Holographic Exposure System for Patterning Large Gratings with High Wavefront Quality and Uniform Groove Profile

T. J. KESSLER, J. BUNKENBURG, C. KELLOGG, F. DEWITT, J. BARONE, L. S. Iwan AND K. MCGOWAN

Laboratory for Laser Energetics
University of Rochester

There are four primary requirements for holographic diffraction gratings used on the OMEGA EP laser:

- Full clear aperture
- 46 cm x 47 cm with edge quality for a |1-3| TGA
- Diffraction efficiency
- >95% efficiency
- Damage resistance
- >2.7 J/cm² @ 10 ps (beam fluence at 62 degrees incident at G4)
- Not demonstrated with full size beam
- Wavefront quality
- Mirror and holographic terms share less than tenth wavefront error
- Uniform holographic exposures are obtained with large-beam laser scanning
- A Nanosurf AFM can access the full aperture using accurate 3-D translation.

Uniform groove duty cycle has been achieved over the full 47-cm aperture:

- A Nanosurf AFM can access the full aperture using accurate 3-D translation.

Holographic optics must have significantly better wavefront than the reflection gratings they produce:

- Mirrors maintain constant OPD over wavelength.
- Phase error decreases at longer wavelength.
- Reflection gratings maintain constant phase error over wavelength for the holographic error term.
- OPD increases by wavelength ratio.

Fabrication Example:

\[\lambda_{\text{IR}} / \lambda_{\text{UV}} = 10 \] holographic error.

Translating to same currency (λ = 633) yields:

\[\lambda_{\text{IR}} / \lambda_{\text{UV}} = 10 \] holographic term.

Uniform duty cycle on a photoresist mask leads to uniformly structured SiO₂ pillars.

- Excellent uniformity of gratings has been demonstrated using large-aperture laser-beam scanning.
- Wavefront compensation techniques include a static phase corrector and an adaptive optic module.
- This tool will be used to develop the process of etching, cleaning, and conditioning to achieve a higher resistance to laser-induced damage.