field that 
matches this deflection 
is 25 MG (40 MG at 40% 
flux loss).
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The reversal of the seed-field direction for shot 52532 
results in a reversed deflection direction

E17773
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•	 The compressed field 
is larger than in shot 
52535, in part due to the 
higher seed field and, 
in part, due to a more 
homogeneous hot spot.

•	 The minimum estimate 
matching this deflection 
is 50 MG (80 MG at 40% 
flux loss).
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The reversal of the seed-field direction for shot 52532 
results in a reversed deflection direction (lineouts)
FSC

Shot 52532 (deflection away from the stalk)

Experimental data at various energy 
bands (paths through the target)



Centrally peaked intensity profile drives the middle of the 
cylinder harder, creating an axially diverging plasma flow

E17775
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Yield-performance variation is due, in part, to target 
positioning and orientation

E17776

•	 Target build quality, gas retention, alignment, and illumination varied ...
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LILAC-yield predictions are invalid because, in the 
cylindrical implosions, the ions are in the kinetic regime; 
the higher the field, the more collisionless the ions

E17777

•	 ne hs = 8 # 1022 cm–3, lnKie . 5, lnKii = 8.7

•	 The Gamow peak energy1 is EGP = 6.27 Te hs2/3 = 8.2 keV

•	 Based on this, the 8-keV ions will escape the hot spot with only  
a few collisions

•	 With thermal equilibration time ~100 ps, the increase in Te hs will  
not couple effectively into Ti hs
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Rhs
nm

Ths
keV

nehs
1023 cm–3

oie
ns–1

oii
ns–1

~ci/oii mfpie
nm

mfpii
nm

r1
nm

Cylindrical 20 1.5 0.8 5.45 56 2.6 151 5.6 5.7

Spherical 18 3.9 30 40 2150 0.07 27.3 0.51 7.7

S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma 
Interaction, Hydrodynamics, Hot Dense Matter, (Clarendon Press, Oxford 2004).



The magnetic field pushes the hot-spot plasma out of 
the center, reducing the density and hydro pressure

E17778

•	 The mass-averaged hot-spot temperature (20-nm radius) is 1100 eV 
for the magnetized case versus 974 eV for the B = 0 case.
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Spherical implosions in the axial field can shed light on 
possible heat-transport inhibition in the ablation region

E17779

•	 These implosions will have higher ths leading to more collisional ions

•	 Shot-to-shot variation is expected to be under better control  
for spherical targets
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DRACO-MHD simulations of spherical implosions show 
significant compression of the axial field

E17780

•	 A significant transverse (nonaxial) field component has grown 
from the compression.
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DRACO-MHD simulations show that, near peak 
compression, the field within the hot spot remains 
mostly axial

E17781

•	 The irregular Lagrangian mesh 
{Bz(r,{), By(r,{)} is interpolated 
inline in GEANT4. Advantage of 
the azimuthal symmetry is taken.
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Monte Carlo simulations show that the strength of the 
compressed field can be determined via deflectometry

E17782

•	 Monte Carlo simulation with the full-, half-, and 
quarter-compressed fields (from DRACO-MHD)
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The first experiments on magnetized ICF show that 
multi-MG fields can be attained in the hot spot
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•	 Magnetized cylindrical targets were imploded on OMEGA to compress  
a pre-seeded magnetic flux to high values

•	 An ~100-kG seed magnetic field was generated with a double coil driven  
by a portable capacitive discharge system (MIFEDS)

•	 Proton deflectometry along with data interpretation tools were developed 
and used to detect the compressed magnetic fields

•	 The data consistently show fields of many tens of MG in the hot spot

•	 Spherical implosions in the axial field are planned to study flux 
compression and heat transport in the conduction zone in the presence  
of the axial seed field
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Summary/Conclusions


