Beam-Homogenization and Space-Charge–Broadening Calibration for Accurately Measuring High-Intensity Laser Pulses Using a High-Speed Streak Camera

J. Qiao, P. A. Jaanimagi, R. Boni, J. Bromage, and E. Hill
University of Rochester
Laboratory for Laser Energetics

CLEO 2012
San Jose, CA
6–11 May 2012
Summary

A beam-homogenizing system was developed to accurately measure 8- to 250-ps pulses using an optical streak camera.

- Short-pulse measurement on kilojoule, large-scale laser systems is sensitive to the beam quality.
- Space-charge broadening affects the accuracy and effective dynamic range of an optical streak camera.
- An anamorphic diffuser–based beam-coupling system was developed to produce uniform illumination on a streak-camera photocathode.
- A method to calibrate space-charge–induced pulse broadening was developed and validated on OMEGA EP.
The high-speed Rochester Optical Streak System (ROSS) is used to measure pulse width from 8 to 250 ps

- Input slit size: 0.1 mm × 20 mm
- Temporal resolution: 2 ps
- Sweep duration: 700 ps
- Optical calibration module: allows for remote focusing alignment and calibration

SYDOR Instruments, Rochester, NY, USA, www.sydorinstruments.com
Photonis P820 streak tube (Photonis, Brive France, www.photonis.com)
Short-pulse measurements using a streak camera is sensitive to beam quality and space-charge–broadening effects

- Wavefront aberrations create modulations in the far field
- Shot-to-shot pulse measurement is compromised by the pointing variations
- Hot spots in the foci exacerbate space-charge broadening
The conventional cylindrical-lens coupling creates typical 5-to-1 intensity modulation in the streaked images.

Shot-to-shot measurement is compromised by hot-spot and pointing variations.
The homogeneity in the spatial direction has to be sufficiently smooth such that a global space-charge-broadening calibration can be performed.

- Small-scale modulations in the spatial direction is not a concern
A $10^\circ \times 0.4^\circ$ anamorphic diffuser was used to homogenize the far-field image in space.

- All points on the diffuser plane corresponding to the same angle contribute to the energy collected at each location on the focal plane.
- Provides different divergence angles in two orthogonal directions.

Anamorphic diffuser (10°)

- Lens
- Focal plane along the slit

Anamorphic diffuser (0.4°)

- Lens
- Focal plane across the slit

cw measurement at 1053 nm using a charge-coupled-device (CCD) camera

- Normalized signal
- Spatial direction (mm)
- FWHM = 6.1 mm

- Normalized signal
- Temporal direction (μm)
- FWHM = 270 μm

FWHM = 6.1 mm

100 μm
The impulse response was measured to ensure that the diffuser does not broaden the pulse.
The anamorphic diffuser coupler significantly improved streak image uniformity and shot-to-shot measurement repeatability.

- **Anamorphic diffuser coupler**
 - 100-ps nominal pulse

- **Cylindrical lens coupler**
 - 22-ps nominal pulse
The regressed pulse width agrees with a scanning autocorrelator (SAC) measurement within 2%

- Space-charge–broadened calibrating pulse (with population): 8.7 ps (FWHM)
- SAC measured pulse: 8.5 ps (FWHM)
- Decorrelation factor: 1.36 (derived from the autocorrelation of a model-predicted pulse)
The measured pulse shape on high-energy shots agrees with the prediction from a system model.

Streak image of shot 10825 (100-ps pulse)

Spectral measurements

Pulse prediction and measurement
The measured pulse broadens linearly with input energy to the slit.

- Space-charge broadening is more pronounced for shorter pulses.
- This calibration can be used to numerically remove space-charge-broadening effects during laser operations.
Summary/Conclusions

A beam-homogenizing system was developed to accurately measure 8- to 250-ps pulses using an optical streak camera

- Short-pulse measurement on kilojoule, large-scale laser systems is sensitive to the beam quality
- Space-charge broadening affects the accuracy and effective dynamic range of an optical streak camera
- An anamorphic diffuser–based beam-coupling system was developed to produce uniform illumination on a streak-camera photocathode
- A method to calibrate space-charge–induced pulse broadening was developed and validated on OMEGA EP