Single-Frequency Hybrid
Brillouin/Ytterbium Fiber Laser

W. Guan and J. R. Marciante
University of Rochester
Laboratory for Laser Energetics
Institute of Optics

Frontiers in Optics 2008
92nd OSA Annual Meeting
Rochester, NY
19–23 October 2008
Summary

A single-frequency hybrid Brillouin/ytterbium fiber laser has been demonstrated

- SBS gain acts as a narrowband filter in a ring cavity to enable single-frequency operation

- The Brillouin pump is coupled into the ring cavity through the amplifier before entering the Brillouin gain medium
 - a short length of passive fiber is required
 - low Brillouin pump power is required

- The laser works in the single-frequency regime

- The laser architecture is power scalable without changing the Brillouin pump power.
The Brillouin process in fiber lasers leads to ultra-narrow bandwidth laser sources

- Brillouin fiber lasers require a narrow-bandwidth laser source to pump the Brillouin process.
- The Brillouin process leads to a laser with low-noise-output characteristics.
 - Brillouin laser outputs have much narrower bandwidths than the Brillouin pump
 - a linewidth reduction of 100 has been demonstrated*
 - the intensity noise of the Stokes wave in Brillouin fiber lasers is much less than the pump laser
 - intensity noise reduction of 20 dB has been demonstrated*
- Such narrow-bandwidth lasers are required in
 - coherent communications
 - high-resolution spectroscopy

A Brillouin fiber laser can generate single-frequency output but has difficulty in scaling to high power.

- Brillouin scattering in fiber generates a narrowband (~20-MHz) filter.
- The Brillouin pump must be resonant with the cavity for high intracavity intensities
 - short passive fiber = single-frequency operation*
- The output power scales with the narrowband Brillouin pump power that is limited to a relatively low level

Hybrid Brillouin/erbium fiber lasers can generate high-output power, but cannot generate single frequency.

- The isolator and amplifier eliminate the resonance requirement between the Brillouin pump and the cavity.
- Reduced Brillouin pump intensity requires longer passive fiber as the Brillouin gain medium
 - the laser runs in the multiple-frequency regime
- Output power scaling requires higher Brillouin pump power

Our hybrid Brillouin/ytterbium fiber laser generates high-power, single-frequency output

- The Brillouin pump is injected into the cavity via the amplifier before the Brillouin gain medium
 - short passive fiber = single-frequency operation
- Amplification before Brillouin conversion has two benefits
 - low Brillouin pump powers are required
 - high-output power does not require higher Brillouin pump power since it is achieved with a high-power amplifier
The laser output power reaches 40 mW with a 9-mW Brillouin pump

- Highly ytterbium-doped fiber minimizes cavity length for single-frequency operation
- 1030/1053 WDM provides filtration for maximum laser gain at 1053 nm
- The output power can be scaled with a higher 976-nm pump rather than with a high-power Brillouin pump
The optical signal-to-noise ratio (OSNR) is greater than 50 dB

- 976-nm pump power = 370 mW
- Brillouin pump = 9 mW
The laser operation can be described as injection locking to the Brillouin Stokes wave.

- The laser is free-running (i.e., unlocked) with less than 4 mW of Brillouin pump power.
- Partial locking is observed between 4 and 9 mW.
- Full locking to the Brillouin Stokes wave is achieved with 9 mW of Brillouin pump power.

\[P_{976} = 370 \text{ mW} \]
The single-frequency behavior has been verified with a scanning Fabry–Perot spectrometer.

• The mode spacing of the laser cavity is approximately 16 MHz.
• The free spectral range (FSR) is 1 GHz and the finesse is about 160, giving a resolution of 6.3 MHz.
• All longitudinal modes can be resolved by the Fabry–Perot spectrometer.

The laser operates with a single frequency.
The relative intensity noise (RIN) is less than -135 dB/Hz.

- The RIN is measured with an electrical spectrum analyzer (ESA).
- The RIN is shot-noise limited beyond 80 MHz to around -150 dB/Hz.
- The low peaks are generated by the side-mode noise and relaxation oscillations.
Summary/Conclusions
A single-frequency hybrid Brillouin/ytterbium fiber laser has been demonstrated

- SBS gain acts as a narrowband filter in a ring cavity to enable single-frequency operation
- The Brillouin pump is coupled into the ring cavity through the amplifier before entering the Brillouin gain medium
 - a short length of passive fiber is required
 - low Brillouin pump power is required
- The laser works in the single-frequency regime
- The laser architecture is power scalable without changing the Brillouin pump power.