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The MRS on OMEGA
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AbstractAbstract

A Magnetic Recoil Spectrometer (MRS) has been installed and
activated on OMEGA for measurements of down-scattered and
primary neutrons, from which areal density, ion temperature,

d i ld f i DT i l i b i f d Tand yield of cryogenic DT implosions can be inferred. To
correctly interpret these measurements, the MRS response
function was characterized using the Monte Carlo code
GEANT4 and diagnostic activation experiments. The results of
th MRS h t i ti ll t f ththe MRS characterization as well as measurements of the
absolute neutron spectrum at OMEGA will be presented.

This work was supported in part by the U.S. Department ofThis work was supported in part by the U.S. Department of
Energy (Grant No. DE-FG03-03SF22691), LLE (subcontract
Grant No. 412160-001G), LLNL (subcontract Grant No.
B504974).
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Motivation for the MRS at OMEGAMotivation for the MRS at OMEGA

• Measure the absolute neutron spectrum of cryogenic DT
implosions

• Infer ρR from the down-scattered neutron spectrum

• Measure absolute neutron yield

• Determine fuel ion temperature from Doppler broadened
primary neutron spectrum and characterize non-thermal
features if present
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The neutron spectrum contains a wealth of information The neutron spectrum contains a wealth of information 
including the including the ρρR, TR, Tii, T, Tee, and Y, and Ynn
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The principle of the Magnetic Recoil Spectrometer (MRS)The principle of the Magnetic Recoil Spectrometer (MRS)
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6J. A. Frenje et al., Rev. Sci Instrum 79, 10E502 (2008).



MRS detection efficiency and energy resolutionMRS detection efficiency and energy resolution
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ΔEk = Kinematic energy broadening ∝ foil and aperture sizes
ΔEm = Optical energy broadening ∝ magnet performance



The 1The 1stst phase of the MRS installation was completed in phase of the MRS installation was completed in 
September 2007September 2007

Top view Vie from behind

Magnet

Top view View from behindMagnet
housing Magnet

housing

Detector
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During the 2During the 2ndnd installation phase, polyethylene neutron installation phase, polyethylene neutron 
shielding was installed around the MRS in Spring 2008shielding was installed around the MRS in Spring 2008

~2000 lbs of polyethylene shielding installed around the MRS

2020cm
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The Monte Carlo code Geant4 is being used to model The Monte Carlo code Geant4 is being used to model 
the full MRS detector responsethe full MRS detector response
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Areal density (Areal density (ρρR) can also be inferred from R) can also be inferred from 
knockknock--on protons (KOon protons (KO--p), and knockp), and knock--on deuterons (KOon deuterons (KO--d)d)

4 (×10-4)

n) CH

n'

10-3

10-1

101

M
eV

 · 
n)

n'

n2
KO-p

ie
ld

 / 
(M

eV
 · 

n'

DT
CH

KO-p

10-7

10-5

10

0 10 20

Yi
el

d/
(M

MeV

0 10 20
0

MeV

Yi n

KO-dKO-d

1 (×10-4)

· n
)

MeVKO-d

1 (×10-4)

· n
)

KO-d

0

KO-d

Yi
el

d 
/ (

M
eV

 

S      ρR x Yn

B Y
∝

0

KO-d

Yi
el

d 
/ (

M
eV

 

11

0 10 20
0

MeV

YB      Yn∝ 0 10 20
0

MeV

Y



KO-p and KO-d measurements are made with magnet based 
charged particle spectrometers like CPS or the MRS without a foil

Target
No foil MRS without a foilThe MRS on OMEG
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The OMEGA MRS obtained KOThe OMEGA MRS obtained KO--d** data on a cryogenic DT d** data on a cryogenic DT 
implosion after shielding was installedimplosion after shielding was installed
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The Coincidence Counting Technique (CCT) is used to reduce the The Coincidence Counting Technique (CCT) is used to reduce the 
background for DSbackground for DS--n measurementsn measurements

CR39

Random 
coincidencesSignal

Incident 
Neutron

 

10

15 

20

40 Misaligned 200μmAligned

C
ountμm

]

Front-piece Back-piece

Incident proton
/ deuteron Rl1

Rl2
0

5

-40

-20

0

Rc Rc

ts / Pixel

Δ
y 

[μ

Intrinsic 
noise

-40 -20 0 20 40
0

-40 -20 0 20 40
Δx = xfront - xback [μm] Δx [μm]

Triple-track coincidence

InterfaceSurface after etching

p
or double coincidence

14
Applying the CCT can enhance the S/B by orders of 

magnitude in low yield measurements



TT fusion neutrons overlap the lower part of the downTT fusion neutrons overlap the lower part of the down--
scattered neutron spectrumscattered neutron spectrum
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The TT contribution to the neutron spectrum is calculated The TT contribution to the neutron spectrum is calculated 
using the reactivity ratio for a given Tusing the reactivity ratio for a given Tionion
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The first DSThe first DS--n measurements were performed using warm CH n measurements were performed using warm CH 
DT implosion in April and May 2008DT implosion in April and May 2008
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An areal density of 136 An areal density of 136 ±± 23 mg/cm23 mg/cm2 2 was inferred from the first was inferred from the first 
downdown--scattered neutron measurement of a cryogenic DT implosionscattered neutron measurement of a cryogenic DT implosion
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The first MRS measurements at OMEGA show the The first MRS measurements at OMEGA show the 
diagnostic is performing welldiagnostic is performing well

Summary

► The MRS was installed on OMEGA in summer 2007 and the 
neutron shielding installed in spring 2008g p g

► The MRS response function is being characterized using Geant4 
and implosions producing DHe3 protons and primary DT 
neutronsneutrons

► The CCT was developed to dramatically reduce the background 
(~10-100 times) for down-scattered neutron measurements for ( )
the OMEGA MRS

► The first down-scattered neutron measurements of non-
cryogenic and cryogenic DT implosions have been successfullycryogenic and cryogenic DT implosions have been successfully 
performed
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