Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

W. Guan and J. R. Marciante
University of Rochester
Laboratory for Laser Energetics
Institute of Optics

Frontiers in Optics 2008
92nd OSA Annual Meeting
Rochester, NY
19–23 October 2008
Summary

Complete suppression of self-pulsations in fiber lasers is demonstrated

- Self pulsations are induced by the interaction between the photon population and the population inversion.
- A long section of passive fiber in the laser cavity makes the round-trip time long compared to the rate at which the pump replenishes the gain.
- Self-pulsations in a watt-level, dual-clad, ytterbium-doped fiber laser have been completely eliminated.

This technique provides a robust and simple solution for eliminating self-pulsations in high-power fiber lasers.
High-power fiber lasers suffer from self-pulsations

- All types of lasers show signs of relaxation oscillations
 - interaction between the photon and inversion populations
 - typically observable in the noise (i.e., RF) spectrum

- These oscillations often become unstable in fiber lasers
 - the dynamic behavior depends on the pump level

- High-power fiber lasers (including commercial ones) suffer from self-pulsations in some regimes of operation.

- Self-pulsations in high-power fiber lasers can damage the laser system.
The self-pulsations are experimentally measured in a conventional linear cavity.
Self-pulsing is caused by the interaction of pumping and the photon emission.

The population inversion and output-signal envelope in the self-pulsing regimes.

<table>
<thead>
<tr>
<th>Pump Rate</th>
<th>Dynamic Behavior</th>
<th>Population Recovery Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Sustained self-pulsing (SSP)</td>
<td>Many-cavity round trips</td>
</tr>
<tr>
<td>Moderate</td>
<td>Self mode locking (SML)</td>
<td>Single-cavity round trip</td>
</tr>
<tr>
<td>High</td>
<td>cw</td>
<td>Much less than a single cavity round trip</td>
</tr>
</tbody>
</table>
The regime of sustained self-pulsations (SSP’s) has been measured for our fiber laser.

- For a low pump rate, the laser enters the SSP regime due to undamped relaxation oscillations
 - pulse-train period $\sim 20 \mu s$
 - the period is related to the relaxation oscillation of the fiber laser
Self-mode-locking (SML) has been observed in the fiber laser at a higher pump rate.

- For a higher pump rate, the gain is replenished rapidly such that a single round-trip through the cavity provides sufficient gain for oscillation.
 - pulse-train period \(\sim 300 \text{ ns} \)
 - the period corresponds to the cavity round-trip time
No previous methods eliminate self-pulsations at all pumping levels

- **Electronic feedback to the pump-laser** power shifts the gain and phase.\(^1\)
- **Resonant pumping near the lasing wavelength** prevents rapid depletion of the gain.\(^2\)
- The fast saturable gain of a **semiconductor optical amplifier in the fiber-laser cavity** prevents instability growth.\(^3\)
- The narrow passband of a \(\lambda/4\)-shifted FBG structure in a ring cavity limits the number of longitudinal cavity modes preferring cw operation.\(^4\)
- **Double-ended pumping** provides more-uniform pumping to reduce pulsation initiation via saturable absorption.\(^5\)
- **A ring cavity with an isolator** prevents SBS as an initiation mechanism.\(^6\)

Self-pulsations are suppressed by inserting a long section of passive fiber into the laser cavity.
The self-pulsation regimes have been completely eliminated by increasing the laser cavity length.

- The modulation depth is a measure of the competition between self-pulsing and cw modes of operation.
This simple scheme has many advantages over other methods

- An inexpensive single-mode fiber at 1.55 μm costs only about 80/km.
- No alignment required—the fiber can be fusion spliced.
- No active components or electronics.
- The slope efficiency degrades only a few percent due to the scattering loss of the passive fiber.
- This scheme can be easily integrated into existing fiber laser systems, such as a linear or ring-cavity laser system as shown below.
Stimulated Raman scattering (SRS) can occur in high-power fiber lasers having such long cavity lengths

• The SRS threshold is about 20 W in a 1-km-cavity fiber laser.
• SRS can be mitigated with appropriate filters
 – in-line short-pass filters
 – wavelength division multiplexers (WDM’s)
 – hole-assisted single-polarization filters\(^1\)

• Large-mode-area (LMA) fibers can be used to suppress SRS by reducing the optical intensity
 – The effective length of fiber that contributes to SRS is much smaller than the physical length of fiber

Our method counters self-pulsations regardless of initiation mechanism

- Initiation mechanisms include
 - saturable absorption of under-pumped gain fiber
 - stimulated Brillouin scattering (SBS)
 - Kerr nonlinearity

- Our laser with a 2349-m cavity works at 1.4 W, above nonlinear thresholds
 - SBS threshold is about 0.7 W
 - Kerr threshold is about 0.2 W

Strict cw operation is observed even when the laser operates well above nonlinear thresholds.
Summary/Conclusions

Complete suppression of self-pulsations in fiber lasers is demonstrated

- Self-pulsations are induced by the interaction between the photon population and the population inversion.

- A long section of passive fiber in the laser cavity makes the round-trip time long compared to the rate at which the pump replenishes the gain.

- Self-pulsations in a watt-level, dual-clad, ytterbium-doped fiber laser have been completely eliminated.

This technique provides a robust and simple solution for eliminating self-pulsations in high-power fiber lasers.