OMEGA Laser Users’ Group Meeting at APS
Tuesday, November 9th, 2021, Room 303, David L. Lawrence Convention Center

Agenda

5:05PM to 5:15PM: Welcome, announcements
 – Johan Frenje, MIT

5:15PM to 5:30PM: Laboratory for Laser Energetics Remarks
 – Mike Campbell, LLE

5:30PM to 5:50PM: National Nuclear Security Admin Perspective
 – Ann Satsangi, NNSA Office of Experimental Science

5:50PM to 6:10PM: Summary and Updates of the F&Rs from the 2021 OLEG Workshop
 – Liz Merritt, LANL
 – Mario Manuel, GA

6:10PM to 6:30PM: OMEGA Laser Facility Perspective on the F&R Status
 – Mingsheng Wei and Sam Morse, LLE
Our Mission Remains the Same

Office of Experimental Sciences | Office of Research, Development, Test, and Evaluation

Our Mission Remains the Same

Our Mission Remains the Same

Science

Engineering

Technology Maturation

Computer Simulation

Inertial Confinement Fusion

for maintaining the effectiveness of the nuclear weapons stockpile, providing a technical basis for the annual assessment, developing modernization options, and quantifying the effects of aging on the stockpile

Defense Programs

• Ensure the United States has a safe, secure, reliable nuclear stockpile
• Secure transport of special nuclear materials and equipment

Office of Experimental Sciences

VISION: A world-class scientific enterprise for stockpile stewardship that creates and applies 21st century science capabilities to anticipate and address existing and emergent stockpile needs, and thwart unforeseen threats

MISSION: Ensure a resilient US nuclear deterrence posture by delivering world-class data, facilities, and expertise required to undergird the effectiveness and responsiveness of the modern stockpile
Design & specifications:

- 60-beam, 30,000 Joule main laser (5x the energy of a bullet fired from a large-caliber rifle)
- 4-beam, 40,000 Joule short-pulse-capable laser (fires faster than light travels ¼ inch)
- ~160 diagnostic systems
- Rapid shot rate for 2100 experiments annually
- Invented technology enabling short-pulse lasers

Key roles for Omega:

- Develop new methods and diagnostics for NIF & Z
- Phase diffraction methods (now applied to Pu on NIF and Z)
- Short-pulse radiography
- Pioneer breakthroughs in laser technology
- Develops advanced material models
- Laser-direct-drive fusion ignition approach
- Train future stockpile stewards:
 - 300+ Rochester PhDs to date
 - 400+ users from academic community
 - New HED degree program

Omega provides rapid development of new capabilities and training for NNSA researchers
Research Development Test and Evaluation (RDT&E)
Funding at a Glance

- Stockpile Management: 22%
- Production Modernization: 13%
- Infrastructure and Operations: 21%
- Secure Transportation Asset: 2%
- IT / Cyber: 2%
- Legacy Contractor Pensions: 1%
- DNN Appropriation: 11%
- Naval Reactors Appropriation: 9%
- Fed Salaries / Expenses: 2%
- Academic Programs: 1%
- Weapon Technology and Manufacturing Maturation: 2%
- Engineering: 2%
- Advanced Simulation and Computing: 4%
- Inertial Confinement Fusion: 3%
- RDT&E: 14%
- Fed Salaries / Expenses: 2%
- Nav Reactors Appropriation: 9%
- Academic Programs: 1%
- Inertial Confinement Fusion: 3%
- DNN Appropriation: 11%
- Naval Reactors Appropriation: 9%
- Fed Salaries / Expenses: 2%
- Advanced Simulation and Computing: 4%
- Inertial Confinement Fusion: 3%
- Academic Programs: 1%
The National ICF Program

ICF FY21 ($575 M)

HED & Ignition Science: Advances experimental platforms and understanding toward ignition and MJ fusion yield

ICF Diagnostics: Conducts the R&D for new technologies to execute and interpret HED experiments

Facility Operations: Enables safe and efficient operations of national HED facilities for all applications
ICF Program Overview

ICF Program provides HED science capabilities and expertise that support research and testing across the breadth of the Stockpile Stewardship Program. Its two-fold mission is to:

1. Meet immediate and emerging HED science needs to support the deterrent of today
2. Advance the R&D capabilities necessary to meet those needs for the deterrent of the future

Priorities

- **Robust, sustained HED facility operations** for data needs of modernization, assessment science, survivability, and pursuit of ignition
- Advance toward **fusion ignition and high yield to meet long-term stewardship needs**
- **Next-gen capabilities** to provide access to data at the extreme conditions of nuclear weapon operation
- **Leverage innovation** to address near-term weapons physics challenges
- Attract and challenge an **expert workforce** of stockpile stewards
FY2020: A time for Reflection
FY2021: A time for Response

ICF 2020
- Red Team Review complete (early summer 2020)
- HQ draft (September 2020)
- HQ concurrence for internal report (July 2021)

JASON ICF Report
- HQ response being finalized
- Unclassified Executive Summary and Full classified report
- Delivered June 2021

NASEM HED Science
- May 2021 kick off study
- August 2021, community meetings
- July-Oct, site visits, international and workforce sub-groups

ICF Fall Workshops Series
- Implement ICF 2020 key findings
- Enhance national program coordination
- Broaden and deepen connections to the expert academic/industrial community

Working groups: LPI, Hohlraum Physics, Current Delivery, Compression, Hot Spot Mix, Ignition Theory, Materials, Advanced Analysis and Simulation

• Review, refine and improve key scientific questions, technical goals, and research plans of the national US ICF effort for the next 5 years
• Identify opportunities for inter-laboratory and academic collaborations to improve physics understanding and reduce scaling uncertainties towards ignition and multi-MJ fusion yield for stockpile stewardship
ICF 5-Year Plan

- Reassess 5-year plan and develop a new ICF roadmap
- NNSA Defense Programs - “Getting the Job Done” goal
 - Build on knowledge and technology investments that enabled >1MJ fusion yield performance on NIF to explore reproducibility and further performance improvements.

ICF Facilities

- An ecosystem for HED discovery and advancement
- Sustaining existing capabilities over the next 10 years
- Evaluating mission needs and requirements for the future of our ICF facilities
 - Next Generation Pulsed Power (NGPP)
 - NIF Improvements/Upgrades
 - Omega LLE renewal review

Academic Programs

- NAS 2022 HEDS Report Delivery
- Annual HEDLP FOA involvement
- Facility Access Program
Goals

- **Workforce Pipeline**: providing a diverse, skilled, technical future stockpile stewards
- **External Expertise**: assuring quality through external review, critique, challenge
- **Creative Input**: leveraging expertise in areas thinking outside the mission

- Stewardship Science Academic Alliance (SSAA)
- Minority Serving Institution Partnership Program (MSIPP); including: Tribal Education Partnership Program (TEPP)
- Joint Program in High Energy Density Laboratory Plasmas (JPHEDLP)
- Computational Science Graduate Fellowships (CSGF)
- Predictive Science Academic Alliance Program (PSAAP)
HEDLP Academic Program

HEDLP Grants
Joint FOA with Office of Science
- FY21: $4.8M, 12 new awards
- FY22: $3.8M for grants
- FY23: ~$4M for grants
MOU w NSF
- FY21: pilot test

HED Centers
- 5 HED Centers – $9.5M
 ($3.8 HEDLP, $5.7 SSAA)

Facility Use
User programs at NNSA HED facilities
- OES program support (facility operation, targets, onsite support)
- Facility Access Program FY21 pilot

Community Development
HED Summer schools
Workshop support
- AMP Data and Workforce summer/fall 2022 at NIST

Future potential opportunities ...
- 2020 Ignition Workshop needs
- Coordination w IFE efforts
- NAS HED recommendations
- Pulsed power, Targets research, Future facilities technology
Opportunities for HEDLP in NNSA Academic Programs

HEDLP

- Annual Joint NNSA and DOE Office of Science issued solicitation - Coming Soon

SSAA

- FY22 Grants - FOA mid 2021 under review materials, low energy nuclear, rad-chem
- FY23 Centers- FOA expected early 2022

Fellowships

Computational Science Graduate Fellowship
https://www.krellinst.org/csgf/

Laboratory Residency Graduate Fellowship
https://www.krellinst.org/lrgf/

Stewardship Science Graduate Fellowship
https://www.krellinst.org/ssgf/

NNSA Graduate Fellowship Program
https://www.pnnl.gov/projects/ngfp
Questions?
Summary and Updates of Findings and Recommendations from the 2020 and 2021 OLUG Workshops

Liz Merritt & Mario Manuel
Findings & Recommendation process

2020: Cancelled the April meeting due to COVID, but managed a virtual workshop in September

1. In the fall, we had **fully virtual September** OLUG F&R meeting
 i. Substitution for the April meeting F&Rs sessions
 ii. Took the place of the normal DPP OLUG Town Hall

2. Both before and during the meeting, users submitted ideas for new Findings & Recommendations

3. On Wednesday and Thursday we met for 3 hours total to discuss new F&R ideas within the OLUG community

4. On Friday morning, LLE representatives gave initial input.

We thank the community for remaining so engaged during trying times!
Findings & Recommendation process

2021: Virtual, but back on schedule!

1. In the spring, we had a fully virtual April OLUG Meeting
 i. Both before and during the meeting, users submitted ideas for new Findings & Recommendations

2. On Tuesday at the meeting we had a late brief on the F&Rs from 2020

3. We had an initial session on Wednesday discussing new F&R ideas within the OLUG community, and followed it up with a 2nd session on Thursday to gauge support and flesh out requests

4. On Friday morning, we presented the ideas to the LLE representatives and got initial input. The initial response from LLE was positive!

5. LLE have traditionally been very responsive to this community input – we will hear their response to this year’s requests in the next talk

As we go through this and the next talk, if you think of additional improvement opportunities or capability gaps, please remember to raise them during the spring meeting.
During the 2020 September OLUG workshop, we discussed 22 Findings & Recommendations from the community

Submitters are divided over many institutions:

5 Government:
- UK STFC
- General Atomics
- LLNL
- AWE
- LANL

12 Universities:
- University of Michigan
- PPPL
- Princeton
- MIT
- UCSD
- UCLA
- Oxford
- Virginia Tech
- Imperial College
- LLE
- U. of Nevada Reno
- John Hopkins

These F&R’s can be loosely divided into the following categories:

- Documentation: 5 requests
- Calibration: 3 requests
- Diagnostics: 7 requests
- Target capability: 2 requests
- Laser Systems: 4 requests
- Code Improvement: 1 request

- Total: 22

All but four of these were submitted prior to the Thursday session, but several were significantly expanded during the sessions.
During the 2021 April OLUG workshop, we discussed 29 Findings & Recommendations from the community

Submitters are divided over many institutions:

4 Government:
• LANL
• LLNL
• AWE
• General Atomics

5 Universities:
• MIT
• Princeton
• PPPL
• U. of Nevada Reno
• Oxford

Several other institutions also voiced support:
UCSD, UCLA, Umich, HZDR, GA, IMP, and LLE itself

These F&R’s can be loosely divided into the following categories:

• Documentation: 3 requests
• Calibration: 6 requests
• Diagnostics: 13 requests
• Target capability: 1 request
• Laser System: 5 requests
• Code Improvement: 1 request

• Total: 29

All but four of these were submitted prior to the Thursday session, but several were significantly expanded during the sessions.

Keep any ideas you have in mind, and please submit them for the spring session
This process WORKS!

The next talk will go through each request in detail!
Status of the FY21 OLUG Findings and Recommendations

Mingsheng Wei, Sam Morse
University of Rochester
Laboratory for Laser Energetics

APS DPP OLUG Update
Pittsburgh, PA
9 November 2021
OLUG APS-DPP update - LLE continues to address needs and concerns of Users

• Progress continues on prior year OLUG Findings and Recommendations (F&Rs)
• LLE has developed a sustainment plan to extend Omega into the 2030’s as part of the next Cooperative Agreement
• Plans are in place to address many of the 2021 F&Rs
• Summary of Basic Science calls for proposals:
 - NLUF FY22-23 (27 projects) in process, next solicitation will be issued in early 2023 for experiments in FY24-FY25
 - LBS call for FY23 experiments will be in early 2022
 - LaserNetUS cycle 4 proposals are due 10 Dec for experiments July 2022 to July 2023
• An LLE building expansion is in final design
• Omega Basic Science users (NLUF, LBS and LaserNetUS) obtained a total of 620 target shots in FY21

• 27 NLUF projects led by 25 PIs from 15 different institutions were awarded Omega beam-time for experiments at the Omega Laser Facility in FY22-23
 - More than 50% are led by early career scientists
 - ~40% of the NLUF projects are led by women

• FY22 LBS program awarded 15 new projects led by scientists from LLNL, LLE, PPPL and SLAC
 - Many LBS projects involve students and postdoc researchers

• 4 projects from LaserNetUS Cycle 3 will be conducting experiments on OMEGA EP in FY22 including one led by an international PI
 - LLE has completed a total of 99 target shots for 9 LaserNetUS projects.

More than 60 graduate students are conducting their theses research supported by Omega Basic Science User Programs.
The Diagnostic Development and Integration Group
Supports many diagnostic projects

- Omega continues to be a hub of diagnostic innovation
- The DD&I group (led by S. Ivancic, siva@lle.Rochester.edu) leads integration projects
- LLE is committed to a number of new and/or modified diagnostics for FY22 shots

FY21 Diagnostics:
- Scattered Light Uniformity Imager (SLUI)
- LLNL –Vacuum Cherenkov Detector (VCD)
- Terahertz Background Energy Measurement
- LANL Time Resolved Neutron Imaging
- Port P9 Full Aperture Backscatter Station
- Port H2 nTOF
- MIT- MagSpec
- Fresnel Zone Plate (FZP) – TIM14 qual
- Gas Jet System-High Pressure (1500 PSI)
- Gas Jet System –TIM4,TIM-5 – Fixed Arms
- JHU EP-Talbot-Lau X-ray Deflectometer 2, 3
- ARPA-E- nTOF diagnostics (three)
- Fast PMT Mount
- SXS w/XRCCD1
- Mini-B-Dot
- LLNL- EPPS-shielded

FY22 Diagnostics:
- OMEGA High Resolution Velocimeter
- LLNL Scattered Light Diode
- Terahertz
- E-Rad EPPS Nose modification
- Schlieren Spherical Crystal imager
- Chicane Diagnostic
- FABS P9
- Time Resolved x-ray CMOS
LLE is making progress on a number of prior year F&R

- **User Request: Increase magnetic fields to 30T (and up to 50T)**
 - 50T achieved in FY21 with dual MIFEDS (generation 2.x)
 - A single 19T (1 cm^3) system will be completed in FY22
 - Dual MIFEDS

- **Beam Delay Extenders (10 beams of OMEGA-60 to have increased delay of 4ns available)**
 - on track to deliver in Q4 FY22

- **Thicker film packs for Near Target Arm – first use 11/18/21**
 - Film packs up to 30mm supported (original max was 18mm)
The OMEGA Sustainment plan includes a surge of activities

- The plan boosts sustainment over the period of the next Cooperative Agreement (CA), FY24-28.
- Laser, diagnostic, and target sustainment activities beyond periodic preventive maintenance are required to replace equipment and controls that are no longer supported.
- Additionally, many systems need to take advantage of modern technology to ensure that the lasers operate with high efficiency, effectiveness, and availability into the mid 2030’s.
- $50 million, ~$10 million/year, will be requested during the FY24-28 CA period for this activity. The total cost of all the activities described in this plan is $76 million over the next 10 years.
FY21 Sustainment highlights featured a few projects to improve performance and reliability:

- Cryopump isolation
- Stage-F Alignment
- Sensor Package Generator
- and switchgear replacement
An office and lab expansion project is in final design stages
An office and lab expansion project is in final design stages
A planned building expansion at LLE supports existing and future activities

- A 60,000 sqft laboratory/office addition connected to the LLE building
- To build and test the MEC-U laser, increase target fabrication space, increase other laser and engineering labs, add offices, and support campus researchers
- Omega has operated in parallel with construction projects in the past and LLE will work to minimize the impact
- System availability will be impacted during high vibration activity on the construction site (eg: 5 vs 7 target shots per day on OMEGA EP)
- Ground breaking is planned for spring 2022

UR is funding the ~$40 million addition
Plans are in place to address many of the 29
2021 OLUG F&Rs

1. Ensure that users have access to detailed, and up
to date documentation on diagnostics – working
on user guides and updating where appropriate

2. Improved Navigation on the Diagnostic Usage
Page (add links to the shot days
for easier navigation to RIDs with diagnostic
setups)

3. Make EP UV optics transmission measurements
readily available to users
(Final testing this week)

4. Dante maintenance and documentation
improvement

5. Make calibration data readily available on PI portal

6. Characterization of Gas Jet Nozzles
Plans are in place to address many of the 2021 OLUG F&Rs

8. Calibrate CPS 1, CPS 2 and MagSPEC with a Ra-221 source
9. Bragg crystal inventory and characterization for SXS
10. Add a timing fiducial to Dante – will consider in Dante sustainment with LLNL
11. Fix SSCA UV timing fiducial – available only on OMEGA-60
12. ASBO/SOP on EP TIM14
13. Add OTS Diagnostic to EP
14. More Streak Camera Options for time-resolved x-ray spectroscopy
 –SSCA modernization will include additional x-ray streak cameras – more in spring
 OLUG
15. Upgraded detector-finger holders for CPS1 and 2
16. Time resolved x-ray history measurements in high neutron-yield environments
17. Capability to infer directional flow vector on D2-gas-filled or low DT yield implosions
 on DT shots for compatibility with DT3He backlighter
Plans are in place to address many of the 2021 OLUG F&Rs

18. 3rd VISAR leg on ASBO at EP and/or OMEGA – will investigate during sustainment project
19. Additional photocathode options for PJX2 and PJX3
20. Improve accuracy of SSCA data acquisition time
21. Bragg crystal inventory and characterization for SXS
22. Implement quick-look for CR-39-based proton radiography
23. Add planar Cryo on EP
24. Increase UV power on EP
25. OMEGA: Any beam, any delay (or at least a 3rd leg)
26. Opposing EP beams
27. Smaller DPPs on EP
28. SSD on EP
29. Shared VisRad License for Basic Science Users from US Universities
OLUG APS-DPP update - LLE continues to address needs and concerns of Users

- Progress continues on prior year OLUG Findings and Recommendations (F&Rs)
- LLE has developed a sustainment plan to extend Omega into the 2030’s as part of the next Cooperative Agreement
- Plans are in place to address many of the 2021 F&Rs
- Summary of Basic Science calls for proposals:
 - Next NLUF solicitation will be issued in early 2023 for FY24-FY25
 - LBS call for FY23 experiments will be in early 2022
 - LaserNetUS cycle 4 proposals are due 10 Dec for experiments July 2022 to July 2023
- An LLE building expansion is in final design
Extra slides
A Matlab GUI design tool has been developed for MIFEDS magnetic field calculations

- MATLAB GUI-based tool calculates the B-field profile for user-designed coil configurations
 - Single or dual MIFEDS
 - Number of loops, location and size of each loop

Contact Jonathan Peebles for information: jpeebles@lle.Rochester.edu
Upgrades to the MIFEDS system – OLUG 2016 recommended higher field in larger volume

- **Generation 3 of MIFEDS underdevelopment will have more than 10 times of the energy storage of Gen 2**
 - Gen 3 qualification in process

- **Some improvements of Gen 3 will be backwards compatible with Gen 2.x**
 - MIFEDS Gen. 2.x is available

- **MIFEDS gen 2 and 2.x will keep current magnetic field capability as gen 3 comes online**

<table>
<thead>
<tr>
<th>Distinguishing characteristics</th>
<th>MIFEDS 2 (3 avail.)</th>
<th>MIFEDS 2.x (upgrades)</th>
<th>MIFEDS 3 (completely new)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified design</td>
<td>200</td>
<td>450</td>
<td>2200</td>
</tr>
<tr>
<td>Higher capacitance, modified T-line, Coil holder</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>New design, External charger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stored energy (J)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise time (μs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max op. voltage (kV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field over 1 cm³ (T)</td>
<td>4.3</td>
<td>9.0</td>
<td>18.6</td>
</tr>
</tbody>
</table>
LLE developed and built three neutron diagnostics for the ARPA-E fusion program

Three plastic scintillator based neutron detectors: 7x4, Large, Fast for increasing yields, Fast can determine neutron-averaged ion temperature. (Contact Jonathan Davies, jdav@lle.Rochester.edu for details)

<table>
<thead>
<tr>
<th>Key Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma parameter range</td>
</tr>
<tr>
<td>> 10^2 incident neutrons, >10^4 for ion-temperature measurements</td>
</tr>
<tr>
<td>Resolution (time)</td>
</tr>
<tr>
<td>0.1 ns</td>
</tr>
<tr>
<td>Resolution (energy)</td>
</tr>
<tr>
<td>0.1 keV</td>
</tr>
<tr>
<td>Form factor: operation</td>
</tr>
<tr>
<td>Detector(s) plus cables to digitizer, scope and HV supply</td>
</tr>
<tr>
<td>Other characteristics</td>
</tr>
<tr>
<td>Active areas: 7x4 248 cm2, Large 177 cm2, Fast 100 cm2</td>
</tr>
<tr>
<td>Transportable</td>
</tr>
<tr>
<td>Ships in Pelican cases 31.28 x 24.21 x 17.48 in</td>
</tr>
</tbody>
</table>
The OMEGA EP laser facility participates in the LaserNetUS research network

- First experiments were in 2019
- Five shot days are scheduled in FY22, cycle 3 underway
- Cycle 4 shot time starts in July 2022, proposals due 10 December 2021
- EP provides four kJ-class beamlines
 - Two short-pulse capable (0.7-100ps)
 - Flexible experimental configurations
 - Optical, x-ray, and particle diagnostics
- Supported by the Office of Fusion Energy Sciences

https://lasernetus.org/

For more information- contact Mingsheng Wei: Mingsheng@lle.Rochester.edu (585) 275-3866
QUESTIONS ?
Join us at the

13th OMEGA Laser Users Group Workshop

27-29 April, 2022, Rochester, NY

- Outstanding invited talks on HED science and the OMEGA facility
- Review progress on the Findings & Recommendations from the 2021 Workshop
- Poster Sessions on diverse HED Science and Technology
- Student-postdoc Town Meeting with Facility Recommendations

For student & postdoc Workshop scholarships, contact either Johan Frenje (jfrenje@psfc.mit.edu) or Pia Valdivia (mpvaldivialeiva@ucsd.edu)