Laboratory for Laser Energetics (LLE) University of Rochester, NY - April 2009

FROM LASERS TO THE UNIVERSE: SCALING LAWS in LABORATORY ASTROPHYSICS

Serge BOUQUET

sbouquet@cea.fr and serge.bouquet@cea.fr

Dept. Applied and Theoretical Physics CEA, DAM, DIF F - 91297 Arpajon, France

Emeric FALIZE and Bérénice LOUPIAS

Claire MICHAUT and LUTH group (CNRS, Observatory of Paris),
Michel KOENIG and LULI group (CNRS, Ecole polytechnique),
Xavier RIBEYRE (CEA-CESTA/CELIA, University of Bordeaux),

- Nigel WOOLSEY and RAL group (University of York, UK),

- Paul DRAKE and his group (University of Michigan at Ann-Arbor, USA),

- Aki TAKABE and Ryosuke KODAMA groups (Institute of Laser Engineering, Osaka, Japan).

OUTLINE

1) - CLASSICAL SCALING LAWS

2) - RIGOUROUS FORMALISM

3) - YOUNG STELLAR OBJECT (YSO) JETS

4) - RADIATIVE SHOCKS

5) - CONCLUSION

CE LASER EXP. vs. ASTRON. OBS.

ASTRONOMICAL OBJECTS and LASER PLASMAS

Fig. from J.-P. Chièze

Comparable physical conditions: Thermodynamical conditions in the Sun

FCI TARGET vs. SUPERNOVA

Dimensionless number : Rayleigh - Taylor instabilities

Exploding star : supernova

Among the most violent phenomena in the universe !!!

Typical quantities for lase	r target (S1) and	supernovae (S2)
-----------------------------	-------------------	-----------------

Physical quantities	Laser target (S1)	Supernova (S2)
Characteristic length	$\ell_1 \approx 100 \ \mu m \approx 10^{-2} \ cm$	$\ell_2 \approx 10^{12} \mathrm{~cm}$
Characteristic time	$\tau_1 \approx 10^{-9} \text{ s}$	$\tau_2 \approx 1000 \text{ s}$
Characteristic velocity	$V_1 \approx 10^7 \text{ cm/s}$	$V_2 \approx c/10 \approx 10^9 \text{ cm/s}$
Characteristic acceleration	$g_1 \approx 10^{16} \mathrm{cm/s^2}$	$g_2 \approx 10^6 \text{ cm/s}^2$

The acceleration of supernovae is very weak !!!

Characteristics of the Rayleigh-Taylor Instability (RTI) :

Instability growth rate: $\alpha_{\text{IRT, i}} \approx \sqrt{g_i / \ell_i}$

We should compare $\alpha_{_{\text{IRT},\,i}}$ to the proper time τ_i of the system \boldsymbol{S}_i

Physical quantities	S1 (target)	S2 (supernova)
Instability rate α_{IRT}	$\alpha_{\mathrm{IRT},1} \approx 10^9 \mathrm{s}^{-1}$	$\alpha_{\mathrm{IRT},2} \approx 10^{-3} \mathrm{s}^{-1}$
Dimensionless numb. N _{IRT}	$N_{\mathrm{IRT},1} lpha 1$	N _{IRT,2} ≈ 1

THE DIMENSIONLESS NUMBER N_{IRT} IS GIVEN BY THE PRODUCT $N_{IRT} = \alpha_{IRT} \tau$ FOR EACH SYSTEM

> N_{IRT}(target) = N_{IRT}(supernova) !!! and the common value is about 1 The physics of both objects is similar

SUPERNOVA SN87A: SIMULATION vs EXPERIMENT

Scaling laws : Rayleigh - Taylor instabilities

CERTSONG EXPLOSION, DIMENSIONLESS NUMBER and SELF-SIMILAR SOLUTION

CEC SEDOV - TAYLOR SOLUTION

CEO INVARIANCE - SCALING LAWS

Model equation: Non-linear heat equation

<u> 76</u>		ת	$\partial^2 T^n$
-dt	=	D.	∂x^2

T: temperature (D: diffusion coefficient = cst.) <u>Solution</u>: T = S(x,t) where S is a known function

$$\lambda_{x}, \lambda_{t} \text{ and } \lambda_{T} : \text{Scaling parameters} \\ \frac{\lambda_{T}}{\lambda_{t}}, \frac{\partial \overline{T}}{\partial \overline{t}} = \frac{(\lambda_{T})^{n}}{(\lambda_{x})^{2}}, D. \frac{\partial^{2} \overline{T}^{n}}{\partial \overline{x}^{2}} \\ \frac{\partial \overline{T}}{\partial \overline{t}} = \frac{\lambda_{t} \cdot (\lambda_{T})^{n-1}}{(\lambda_{x})^{2}}, D. \frac{\partial^{2} \overline{T}^{n}}{\partial \overline{x}^{2}}$$

 $\boxed{\frac{\partial \overline{T}}{\partial \overline{t}} = D \cdot \frac{\partial^2 \overline{T}^n}{\partial \overline{\chi}^2}} \xrightarrow{\lambda_{\pm} \cdot (\lambda_{\pm})^{n-1}}_{(\lambda_{\pm})^2} = 1$

$$\lambda_x$$
 and λ_t are arbitrary !

 $\lambda_{\mathrm{T}} = [(\lambda_{\mathrm{x}})^2 / (\lambda_{\mathrm{t}})]^{1/(\mathrm{n} - 1)}$

The equation is **invariant** under the transformation

Solution:
$$\overline{T} = \overline{S}(\overline{x}, \overline{t})$$
 but $S = S$

The solution is **invariant**

The solutions are the same at both scales

Two free parameters (!!!) to make the 2 systems homothetic

LIE GROUP VIEW POINT

The equation $\frac{\partial T}{\partial t} = D \cdot \frac{\partial^2 T^n}{\partial x^2}$ is invariant under the transformation: $x = \lambda_x \cdot \overline{x}, t = \lambda_t \cdot \overline{t}, T = \lambda_T \cdot \overline{T}$ provided the relation $\lambda_T = [(\lambda_x)^2 / (\lambda_t)]^{1/(n-1)}$ holds. $\frac{T \cdot t^{1/(n-1)}}{(x^2)^{1/(n-1)}} = \frac{\overline{T} \cdot \overline{t}^{1/(n-1)}}{(\overline{x}^2)^{1/(n-1)}} = I = I$ INVARIANT of the transformation It is not a dimensionless number !

Relation between the quantities of the 2 systems

Combine x and t: S.S.S are obtained

BROKEN SYMMETRY

Add a linear term (still very simple equation !)

Too much terms or too much equations : no symmetry at all

CONTRACT STELLAR OBJECTS JETS

Herbig - Haro Objects

PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA Unit : 1 000 au(1 au = 1.5 10¹³ cm et 1 pc = 2 10⁵ au)

Length from 1 000 au to 0.1 pc Differences in the structure

INVARIANCE OF RADIATION HYDRODYNAMICS ?

Optically thin radiation hydrodynamics

- $\frac{\partial \rho}{\partial t} + \vec{\nabla}_N . [\rho \vec{v}] = 0$ (N=0: plane, N=1: cylindrical, N=2: spherical geometry)
- $\left| \frac{\partial}{\partial t} + (\vec{v}.\vec{\nabla}) \right| \vec{v} = -\frac{1}{\rho} \vec{\nabla} P$

•
$$\left[\frac{\partial}{\partial t} + (\vec{v}.\vec{\nabla})\right] P - \gamma \frac{P}{\rho} \left[\frac{\partial}{\partial t} + (\vec{v}.\vec{\nabla})\right] \rho = -(\gamma - 1).\Lambda(\rho, P)$$

 $\Lambda(\rho, P)$ = cooling function

 Λ_0 = constant $\Lambda(\rho, P) = \Lambda_0 \rho^{\varepsilon} P^{\zeta}$ Power law form

 $\Lambda(\rho, \overline{P}) \rightarrow \Lambda(\rho, T) \quad P = \varepsilon_0[Z] \rho^{\mu} T^{\nu}$

Exponents ε and ζ

Invariance?

 $x=a^{\delta_1} ilde{x}; \quad t=a^{\delta_2} ilde{t}; \quad
ho=a^{\delta_3} ilde{
ho}; \quad v=a^{\delta_4}v;$ $P=a^{\delta_5} ilde{P}; \quad T=a^{\delta_6} ilde{T}; \quad M=a^{\delta_7} ilde{M}; \quad \gamma=a^{\delta_8} ilde{\gamma}; \quad \epsilon_0=a^{\delta_9} ilde{\epsilon}_0; \quad \Lambda=a^{\delta_{10}} ilde{\Lambda}$ « upper tilde » instead of an « upper bar » ($\widetilde{\chi}$!!!) Yes! Solve a linear system of equations for the δ_i 's

SCALING LAWS

$\mathbf{x} = \lambda_{\mathbf{x}} \cdot \overline{\mathcal{X}}$ -	→ q =	$\lambda_q \cdot \overline{q} \longrightarrow q = \lambda_q \cdot$	\tilde{q} and $\lambda_i \equiv a^{\delta_i}$ a:Group pa	i = r, t, v, = 1, 2, 3, arameter
:	Ratios	General laws	A single cooling ϵ_1 and ζ_1	Bremsstrahlung
	x/\tilde{x}	a^{δ_1}	$a^{(3/2-\zeta_1)\delta_5-(\epsilon_1+1/2)\delta_3}$	$a^{\delta_5-2\delta_3}$ B/A ²
	t/\tilde{t}	$a^{\delta_1+(\delta_3-\delta_5)/2}$	$a^{(1-\zeta_1)\delta_5-\epsilon_1\delta_3}$	$a^{(\delta_5-3\delta_3)/2} (B/A^3)^{1/2}$
	ρ/ <i>ρ</i>	a^{δ_3}	(a ⁶³) ($a^{\delta_3} \equiv \mathbf{A}$
	v/\tilde{v}	$a^{(\delta_5-\delta_3)/2}$	$a^{(\delta_5-\delta_3)/2}$	$a^{(\delta_5-\delta_3)/2}$ (B/A) ^{1/2}
	P/\tilde{P}	a^{δ_5}	a^{δ_5} ($a^{\delta_5} = \mathbf{B}$
	T/\tilde{T}	$a^{(\delta_5-\delta_9-\mu\delta_3)/ u}$	$a^{\delta_5-\delta_3}$	$a^{(\delta_5-\delta_3)}$ B/A
	M/\tilde{M}	$a^{\delta_3+N\delta_1}$	$a^{[1-N(\epsilon_1+1/2)]\delta_3+N(3/2-\zeta_1)\delta_5}$	$a^{[1-2N]\delta_3+N\delta_5}$ A ^(1-2N) .B ^N N: dimensionality
	s/\tilde{s}	$a^{\delta_5-\gamma\delta_3}$	$a^{\delta_5-\gamma\delta_3}$	$a^{\delta_5 - \gamma \delta_3} \frac{B}{A^{\gamma}}$
	$\Lambda_{0,1}/\tilde{\Lambda}_{0,1}$	$a^{(3/2-\zeta_1)\delta_5-(\epsilon_1+1/2)\delta_3-(\theta_1+1)\delta_1}$	1	1
	$\Lambda_{0,2}/\tilde{\Lambda}_{0,2}$	$a^{(3/2-\zeta_2)\delta_5-(\epsilon_2+1/2)\delta_3-(\theta_2+1)\delta_1}$	0	0
		$\delta_1, \delta_3 \text{ et } \delta_5$	$\delta_3 \text{ et } \delta_5$	$\delta_3 \text{ et } \delta_5$
	Th	ree free parameters	Two free parameters $(\epsilon_1 =$	$3/2; \zeta_1 = 1/2)$
E. Falize et al., Inertial Fus	sion Sc. Appl lysics: Conf.	. (IFSAU7), KODE, Japan (2007) Series 112 (2008) 042015	E. Falize et al., Astroph	nys. Sp. Sc., to appear (2009)

\overline{c}

ASTROPHYSICS and EXPERIMENTS

Velocity (al	bout 100 km/s) and temper	ature (about 10 000	K) are kept invariants
← →	δ_3 et δ_5 are calculated:		
		_	Wrong indeed III

$A \equiv \rho_{astro} / \rho_{lab}$, $B \equiv P_{astro} / P_{lab}$,	
$A \approx 3B \approx 2.10^{-19}$	

Wrong, indeed !!! Use length.

Physical quantities	Cold protostellar jet (HH111)	Experimental values	Scaling factor
Length (cm)	3.1017	0.1	3 .10 ¹⁸
Time (s)	3.10^{10}	10-8	3.10 ¹⁸
Velocity (km/s)	100	100	1
Density (g/cm ³)	2.10-22	10-3	2.10^{-19}
Density (part/cm ³)	100	1017	10-15
Temperature (K)	10 000	10 000	1

LASER TARGETS

- Différente densité : de 20mg/cc à 200mg/cc
- Mousse dopée : Br, Cl
- Avec et sans cible solide

Différent angle de cône : 38° et 22°

Différente intensité laser :

 5.10^{14} W/cm², 7.10^{13} W/cm² ou 3.10^{13} W/cm²

- Différent **profil laser**: Gaussien (RPP) ou supergaussien (PZP)
- · Avec ou sans « washer »

B. LOUPIAS, PhD Thesis, Paris, October 21, 2008

COMPARISON THEORY / JET EXPERIMENTS

INFLUENCE of an **AMBIANT MEDIUM**

C.D. Gregory et al., PPCF 50(2008)124039

Rayleigh – Taylor instability (RTI):

 $\omega = \sqrt{At.g.k} \qquad At = \frac{\rho_2 - \rho_1}{\rho_2 + \rho_1}: \text{Atwood, } \rho_2: \text{ heavy, } \rho_1: \text{ light, g: deceleration, k: wave number}$ $\rho_2 = 1 \text{ mg/cc}, \quad \rho_1 = 0.04 \text{ mg/cc}, \quad \eta = \rho_{\text{jet}} / \rho_{\text{ambiant}} = 25 \ (= 0.1 - 10), \text{ At } = 1$ $g = 60 \ (\text{km/s}) / 30 \ (\text{ns}) = 2 \ \mu\text{m} / (\text{ns})^2, \quad \lambda = 100 \ \mu\text{m}$ RTI may play a role in the structure of the BOW SHOCK
HIGHER RESOLUTION REQUIRED IN OBSERVATIONS + Compressible effects ...

RADIATIVE SHOCK in SNR 's

Dwarkadas and Chevalier, ApJ 497 (1998) 497

RADIATIVE SHOCK in SNR 's

CED RADIATION HYDRODYNAMICS

•
$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot [\rho \vec{v}] = 0$$

• $\left[\frac{\partial}{\partial t} + (\vec{v} \cdot \vec{\nabla})\right] \vec{v} = -\frac{1}{\rho} \vec{\nabla} (P_{th} + P_{rad}),$ $P_{th} = \varepsilon_0 [Z] \rho^{\mu} T^{\nu},$ $P_{rad} = a_R T^4 / 3$
• $\frac{d}{dt} \left(\frac{P_{th}}{\gamma - 1} + E_{rad}\right) - \gamma \frac{P_{th} / (\gamma - 1) + P_{th} + E_{rad} + P_{rad}}{\rho} \frac{d\rho}{dt} = -\vec{\nabla} \cdot \vec{F}_{rad} - Q(\rho, T)$
 $\frac{d}{dt} = \left[\frac{\partial}{\partial t} + (\vec{v} \cdot \vec{\nabla})\right]$
 $E_{rad} = a_R T^4$
 $\vec{F}_{rad} = -\kappa_{rad} \vec{\nabla} T,$ $\kappa_{rad} = \kappa_0 \rho^m T^n$ $m = -2, n = 7/2, \text{ Kramers opacity}$
 $Stellar structure, stellar evolution$

Invariance ?

SCALING INVARIANCE YES !!!

 $P_{rad}/P_{th} \ll 1$ and $E_{rad}/E_{th} \ll 1$

 $\mu = \nu = 1$, Ideal Gas and m = -2, n = 7/2, Kramers opacity

 quotients
 Invariance absolue

 x/\tilde{x} $a^{[m+1/2-(n+1)\mu/\nu]\delta_3+[(n+1)/\nu-3/2]\delta_5}$
 t/\tilde{t} $a^{[m+1-(n+1)\mu/\nu]\delta_3+[(n+1)/\nu-2]\delta_5}$
 $\rho/\tilde{\rho}$ a^{δ_3}
 v/\tilde{v} $a^{\delta_5}-\delta_3)/2$
 P/\tilde{P} a^{δ_5}
 T/\tilde{T} $a^{(\delta_5-\delta_3)/2}$
 $F/\tilde{\rho}$ a^{δ_5}
 $\pi/\tilde{\ell}$ $a^{(\delta_5-\mu\delta_3)/\nu}$
 $\epsilon_0/\tilde{\epsilon}_0$ 1

 F_{rad}/\tilde{F}_{rad} $a^{3\delta_5/2-\delta_3/2}$
 $\kappa_{rad}/\tilde{\kappa}_{rad}$ $a^{n\delta_5/\nu+[m-n\mu/\nu]\delta_3}$
 $\kappa_0/\tilde{\kappa}_0$ 1

Two free parameters again

$$A \equiv \rho_{astro} / \rho_{lab}$$
, $B \equiv P_{astro} / P_{lab}$,

ee

SCALING FACTORS

Muller et al. Astron. Astrophys. (1991)

$A = \rho_{astro} / \rho_{lab}$, $B = P_{astro} / P_{lab}$, $A \approx 10^8$; $B \approx 3.10^{-14}$				
Physical quantities	Supernova	Experiments	Scaling factors	
Length (cm)	1012	0.01 (100 microns)	1014	
Time (s)	3600	10-8	3.6 1011	
Velocity (km/s)	c/2 !!!	100	10 ³	
Density (g/cm ³)	10-2	10-5	10 ³	
Temperature (K)	10 ¹⁰	10 000	10 ⁶	

LULI EXPERIMENTSVS. NUMERICAL SIMULATION

OMEGA EXPERIMENTS

Amy Reighard (Cooper), Paul Drake, Laurent Boireau, Paul students ...

FIG. 5. (Color online) (a) Density profile at 7 ns, from a 2D simulation of the experiment, using the FCI code. The shock is moving to the right. The color bar calibrates the density as a ratio to the initial gas density. (b) Simulated radiograph, using density data from (a). Poisson noise and a point-spread function from data are included.

Reighard et al., PoP 13 (2006) 032901

\mathfrak{E}

CONCLUSION

- For the first time, rigourous derivation of scaling laws have been made and the connection between experiments and astrophysical objects is 1 to 1
- 2) Coherence and redundance of the models
- 3) Laboratory astrophysics is a relevant approach