Optical Parametric Chirped-Pulse–Amplification Contrast Enhancement by Regenerative Pump Spectral Filtering

C. Dorrer, A. V. Okishev, I. A. Begishev, and J. D. Zuegel
University of Rochester
Laboratory for Laser Energetics

V. I. Smirnov, Optigrate
L. B. Glebov, CREOL, University of Central Florida

CLEO/QELS 2008
San Jose, CA
4–9 May 2008
Pump spectral filtering in OPCPA systems minimizes the contrast degradation linked to pump intensity noise

• Temporal contrast degradation in OPCPA systems:
 – conversion of pump temporal intensity modulations into signal spectral modulations via the parametric gain
 – high-frequency spectral modulations degrade the contrast of the recompressed signal
 – spectral filtering decreases the pump ASE bandwidth and improves the temporal contrast of the signal

• OPCPA contrast degradation is successfully minimized using a volume Bragg grating in the regenerative amplifier that amplifies the pump pulse
In OPCPA systems, the pump intensity modulates the signal spectrum via the parametric gain

- In OPCPA systems, the input signal is chirped by the stretcher (~linear relation between time and optical frequency).
- The instantaneous parametric gain directly maps the temporal intensity modulations of the pump onto the spectrum of the signal.
- High-frequency spectral-intensity modulations of the amplified signal lead to reduced contrast after recompression.

The parametric gain links the pump ASE spectrum to the signal temporal pedestal.

- Transfer of the pump temporal intensity modulations on the signal spectrum predicted using the OPA transfer function.
- Signal contrast degradation linked to the spectrum and power of the pump ASE.

\[(A): \quad I_{\text{signal}}(t) = I_{\text{signal}}^{(0)}(t) + \alpha(1) [\tilde{I}_{\text{ASE}}(t / \phi) + \tilde{I}_{\text{ASE}}(-t / \phi)]\]

\[(B): \quad I_{\text{signal}}(t) = I_{\text{signal}}^{(0)}(t) + \alpha(2) [\tilde{I}_{\text{ASE}}(t / \phi) + \tilde{I}_{\text{ASE}}(-t / \phi)] \otimes [\tilde{I}_{\text{ASE}}(t / \phi) + \tilde{I}_{\text{ASE}}(-t / \phi)]\]
Filtering the pump ASE and operating the OPCPA at saturation improve the temporal contrast.

- Good agreement between analytical prediction and simulation
- Improvement of the signal temporal contrast
 - operation of the OPCPA at saturation
 - reduction of the pump ASE bandwidth

Saturated OPCPA systems pumped by a narrowband pulse have a significantly improved temporal contrast.
Volume Bragg gratings (VBG) are high-performance narrowband filters

- Longitudinal periodic variation of the optical index written in photothermo-refractive Na-Zn-Al silicate glass doped with silver, cerium, and fluorine using UV light
- Reflectivity at $\lambda_B > 99.5\%$
- Narrow reflected bandwidth $\Delta \lambda (<0.2 \text{ nm})$
- Damage threshold $> 10 \text{ J/cm}^2$ for nanosecond pulses

Regenerative filtering benefits from the large number of passes on the VBG

- A volume Bragg grating (VBG) replaces a cavity mirror in a diode-pumped regenerative amplifier (DPRA).
- Multiple passes (~100) on the VBG significantly decrease the amplification bandwidth.

Regenerative filtering decreases the spectral bandwidth of the amplifier

- Spectral bandwidth of the amplifier evaluated using the optical spectrum of the output ASE in unseeded conditions.
- Reduction of the amplifier bandwidth from 140 pm to 36 pm using an intracavity VBG with a FWHM of 230 pm.

The amplifier bandwidth is reduced by ~4 with regenerative spectral filtering.
Pump spectral filtering was implemented to increase the temporal contrast of an OPCPA system

1. Integrated front-end source
2. Crystal large-aperture ring amplifier
3. Second-harmonic generation

Filtering the pump pulse in the regenerative amplifier decreases the ASE from the high-gain amplification stages

Pump intensity filtering improves the OPCPA temporal contrast in all regimes of operation.

- Temporal contrast improved by preamplifier saturation in the absence of pump spectral filtering.
- Temporal contrast improved with regenerative filtering by ~20 to 30 dB 50 ps before the main pulse.

Regenerative filtering provides effective contrast improvement in all operation regimes.
Pump intensity filtering preserves the signal temporal contrast when significant pump noise is present

- The noise on the OPCPA pump pulse was increased ~100 times by decreasing the power of the integrated front-end source
 - significant contrast degradation without filtering
 - temporal contrast preserved with regenerative filtering

Regenerative filtering significantly relaxes the noise requirement of the OPCPA pump.
Summary/Conclusions

Pump spectral filtering in OPCPA systems minimizes the contrast degradation linked to pump intensity noise.

- Temporal contrast degradation in OPCPA systems:
 - conversion of pump temporal intensity modulations into signal spectral modulations via the parametric gain
 - high-frequency spectral modulations degrade the contrast of the recompressed signal
 - spectral filtering decreases the pump ASE bandwidth and improves the temporal contrast of the signal

- OPCPA contrast degradation is successfully minimized using a volume Bragg grating in the regenerative amplifier that amplifies the pump pulse
Regenerative filtering does not negatively impact the pump pulse generation.

- No beam quality degradation
- No pulse shape degradation (after further amplification and SHG)

Regenerative filtering with an intracavity VBG does not negatively impact the system’s performance.
The short-term temporal contrast is typically measured with a scanning third-order cross-correlator

- Correlation signal measured as a function of the delay between the pulse under test and a frequency-doubled pulse.
- The computer continuously adjusts the input attenuation and detection gain.
- This is fundamentally a multishot acquisition system (~1000 shots).