Gain Filtering for Single-Spatial-Mode Operation of Large-Mode-Area Fiber Amplifiers

J. R. MARCIANTE

University of Rochester, Laboratory for Laser Energetics and Institute of Optics
Gain filtering is a robust method to achieve single-mode operation of large-mode-area fiber amplifiers.

- In a uniformly doped fiber, the fundamental mode saturating the gain experiences less gain than other modes.

- Proper radial tailoring of the gain-doping profile can filter out of higher-order modes without introducing any loss.

- Theoretical calculations show
 - reducing the diameter of the gain-doping profile with respect to the waveguide diameter results in the highest gain for the fundamental mode, regardless of gain-saturation level
 - using a Gaussian gain-doping profile to match the fundamental-mode shape does not work as well as a reduced-diameter flat-top profile

- This gain-filtering concept is power/energy scalable and robust with respect to seed purity, core diameter, and numerical aperture.
Large mode area (LMA) fibers are used for power and energy scaling of fiber amplifier systems

- Peak power limitations derived from nonlinear and damage effects can be overcome by using LMA fibers.

- LMA fibers are multimode, resulting in reduced beam quality.
 - Power coupling between modes becomes worse for larger fiber-core diameters
 - Beam quality of injected seed is critical

- All current high-power results rely predominantly on a single technology (coiled fiber) to generate good beam quality.
 - New techniques are needed!

- Previous work in 1-D waveguides and fibers indicates that gain profiling can lead to modal discrimination for the fundamental mode.*

- In this work, we compare several gain profile geometries, show scaling to large core diameters, and demonstrate the robustness of gain filetering.

A general model can be used to understand modal gain under specific saturation conditions.

- Generally, the intensity distribution of a given fiber mode propagating through an active medium can be written as

\[
\frac{dI_k(r, \phi, z)}{dz} = \frac{g_0(r, z)I_k(r, \phi, z)}{1 + \left| \sum_i E_k(r, \phi, z) \right|^2 / I_{\text{sat}}}
\]

where

\[
I_k(r, \phi, z) = \left| E_k(r, \phi, z) \right|^2 = P_k(z) \left| \Phi_k(r, \phi) \right|^2
\]

- The total optical intensity determines the local gain-saturation behavior.
- The resultant gain for a given mode is determined by the overlap of the mode with the spatially resolved saturated gain.
A simplified model including the spatial properties of the modes and gain can demonstrate first-order behavior

- The differential gain for a specific mode in the fiber is given by the overlap between the mode profile and the saturated gain

Small signal gain

\[g_k(z) = \int \int \frac{g_0(r) |\Phi_k(r, \phi)|^2}{1 + I_0(r, \phi, z)/I_{sat}} \, r \, dr \, d\phi \]

Mode profile

Differential modal gain

Optical intensity of fundamental mode

Assume most of the power is in the fundamental mode, as is desired

\[I_0 \gg \sum_{k \neq 0} I_k \]

- The propagation of modal power is given by

\[\frac{dP_k}{dz} = g_k(z) P_k(z) \]

- The modal gain is calculated for each mode

A value of \(g_0/g_k > 1 \) for all \(k \) is best for obtaining single-mode operation.
Local gain saturation makes fundamental mode operation difficult in conventional LMA fibers

- Conventional LMA fibers typically have gain doping that fills the entire core
- For high saturation by the fundamental mode, higher-order modes experience more gain due to the overlap between mode and gain profiles
With no radial-gain profiling, the fundamental mode has less gain than all other modes for $I_0/I_{\text{sat}} > 0.1$

- As the gain begins to saturate, lower-order modes experience more gain than the fundamental.
- The more the gain saturates, the more the higher-order modes benefit from the remaining gain near the edge of the waveguide.
A single parameter can be used to assess the impact of gain profiling for parametric analysis

- At each level of saturation I_0/I_{sat}, the maximum value of g_0/g_k is calculated using all transverse modes.

- The resultant quantity of g_0/g_{max} represents the largest higher-order-mode gain and will be used to analyze various fiber geometries.

![Example](image-url)
Radial-gain profiling can lead to significant differential-gain discrimination by reducing the gain diameter

- Begin with a gain-doping region that is smaller than the waveguide diameter
- The fundamental mode can experience more gain than higher-order modes, even at high saturation, by denying gain near the edge of the waveguide
Reduced-diameter gain can lead to maximum gain for the fundamental mode regardless of saturation level.

- The fundamental-mode gain is larger than all other modes regardless of saturation level for gain diameters ~50%–60% of the waveguide core.
- Single-mode performance can be expected.
Radial-gain profiling can lead to improvements by matching the fundamental-mode profile

- Begin with a doping region that mimics the fundamental-mode profile
- The fundamental mode can experience more gain due to more uniform saturation
A mode-matched gain profile does not offer as high a mode discrimination as reduced-diameter step gain.

- Mode-matched profiles provide gain at larger radii where higher-order modes can benefit, even when saturated by the fundamental mode.

- Therefore, they do not have as high a mode discrimination as reduced-diameter step-gain profiles.
A detailed model of LMA fiber amplifiers* confirms the effectiveness of gain filtering

- The power of each mode (including the pump) follows:

\[
\pm \frac{dP_k}{dz} = \sigma_e(\lambda_k) P_k(z) \int \int |\Phi_k(r, \phi)|^2 n_2(r, \phi, z) dA - \sigma_a(\lambda_k) P_k(z) \int \int |\Phi_k(r, \phi)|^2 n_1(r, \phi, z) dA
\]

- The upper-state population density follows:

\[
\frac{dn_2}{dt} = n_1 \sum_k P_k |\Phi_k(r, \phi)|^2 \sigma_a(\lambda_k)/h\nu_k - n_2 \sum_k P_k |\Phi_k(r, \phi)|^2 \sigma_e(\lambda_k)/h\nu_k - n_2/\tau = 0
\]

where \(n_1(r, \phi, z) + n_2(r, \phi, z) = n_T(r, \phi) \)

Dual-clad fiber amplifiers are modeled using all of the fiber modes and bi-directional pumping

- Physical LMA fiber amplifier geometry

<table>
<thead>
<tr>
<th></th>
<th>50 μm</th>
<th>100 μm</th>
<th>800 μm</th>
<th>1600 μm</th>
<th>1 kW</th>
<th>4 kW</th>
<th>1.6 kW</th>
<th>6 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core waveguide diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladding waveguide diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump power per end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal output power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Beam purity is defined as the fraction of power in the fundamental mode

- Caveats to simulations
 - spontaneous emission contribution to mode power is neglected
 - mode mixing and coherent addition of modes (speckle) are not included
Gain smaller than the waveguide can lead to excellent output beam quality regardless of seed beam quality.

- For a gain diameter 40\%–80\% of the waveguide diameter, 99\% fundamental mode output can be obtained for reasonable seed purity (>0.9).
- Even for poor seed quality as low as 0.5, 90\% fundamental mode output can be obtained for dopant profiles within a 5\% range of the optimum gain diameter.
Gain filtering can lead to single-spatial-mode operation of large-mode-area fiber lasers and amplifiers

The concept of gain filtering results in a net differential gain that is higher for the fundamental mode than all other modes regardless of saturation level.

- Gain filtering is more efficient than loss filtering because no light is discarded.

- Gain filtering is extremely robust since it depends on the spatial-mode profile rather than the propagation coefficients.
 - robust toward seed-mode purity
 - robust against relative geometrical cross-section dimensions
 - robust against core diameter and numerical aperture
 - the method is power/energy scalable!

- Gain filtering can be designed into existing architectures by leaving the gain diameter fixed and increasing the waveguide diameter.
Summary/Conclusions

Gain filtering is a robust method to achieve single-mode operation of large-mode-area fiber amplifiers

- In a uniformly doped fiber, the fundamental mode saturating the gain experiences less gain than other modes.

- Proper radial tailoring of the gain-doping profile can filter out of higher-order modes without introducing any loss.

- Theoretical calculations show
 - reducing the diameter of the gain-doping profile with respect to the waveguide diameter results in the highest gain for the fundamental mode, regardless of gain-saturation level
 - using a Gaussian gain-doping profile to match the fundamental-mode shape does not work as well as a reduced-diameter flat-top profile

- This gain-filtering concept is power/energy scalable and robust with respect to seed purity, core diameter, and numerical aperture.
Acknowledgements

This work was funded by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA/TTO)