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e e AL R L S 342 extrasolar planets
- Hot Jupiters - Mega-Jupiters. )
- up to 13 Jupiter masses . have been discovered

. Super-Earths through March 2009,

more on the way
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Understanding planetary evolution requires knowledge 'L

of the material Erogerties at extreme conditions
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Lasers are redefining condensed matter, chemistry,
plasma, and nuclear science @

Omega and NIF allow us to explore

the most extreme conditions in Soon we will study P > 1 Gbar shocks,
planets and low mass stars P> 10’s Mbar for Ramp compression
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Lasers are redefining condensed matter, chemistry,
plasma, and nuclear science Lll_-

Pulse shape =>ultra-high pressure Soon we will study P > 1 Gbar shocks,
plasma and solid-state experiments P> 10’s Mbar for Ramp compression
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We determine shock and particle speed with a shock

sEeedometer SVISARZ, temperature with pyrometer 'L

VISAR

Targets
Standard

po(Us) = p(Us' UP)
P = pOUs UP

E = 12 P(L/ p, -1/ p)

3 equations, 5 unknowns (Us, Up, P, p, E) -> need to Measure 2 of these



We determine shock and particle speed with a shock

speedometer (VISAR), temperature with pyrometer '&
Targets VISAR
Standard

Pyrometer

Temperature is measured separately from pressure, density....



Carbon, a principal constituent of Neptune, is thought to

have a complicated solid and liquid structure
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By measuring shock velocities very accurately we
determine pressure and density to a few percent IL

We have compressed diamond by ~ 3x
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Temperature was measured on decaying shocks
This unveiled the melt curve from 6 to 11 Mbar

(L

Use decaying shock to
Map high P-melt curve

Melt curve stays nearly flat from 6-11 Mbar

Decaying single

* shock (6-40
w Mbar)
-
(7]
D hv
o
Distan 6e

30 7 _ -
1 Single-shock
Hugoniot g
(Eggert, sub 09)
20 .
T : Fluid phase
(103K) 1 Neptune adiabat .
1 Wang |
10 _ Correa\‘ I'|| g
. kh& =m0 I": e
B vcg ............. X, o :
:A ; Diamond BC8
0 4 | 5
[ 7 L 1 T 1 T T T T T ] 1

Pressure (Mbar)

J. Eggert

10



Reflectivity measurements show Carbon melts from the

diamond phase to a liquid metal 'L
Melt along 1-shock Hugoniot Diamond melts to aliquid conductor |
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 In fact several materials become conducting upon melt (MgO, SiO2, LiF, ..)
This is not what one would expect from simple condensed matter theory
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Finally this carbon metallic fluid phase is also

polymeric up to 20 Mbar and 30kK Lll_-
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Both SiO, and C exhibit a high heat capacity due to dissociation
and bonding reconfiguration up to 20 Mbar

This is not predicted by Ab-initio models "



To generate colder dense states with lasers,
just tune laser intensity versus time

L

Laser ramps use x-ray
drive stepped samples

Ramp laser intensity to
produce shockless
compression

Free surface velocity vs
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Velocity histories are used
to determine P-rho
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Wave-profile analysis is used to
determine C,stress,rho
(Maw,Rothman,05, Eggert 06)
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We measured the stress-density of diamond to
8 Mbar with ramp compression

L

Ramp waves keep the sample
and solid (until plastic heating

~cool

h

Ramp compression shows diamond is

stable and strong to 8Mbar
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This allows us to measure the properties of many solids

to ~ TPa pressures

14



Jupiter is thought to contain H and He at 10’s of Mbarr,
what happens to H or He at those conditions? Ll_

/ Ice crystals

Fluid H, + He
Phase transition region?

77 Mbar

16000 K Fluid metallic H + He

lces?
Possible core of iron/rock?

C. J. Hamilto

How do we study these light fluids at such high density?
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Most previous high pressure-temperature
experiments on hydrogen focused on the Hugoniot

L

Particular attention on H due to its importance in astrophysics and ICF
Hugoniot
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Scientists have measured P, rho, T and the insulating to conducting transition in
the WDM regime to ~ Mbar pressures on the Hugoniot
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Coupling diamond cells to laser shocks enables
access to ultra-high density states for He, H,, He+H,

L

Particular attention on H due to its importance in astrophysics and ICF

Precompressed shocks
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The technique has been demonstrated on Omega to 200 GPa, and is expected to
scale to 10+ TPa on NIF (Eggert PRL 08, Jeanloz PNAS 07, Lee JCP 06, Loubeyre JHP 06)
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He/H2 data give insight to the insulator-conductor
transition of the mixture
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Recent data and theory suggest
He/H2 likely miscible at 1 Mbar/30kK

This may have important implications for ICF
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What next?

Hydrogen Phase space
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What next?

Hydrogen Phase space

® Inner core

(~1 keV Photosphere
100 g/ce) (T~1/2 eV)
~~~
A’
N
)
—
-
o
©
—
) B
% Neutral H I —
gas-liquid
o *F # i
— i
o 2 Solid
@) 3 & metallic H+ _|
—l zV (?)
| ! I I |
-2 0 2 4

Log density (gecm-3)



What next?

Log Temperature (K)

Hydrogen Phase space
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Advanced diagnostics are key for the next generation

experiments dynamics, chemistry, band structure

High resolution imaging 17.5
KeV image of shock in Quartz

500 um Qz
—— Omega

Shock
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Hi-res interferometry
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Laser intensity
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