Ablative Richtmyer–Meshkov Instability: Theory and Experimental Results

V. N. Goncharov, et al.
University of Rochester
Laboratory for Laser Energetics

Inertial Fusion Sciences and Applications
Biarritz, France
4–9 September 2005
Collaborators

University of Rochester
Laboratory for Laser Energetics

C. Cherfils-Clérouin

CEA-DIF
Bruyères-le-Châtel, France
Summary
The ablative Richtmyer–Meshkov (RM) evolution is sensitive to coronal conditions

- In the presence of mass ablation, the RM evolution depends on the size of conduction zone D_c
 - $kD_c \ll 1$, ablation front is unstable (Landau-Darrieus instability)
 - $kD_c > 1$, ablation front is stable, perturbations oscillate* with $\omega = k \sqrt{V_a V_{bl}}$
- V_{bl} and D_c depend on the thermal transport models
- Shock velocity and RM measurements are consistent with new nonlocal and time-dependent flux-limiter models

RM evolution is a good test of hydrocodes

During rippled shock propagation, an ablative Richtmyer–Meshkov-like instability can occur.
During rippled shock propagation, an ablative Richtmyer–Meshkov-like instability can occur.
The sharp-boundary model* assumes that perturbation is localized inside the conduction zone.

\[\rho/\rho_{\text{max}} \]

Conduction zone \(D_c \)

Deposited laser energy \(E_L/E_{L\text{max}} \)

\(\mu \) for Laser is not visible.

Ablation-front perturbations asymptotically oscillate in time

\[\eta_a = \eta^{cl}(t) - \eta^{cl}_\infty(t) + e^{-2kV_a t}(\alpha \cos \omega t + \beta \sin \omega t) + \eta_v(t) \]

Vorticity set by shock

\[V_a = 5 \, \mu m/\text{ns} \]
\[C_s = 55 \, \mu m/\text{ns} \]
\[V_{bl} = 80 \, \mu m/\text{ns} \]
\[\lambda = 30 \, \mu m \]

\[\omega = k \sqrt{V_a V_{bl}}, \quad V_{bl} \propto V(1/k) \]
A detailed comparison between the model and 2-D simulations shows a discrepancy at the beginning of the pulse.

- D_2 foil, $I = 4 \times 10^{14}$ W/cm2, $\lambda = 30$ μm
The discrepancy between model and simulation is due to a small conduction zone at the beginning of the pulse.

- D_2 foil, $I = 4 \times 10^{14}$ W/cm2

The location of the phase reverse depends on the size of the conduction zone.
The size of the conduction zone depends on the thermal transport model

- Flux-limited thermal transport* has traditionally been used in hydrocodes

 \[q_{\text{SH}} = -\kappa \nabla T \quad q_{\text{FS}} = nTV_T \]

- Sharp cutoff \(q_{\text{eff}} = \min(q_{\text{SH}}, \, fq_{\text{FS}}) \)

- \(0.04 < f < 0.1 \)

Perturbation evolution is very sensitive to the transport model parameters

- D_2 foil, $I = 2 \times 10^{14} \text{ W/cm}^2$, $\lambda = 20 \mu \text{m}$
A single-valued flux limiter is not consistent with the experimental results.

RM Experiment
- 2-ns square pulse, $I = 4 \times 10^{14} \text{ W/cm}^2$
- CH foil $d = 40 \ \mu\text{m}$, $\lambda = 20 \ \mu\text{m}$

Shock-breakout measurements

A flux limiter $f = 0.06$ is consistent with dual shock velocity measurements*

A nonlocal transport model has been developed to test the results of flux-limited approximation.

Electric field
Collisional frequency

\[v \frac{\partial f}{\partial x} + \frac{eE}{m} \frac{\partial f_0}{\partial v_x} = - \dot{\nu} (f - f_0) \Rightarrow f = \int^x \left(f_0 - \frac{eE}{mv} \frac{\partial f_0}{\partial v_x} \right) e^{-\xi} \frac{dx'}{\lambda \cos \theta}, \quad \xi = \int^x \frac{dx''}{\lambda \cos \theta} \]

\[j_x = e \int d^3 v v_x f, \]

\[q_{NL} = \frac{m}{2} \int d^3 v v^2 v_x f \]

\[j_x = 0 \Rightarrow E \]

Consistent with FP simulation*

The nonlocal transport model is consistent with shock timing measurements
Results of 2-D calculations with the time-dependent flux limiter are consistent with the RM growth measurements for different wavelengths.

- 2-ns square pulse with peak intensity $I = 420$ TW/cm2, $d_{\text{CH}} = 60\mu$m
- Simulations use SESAME EOS and full 2-D ray tracing
Summary/Conclusions

The ablative Richtmyer–Meshkov (RM) evolution is sensitive to coronal conditions

- In the presence of mass ablation, the RM evolution depends on the size of conduction zone D_c
 - $kD_c \ll 1$, ablation front is unstable (Landau-Darrieus instability)
 - $kD_c > 1$, ablation front is stable, perturbations oscillate* with $\omega = k \sqrt{V_a V_{bl}}$

- V_{bl} and D_c depend on the thermal transport models

- Shock velocity and RM measurements are consistent with new nonlocal and time-dependent flux-limiter models

RM evolution is a good test of hydrocodes