LLE INSTRUCTION 3000R

SUBJECT: Laser Facility Organization and Regulation Manual

1. **Purpose:** To promulgate Revision R to the policies, organization, regulations, and administrative procedures for operating the Omega Laser Facility.

2. **Promulgation:** Revision R to the Laser Facility Organization and Regulation Manual is hereby promulgated.

3. **Approval:**

 Steven J. Loucks
 Senior Advisor to Director
Record of Changes and List of Effective Pages

Record of Changes

<table>
<thead>
<tr>
<th>Change/Rev. No.</th>
<th>Entered by</th>
<th>Date of Entry</th>
<th>Change/Rev. No.</th>
<th>Entered by</th>
<th>Date of Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Complete Revision</td>
<td>1/15/96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Complete Revision</td>
<td>1/27/97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Complete Revision</td>
<td>3/11/98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Page IV-10</td>
<td>6/17/98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S. Loucks</td>
<td>3/9/99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E. Walker</td>
<td>1/20/00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Complete Revision</td>
<td>2/9/01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S. Loucks</td>
<td>2/8/02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S. Loucks</td>
<td>12/2/02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S. Loucks</td>
<td>1/31/03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S. Loucks</td>
<td>10/31/03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S. Loucks</td>
<td>2/9/04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Complete Revision</td>
<td>2/16/05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S. Loucks</td>
<td>2/24/06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S. Loucks</td>
<td>11/9/06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>S. Loucks</td>
<td>2/21/07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S. Loucks</td>
<td>9/5/07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Complete Revision</td>
<td>3/31/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Complete Revision</td>
<td>10/10/08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Complete Revision</td>
<td>3/1/09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Complete Revision</td>
<td>3/1/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Complete Revision</td>
<td>3/1/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Complete Revision</td>
<td>3/12/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S. Morse</td>
<td>8/27/12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Complete Revision</td>
<td>2/1/13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Complete Revision</td>
<td>5/9/14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S. Loucks</td>
<td>8/12/14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Complete Revision</td>
<td>6/3/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Complete Revision</td>
<td>3/15/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Complete Revision</td>
<td>4/3/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S. Loucks</td>
<td>9/12/17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Complete Revision</td>
<td>7/30/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Complete Revision</td>
<td>7/30/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>i</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-7</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>ii</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-8</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>iii</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-9</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>iv</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-10</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>v</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-11</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>vi</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-12</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>vii</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-13</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>viii</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-14</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>ix</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-15</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-1</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-16</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-2</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-17</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-3</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-18</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-4</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-19</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-5</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-20</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-6</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-21</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-7</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-22</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-8</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>II-23</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-9</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>III-1</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-10</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>III-2</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-11</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>III-3</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-12</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>III-4</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-13</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>III-5</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-14</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>III-6</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-15</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-1</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-16</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-2</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-17</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-3</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-18</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-4</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-19</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-5</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-20</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-6</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-21</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-7</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-22</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-8</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-23</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-9</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-24</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-10</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-25</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-11</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-26</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-12</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>I-27</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-13</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>II-1</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-14</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>II-2</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-15</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>II-3</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-16</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>II-4</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-17</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>II-5</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-18</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>II-6</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td>IV-19</td>
<td>Revision R</td>
<td>30 July 2018</td>
</tr>
<tr>
<td>IV-20</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-21</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-22</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-23</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-24</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-1</td>
<td>Revision R</td>
<td>30 July 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of Acronyms

ACN Advanced Change Notice
ACST Activation Counting Station Technician
ALT Alignment Laser Technician
AT Amplifier Technician
BO Beamlines Operator
CMR Cart Maintenance Room
CTF Cryogenic and Tritium Facility
CTFM Cryogenic and Tritium Facility Manager
CTHS Cryogenic Target Handling System
DER Driver Electronic Room
DOE Department of Energy
DPP Distributed Phase Plate
DT Deuterium–Tritium
DTHPFO DT High-Pressure Fill Operator
DTHPS DT High-Pressure System
ECT Experimental Cryogenic Technician
EP Extended Performance
ESG Experimental Support Group
ESO Experimental System Operator
EST Experimental System Technician
EUC Experimental User Coordinator
FASC Facility Advisory and Scheduling Committee
FTS Fill and Transfer System
GCC Grating Compression Chamber
HED High Energy Density
ICF Inertial Confinement Fusion
IR Infrared
IR-ALT IR Alignment Laser Technician
IRDP Infrared Diagnostic Package
IST Instrument Specialist/Technician
LANL Los Alamos National Laboratory
LARA Large-Aperture Ring Amplifier
LBS Laboratory Basic Science
LDO Laser Drivers Operator
LDT Laser Drivers Technician
LF Laser Facility
LFM Laser Facility Manager
LFORM Laser Facility Organization and Regulation Manual
LIM Linear Induction Motor
LLE Laboratory for Laser Energetics
LLNL Lawrence Livermore National Laboratory
LSO Laser Sources Operator
LST Laser Sources Technician
MCTC Moving Cryostat Transfer Cart
MPD Multiple-Pulse Driver Line
NLUF National Laser Users’ Facility
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNSA</td>
<td>National Nuclear Security Administration</td>
</tr>
<tr>
<td>NRL</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>NTA</td>
<td>Near Target Arm</td>
</tr>
<tr>
<td>OAP</td>
<td>Off-Axis Parabola</td>
</tr>
<tr>
<td>Omega</td>
<td>OMEGA 60, OMEGA EP, and Cryo and Tritium Facility</td>
</tr>
<tr>
<td>OMEGA</td>
<td>OMEGA 60 Laser</td>
</tr>
<tr>
<td>OMEGA EP</td>
<td>OMEGA Extended Performance Laser</td>
</tr>
<tr>
<td>OOC</td>
<td>Out of Commission</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>OTDR</td>
<td>Optical Time-Domain Reflectometry</td>
</tr>
<tr>
<td>PCE</td>
<td>Power Conditioning Executive</td>
</tr>
<tr>
<td>PCO</td>
<td>Power Conditioning Operator</td>
</tr>
<tr>
<td>PCT</td>
<td>Power Conditioning Technician</td>
</tr>
<tr>
<td>PDM</td>
<td>Product Data Management</td>
</tr>
<tr>
<td>PEPC</td>
<td>Plasma-Electrode Pockels Cell</td>
</tr>
<tr>
<td>PGR</td>
<td>Pulse Generation Room</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PPE</td>
<td>Personnel Protective Equipment</td>
</tr>
<tr>
<td>PT</td>
<td>Processing Technician</td>
</tr>
<tr>
<td>RID</td>
<td>Request Identification</td>
</tr>
<tr>
<td>SD</td>
<td>Shot Director</td>
</tr>
<tr>
<td>SNL</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>SPC</td>
<td>Science Policy Committee</td>
</tr>
<tr>
<td>SPDP</td>
<td>Short-Pulse Diagnostics Package</td>
</tr>
<tr>
<td>SRF</td>
<td>Shot Request Form</td>
</tr>
<tr>
<td>SSD</td>
<td>Smoothing by Spectral Dispersion</td>
</tr>
<tr>
<td>TAD</td>
<td>Tertiary Activation Diagnostic</td>
</tr>
<tr>
<td>TCC</td>
<td>Target Chamber Center</td>
</tr>
<tr>
<td>TCTRSO</td>
<td>Target Chamber Tritium Removal System Operator</td>
</tr>
<tr>
<td>TFS</td>
<td>Tritium Filling Station</td>
</tr>
<tr>
<td>TRF</td>
<td>Target Request Form</td>
</tr>
<tr>
<td>TRS</td>
<td>Tritium Removal System</td>
</tr>
<tr>
<td>TSF</td>
<td>Transport Spatial Filter</td>
</tr>
<tr>
<td>UR/LLE</td>
<td>University of Rochester/Laboratory for Laser Energetics</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UV-ALT</td>
<td>UV-Alignment Laser Technician</td>
</tr>
<tr>
<td>WAP</td>
<td>Work Authorization Procedure</td>
</tr>
</tbody>
</table>
Table of Contents

Part I: Concept of Operations and Scheduling
1000 Laser Facility Overview ... I-1
1001 Science Policy Committee .. I-2
1002 Omega Governance Plan ... I-3
1003 FASC Roles and Responsibilities ... I-7
1004 Experimental Proposals and Principal Investigator Roles and Responsibilities ... I-10
1005 Omega Data Ownership and Access .. I-17
1006 Laser Facility Operations Overview ... I-17
1007 Omega Operations Manager .. I-23
1008 Laser Facility Managers (OMEGA and OMEGA EP) I-24
1009 Laser System Scientist ... I-25
1010 Cryogenic and Tritium Facility Manager ... I-25

Part II: Watch Organization and Watch Relief
2000 Watch Conditions .. II-1
2001 Shot Director (SD) ... II-2
2002 Laser Drivers/Sources Operator (LDO/LSO) for OMEGA and OMEGA EP .. II-3
2003 Power Conditioning Operator (PCO) .. II-5
2004 Beamlines Operator (BO) .. II-5
2005 Experimental System Operator (ESO) .. II-6
2006 Laser Drivers/Sources Technician (LDT/LST) for OMEGA and OMEGA EP ... II-7
2007 Power Conditioning Technician (PCT) .. II-8
2008 UV-Alignment Laser Technician (UV-ALT) for OMEGA/Alignment Laser Technician (ALT) for OMEGA EP II-8
2008A IR Alignment Laser Technician (IR-ALT) for OMEGA/Amplifier Technician (AT) for OMEGA EP II-9
2009 Experimental System Technician (EST) ... II-9
2009A Processing Technician (PT) ... II-10
2009B Experimental Cryogenic Technician (ECT) II-10
2009C Instrument Principal Investigator/Specialist/Technician II-10
2009D Cu Activation Counting Station Technician (ACST) II-11
2009E Image-Plate Scan Technician .. II-11
2010 Room 157 Operator ... II-11
2011 FTS Target Transfer Operator ... II-11
2012 FTS General Operator ... II-11
2013 Characterization Station Operator .. II-12
2014 DD High-Pressure-Fill (HPS2) Operator II-12
2015 Tritium Fill Station Low-Pressure-Fill Operator II-12
2016 DT High-Pressure-Fill Operator ... II-12
Part I
Concept of Operations and Scheduling

1000 Laser Facility Overview

The Omega Laser Facility is a multikilojoule-class laser facility located at the University of Rochester’s Laboratory for Laser Energetics (UR/LLE). It includes the 60-beam OMEGA compression laser system, the four-beam extended performance (OMEGA EP) laser, and the Cryogenic Target Handling System. The laser systems can be operated independently, with separate scientific objectives for each, or jointly with the combined capabilities addressing a single requirement.

The OMEGA compression laser system is a 60-beam neodymium glass laser that is frequency converted to deliver up to 30 kJ of 351-nm light on target. This system is capable of conducting fully diagnosed direct-drive or indirect-drive target-physics experiments, including direct-drive planar or spherical cryogenic experiments. The system is designed to operate on a 1-h shot cycle and will nominally deliver 1300 shots per year at 80% capacity.

The OMEGA EP Laser System consists of four beams—two that have both long- and short-pulse capability and two that have only long-pulse capability. The short-pulse beams deliver 1- to 100-ps pulses at energies up to 2.6 kJ per beam to either the OMEGA or OMEGA EP target chambers. The long-pulse beams deliver 0.1- to 10-ns pulses at energies up to 6.5 kJ per beam to the OMEGA EP target chamber. When coupled to the OMEGA target chamber, the OMEGA EP Laser System supports short-pulse backlighting and advanced-ignition experiments. When coupled to the OMEGA EP target chamber, the system is capable of fully diagnosed high-energy, high-intensity planar experiments. The system is designed to operate on a 2-h shot cycle and will nominally deliver 700 shots per year at 80% capacity.
The OMEGA Cryogenic Target Handling System (CTHS) is capable of filling, layering, and characterizing cryogenic DT spherical targets and D$_2$ planar targets. It delivers and positions them in the target chamber and supports them at target chamber center until they are shot.

The Omega Laser Facility is funded by the Department of Energy (DOE) through NNSA and is housed in the University of Rochester–owned Laboratory for Laser Energetics’ facility located on the South Campus of the University of Rochester. Under the Cooperative Agreement the UR/LLE operates the National Laser Users’ Facility (NLUF). Shots are made available to NLUF users at the Omega Laser Facility; however, the NLUF users are funded by DOE outside of the DOE–UR/LLE Cooperative Agreement.

1001 Science Policy Committee

The Science Policy Committee (SPC) advises the LLE Director who will also serve as chair on significant policy matters relating to the current and future scientific program, facility use and capabilities planning, and external collaboration. The organization of this committee is shown in Fig. I-1; in some instances, the full committee may not be required to fulfill the specific responsibilities listed below. The SPC responsibilities include the following:

- Provide a prioritized list of the experimental campaigns required to support the Laboratory program to the Omega Facility Advisory and Scheduling Committee prior to the annual scheduling meeting.
- Formulate the annual work plan based on the National Nuclear Security Administration (NNSA)/Inertial Confinement Fusion (ICF) Level I and Level II milestones.
- Formulate and maintain up-to-date long-range program plans of five and ten years.
- Advise on major changes to the overall balance of facility use that may be required by the Laboratory program or by the ICF Program Office.
- Recommend actions when there is inadequate system time or financial resources to meet programmatic requirements.
- Recommend policy with respect to international collaboration and use of Omega.
- Recommend academic support levels at the University of Rochester and at external institutions supporting the Laboratory program.
- Recommend the number and academic distribution of Horton Fellowships to be awarded annually.
- Review major proposals that significantly add or change facility capabilities and advise on the merits of such additions or changes relative to cost (including the cost of the system time).

- As required by the Cooperative Agreement, develop the annual Self-Assessment report for the ICF Program office.

Omega Scientific Policy Advisory Committee

![Omega Scientific Policy Advisory Committee Diagram]

Fig. I-1

1002 Omega Governance Plan

2.1 Introduction

The Omega Governance Plan covers the process by which the Omega Laser Facility, including OMEGA EP, is governed to determine the allocation of system time, schedule user experiments, and ensure that users’ current and future requirements are presented to the Omega Facility Director. This governance plan does not cover the line-management functions of the Omega Facility Director to operate and maintain OMEGA and OMEGA EP. The organization for Omega Governance is outlined in Fig. I-2.
2.1.1 LLE Director

The LLE Director is responsible for the overall direction of the laboratory to ensure that NNSA program goals are supported. He is responsible for appointing the Omega Facility Director.

- The LLE Director is selected by the President and approved by the Board of Trustees of the University of Rochester in consultation with NNSA and is appointed for a five-year renewable term.
- The LLE Director reports administratively to the University of Rochester’s Provost. Programmatically, the LLE Director consults with the NNSA Assistant Deputy Administrator Office for Inertial Confinement Fusion.
- The LLE Director approves and publishes the annual Omega fiscal-year shot schedule three months prior to the start of the fiscal year and certifies that it fulfills the guidance provided by NNSA.

2.1.2 Omega Facility Director

The Omega Facility Director is responsible for defining the overall Omega Facility use that maximizes the benefit to the National Stockpile Stewardship and Ignition Programs and balances security priorities with broader scientific, technological, and economic competitiveness goals.
2.1.3 Omega Facility Advisory and Scheduling Committee (FASC)

This committee recommends Omega system time allocation, promotes an effective user community, and reviews the facility’s overall effectiveness for users.

2.1.4 LLE Science Policy Advisory Committee

This committee advises the LLE Director on major policy issues, balance of program use, use strategy, availability, and future capabilities of Omega. It advises on LLE’s ICF science program direction.

2.1.5 Omega Experimental User Coordinator

The Experimental User Coordinator (EUC) is the single point of contact for all non-LLE Principal Investigators (PI’s). The EUC is the liaison between the PI and the Omega support staff for technical information and user support for planning and conducting experiments at Omega. The EUC is also the liaison between the PI and LLE support staff for target fabrication and LLE Engineering. The user coordinator is appointed by the Experimental Division Director.

2.1.6 Omega Operations Manager

The Omega Operations Manager is responsible for the overall operation and operational readiness of the Omega Laser Facility, including the OMEGA compression and OMEGA EP Systems. The OMEGA Laser Facility Manager and OMEGA EP Laser Facility Manager report to the Operations Manager and are responsible for the operation of each respective facility.

2.2 Omega System Time Availability, Programmatic Allocation, and User Support

2.2.1 System Time Availability

The three principal uses of Omega are ignition physics, weapons physics, and basic high-energy-density science. The allocation of system shot time to users will be based on NNSA’s programmatic needs and available shot time. The number of shots depends on the type of shots, system availability, experimental effectiveness, and funding levels.

The Omega Operations Manager is responsible for the overall operation of Omega, including ensuring that system availability and experimental effectiveness are optimized. The Operations Manager will provide the following to the Omega Facility Director, the Facility Advisory and Scheduling Committee, and the LLE Science Policy Advisory Committee:

- A monthly report on the number of target shots scheduled and completed by the user, including the overall experimental effectiveness. A yearly summary report will be provided.
• A monthly report of Omega system availability, including an analysis of the contribution to system non-availability. A yearly summary report will be provided.

• An annual projection of the system time available based on the expected funding.

2.2.2 Programmatic Allocation
The Omega FASC will recommend system time allocations as described in Sec. 1003 following NNSA’s guidance on program balance. Contingency will be assigned by the biweekly subcommittee to compensate for low availability on a campaign and/or address additional urgent experimental goals. The FY19 notational time allocation is 34% for ignition physics, 34% for weapons physics, 18% for NLUF, 11% for Laboratory Basic Science (LBS), and 3% for contingency. The FASC advises the LLE Director on changes to the guidance for program balance.

2.2.3 Omega User Support
The Omega Facility Director has fiscal responsibility for operation of the facility and is responsible for ensuring that all appropriate support functions are provided. Standard capabilities required for users to conduct experiments supplied by the facility include:

• Experimental support, including facility diagnostics, operations data processing and access, standard phase plates, and polarization rotators. An on-site target contractor provides support for national laboratories and NLUF users; however, targets are not supplied and are the responsibility of the user.

• Facility diagnostics are those diagnostics qualified* for use on the facility that reside at the facility and require no external personnel to operate. These diagnostics will be fully supported by LLE.

• User diagnostics are those diagnostics qualified* for use on the facility that require external permission and/or resources to operate. These diagnostics may or may not reside at LLE and will require additional effort to operate. It is the responsibility of the user to obtain permission and external resources for the use of these diagnostics.

• Administrative support including badging, safety training, facility orientation, data archiving and retrieval, Shot Request Form (SRF) administration and preparation assistance, working areas and logistic support, and computer network connections.

*Qualified means completion of qualification process per LLE Instruction 7700. Details of the level of support will be determined after receiving an external project request.
• Engineering support to field/adapt user-supplied diagnostics.
• Technical information and support for planning and conducting user experiments.

1003 FASC Roles and Responsibilities

3.1 Responsibilities

The Facility Advisory and Scheduling Committee formulates the annual facility schedule, reviews experimental proposals for compatibility and safety, and evaluates facility availability and experimental effectiveness. The FASC recommends the annual facility schedule and represents the needs of the users to the LLE Director.

3.1.1 Annual Scheduling Meeting

The full FASC meets in June of each year to formulate the one-year Omega Facility schedule for the upcoming fiscal year. The FASC reviews facility availability and effectiveness for the previous year and recommends notional shot allowances for the fiscal year after next. Specific responsibilities include the following:

• Schedule the available facility time to fulfill the recommendations of the High-Energy-Density (HED) and ICF Councils and approved NLUF and LBS proposals.
• Review programmatic requirements for the fiscal year after next and make a recommendation for total system time required and the overall program balance.
• Review user requests for facility modifications and recommend appropriate action to the LLE Director.
• Review the Omega availability and experimental effectiveness for the past year and recommend appropriate lessons learned to the LLE Director.
• Review existing experimental capabilities such as diagnostics and information availability, and recommend improvements where warranted.
• Review policy for experimental data ownership, access, and security issues.
3.1.1.1 Membership

The FASC committee members are appointed by the host institution and approved by the LLE Director. The membership is summarized below.

<table>
<thead>
<tr>
<th>Number of Members</th>
<th>Subcommittee</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Ignition Physics*</td>
<td>LLNL, LANL, NRL, SNL, LLE (4)</td>
</tr>
<tr>
<td>2</td>
<td>Weapons Science*</td>
<td>LLNL, LANL</td>
</tr>
<tr>
<td>2</td>
<td>Basic Science</td>
<td>NLUF Manager (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Community (1)</td>
</tr>
</tbody>
</table>

*The ICF and HED Council recommendations are presented by a member of these councils to fulfill the role of these subcommittees.

LLNL: Lawrence Livermore National Laboratory
LANL: Los Alamos National Laboratory
SNL: Sandia National Laboratories
NRL: Naval Research Laboratory

Each committee member will serve a term determined by the host institution; the term nominally should be for at least two years. The Omega Facility Director will serve as the committee chairman.

The Basic Science subcommittee consists of the NLUF manager and a representative of the university users’ committee appointed by the LLE Director. Basic science consists of the NLUF and LBS programs. Laboratory means the NNSA Laboratories (LLNL, LANL, and SNL), LLE, and Office of Science Laboratories (as recommended by NNSA). An NLUF Technical Evaluation Panel is appointed separately as defined by the NLUF management program contained in the UR/LLE–DOE Cooperative Agreement. This committee meets biennially to review NLUF proposals and recommends to NNSA the proposals to fund and their shot allocations. The recommendations of this committee are represented by the NLUF Manager at the FASC. While the NLUF programmatic funding is provided separately by NNSA, the programmatic funding for the Laboratory Basic Science Program is provided by the individual laboratory and system time is provided by the facility. The Laboratory Basic Science Program is administered by the NLUF Manager who will issue a yearly solicitation for proposals. The Laboratory Basic Science Review Committee members will be approved by the LLE Director and will consist of members from the user laboratories (one each) as well as at least two independent members. This committee will peer review all proposals on merit and make a recommendation to the LLE Director of proposals in rank order including a recommended system time allocation.
3.1.1.2 Committee Procedures The procedures that govern the annual schedule formulation process and facility review are outlined in this section. This process will be initiated each year by the Omega Facility Director issuing relevant guidance and a planning timeline.

- The ICF and HED Councils provide an input of tier 1 and 2 experimental proposals to be performed at Omega in time to support the first quarter and annual FASC meetings.

- Approved NLUF and LBS proposals are represented by the Basic Science Subcommittee Chairman.

- The Omega Facility Director collects the inputs from the subcommittees, evaluates facility impact, and formulates a draft fiscal-year schedule for review at the annual FASC meeting. The subcommittee chairmen will present proposals for system time to the FASC, including the results of proposal ranking and recommended experiments that should be scheduled.

- The full committee will meet in closed session to evaluate the input of the subcommittees and recommend a balanced program that meets the guidance provided by NNSA. If there is inadequate system time to fulfill all requests, the committee will recommend the “split” among the three areas and require the subcommittees to reduce the requests to meet the allocation. The full committee will recommend the fiscal-year schedule that includes 5% contingency to the LLE Director for approval.

- The committee will complete the reviews identified in Sec. 3.1.1 and report the results to the LLE Director.

3.1.1.3 User Requirements Each laboratory is responsible for formulating an experimental program to fulfill its campaign objectives. These requirements are submitted to the ICF and HED Councils for review and prioritization. Members of participating laboratories cannot be PI’s on NLUF proposals. Proposals from outside entities [for example, proposals resulting from international agreements (e.g., Commissariat à l’énergie atomique et aux énergies alternatives, and Atomic Weapons Establishment)] must go through the same process as all other proposals. Proposal content and PI responsibilities are detailed in Sec. 1004.

3.1.2 Fiscal Year After Next First-Quarter Schedule

A provisional first-quarter schedule will be developed in April of each year. The planning for this will be initiated by LLE at least two months in advance, and the scheduling meeting will be held via video teleconference. This will allow target fabrication contractors and target fabrication groups to identify target requirements early to ensure that first-quarter experiments can be supported. While this schedule is provisional, it is envisioned that it will be adopted with little or no revision during the normal annual June Omega Scheduling and Advisory Committee meeting. The recommended notional system time
allocations for the upcoming fiscal year should be used as guidance in arriving at this provisional first-quarter schedule. Sec. 3.1.1 procedures should be used in developing this schedule.

3.1.3 Biweekly FASC Meetings

A subcommittee of the FASC consisting of the LLE members of the FASC, the Laser Facility Managers, the Experimental Operations Group Leader, the Experimental Support Group Leader, and the Laser System Scientist meet biweekly to administer the facility schedule and monitor its effectiveness (other non-LLE committee members are welcome to call in to this meeting or attend if available on-site). Specific responsibilities include the following:

- Review recommended schedule changes and formulate schedule changes to accommodate user requests where possible.
- Contingency time is included in the schedule to recover from Facility Availability events (>1/2 day system time lost) or to perform new, high-priority experiments at the recommendation of the ICF or HED Councils.
- Assignment of contingency time is recommended by the FASC and subject to concurrence from the LLE Director.
- In general, contingency time will not be assigned prior to three months to the scheduled date.
- Review experimental proposals submitted by the PI’s for system and experimental compatibility and safety. Approve or recommend changes to the proposals.
- Review experimental critiques submitted by PI’s and propose corrective actions to the Facility Director where warranted.
- Evaluate the progress in implementing new/modified diagnostics.
- Conduct a running review of the system schedule to determine the ability to perform previously approved experiments, especially those dependent on system or diagnostic upgrades.
- Ensure that the facility schedule is kept current and posted on LLE’s web site.

1004 Experimental Proposals and Principal Investigator Roles and Responsibilities

With respect to the laser facility, PI’s are those individuals responsible for proposing experiments to be conducted at the Omega Laser Facility.

4.1 Principal Investigator Orientation

Principal Investigators must complete an Omega familiarization before conducting their first experiment. This familiarization should be scheduled through the respective Laser
Facility Manager at least 12 weeks prior to the PI’s first scheduled experiment. The familiarization will include the following:

- Briefing on OMEGA and/or OMEGA EP capabilities,
- Review of PI responsibilities including SRF preparation,
- Safety briefing,
- Tour of OMEGA/OMEGA EP,
- Observation of shot operations, preferably by shadowing an experimental PI,
- New pulse-shape request requirements,
- Target metrology and positioning requirements, and
- Briefing on diagnostic procedures.

4.2 Experimental Proposal

Once an experiment is scheduled by the FASC, the PI is responsible for submitting a proposal template and SRF’s [a request identification (RID) uniquely identifies an SRF], coordinating experimental and laser requirements, monitoring the experimental execution, and writing a critique of the execution of the experiment within one week of its performance. Principal Investigators are responsible for submitting a proposal template to the FASC that amplifies and extends the information submitted prior to scheduling the experiment. This template and accompanying SRF’s, target request forms (TRF’s), and VISRAD files must be submitted for FASC approval at least ten weeks prior to the scheduled date of the experiment.

4.2.1 Proposal Template Instructions

4.2.1.1 Program, campaign title, laboratory affiliation, date of the campaign, AM or PM, PI names, and applicable laser system (OMEGA, OMEGA EP, or both)

4.2.1.2 Summary of the experiment’s objectives. This section allows the PI to attach pdf documents for key stages in campaign preparation.

4.2.1.3 Laser and diagnostic requirements for the campaign. This input must include experimental configuration name(s) and an RID number for each experimental configuration. This section is sufficient to identify qualified facility diagnostics. Qualified diagnostics requiring support from persons not at LLE will require additional coordination. Any questions or concerns should be brought to the attention of the Experimental Support Group Leader.

4.2.1.4 Type and number of targets including number of spares.

- Identify the TRF number for each configuration, if available.
- A sample of complex targets (defined as other than a simple flat-foil, spherical direct-drive capsule, or plain hohlraum) must be delivered to
LLE at least one week prior to the scheduled experiment. This will allow the positioning of the target to be tested and the development of accurate target-positioning procedures and reticules by placing the target at target chamber center (TCC) when TCC time is available. Indicate on the proposal if targets are complex and include the number of targets ordered for each configuration.

- Targets must be metrologized prior to delivery at LLE and verified after arrival at LLE using LLE’s Powell scope. Metrology data will be available to the Experimental Operations Group no later than two full working days prior to the day of shots.

- Target, target support, and target shield mass must be minimized to preclude either shrapnel or vapor-deposition degradation of optics. Generally this means that flat targets should be no larger than the beam-spot size plus 100 \(\mu \text{m} \), support structures should be of minimum mass to securely support the target, and shields should be of a minimum area and thickness.

- Theoretical 1-D–calculated neutron yield must be provided for all fusion-yield targets.

4.2.1.5 A VISRAD file that shows the target including the mount stalks and the beams intercepting the target. (Use of the software program VISRAD enhances visualization and importation of data to the SRF.) The file name must be formatted “<RID Number>-<PI Name>.vww,” e.g., for targets corresponding to RID 12345 and PI surname of Heeter, the file name is “12345-Heeter.vww.” VISRAD files must be submitted as attachments to the proposal.

4.2.1.6 Quantity (shot count) of target shots proposed.

4.2.1.7 Identification of diagnostics planned for use on the experiment that are not qualified for use on OMEGA/OMEGA EP. Non-qualified diagnostics are those that have not completed facility qualification per LLE Instruction 7700 and are not generally selectable on the SRF. Note that the introduction of an external or new computer per LLE Instruction 9850 should be identified here. Any questions or concerns should be brought to the attention of the Experimental Support Group Leader.

4.2.1.8 Laser-energy transport considerations (OMEGA only)

A. Estimate laser-energy transmission through target:

Significant transmission of laser light through a target can cause damage to the opposing beam optics of the OMEGA laser. A beam transmitted through an underdense target can have significant spatial modulation. The potential for such damage is increased when a distributed phase plate (DPP) is used in a beam. To assess the potential for such damage, the PI is required to state the estimated level of laser-
beam transmission through the target (including blow-through) for the proposed experimental configuration. The basis of this estimate can be a simulation of the laser–target interaction or data from an experiment that closely simulates the proposed experimental configuration. No experiment will be approved unless such an estimate is provided in the template submitted for approval to the OMEGA FASC ten weeks prior to the scheduled shot day. Beam dumps or calorimeters can be installed in opposing beams to increase the maximum-acceptable energy transmission (for up to 15 beams). The following matrix shows the maximum-allowable blow-through under various scenarios:

<table>
<thead>
<tr>
<th>DPP in either target or opposing beam?</th>
<th>Beam block (in opposing beam?)</th>
<th>Maximum-acceptable energy transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>20 J</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>200 J</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>100 J</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>300 J</td>
</tr>
</tbody>
</table>

B. Estimated laser-energy backscatter from the target:
 Significant backscatter from a target can cause damage to the beamline optics. To prevent damage, the estimated backscatter energy must not exceed 140 J.

C. Estimated laser energy reflected from the target:
 Significant laser energy reflected from a flat target can be directed into other beam ports and damage beamline optics. To reduce the reflected energy and prevent damage, the maximum angle of incidence of a laser beam on a flat target must not exceed 65°.

4.2.1.9 Special shot-schedule considerations associated with experiment.

4.2.1.10 Campaign configuration variables. Include all shot parameters such as pulse shapes, beam energies, beam delays, diagnostic setup, etc. that will be varied during the campaign.

4.2.2 The proposal template table will be reviewed by the FASC to ensure that the experiment’s requirements are consistent with the capabilities of the laser facility.
Experiment Proposal Template

4.2.1.1 General

*Program: ICF

*Campaign:

*Laboratory Affiliations: ☒N/A ☐LLE ☐LANL ☐LLNL ☐SNL

*Date: __________ AM ☐ PM ☐

*Principal Investigators:

PI 1: __________

Facility: ☐ OMEGA ☐ OMEGA EP (Select both for joint shots)

4.2.1.2 *Summary of Campaign Objectives:

Attachments (pdf only) can be attached for each campaign planning step

Specifications and Laser/Diagnostic Requirements:

<table>
<thead>
<tr>
<th>4.2.1.3 SRF</th>
<th>4.2.1.4 Targets</th>
<th>4.2.1.5 VISRAD</th>
<th>4.2.1.6 # of Target Shots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Name</td>
<td>Example RID #</td>
<td>TRF #</td>
<td>Complex Yes No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.1.7 Identify all diagnostics required that are not qualified

<table>
<thead>
<tr>
<th>Diagnostic Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.1.8 Energy Transport Considerations

A. Estimated laser transmission through target (OMEGA only): __ J
B. Estimated backscatter energy is less than 140 J ☐
C. For flat targets, verify maximum angle of incidence is less than 65° ☐

4.2.1.9 Special considerations:

4.2.1.10 Campaign configuration variables:
4.3 Principal Investigator Responsibilities

Once the PI’s experiment has been scheduled, it will become the PI’s responsibility to interface (via the Experimental Division’s liaison representative for user experiments) with the assigned experimental coordinator, and ultimately with the Laser Facility Manager, the Experimental Operations Group, the Optomechanical System Group, and the LLE Target Fabrication Group (while keeping the experimental coordinator and liaison representative informed) to ensure that the experimental and laser system requirements are coordinated and understood (see Fig. I-3). If a PI requires targets and/or diagnostics not provided by LLE resources, the PI must include those respective requirements in the proposal template and coordinate the external group activities with the Laser Facility Manager and/or Experimental Support Group Leader. All LLE-provided services, including new pulse shapes, target-alignment scheme, and beam targeting shall be coordinated through the Laser Facility Manager to ensure that, at the time the experiment is to be conducted, issues associated with availability or compatibility of those services have been resolved. New pulse-shape requests must be submitted more than 30 days in advance of a campaign. Because of the large burden of computation and testing for new pulse shapes, only two new pulse shapes may be requested per campaign.

Figure I-3: Principal Investigator responsibilities.
4.3.1 Experiment Reviews

4.3.1.1 Approximately two weeks prior to commencing the experiment, the PI, or designee, will conduct a comprehensive review of the detailed requirements for their upcoming campaign. This review is for the mutual benefit of the laser and Experimental Operations Group leaders and the scientists involved with the laser and diagnostic systems. If changes have been made since the two month submission, the PI shall submit an updated VISRAD model of the targets and revised SRF’s that define each unique shot configuration prior to this meeting. (See Sec. 4010 “Shot Request Forms and Administration” for more on the forms.)

4.3.1.2 All new diagnostics must be fully qualified two full weeks before the date of the experiment. Contact the Experimental Support Group (ESG) Leader to coordinate the qualification process. Each diagnostic effort can take significant time to complete engineering and review. The intent to field a new diagnostic should be included in the proposal submitted at the annual FASC meeting. Work with the ESG Group Leader to ensure that the diagnostic is making progress adequate for the campaign day.

4.3.1.3 Final SRF’s shall be submitted to the respective Laser Facility Manager by the close of business on the Monday prior to the week of target shots. A one-week PI brief is conducted to ensure all elements of the campaign are in final form prior to execution. The SRF’s are locked to changes on Thursday at midnight (local Rochester time) the week prior to the experiment. The Laser Facility Manager shall be notified of subsequent change requests prior to the initiation of the shot by the operations crew. Any special requirements for set up of the diagnostics for the first shot should be clearly indicated: for example, modifications to the ten-inch manipulator setup sheets.

4.3.1.4 By two working days before the shots, the PI will provide target metrology results for all targets to the Experimental Operations Group Leader. Additionally, the theoretical 1-D–calculated neutron yield and method of calculation must be provided to the Laser Facility Manager for all fusion-yield targets.

4.3.1.5 For each shot day of the campaign, the PI will support the shift briefings as appropriate. During the actual execution of the experiments, the PI will act as an advisor to the LLE Shot Director and may be called upon to render advice on whether to proceed with planned experiments in the event of abnormal system performance. The Shot Director is in charge of the overall laser and target systems during a shot series. If issues associated with safety (personnel or equipment) arise during an experimental sequence, the Shot Director can abort that shot or even the whole series if warranted.

4.3.1.6 Submit the Shot Effectiveness Form prior to the shot after next.
4.3.2 Experimental Critiques

Once the campaign (or sub-series of the experiment) has been conducted, it is the responsibility of the PI to provide to the FASC [within one week after the experiment (or sub-series) has been conducted] a written critique of the performance of the experiment and facility. The following items should be included:

- Problems encountered
 - laser
 - experimental diagnostics
 - experimental
 - target
- Suggestions for improvements
- Positive feedback

1005 Omega Data Ownership and Access

1. The Laboratory for Laser Energetics of the University of Rochester owns all data stored on the Omega Database.

2. Principal Investigators and Co-PI’s listed on the Omega SRF for a system target shot, as well as scientists from the PI’s and Co-PI’s home institution with Omega web accounts, have access to the data generated on their target shots.

3. Access to the Omega database by non-PI’s or Co-PI’s for specific Omega target shots can be requested. Requests for such data should be directed to the Omega Experimental Users Coordinator. The Experimental Users Coordinator will coordinate with the institution who conducted the target shots to obtain approval to access to the requested data.

1006 Laser Facility Operations Overview

All aspects of Omega shot operations are under the direction and control of the Omega Facility Operations organization shown in Fig. I-4. OMEGA and OMEGA EP may be operated independently, with separate scientific objectives for each system, or jointly with the combined capabilities addressing a single requirement. For certain high-yield shots, the opposite facility will have to be in closed access even though the facilities are operating independently. The Shot Director(s) are under the overall direction of the respective Laser Facility Manager, who heads the Omega Shot Operations watch organization. For joint OMEGA and OMEGA EP operations, the OMEGA EP Shot Director reports to the OMEGA Shot Director. This watch organization will directly control the actual shot operations and will be responsible for safety, shot execution and data collection.

The CTHS, Tritium Filling Station (TFS), Tritium Removal Systems (TRS), and cryogenic Cart Maintenance Room (CMR) are operated by qualified watchstanders under the direction and control of the Cryogenic and Tritium Facility Manager (see Fig. I-5).
The CTHS target chamber insertion and positioning systems are operated through the Omega Facility’s watch organization (see Fig. I-5).

Figure I-4(a): OMEGA watch organization.
Figure I-4(b): OMEGA EP watch organization.

Figure I-5: CTHS organization.
The full OMEGA/OMEGA EP shot watch organization (excluding CTHS filling, layering, and characterization watches), unlike the divisional administrative organization, is operative only during shot operations. Personnel qualified for and assigned to these watches during specific periods of time may come from any of the Laboratory’s divisions. While assigned to a watch, however, they report to and are directed by the Shot Director until relieved.

For shot operations, the watch organization shown in Fig. I-4 must be manned to the extent detailed in Sec. 2022. During non-shot periods (maintenance and/or scheduled system modifications or upgrades) at a minimum, a Shot Director will be stationed.

System corrective and preventive maintenance will be scheduled and performed by the existing Laboratory divisional organization. Divisional responsibilities for services (e.g., mechanical design, electronics design, computer software, etc.) and equipment/systems are detailed below. Where equipment and systems cross divisional lines, one lead Division is assigned the overall responsibility. Corrective and preventive maintenance will be scheduled in consonance with the Laser System Schedule approved by the FASC. Scheduled divisional maintenance will be approved by the Group Leader designated by the Division Director. The Laser Facility Manager, or Cryogenic and Tritium Facility Manager, as appropriate, or person appointed by them will review, track, and monitor the scheduling and completion of all key scheduled maintenance actions.

To ensure the operational readiness of the OMEGA/OMEGA EP Laser Systems, including laser, target, cryogenic targets, and building support systems, the placing of major equipment or systems (those that would prevent completing a fully diagnosed target shot) out of commission will be controlled by the Omega Shot Operations watch organization under the direction of the Laser Facility Manager or the CTHS organization under the direction of the Cryogenic and Tritium Facility Manager as appropriate. The divisional representative will obtain permission from the on-watch Shot Director or Cryogenic and Tritium Facility Manager as appropriate prior to placing major equipment or a system out of commission. The return of equipment and systems to commission after maintenance will also be reported to the Shot Director or Cryogenic and Tritium Facility Manager as appropriate. The Shot Director and Cryogenic and Tritium Facility Manager will maintain a log for their areas of responsibility indicating the current status of equipment placed out of commission. Separate logs for OMEGA, OMEGA EP, and CTHS will be maintained.

Omega Laser Facility service and equipment responsibilities are as follows:

Omega Facility Division

Services:
- Optical design
- Clean room (Laser Bay and Target Bay)
- Film processing

Equipment/Systems:
- Alignment sensor packages
Blast window assemblies, distributed phase plates, distributed polarization rotators
Cryogenic Target Handling System
Deformable mirrors
De-ionized water and glycol cooling systems (including controls, indications, and purification)
Experimental control and data acquisition
Experimental target diagnostic peripherals (e.g., nose cones, filters, pin holes, etc.)
Focus lens subassembly
Frequency conversion
Grating compression chamber and beam transport tubes and associated vacuum systems
Grounding system
Hardware Timing System
Infrared alignment
Interlock system (door interlocks, motion detectors, warning light and alarm controls, and dump system)
Laser amplifiers
Laser-amplifier structures (service cranes, etc.)
Laser diagnostics [harmonic energy diagnostic, calorimetry, spectrometer, near-field and far-field measurement, UV transport calibration, wavefront sensors, beam timing, pulse shape, optical time-domain reflectometry (OTDR), and pulse contrast]
Laser control system [including interfaces, cabling, card cages, neuron modules, cable converters, and programmable logic controller (PLC) subsystems less SUN and Linux workstations and displays]
Laser drivers—smoothing by spectral dispersion (SSD), multiple-pulse driver line (MPD), backlighter, and fiducial for OMEGA and short- and long-pulse and 4ω probe for OMEGA EP
Laser elements (alignment sensors, polarization control optics, mirrors, beam splitters, flip-in devices, spatial filters, path-length adjusters, spatial light modulators, static wavefront correctors, tiled-grating assembly, and apodizers)
Nitrogen purge system
Off-axis parabola inserter
Optics
Parabola alignment diagnostic
Periscope mirror assembly
Plasma-electrode Pockels cell (PEPC)
Power conditioning including PEPC power conditioning
Radiation detection system
Short-pulse alignment
Spatial filters
Spatial-filter vacuum systems
Structures (end mirror, target mirror, target area, spatial filter, etc.)
Target chambers and associated vacuum systems
Target positioning
Target viewing
Tritium Filling Station
Tritium Removal Systems
Ultraviolet alignment

Engineering Division

Services:
- Electronics design
- Electronics Shop
- Machine Shop
- Mechanical design
- Optical Fabrication Shop
- Optical Manufacturing Shop
- Software development and maintenance
- Computer support
- Informatics
- Webpage support

Equipment/Systems:
- Imaging system
- Hardware Timing
- System public address system
- Control software system
- Access control system and facility interlocks
- Radio communication system
- Beam alignment LON
- Network wiring and hub equipment
- Facility Wi-Fi
- Windows operating system workstations and displays
- SUN workstations and displays
- Linux workstations and displays
- Databases and file storage

Experimental Division

Services:
- Film digitizing
- Target production

Equipment/Systems:
- Experimental target diagnostics
- Laser diagnostics (streak cameras and harmonic energy diagnostics)
- Targets
Administration Division

Services:
- Accounting
- Administrative services
- Facility improvements
- Personnel services
- Purchasing

Equipment/Systems:
- De-ionized water and glycol pumps, motors, and heat exchangers
- Electrical distribution (switch gear, motor control centers, power panels, breakers, distribution to connected equipment, emergency diesel generators, and distribution to power conditioning units)
- Heating, ventilation, air-conditioning system, and digital direct control system
- Pneumatic air and nitrogen systems
- Target/Laser Bay 10-T cranes
- Target Bay elevator

1007 Omega Operations Manager

The Omega Operations Manager is responsible for the overall operation and operational readiness of the Omega Laser Facility including the OMEGA compression and OMEGA EP Laser Systems. The Operations Manager reports to the Omega Facility Director. The Operations Manager has a support staff of an OMEGA Laser Facility Manager and OMEGA EP Laser Facility Manager. The Operations Manager has the following specific responsibilities:

- Manage the Omega Laser Facility to ensure that it is fully ready to execute the schedule of experiments proposed by the FASC and approved by the LLE Director.
- Manage laser facility operations to ensure operations are conducted effectively and safely.
- Manage and report status for action items stemming from Facility Safety inspections, participate in all Laboratory Safety inspections within Facility envelope.
- Administer facility access requirements and procedures.
- Make recommendations regarding the procurement of all laser facility services, operating equipment spares, supplies, and replacement system components.
- Manage all laser facility maintenance to ensure safety and operational readiness.
- Coordinate facility schedule with operations Facility Managers, Group Leaders, and Engineering or Experimental as required.
- Maintain system configuration control and management.
- Recommend and direct improvement projects within the Facility; schedule, monitor, and report on projects.
• Review periodic Facility performance reports.
• Coordinate projects with functional group leaders and engineering group leaders.
• Recommend staffing adjustments and review watchstanding training records.
• Maintain a list (or database) of facility qualified and proficient watchstanders.
• Ensure and certify compliance with periodic Omega Facility training requirements annually.

1008 Laser Facility Managers (OMEGA and OMEGA EP)

The Laser Facility Manager (LFM) is responsible for the overall operation and operational readiness of his respective facility (OMEGA or OMEGA EP). The Laser Facility Managers report to the Operations Manager. The LFM has a support staff of an Associate LFM. The Laser Facility Manager has the following specific responsibilities:

• Directly supervise the OMEGA and OMEGA EP Shot Directors to ensure that he/she fulfills his/her responsibilities in operating the applicable facility.
• Recommend written procedures covering shot operations to the Omega Operations Manager for approval. Approve written change notices as required to clarify or amend these procedures in advance of the approval of a formal revision.
• Control and monitor all laser facility maintenance to ensure safety and operational readiness.
• Make recommendations regarding the procurement of all laser facility services, operating equipment spares and supplies, and system upgrade components.
• Directly manage watchstander training and qualification and certify the qualification of all operators and Shot Directors.
• Serve as a member of the Omega FASC and provide this committee with a review of all experimental proposals, a periodic report of system status, and the status of completing scheduled experimental operations.
• Approve the facility watchbills.
• Review, approve, and schedule all Work Authorization Procedures.
• Maintain facility access authorization list and training material. Approve keycard access to respective facility.
• Provide daily written directions for laser facility operations in the Laser Facility Manager’s Day Order Books. Separate books for OMEGA and OMEGA EP will be maintained.
Present weekly updates of Omega Availability and Effectiveness and operational plans at LLE Staff Meetings, provide summaries at the FASC Annual Meeting, and as required by the Omega Facility Division Director.

Review and approve all requests for device network connection within OMEGA and OMEGA EP, respectively.

1009 Laser System Scientist

The Laser System Scientist is responsible for the safe propagation of the laser in each laser system. The Laser System Scientist reports to the Omega Facility Director and has the following responsibilities:

• Support the preparation, qualification, and operation of the laser in close coordination with the Laser Facility Manager and Shot Directors. He/she is normally available on site during daily system qualification, subnanosecond UV-pulse shaping, and when precision of unique energy balance is required. When not on site, he/she should normally be accessible by cell phone.

• Qualify the laser-beam spatial profile at the start of daily shot operations.

• Maintain the system energy balance and specify the system setup for unique energy balance conditions specified by experimental PI’s.

• Qualify the laser for short-pulse and picket-pulse operations and approve the pulse shape and energy settings for each shot.

• Analyze system performance.

• Advise the Laser Facility Manager and Shot Director during any abnormal laser conditions including directing the suspension of operations if deemed necessary.

1010 Cryogenic and Tritium Facility Manager

The Cryogenic and Tritium Facility Manager is responsible for the overall operation and operational readiness of the Cryogenic Target Handling System, Tritium Filling Station, Tritium Removal Systems, and Cart Maintenance Room [collectively included in the Cryogenic and Tritium Facility (CTF)]. The Cryogenic and Tritium Facility Manager reports to the Omega Facility Division Director and has the following specific responsibilities:

• Manage the CTHS to ensure the reliable delivery of cryogenic targets of acceptable quality to the OMEGA laser to execute the schedule of experiments proposed by the FASC and approved by the Director of LLE.

• Control access to the CTF and ensure that personnel who are not qualified as LLE Radiation Workers are escorted.

• Manage the TFS to ensure room-temperature DT targets are supplied to the OMEGA compression facility.
• Direct facility operations to ensure that they are conducted effectively and safely.
• Directly supervise the CTHS, TFS, TRS, and CMR operators to ensure that they fulfill their responsibilities.
• Coordinate the preparation and maintenance of written procedures covering CTHS, TFS, TRS, and CMR operations. Approve written change notices as required to clarify or amend these procedures in advance of the approval of a formal revision by the Omega Facility Division Director.
• Manage and control all CTHS, TFS, TRS, and CMR maintenance to ensure operational readiness.
• Make recommendations regarding the procurement of all services, operating equipment spares and supplies, and system upgrade components.
• Be responsible for the overall CTF system configuration control and management. Coordinate all control system modifications including ensuring Omega Laser Facility Manager approves applicable changes.
• Directly manage watchstander training and qualification and certify the qualification of all CTHS and TRS watchstanders.
• Maintain a list of qualified and proficient CTF watchstanders.
• Maintain the tritium inventory and a log of radioactive material.
• Ensure that all radiological safety procedures are followed and report any radiological incidents to the LLE Radiation Safety Officer.
• Ensure compliance with all procedural requirements of this LFORM; Vol. IV, Operating Procedures; the LLE Radiological Controls Manual; and other LLE Instructions.
• Control of system status including placing systems and equipment out-of-commission for maintenance and/or testing, maintaining the Equipment Status Log (Sec. 4004), and approving system/equipment Tagouts/Lockouts (Sec. 4005). NOTE: Where systems interface with the OMEGA facility, the facility Equipment Status Log and Tagout system under the purview of the Shot Director should be used.
• Ensure that qualified watchstanders (Sec. 2024) are stationed in accordance with the posted watchbill (Sec. 2022) prior to conducting CTHS or TRS operations.
• Ensure a CTHS, TFS, TRS, and CMR Facility Log is maintained to document operations.
• Conduct prewatch and watch briefings as required.
• Approve and inspect all radioactive material shipments received in and transferred out of the CTF.
• Keep the Omega Facility Director, appropriate Group Leaders, and others, as appropriate, informed of system status and problems. As a minimum the following will be reported:
 – Failure to have targets ready for scheduled experiments (Omega Experiments Group Leader and Laser Facility Manager).
 – Failure of equipment that disrupts operations (applicable Division Director and Group Leader).
 – Any release of tritium above normal (LLE Radiation Safety Officer).
 – Accident or incident that causes or could have caused personnel injury or significant equipment damage (applicable Division Director, Laboratory Safety Officer, and applicable Functional Safety Officer). Additionally, incident investigation and reporting in accordance with LLEINST 6950 must be completed.
Part II
Watch Organization and Watch Relief

<table>
<thead>
<tr>
<th>2000</th>
<th>Watch Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Shot Director (SD)</td>
</tr>
<tr>
<td>2002</td>
<td>Laser Drivers/Sources Operator (LDO/LSO) for OMEGA and OMEGA EP</td>
</tr>
<tr>
<td>2003</td>
<td>Power Conditioning Operator (PCO)</td>
</tr>
<tr>
<td>2004</td>
<td>Beamlines Operator (BO)</td>
</tr>
<tr>
<td>2005</td>
<td>Experimental System Operator (ESO)</td>
</tr>
<tr>
<td>2006</td>
<td>Laser Drivers/Sources Technician (LDT/LST) for OMEGA and OMEGA EP</td>
</tr>
<tr>
<td>2007</td>
<td>Power Conditioning Technician (PCT)</td>
</tr>
<tr>
<td>2008</td>
<td>UV-Alignment Laser Technicians (UV-ALT) for OMEGA/Alignment Laser Technician (ALT) for OMEGA EP</td>
</tr>
<tr>
<td>2008A</td>
<td>IR-Alignment Laser Technician (IR-ALT) for OMEGA/Amplifier Technician (AT) for OMEGA EP</td>
</tr>
<tr>
<td>2009</td>
<td>Experimental System Technician (EST)</td>
</tr>
<tr>
<td>2009A</td>
<td>Processing Technician (PT)</td>
</tr>
<tr>
<td>2009B</td>
<td>Experimental Cryogenic Technician (ECT)</td>
</tr>
<tr>
<td>2009C</td>
<td>Instrument Principal Investigator/Specialist/Technician</td>
</tr>
<tr>
<td>2009D</td>
<td>Cu Activation Counting Station Technician (ACST)</td>
</tr>
<tr>
<td>2009E</td>
<td>Image-Plate Scan Technician</td>
</tr>
<tr>
<td>2010</td>
<td>Room 157 Operator</td>
</tr>
<tr>
<td>2011</td>
<td>FTS Target Transfer Operator</td>
</tr>
<tr>
<td>2012</td>
<td>FTS General Operator</td>
</tr>
<tr>
<td>2013</td>
<td>Characterization Station Operator</td>
</tr>
<tr>
<td>2014</td>
<td>DD High-Pressure-Fill (HPS2) Operator</td>
</tr>
<tr>
<td>2015</td>
<td>Tritium Fill Station Low-Pressure-Fill Operator</td>
</tr>
<tr>
<td>2016</td>
<td>DT High-Pressure-Fill Operator</td>
</tr>
<tr>
<td>2017</td>
<td>Room 157 TRS Operator</td>
</tr>
<tr>
<td>2018</td>
<td>OMEGA Scrubber Operator</td>
</tr>
<tr>
<td>2019</td>
<td>TC TRS Operator (TC TRSO)</td>
</tr>
<tr>
<td>2020</td>
<td>Cart Maintenance Room (CMR) Operator</td>
</tr>
<tr>
<td>2020A</td>
<td>MCTC Operator</td>
</tr>
<tr>
<td>2020B</td>
<td>LaCave MCTC Operator</td>
</tr>
<tr>
<td>2021</td>
<td>Condition 1 Watch Organization—Maintenance Operations</td>
</tr>
<tr>
<td>2022</td>
<td>Condition 2 Watch Organization—Shot Operations</td>
</tr>
<tr>
<td>2023</td>
<td>Watchbill</td>
</tr>
<tr>
<td>2024</td>
<td>List of Qualified and Proficient Watchstanders</td>
</tr>
<tr>
<td>2025</td>
<td>Pre-Watch Briefing and Watchstander Relief</td>
</tr>
<tr>
<td>2026</td>
<td>Laser Facility Manager Day Orders</td>
</tr>
<tr>
<td>2027</td>
<td>Shot Director Log</td>
</tr>
<tr>
<td>2028</td>
<td>Watchstanding Proficiency</td>
</tr>
</tbody>
</table>
2000 Watch Conditions

One of two watch conditions will be stationed whenever the Omega Laser Facility (LF) is open for scheduled maintenance or shot operations. These laser conditions apply independently to both OMEGA and OMEGA EP. Normally, the LF is open from 0400–1730 on Monday and Friday and from 0400–0100 (next day) on Tuesday, Wednesday, and Thursday. Extended-shift experimental shot operations are conducted from 0800–2000 (0800–2100 on OMEGA EP) on Tuesday, Wednesday, and Thursday on OMEGA. Maintenance or laser system shots are conducted on Monday and Friday. The watch conditions are defined as follows:

Watch Condition 1: This watch condition applies during LF maintenance periods, the time prior to shot operations when preoperational checks are being completed, or when shot operations are disrupted for a significant period of time.

Watch Condition 2: This watch condition [Figs. II-1(a) and II-1(b)] applies during LF shot operations. It will be stationed when directed by the Shot Director prior to establishing “closed access” for the first shot of a day and remain stationed throughout the period of normal shot operations. During this watch condition, watchstations must be manned according to the shot type detailed in Sec. 2022. Watchstations not required for shots may be secured with Shot Director approval.

Figure II-1(a): OMEGA watch organization.
2001 Shot Director (SD)

The Shot Director (either for OMEGA or OMEGA EP) is the senior watchstander responsible for the overall operation of the respective laser during shot operations as well as during maintenance periods. The SD’s area of responsibility includes the operational control of all laser and target systems, equipment, and ancillary support systems. Additionally, the SD operates the software applications that control facility access and safety interlocks, and the Shot Executive. A separate SD for OMEGA and OMEGA EP will be stationed whenever the applicable facility is open and will be located within the building for the duration of his/her shift. During stand-down periods when Watch Condition 1 is stationed, such as meal breaks, the Shot Director may go off-site briefly, as long as he/she has a communication device. During the time from establishing “closed access” until a shot is completed, the SD must be present in the Control Room. The SD reports directly to the applicable Laser Facility Manager. For joint operations, the OMEGA EP SD reports operationally to the OMEGA SD and administratively to the OMEGA EP Facility Manager. The SD’s specific responsibilities include the following:

Direct operational control of the OMEGA or OMEGA EP Laser System and assigned watchstanders in the completion of all laser and target shots. This includes coordinating the completion of preoperational checks, alignments, and preparations required to fulfill the system or experimental requirements, directing the completion of actual system and experimental shots, and ensuring that the requisite system and experimental shot data are collected.
Provides the primary interface between the Principal Investigator and the shot crew.

Operation of the Shot Executive.

Ensuring compliance with all procedural requirements of this LFORM, the Laser Facility Manual, Vol. II or VIII, Operating Procedures as applicable, and other LLE Instructions.

Ensuring compliance with safety procedures including that upon establishing “closed access” the applicable Laser Bay, Target Bay, Capacitor Bay, LaCave, Diagnostic Bays, Laser Sources Bay, and Viewing Gallery are cleared of all personnel, as appropriate, prior to executing a shot.

Ensuring that the Laser Facility shutdown checklist contained in the System Operations Manual, Vol. II or IX, as applicable, is completed at the conclusion of operations. The shutdown checklist must be completed daily at the end of maintenance or shot operations.

Control of system status including placing systems and equipment out-of-commission for maintenance and/or testing, maintaining the Equipment Status Log (Sec. 4004), approving system/equipment Tagouts/Lockouts (Sec. 4005), and maintaining Work Authorization Procedures (Sec. 4003A).

Reviewing the Equipment Status Log prior to assuming watch.

Controlling access to the Target Chamber Center to ensure against conflicting requirements.

Controlling access to the Control Room during Watch Condition 2 (Sec. 4001A).

Control facility access and escort requirements in accordance with Sec. 4002.

Ensuring that qualified and proficient watchstanders (Secs. 2024 and 2028) are stationed in accordance with the posted watchbill (Sec. 2023) prior to conducting shot operations.

Keeping a Shot Director Log (Sec. 2027).

Conducting prewatch and watch briefings as required.

Creating, controlling, and/or modifying shot templates, including updating the SRF database entries to reflect the final shot configuration.

Performing the functions of the Power Conditioning Operator (OMEGA EP SD only, except for OMEGA startup qualification shots).

Keeping the Laser Facility Manager (LFM), Operations Manager, Principal Investigator (PI), applicable Division Directors, and others, as appropriate, informed of system status and problems. As a minimum the following will be reported:
Failure to commence shot operations as scheduled (LFM, Operations Manager, PI, Facility Director, and Experimental Division Director).

Failure of a system, equipment, or diagnostic that disrupts operations (LFM, Operations Manager, PI, applicable Division Director, and applicable Group/Section Leader).

Opening and closing of a target chamber or the grating compression chamber (LFM, Radiation Safety Officer).

Accident or incident that causes or could have caused personnel injury, causes or had the potential to cause significant equipment damage, causes environmental discharge limits to be exceeded, or causes a significant loss of Omega System effectiveness or availability (LFM, Operations Manager, applicable Division Director, Laboratory Safety Officer, applicable Functional Safety Officer, Senior Advisor to the Director). Additionally, incident investigation and reporting in accordance with LLEINST 6950 will be completed.

2002 Laser Drivers/Sources Operator (LDO/LSO) for OMEGA and OMEGA EP

The Laser Drivers/Sources Operator is the watchstander responsible for operation of the Laser Driver/Sources Executive to ensure that the necessary laser driver/source control, pulse shaping, and diagnostic functions are provided. He/she has overall responsibility for verifying that the laser driver/sources equipment is configured to support planned shot operations. The LDO/LSO will be stationed during Watch Condition 2 as required by Sec. 2022. During the time from establishing “closed access” until a shot is completed, he/she must be present in the Control Room. The LDO/LSO reports directly to the Shot Director. His/her specific responsibilities include the following:

- Operation of the Laser Driver/Sources Executive and pulse-shaping controls.
- Keeping the Shot Director informed as to laser driver/sources status and reporting any system abnormalities or failures that affect the ability of the system to shoot.
- Coordinating the efforts of the assigned Laser Driver/Sources Technician Watchstanders in the operation of the Laser Driver/Sources System.
- Reporting his/her relief to the Shot Director.

2003 Power Conditioning Operator (PCO)

The Power Conditioning Operator is the watchstander responsible for operation of the Power Conditioning Executive to ensure that the correct amplifiers are armed and that the charge voltages are consistent with operational limits and beam-balance requirements. He/she has overall responsibility for ensuring that the power conditioning equipment is configured to support planned shot operations. The PCO will be stationed during Watch Condition 2 as required by Sec. 2022. During the time from establishing “closed access” until a shot is completed, he/she must be present at the Power Conditioning console. The PCO reports directly to the Shot Director. His/her specific responsibilities include the following:
Operation of the Power Conditioning Executive.

Keeping the Shot Director informed as to power conditioning status and reporting any system abnormalities or failures that affect the ability of the system to shoot.

Coordinating the efforts of assigned Power Conditioning Technician (PCT) Watchstanders in the operation of the Power Conditioning System.

Maintaining a log of amplifier hardware changes that could affect amplifier energy performance.

Assisting the PCT with safing and repairs of power conditioning units (PCU’s) as required.

Reporting his/her relief to the Shot Director.

2004 Beamlines Operator (BO)

The Beamlines Operator is the watchstander responsible for operation of the Beamline Executive to align and control the optical path from the driver/sources to the target prior to shot operations, to ensure the functionality of laser diagnostics at shot time, and to assess results between shots. The OMEGA EP BO is responsible for the alignment of the short-pulse IR beam to both the OMEGA and OMEGA EP target chambers. He/she has overall responsibility for ensuring that the alignment sensors, beam splitters, frequency-conversion crystals, spatial filter, and beam transport systems are configured to support planned shot operations. The BO will be stationed during Watch Condition 2 as required by Sec. 2022. During the time from establishing “closed access” until a shot is completed, he/she must be present in the Control Room. The BO reports directly to the Shot Director. His/her specific responsibilities include the following:

Operation of the Beamlines Executive.

Keeping the Shot Director informed as to alignment and beamline diagnostic status and reporting any system abnormalities or failures that affect the ability of the system to shoot.

Coordinating the efforts of assigned IR and UV Alignment Laser Technician Watchstanders in the operation of the alignment, laser amplifier, frequency conversion, or beam transport systems.

Reporting his/her relief to the Shot Director.

2005 Experimental System Operator (ESO)

The Experimental System Operator is the watchstander responsible for operation of the Experimental System Executive to insert, view, and position targets; control target chamber vacuum systems; and operate experimental diagnostics. He/she has overall responsibility for ensuring that target and diagnostic systems are configured to support planned shot operations. The ESO will be stationed during Watch Condition 2 as required
by Sec. 2022. During the time from establishing “closed access” until a shot is completed and data acquisition has concluded, he/she must be present in the Control Room. The ESO reports directly to the Shot Director. His/her specific responsibilities include the following:

Operation of the Experimental System Executive; vacuum, diagnostic, and cryogenic target controls; and target diagnostic status.

Keeping the Shot Director informed as to target and diagnostic system status and reporting any system abnormalities or failures that affect the ability of the system to shoot.

Coordinating the efforts of assigned Experimental System Technician Watchstanders in the operation of the target vacuum, positioning, and diagnostic systems including film and neutron activation sample retrieval and developing/counting.

Coordinating the efforts of assigned Experimental Cryogenic Technician Watchstanders in the operation of the Moving Cryostat Transfer Cart (MCTC) and Lower Pylon systems in preparing for and recovering from cryogenic shots.

Coordinating access of individuals (internal and external) authorized by the Shot Director to the Target Bay, including assigning escorts as required.

Supervise the secondary ESO (when assigned) to ensure a distinct division of responsibilities is assigned and completed.

In conjunction with the Shot Director, control access to Target Chamber Center to ensure against conflicting requirements.

Update SRF database entries to reflect the final shot configuration of targets and diagnostics.

Reporting his/her relief to the Shot Director.

2006 Laser Drivers/Sources Technician (LDT/LST) for OMEGA and OMEGA EP

The Laser Drivers/Sources Technician is the watchstander responsible for local monitoring/adjustment of the drivers/sources. The LDT/LST will be stationed during Watch Condition 2 as required by Sec. 2022. The LDT/LST reports to the Shot Director via the Laser Drivers/Sources Operator. His/her specific responsibilities include the following:

Local monitoring and operation of the laser drivers/sources from the oscillator through the large-aperture ring amplifier (LARA) for OMEGA and to the injection table for OMEGA EP.
Keeping the Laser Drivers/Sources Operator informed as to drivers/sources status and reporting any system abnormalities or failures that affect the ability of the system to shoot.

The LST shall be responsible for conducting Laser Sources Bay sweeps.

Reporting his/her relief to the Shot Director.

2007 Power Conditioning Technician (PCT)

The Power Conditioning Technician is the watchstander responsible for preoperational checks and required corrective maintenance of the Power Conditioning System during shot operations. The PCT will be stationed during Watch Condition 2 as required by Sec. 2022. The PCT reports to the Shot Director via the Power Conditioning Operator for OMEGA and directly to the Shot Director for OMEGA EP. His/her specific responsibilities include the following:

- Completing preoperational checks and maintenance of the Power Conditioning System.
- Keeping the Power Conditioning Operator (OMEGA)/Shot Director (OMEGA EP) informed as to power conditioning status and reporting any system abnormalities or failures that affect the ability of the system to shoot.
- Safing of power conditioning units as required for laser amplifier lamp replacement or maintenance.
- Conducting Capacitor, Diagnostic Bay, and LaCave sweeps.
- Reporting his/her relief to the Shot Director.

2008 UV-Alignment Laser Technician (UV-ALT) for OMEGA/Alignment Laser Technician (ALT) for OMEGA EP

The UV-Alignment Laser Technician is the watchstander responsible for alignment of the optical path from the stage-F alignment sensor package (F-ASP) to target, operation of the laser diagnostics, and frequency-conversion crystals during shot operations. Additionally, they perform corrective maintenance of the alignment, frequency conversion, beam transport, and laser diagnostic systems during shot operations. In OMEGA EP, the Alignment Laser Technician is responsible for aligning the short-pulse IR beam to both the OMEGA and the OMEGA EP target chambers. The UV-ALT’s and the ALT will be stationed during Watch Condition 2 as required by Sec. 2022. They will keep the BO informed as to their whereabouts. The UV-ALT’s and ALT report to the Shot Director via the Beamline Operator. Their specific responsibilities include the following:

- Completing preoperational optical alignment and other amplifier, frequency conversion, beam transport, laser diagnostic, and ancillary system startup/checkout to support shot operations.
Keeping the Beamline Operator informed as to beamline status and reporting any system abnormalities or failures that affect the ability of the system to shoot.

Conducting Laser Bay sweeps.

Reporting his/her relief to the Shot Director.

2008A IR Alignment Laser Technician (IR-ALT) for OMEGA/Amplifier Technician (AT) for OMEGA EP

The IR Alignment Laser Technician/Amplifier Technician is the watchstander responsible for servicing amplifiers during shot operations. He/she will be stationed during Watch Condition 2 as required by Sec. 2022. The IR-ALT/AT reports to the Shot Director via the Beamline Operator. His/her specific responsibilities include the following:

- Conducting maintenance of the amplifiers and amplifier DI water and glycol cooling systems.
- Replacing amplifier flash lamps and making cable connector repairs.
- Maintaining the Amplifier Facility Controllers.
- Conducting Bay sweeps, as required by the Shot Director.
- Reporting his/her location to the Beamlines Operator and Shot Director.
- Reporting his/her relief to the Shot Director.

2009 Experimental System Technician (EST)

The Experimental System Technician is the watchstander responsible for preparation of target diagnostic systems prior to shots, retrieval of film and neutron activation specimens, and target diagnostic change outs between shots. He/she is also responsible for the insertion of the off-axis parabola (OAP) and the parabola alignment diagnostic to support alignment of the OAP to target. The EST will be stationed during Watch Condition 2 as required by Sec. 2022 and will normally be present in the vicinity of the Control Room or Darkroom during “closed access.” He/she will keep the ESO informed as to his/her whereabouts. The EST reports to the Shot Director via the ESO. His/her responsibilities include the following:

- Completing preoperational checks of the target chamber vacuum, OAP insertion, and target diagnostic systems to support shot operations.
- Servicing diagnostics, retrieval of film, knock-on detectors, and neutron activation specimens and insertion of warm targets between shot operations.
- Keeping the Experimental System Operator informed as to target diagnostic system abnormalities or failures that affect the ability of the system to shoot.
- Preparation and securing of the Target Bay equipment that is specific to cryogenic shots including the upper pylon/linear induction motor (LIM).
Escort authorized personnel from LLE and outside organizations while in the Target Bay in support of shot operations.

Conducting Target Bay sweeps.

Reporting his/her relief to the Shot Director.

2009A Processing Technician (PT)

The Processing Technician is the individual responsible for the development of all film and image plates associated with laser and target operations. The PT will be stationed during Watch Condition 2 as required by Sec. 2022 and will normally be present in the Darkroom. He/she will keep the ESO informed of his/her whereabouts. His/her specific responsibilities include the following:

- Operation of JOBO film processors to develop all film associated with laser and target operations.
- Operation and maintenance of FUJI and GE image-plate scanners for laser and target operations.
- Drying, labeling, and storing/filing of processed film.
- Film preparation and loading film packs.
- Maintaining inventory of film(s), image plates, and developmental chemical inventories.

2009B Experimental Cryogenic Technician (ECT)

The Experimental Cryogenic Technician is the watchstander responsible for connection of the MCTC to the lower pylon and its operation in support of OMEGA cryogenic shot operations. The ECT will be stationed during Watch Condition 2 as required by Sec. 2022. He/she will keep the ESO informed as to his/her whereabouts. The ECT reports to the Shot Director via the ESO. His/her responsibilities include the following:

- Preparation, operation, and securing of the lower pylon including the chain locker.
- Docking of the MCTC at the lower pylon and operation of the jointed subsystems through the shot cycle.
- Disconnecting the MCTC and securing the lower pylon after the target is expended.
- Keeping the ESO informed as to the status of the equipment.
- Maintaining appropriate liaison with the MCTC Operations Engineers in CTF.
- Reporting his/her relief to the Shot Director.

2009C Instrument Principal Investigator/Specialist/Technician

An Instrument Principal Investigator is the system expert for a specific instrument who is the point person for administering changes to design or answering questions on performance of the instrument. Normally, the Principal Investigator is the developer for
the instrument or a designee of the developer. An Instrument Specialist is one who is qualified by the instrument Principal Investigator to handle alignment and repairs to the instrument in addition to nominal operations. An instrument technician is qualified to operate the instrument for either shot operations or preparations for shot operations. Instrument Specialists/Technicians will be administratively qualified by completing the qualification card in Sec. 3009C. The completion of annual refresher training is necessary to maintain proficiency.

2009D Cu Activation Counting Station Technician (ACST)

The Cu Activation Counting Station Technician is responsible for operating the copper (Cu) activation counting station to assay on-shot samples collected by the activation retractor diagnostic, tertiary activation diagnostic (tad), and near target arm (NTA) diagnostics.

2009E Image-Plate Scan Technician

An Image-Plate Scan Technician is responsible for preparing the image plate for use, operating image plate scanner, and storing data into the shot archive. The Image-Plate Scan Technician will be qualified by completing the qualification card in Sec. 3009E.

2010 Room 157 Operator

The Room 157 Operator is the watchstander responsible for the general operations in the cryogenic and tritium facility. This is a prerequisite for all other CTF watchstanding positions.

2011 FTS Target Transfer Operator

The Target Transfer Operator is the watchstander responsible for transferring targets from the Fill and Transfer System (FTS) to the MCTC. The target transfer operator reports to the Cryogenic and Tritium Facility Group Leader via the FTS Engineer. His/her responsibilities include the following:

- Loading targets in the target rack and insertion into the FTS permeation cell.
- Transferring cryogenic targets from the FTS rack to the MC stalk.
- Removal of the target rack from the FTS and decontamination of the target rack.

2012 FTS General Operator

The FTS General Operator is the watchstander responsible for the cooldown and warm-up of the FTS. The FTS operator reports to the Cryogenic and Tritium Facility Group Leader via the FTS Engineer. His/her responsibilities include the following:

- Warm-up and vent of the FTS.
- Cooldown and evacuation of the FTS.
2013 Characterization Station Operator

The Characterization Station Operator is the watchstander responsible for cryogenic target layering and characterization. The Characterization Station operator reports to the Cryogenic and Tritium Facility Group Leader via the MCTC Engineer.

2014 DD High-Pressure-Fill (HPS2) Operator

The DD High-Pressure-Fill Operator is the watchstander responsible for filling and cooling DD targets in FTS 2. The DD high-pressure-fill operator reports to the Cryogenic and Tritium Facility Group Leader via the FTS Engineer.

2015 Tritium Fill Station Low-Pressure-Fill Operator

The Tritium Fill Station Low-Pressure-Fill Operator is the watchstander responsible for TFS operations. The Tritium Fill Station operator reports to the Cryogenic and Tritium Facility Group Leader via the FTS Engineer. His/her responsibilities include the following:

- Filling low-pressure, warm DT targets.
- Operating and maintaining the TFS purification system.
- Assaying and maintaining the inventory record for the DT in the TFS.

2016 DT High-Pressure-Fill Operator

The DT high-pressure-fill Operator is the watchstander responsible for filling and cooling DT targets in FTS 1. The DT high-pressure-fill operator reports to the Cryogenic and Tritium Facility Group Leader via the FTS Engineer. His/her responsibilities include the following:

- Operating the TFS, DT High-Pressure System (DTHPS), and FTS 1 to fill and cool cryogenic DT targets.
- Informing the Group Leader of any E Stop and initiating corrective action.

2017 Room 157 TRS Operator

The Room 157 TRS Operator is the watchstander responsible for Room 157 Tritium Removal System (TRS) operations. The Room 157 TRS operator reports to the Cryogenic and Tritium Facility Group Leader via the TRS Engineer. His/her responsibilities include the following:

- Startup and operation of Room 157 TRS.
- Regeneration of the beds/cryotrap.
- Operation of the CTHS cleanup purifications system.
2018 OMEGA Scrubber Operator

The OMEGA Scrubber Operator is the watchstander responsible for operating the OMEGA tritium scrubber. The OMEGA scrubber operator reports to the Cryogenic and Tritium Facility Group Leader via the TRS Engineer. His/her responsibilities include the following:

- Operating the OMEGA tritium scrubber in support of target chamber cryogenic pump regeneration.
- Maintaining the scrubber beds.

2019 TC TRS Operator (TC TRSO)

The TC TRS Operator is the watchstander responsible for operating the OMEGA target chamber TRS. The TC TRS operator reports to the Cryogenic and Tritium Facility Group Leader via the TRS Engineer. His/her responsibilities include the following:

- Startup and operation of the TC TRS.
- Regeneration of the dryer beds.
- Collection of tritiated water for disposal.

2020 Cart Maintenance Room (CMR) Operator

The Cart Maintenance Room Operator is the watchstander responsible for operating the equipment located in the Cart Maintenance Room. The CMR operator reports to the Cryogenic and Tritium Facility Group Leader via the MCTC Engineer. His/her responsibilities include the following:

- Repair and refurbishment of MC and MCTC equipment.
- Performing preventive maintenance on MC and MCTC equipment.
- Decontamination of MCTC’s.
- Operation of the CMR vacuum manifold.

2020A MCTC Operator

The MCTC Operator is the watchstander responsible for operating and transporting MCTC’s. The MCTC operator reports to the Cryogenic and Tritium Facility Group Leader via the MCTC Engineer. His/her responsibilities include the following:

- Transport of MCTC’s
- Docking of MCTC’s at all stations
- Starting up and powering down MCTC’s
2020B LaCave MCTC Operator

The LaCave MCTC Operator is the watchstander responsible for assisting the Experimental Cryogenic Technician in the moving of the MCTC to the lower pylon and its operation in support of OMEGA cryogenic shot operations. The LaCave MCTC Operator will be stationed during Watch Condition 2 as required by Sec. 2022. The LaCave MCTC Operator reports to the ECT. This position may be staffed by an operator who has completed the qualification card for Experimental Cryogenic Technician or MCTC Operator.

2021 Condition 1 Watch Organization—Maintenance Operations

The following watchstanders will be stationed during Watch Condition 1:

 Shot Director

 Others considered appropriate during special test/maintenance evolutions.
2022 Condition 2 Watch Organization—Shot Operations

For **OMEGA**: The following watchstanders will be stationed during Watch Condition 2:

<table>
<thead>
<tr>
<th>Watchstation</th>
<th>Shot Type<sup>a</sup></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot Director</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Laser Drivers Operator</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Conditioning Operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>b</td>
<td>x</td>
<td>b</td>
<td>x</td>
</tr>
<tr>
<td>Beamlines Operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Experimental System Operator</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Second Experimental System Operator (if required)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Laser Drivers Technician</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Power Conditioning Technician</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>IR-Alignment Laser Technician</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Second IR-Alignment Laser Technician (if required)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>UV-Alignment Laser Technician</td>
<td></td>
<td>x</td>
<td>d</td>
<td>x</td>
<td>d</td>
<td>x</td>
<td>d</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Experimental System Technician</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Processing Technician</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Experimental Cryogenic Technician</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>e</td>
<td>x</td>
<td>e</td>
</tr>
<tr>
<td>LaCave MCTC Operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>e</td>
<td>x</td>
<td>e</td>
</tr>
<tr>
<td>Room 132A Cu Activation Counting Station Technician</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

^a**OMEGA** EP high-x-ray shot

NOTES:

a. “x” denotes watchstations that must be manned. Shot types are defined as follows:

1. Driver
2. Nonpropagating
3. Terminating at Stage A calorimeters
4. Beamline, contained within the Laser Bay
5. Beamline, terminating, at Stage F calorimeters
6. Target, low yield (<10^{10})
7. Target, high yield (>10^{10})

b. The SD may operate the Power Conditioning Executive for up to a five-head driver and single-beam leg shot in lieu of stationing a PCO.
c. Experimental Cryogenic Technicians (ECT’s) are required only during shots that involve the CTHS.

d. The Beamlines Operator may act as the UV-ALT for shots where no special setups are required.

For OMEGA EP: The following watchstanders will be stationed during Watch Condition 2:

<table>
<thead>
<tr>
<th>Watchstation</th>
<th>Shot Type(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 *</td>
</tr>
<tr>
<td>Shot Director</td>
<td>x x x x x x x x</td>
</tr>
<tr>
<td>Laser Sources Operator</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Beamlines Operator</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Experimental System Operator</td>
<td>x(^b) x x</td>
</tr>
<tr>
<td>Laser Sources Technician</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Second Laser Sources Technician (as required)</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Power Conditioning Technician (on call)</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Alignment Laser Technician</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Laser Amplifier Technician (on call)</td>
<td>x x x x x</td>
</tr>
<tr>
<td>Experimental System Technician (2nd and 3rd as required)</td>
<td>x(^b) x x</td>
</tr>
<tr>
<td>Processing Technician</td>
<td>x x</td>
</tr>
<tr>
<td>Room 132A Cu Activation Counting Station Technician (as required)</td>
<td>x</td>
</tr>
</tbody>
</table>

\(^*\) OMEGA high-yield shot (type 7b or 7c)

NOTES:

a. “x” denotes watchstations that must be manned. Shot types are defined as follows:
 1. Source Bay
 2. Nonpropagating
 3. Pre-transport spatial filter (TSF) for OMEGA EP source and 4\(\omega\) probe
 4. Beamline terminated at the infrared diagnostic package (IRDP), short-pulse diagnostics package (SPDP), or target chamber without amplification
 5. Beamline terminated at calorimeter, amplified
 6. Target, long pulse
 7. Target, short pulse

b. Required when shot terminates in the target chamber

c. On call watchstanders must be at LLE during the time of shot, available for consultation, and available to make system repairs when required.
2023 Watchbill

For each day that the Laser Facility is open, separate watchbills will be prepared for OMEGA and OMEGA EP by the person designated by the Operations Manager for watchbill administration. The watchbills must be approved by the Laser Facility Manager and posted in the appropriate Control Room. Any substitutions to this approved watchbill must be approved by the Laser Facility Manager. Sample watchbill formats are shown at the end of this section.

2024 List of Qualified and Proficient Watchstanders

All personnel must complete the initial watchstation qualification specified in Part III of this manual. Only those who have completed the requisite qualification and have maintained watchstanding proficiency may stand watch and be assigned on the Laser Facility watchbill. To ensure that only qualified personnel are assigned to watches, a list of currently qualified and proficient watchstanders by facility (i.e., separately for OMEGA and OMEGA EP) will be maintained and be accessible to the applicable Shot Director. The Operations Manager or the person designated by him/her will maintain these lists of qualified and proficient watchstanders. The qualified and proficient watchstander list will be maintained by watchstation for each facility and will list the names of those qualified and his/her date of qualification.

2025 Pre-Watch Briefing and Watchstander Relief

Prior to the commencement of each shift of shot operations, the Shot Director will conduct a briefing of key personnel. In this context, shot operations means anytime a laser amplifier is pumped by a PCU that can be controlled by the Power Conditioning Executive (PCE). A pre-watch brief will also be conducted for coordinating system testing or system enhancement projects as deemed necessary by the LFM. As a minimum, the Control Room Operators and the Principal Investigator will attend this briefing. As a minimum, the following will be covered in this briefing:

- Status of completion of alignment, preoperational checks, and readiness of the system.
- Scheduled shot requirements including driver/source, target, beam, diagnostic, and data.
- Review of problems experienced during the previous shift.
- Review of the Laser Facility Manager Day Orders. Prior to taking on the responsibility of watch standing, all individuals shall review the facility day orders, the Out of Commission log, and the relevant Material Deficiency list for their watchstation. When possible, a discussion with the outgoing watchstander shall include important tasks in process and issues experienced in the shift. During startup, this discussion shall be replaced with a review of the station log. At times, it will be required that the previous watchstanders hand off lockout/tagout keys (reference Sec. 4005) to on coming crew members.
2026 Laser Facility Manager Day Orders

The Laser Facility Manager will prepare directions for Laser Facility operations on a daily basis in a permanent record format that is made available to the Shot Director prior to each day’s operations. A separate record will be prepared for OMEGA and OMEGA EP. The following exemplify material to be included in these day orders:

- Laser and experimental target shot plan for the day
- Preoperational and alignment checks required prior to conducting shot operations
- Significant testing or maintenance actions scheduled
- Problems or special circumstances that warrant particular attention
- Administrative items of general interest to facility operators

The Day Orders will be read on a daily basis by all watchstanders prior to assuming watch.

2027 Shot Director Log

The Shot Director will keep a chronological handwritten log to document the operation of the Laser Facility during his/her watch. Each entry will be preceded by the time, and the log shall indicate the identity of the person standing each watch shift and the times of relief and facility securing. Separate logs will be maintained for OMEGA and OMEGA EP. The following are required entries in this log:

- Stationing and securing of Watch Condition 1 or 2.
- Shot Director Watch Relief.
- Commencement and completion of a particular shot campaign [e.g., Cyrogenic Implosion (Cryo), etc.]
- Specific target shot data will be logged using standardized format to include shot number, shot type, RID#, number of beams to target, total energy on target, and PCU failures.
- Significant problems or accomplishments.
- Opening and closing of the target chamber or grating compression chamber.
- Placing in or out of commission significant systems that affect the ability to perform shot operations.
- An incident that results in personnel injury or significant material damage.
2028 Watchstanding Proficiency

Watchstanders must stand at least two (one for ECT only) watches per quarter to maintain proficiency on individual watchstations. Personnel who do not stand at least two watches per quarter will be removed from the list of qualified watchstanders and may not stand watch until qualification is recertified. In special instances, such as a senior supervisory watchstander, the Laser Facility Manager may approve an exception on a one-time basis. Personnel who do not complete refresher safety training will be removed from the list of qualified watchstanders until training is complete.
OMEGA Laser Facility Watchbill

Date: ____________________

<table>
<thead>
<tr>
<th>Watchstation</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFM (on call 0000-2400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD Alternate*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Support Hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*SD Alternate reports to 1st and 2nd shift briefings, and relieves 1st and 2nd shift SD when requested.

System startup assignments:**

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Startup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamlines Startup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First shift:**

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-ALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-ALT 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-ALT 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESO 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECT 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaCave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCTC Operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second shift:**

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV-ALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-ALT 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-ALT 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESO 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECT 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaCave MCTC Operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Reporting times are per operational section instructions to support OMEGA Operations’ needs.

Pre-Watch Briefing (First Shift): 0800 Monday–Friday
Watch Relief Briefing (Second Shift): 1330 Standard OMEGA day
1115 OMEGA day until 1730 days

S. Stagnitto (585) 330-2988
M. Labuzeta (585) 802-5856
J. Puth (585) 478-1285
S. Morse (585) 683-5373

Approved: __________________ Laser Facility Manager __________________

Date

II-21
OMEGA EP Laser Facility Watchbill

Date: ________________

<table>
<thead>
<tr>
<th>Watchstation</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFM (on call 0000-2400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD Alternate*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hours

*SD Alternate reports to 1st and 2nd shift briefings and relieves 1st and 2nd shift SD when requested.

Pre-watch system startup assignments:**

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources Startup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beamlines Startup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First shift:**

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second shift:*

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EST 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Reporting times are per operational section instructions to support OMEGA EP Operations’ needs.

Pre-Watch Briefing (First Shift): 0900 Monday
0845 Tuesday–Friday (OMEGA EP only shots)
0800 Joint Shot Day (in OMEGA CRCR)

Watch Relief Briefing (Second Shift): 1345 Standard OMEGA EP day
1145 OMEGA EP (until 1730 days)
1330 Joint Shot Day (in OMEGA CRCR)

D. Canning (585) 469-0935
S. Householder (585) 746-3551
J. Puth (585) 478-1285
S. Morse (585) 683-5373

Approved: ____________________ Laser Facility Manager ____________________ Date
Part III

Watchstander Training and Qualification

3000 Watchstander Training and Qualification Administration

All personnel assigned to stand watch in OMEGA, OMEGA EP, and the CTF must complete a formal documented qualification process that consists of the following:

- Completion of prerequisite safety training and watchstation qualifications
- Completion of knowledge requirements
 - LFORM (LLEINST 3000)
 - Incident Review and Reporting (LLEINST 6950)
 - Facility and Safety Interlocks
 - Demonstration of technical system, subsystem, and equipment knowledge and associated engineering principles
- Completion of watchstanding requirements (under oversight of a qualified watchstander instructor)
 - Watchstanding requirements are fulfilled by standing a watch shift under the oversight of the qualified watchstander. The qualified watchstander is responsible for all actions by the trainee. Since some shifts may include unexpected disruptions, the instructor must use his/her best judgement to certify completion.
- Completion of Practical Factors (under the oversight of a qualified instructor)
 - Trainees are to spend time observing and being trained by qualified instructors, with opportunity to ask questions before being given the opportunity to demonstrate skills by completing practical factors.
 - Practical factors are to be completed correctly under the oversight of the instructor without the instructor’s intervention. The instructor is encouraged to ask questions to ascertain full understanding.
 - Practical factors include startup, shutdown, and maintenance activities to ensure a broad base of knowledge and capability in the watchstanding role.
 - To obtain a signature, the trainee must perform the task correctly (without intervention or correction by the instructor).
• Completion of Qualification Certification
 - After all requirements are completed on the qualification card, the qualification will be certified by the completion of an oral examination by the individual designated on the qualification card and by the applicable LFM (or CTFM).

After certification of qualification, the individual will be added to the list of qualified watchstanders (Sec. 2024) by the LFM.

The completed qualification card is to be filed as a permanent record.

All qualification cards are to be issued by a Laser Facility Manager or the Cryogenic and Tritium Facility Manager who will give the expected qualification timeframe, Fig. III-1. After the qualification card is issued, the appropriate group/section leader shall assign a mentor to aid in the qualification process. This mentor will meet regularly with the trainee to answer questions, give guidance on instructors for each signature, and facilitate a thorough and efficient qualification process. The mentor will also advocate for training opportunities within the group to ensure that infrequent activities are not missed.

While personnel from any Division/Group may qualify on any watchstation, and are encouraged to do so, normally watchstanders come from specific Divisional Groups as follows:

OMEGA Facility Division
- Laser Drivers/Sources Section: LDO, LDT, LSO, LST
- Beamlines Section: BO (OMEGA or OMEGA EP), UV-ALT, ALT
- Amplifier Section: IR-ALT, AT
- Experimental Operations Section: ESO (OMEGA or OMEGA EP), EST (OMEGA or OMEGA EP), PT
- CTF Group: ECT, Room 157 Operator, FTS Target Transfer Operator, FTS General Operator, Characterization Station Operator, HPS2 High-Pressure-Fill Operator, Tritium Fill Station Low-Pressure-Fill Operator, DT High-Pressure-Fill Operator, Room 157 TRS Operator, OMEGA Scrubber Operator, TC TRS Operator, CMR Operator, MCTC Operator

Engineering Division
- Electronics Engineering Group: PCO (OMEGA or OMEGA EP), PCT (OMEGA or OMEGA EP)
Experimental Division
Experimental Support Group: ESO or EST

Personnel who are qualified to sign qualification card requirements are as follows:

Knowledge Requirements
Person designated on the qualification card
Cognizant Group Leader
Other personnel designated in writing by the LFM or CTFM

Watches and Practical Factors
Personnel qualified on the watchstation

Qualification Certification
As indicated on the qualification card

3001 Example Qualification Card

Each qualification card shall have similar formatting with all prerequisites, knowledge requirements, watchstanding requirements, and practical factors specifically called out and an associated signature line for each task. The qualification cards are to be reviewed for required changes in conjunction with the introduction or removal of hardware/software or with significant changes to protocols for safety.
Index of Qualification Cards

Each qualification card is uniquely tailored to the individual watchstation requirements and is released as a product data management (PDM) approved document. Figure III-1 lists each qualification card giving the PDM document ID, the original LFORM number, the title, and the expected time to complete the qualification. Training time varies based on the complexity of the watch station and other responsibilities of the individual in training.

<table>
<thead>
<tr>
<th>PDM Document ID</th>
<th>Old ID</th>
<th>Watchstation or Role</th>
<th>Expected Qual. Duration (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-QC-M-002</td>
<td>3001</td>
<td>OMEGA Shot Director Qualification Card</td>
<td>12</td>
</tr>
<tr>
<td>M-QC-M-003</td>
<td>3002</td>
<td>OMEGA Laser Drivers Operator Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-004</td>
<td>3003</td>
<td>OMEGA Power Conditioning Operator Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-005</td>
<td>3004</td>
<td>OMEGA Beamlines Operator Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-006</td>
<td>3005</td>
<td>OMEGA Experimental System Operator Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-008</td>
<td>3006</td>
<td>OMEGA Laser Drivers Technician Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-009</td>
<td>3007</td>
<td>OMEGA Power Conditioning Technician Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-010</td>
<td>3008A</td>
<td>OMEGA IR-Alignment Laser Technician Qualification Card</td>
<td>5</td>
</tr>
<tr>
<td>M-QC-M-011</td>
<td>3008B</td>
<td>OMEGA UV-Alignment Laser Technician Qualification Card</td>
<td>5</td>
</tr>
<tr>
<td>M-QC-M-012</td>
<td>3009</td>
<td>OMEGA Experimental System Technician Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-013</td>
<td>3009A</td>
<td>OMEGA/OMEGA EP Processing Technician Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-014</td>
<td>3009B</td>
<td>Experimental Cryogenic Technician Qualification Card</td>
<td>8</td>
</tr>
<tr>
<td>M-QC-M-015</td>
<td>3009C</td>
<td>OMEGA/OMEGA EP Instrument Specialist/Technician Qualification Card</td>
<td>2</td>
</tr>
<tr>
<td>M-QC-M-016</td>
<td>3009D</td>
<td>OMEGA/OMEGA EP Activation Counting Station Qualification Card</td>
<td>1</td>
</tr>
<tr>
<td>M-QC-M-017</td>
<td>3009E</td>
<td>OMEGA/OMEGA EP Image-Plate Scan Technician Qualification Card</td>
<td>1</td>
</tr>
<tr>
<td>M-QC-M-018</td>
<td>3010</td>
<td>Radiation Worker Qualification Card</td>
<td>3</td>
</tr>
<tr>
<td>M-QC-M-019</td>
<td>3011</td>
<td>OMEGA EP Shot Director Qualification Card</td>
<td>12</td>
</tr>
<tr>
<td>M-QC-M-020</td>
<td>3012</td>
<td>OMEGA EP Laser Sources Operator Qualification Card</td>
<td>12</td>
</tr>
<tr>
<td>M-QC-M-021</td>
<td>3013</td>
<td>OMEGA EP Beamlines Operator Qualification Card</td>
<td>12</td>
</tr>
<tr>
<td>M-QC-M-022</td>
<td>3014</td>
<td>OMEGA EP Experimental System Operator Qualification Card</td>
<td>6</td>
</tr>
<tr>
<td>M-QC-M-023</td>
<td>3015</td>
<td>OMEGA EP Laser Sources Technician Qualification Card</td>
<td>18</td>
</tr>
</tbody>
</table>
Watchstanding Proficiency, Training Progress, and Quarterly Tracking

Watchstanders must stand at least two (one for ECT only) watches per quarter to maintain proficiency on individual watchstations. Personnel who do not stand at least two watches per quarter will be removed from the list of proficient watchstanders and may not stand watch until qualification is recertified. In special instances, such as a senior supervisor watchstander, the LFM may approve an exception on a one-time basis. Personnel who have lost watchstanding proficiency as a result of insufficient frequency must complete a Recertification Card before being restored to the list of proficient operators for that watchstation. Personnel who do not complete refresher training within one quarter will be removed from the list of qualified watchstanders.
At the end of each quarter, the Operations Manager will audit the watchbills to determine deficiencies in proficiency. The qualification cards will be audited to identify persons lagging behind expectations in training (Sec. 2024), and the completed qualification card will be filed as permanent record.
4000 Laser Facility Overview

The Safety Analysis Documents for OMEGA and the Environmental Assessment for OMEGA EP identify the safety hazards and how they are mitigated by design, interlock, and procedure. Of the hazards reviewed, protection from personnel exposure to hazardous levels of laser and nuclear radiation and high voltage requires that no personnel are in the hazardous areas during shot operations. To assure that no personnel remain in hazardous areas upon establishing “closed access” as well as the need to avoid the potential for significant equipment damage dictates the need for formal compliance with approved operational procedures.

In the context of operating the Omega Laser Facility, including the OMEGA, OMEGA EP, and CTF/CTHS, formal procedural compliance means:

Only formally approved written procedures will be used to conduct shot and tritium operations. These procedures are contained in the applicable Operations Procedures Manuals for OMEGA, Vol. II; CTHS, Vol. V; and OMEGA EP, Vols. VIII and IX and released in the PDM per M-TM-P-028.

If an error or omission that prevents continuing is noted in an Operations Procedure, the system will be placed in a safe state and the operation will be halted until a formal written Advanced Change Notice (ACN) to the procedure is approved by the Laser Facility Manager (LFM) or Cryogenic and Tritium Facility Manager (CTFM) as applicable. All ACN procedures will by stamped and signed by the LFM or CTFM and logged in the Equipment Status Log.
The System Operation Procedures will be referenced as required during operations. For Shot and Tritium Operations, the applicable procedures will be open and used as a check list by the Shot Director, Control Room, and CTHS Operators. For all other evolutions, e.g., system preoperational checks and startup, system shutdown, and maintenance operations, the procedure will be referenced as frequently as necessary to ensure compliance with the procedural requirements.

4001A Control Room Access and Formality

The Control Rooms are the central control station for the operation of OMEGA and OMEGA EP. To ensure the safe and proper operation of the facility, the atmosphere in the Control Room must be formal and businesslike. To ensure that the desired level of formality is maintained, the following will be enforced:

Access is restricted to those who have a need to be there and will be strictly controlled by the Shot Director. During periods of power conditioning unit charging, as indicated by the flashing “Shot in Progress: Do Not Enter” signs outside the Control Room, no entry will be allowed.

No impromptu meetings or gatherings will take place in the Control Room.

No eating is allowed in the Control Room.

No reading of unofficial or non-work-related material is allowed.

4001B Room 157 and Cart Maintenance Room Access and Formality

Access to Room 157 and the Cart Maintenance Room must be controlled to ensure safety and effectiveness. Unescorted access is allowed only for personnel qualified as radiation workers who are authorized access by the CTFM. Anyone who is not on the access list maintained by the CTFM must be both authorized by the CTFM and escorted by an individual on the authorized access list.

All operations for filling warm DT and cryogenic DD/DT targets occur within Room 157. To ensure the safe and proper operation of the tritium and cryogenic facility, the atmosphere within the facility must be formal and businesslike. This is especially true whenever tritium operations are taking place; that is, whenever the tritium is removed from the uranium getters or a contaminated system is opened. The following will be enforced at all times:

No impromptu meetings or gatherings will take place.

No eating is allowed at any time.

No reading of unofficial or non-work-related material is allowed (at all times).

Personnel not on the CTFM approval list must be escorted.

All personnel within the facility will wear laboratory coats.
The following additional requirements will be enforced during tritium operations:

Only personnel qualified as Radiation Workers are allowed access.

Only the CTHS operators and relevant supervisors are allowed access.

4002 Omega Facility Access

Access to Omega Facility technical areas must be controlled to ensure safety and effectiveness. Unescorted access is allowed only for personnel who are approved and listed on an Access Authorization list maintained by the Laser Facility Manager. Such unescorted access is limited to qualified watchstanders, instrument specialists, safety officers, key engineers/technicians, and management personnel who have maintained safety proficiency. The Shot Director is responsible for controlling the facility access and verifying the status of training. Access of personnel who are not on the Access Authorization list is controlled as follows:

For individual(s) who will not be performing work:
- An escort shall be assigned per the instruction of the LFM

For individual(s) who will be performing work on instruments of the system [i.e., Instrument Specialist Technician (IST)]:
- The LLE Chief Safety Officer shall certify the individual’s knowledge of the LLE safety program
- An IST qualification card must be completed for the instrument being worked on
- LFORM orientation shall be completed by the Laser Facility Manager
- Work environment orientation shall be completed by the Associate Laser Facility Manager or Group Manager
- A work authorization procedure (WAP) shall be approved by the Laser Facility Manager and opened by the Shot Director before performing work
- An escort shall be assigned

For external specialists performing work on infrastructure:
- An escort shall be assigned
- A WAP shall be approved by the LFM and opened by the Shot Director before performing work
- An orientation will be conducted by the LFM or his designee before entering the facility
- Additional Safety Training may be required in advance of entering the facility to perform work

Escorts are responsible for:
- Providing required personal protective equipment (PPE) such as laser goggles and hard hats
- Ensuring that personnel remain clear of exposed optics
- Ensuring that clean room clothing is properly donned and that clean room requirements are enforced
• Ensuring that all safety requirements are enforced
• Maintaining visual contact with all individual(s) under their escort while inside the facility.
• When work is to be performed, at least one escort will be assigned for a work area.

4002A Omega Facility Controlled Access

Access to Omega Facility technical areas must be controlled to ensure safety and effectiveness. Many of the operational hazards in Omega are mitigated by PPE, training, and procedure.

Non-watchstanders must check in with the Shot Director before entering the technical areas. The Shot Director will brief the individual on any concerns relevant to the activity including status of shot preparations or other activities occurring at the same time. The Shot Director also maintains the interlock control to enable laser sources and appropriate door warning signs. All individuals entering the facility must read and conform to the door warning signs.

Inside the technical areas, further access restrictions may be required for safety in localized areas. Appropriate signs shall be placed at all entrances to the area describing the access restrictions, PPE requirements, and watchstander to contact for permission to gain access.

4002B Closed Access

Restrictions are required to protect individuals from the hazards of a system shot including high voltage, high-intensity laser light, and ionizing radiation. To ensure that no persons are exposed to a shot hazard, the technical areas are elevated to the closed-access state. In this access state, the perimeter is secured and the bay is cleared of all individuals using area sweep procedures. The Shot Director controls the closed-access state. He is responsible for PA announcements, locking the perimeter doors, illuminating the closed-access signs, and certifying the completion of all required sweeps before conducting a system shot. Adherence to closed-access procedure is critical to the safe operation of the OMEGA/OMEGA EP lasers.

4003 Control of Maintenance

Maintenance must be controlled to ensure the readiness of Omega or the Tritium and Cryogenic Facility to conduct shot or target operations respectively. Additionally, this is required to determine the applicable post-maintenance inspections and tests that must be completed. Accordingly, the following procedures will be followed:

The approval of the Shot Director or Cryogenic and Tritium Facility Manager, as applicable, must be obtained prior to performing maintenance on or removing a system, subsystem, diagnostic, or equipment from service that is required to support scheduled shot or target operations.
The Shot Directors for OMEGA and OMEGA EP and the Cryogenic and Tritium Facility Manager will maintain an Equipment Status Log to document systems, subsystems, diagnostics, or equipment placed out of commission or in reduced status.

Corrective and preventive maintenance will be scheduled by the individual work centers in consonance with the applicable facility’s operating schedule.

The completion of maintenance and the restoration of systems, subsystems, diagnostics, or equipment to service will be reported to the Shot Director or Cryogenic and Tritium Facility Manager as applicable.

The installation of new equipment, alignment and operation of instruments by instrument specialists/technicians who are not LLE personnel qualified as Omega watchstanders, and tasks specified by the relevant Laser Facility Manager that must be coordinated from an operational perspective will be scheduled and authorized by the work authorization procedures of Sec. 4003A.

4003A Work Authorization Procedures

The work authorization procedures (WAP’s) of this section are required to ensure that new equipment installations, operations by instrument specialists/technicians, and certain work determined by the Laser Facility Manager that must be coordinated from an operations perspective is performed safely by qualified personnel and on a definite schedule. Instrument specialists/technicians who are LLE personnel and who are also qualified as an Omega watchstander may start up and operate stand-alone instruments without using these work authorization procedures. The WAP (Fig. IV-1) and the WAP index (Fig. IV-2) procedures are as follows:

- **Part I (task information):** The WAP will be initiated by the project manager or supervisor of the personnel who will perform the maintenance or procedure; e.g., for the installation of a new TIM, the Mechanical Engineering Group Leader would initiate the WAP to install the TIM, and the Controls Engineering Group Leader would initiate a separate WAP to install and test the control system. For operation of the OHRV to support an experiment, the Experimental Operations Group/Section Leader would initiate the WAP.

The initiator is responsible for completing Part I of the WAP (Fig. IV-1), including the work description, procedural reference, lead person performing the work, listing other personnel involved, and identifying safety risks associated with the task, and how they are to be mitigated. This includes identifying:

- personnel protective equipment (PPE) required
- equipment that must be made safe prior to starting work and how this is accomplished (e.g., lockout and/or tagout, covering optics, installing temporary barriers)
- atypical operations required to complete the task (e.g., removing deck sections, custom rigging, stud welding, drilling, connecting high-voltage power supplies)
If there are no safety risks associated with the task, it must be so noted on the form. The initiator will obtain the signature approval of the Group Leader who supervises the lead person performing the work as well as the Group/Section Leader who supervises the area where the work will be completed. These signatures approve the procedures and personnel performing the work, but does not authorize the work to occur.

Part II (Laser Facility Manager Scheduling and Approval): The LFM, in coordination with the Group/Section Leader responsible for the work and other concerned Group/Section Leaders, will determine and approve the scheduled work start and stop times and dates. Note: this does not authorize the commencement of work. If there is no Safety Assessment information provided, the LFM will not approve the WAP.

Part III (Shot Director permission to commence work): When the personnel are ready to perform the work, they will request authorization from the Shot Director (SD) to start the work. The SD will authorize the work after verifying that the workers are aware of the safety risks associated with the task and that the mitigation strategies are being employed. The SD will be notified at the beginning of each day of activity as well as at the completion of each day’s activities. The SD will maintain a binder that includes the WAP index, active WAP’s, pending WAP’s, and completed WAP’s. When the activity is completed, the lead person performing the work will inform the Shot Director and the WAP will be closed. If work requires additional time, see the LFM to coordinate an extension.

Completed WAP’s will be collected by the Omega Facilities Division Director’s Administrative Assistant for filing.
WORK AUTHORIZATION PROCEDURE

PART I

Task ID/Other Identifier: ________________________

Description of Work: __

Safety Assessment (List PPE required, equipment that must be made safe before starting, special operations. Write “None” if appropriate. Attach separate pages if required, or include with procedures.):

Procedural reference or attach procedure: ____________________________

Access Areas: __

(e.g., OMEGA Target Bay, OMEGA EP Target Bay)

Lead person performing work: ______________________________________

Other workers assigned: ___

Work Group/Section Leader approval: ________________________________

Subsystem Group/Section Leader approval: ___________________________

PART II (Approval and scheduling by Laser Facility Manager)

Work Schedule START time ____________ date ________________

STOP time ____________ date ________________

LFM approval: ___

PART III (Authorization to commence work by Shot Director)

Shot Director Authorization: _______________________________________

Actual: START time ________ date ________ SD initials ________

STOP time ________ date ________ SD initials ________

Work completed: YES / NO

Note: The Laser Facility Manager must approve any modification to the WAP including assigned workers and scheduled start/stop times.
Work Authorization Procedure Log

<table>
<thead>
<tr>
<th>Time/Date WAP Authorized</th>
<th>WAP #</th>
<th>SD Initial</th>
<th>Task ID or Description</th>
<th>Time/Date WAP Closed</th>
<th>SD Initial</th>
<th>Work Completed Y or N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure IV-2

IV-8
4004 Equipment Status Log

The Shot Directors and CTFM will maintain an Equipment Status Log during both Watch Conditions 1 and 2. This log shall document the current out-of-commission status of systems, subsystems, diagnostics, or equipment and the completion of required preoperational tests and inspections prior to shot operations. This log will be maintained in the Control Room for OMEGA and OMEGA EP and online for the Tritium and Cryogenic Facility and will be maintained in two sections as follows:

Out-of-Commission (OOC) List: This section will be a chronological listing of systems, subsystems, diagnostics, or equipment placed out of commission and will indicate the current OOC status. This list will be in the format of Fig. IV-3 and include columns to track work status, post test status, and date/time restored for operation. In the event that lockouts/tagouts are not required, the work status complete column will be used to track readiness for post test. The Shot Director is to be made aware of all entries and updates to the OOC while he is stationed.

<table>
<thead>
<tr>
<th>Time/Date Placed OOC</th>
<th>Entered By</th>
<th>System, Diagnostic, or Equipment</th>
<th>Enter Lockout/Tagout No.*</th>
<th>Date Complete</th>
<th>Enter Next Post Test Sheet No.*</th>
<th>Date Completed</th>
<th>Time/Date Restored</th>
<th>Initial Here</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*As Required

Figure IV-3

Before restoring a system, diagnostic, or equipment and signing the time/date restored block, the Shot Director or Cryogenic and Tritium Facility Manager, as applicable, will ensure that both the lockout/tagout and post-test requirements, as applicable, are completed.

Material Deficiency Lists: This section will be a listing of material deficiencies that do not place a system, subsystem, diagnostic, or equipment out of commission, but require documentation to ensure operator awareness and subsequent correction. The material deficiency lists will be segregated by the responsible Group/Section (Controls, Experimental Operations, Laser Amplifiers, Laser Drivers, Laser Optomechanical, Optics, Power Conditioning, and Cryogenic and Tritium Facility) and will be in the following format:

<table>
<thead>
<tr>
<th>Time/Date Identified</th>
<th>Entered by</th>
<th>System, Diagnostic, or Equipment</th>
<th>Time/Date Restored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Group Managers and Section Leaders shall review their section of the material deficiency lists at least weekly to address new items. The person who corrects the deficiency shall log the time/date restored. The material deficiency lists will be recopied monthly to eliminate items that have been corrected.

Advanced Change Notice (ACN) Log: This section will be a listing of all procedures that have been found to be deficient until a new revision of that document has been formally reviewed and approved. ACN entries will be made by the appropriate Facility Manager. All operators are to review the ACN log at the beginning of their shift. Co-located with the ACN log will be a master copy of the ACN. The Facility Manager shall be responsible to audit the ACN log at least monthly to address procedural deficiencies. The ACN log will be recopied monthly to eliminate items that have been corrected.

<table>
<thead>
<tr>
<th>Date/ Time</th>
<th>Doc. ID (Rev.)</th>
<th>Reason for ACN</th>
<th>Expiration Date*</th>
<th>Document Retired**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4005 Tagout/Lockout

To ensure personnel safety and to prevent equipment damage, positive procedures are required to prevent the inadvertent operation of systems or equipment placed out of commission for maintenance including upgrades. Of particular concern is the risk of electrical shock, exposure to harmful laser radiation, release of the stored energy from pressurized compressible fluids, or the release of toxic chemicals. Accordingly, to ensure the safety of personnel and to protect against equipment damage, formal procedures are required to prevent the inadvertent operation of systems or equipment placed out of commission for maintenance. Historically, lockout/tagout procedures were first introduced at LLE as part of the LFORM. Subsequently they were implemented across the entire laboratory in LLE INST 6300. To ensure consistence and compliance with OSHA requirements, Omega will henceforth use the procedures of LLE INST 6300 as amplified herein. While OSHA only requires lockout/tagout procedures to ensure personal safety, the importance of protecting Omega dictates that these procedures also be applied to protect equipment from damage.

Definition: As used in this procedure, a tagout is defined as the placement of a tag on a breaker, switch, control device, or valve that states that it shall not be operated. Lockout is defined as the installation of a physical barrier to operation such as a lock or the removal of a connecting link to prevent operation of the component.

Policy: LLE INST 6300 shall be followed at Omega to ensure safety of personnel and equipment. As required by LLE INST 6300, a physical lock must be used to ensure
personnel safety while performing maintenance if the equipment has the provision for the installation of a lock. If the equipment does not support the installation of a lock, a danger tag will be used. The Shot Director will be responsible for understanding the reason for tagout and ensuring that the lockout/tagout procedures are used when appropriate prior to allowing maintenance to take place.

Procedures: The following policies are in amplification/addition to the procedures of LLE INST 6300 for the Omega Laser Facility. A Lockout/Tagout Log consisting of an index and individual lockout/tagout sheets will be maintained in the OMEGA and OMEGA EP Control Rooms by the respective Shot Director and in Room 157 by the Cyrogenic and Tritium Facility Manager. The Out-of Commission List of the Equipment Status log (Fig. IV-3) will serve a dual purpose as the lockout/tagout index. The OOC List (including Lockout/Tagout Log) will be administered as follows:

- Each item placed Out of Commission shall be entered onto the Out of Commission List along with the timestamp.

- A lockout/tagout sheet (**Appendix A**) will be filled out for each individual system, subsystem, diagnostic, or equipment that requires a lockout/tagout. The item will be entered into the OOC list and a sequential lockout/tagout number will be assigned and entered in the space provided. When a lockout/tagout is not required, an **N** should be placed in this space. A single item may require multiple locks/tags to protect against all hazards and these will all have the same lockout/tagout number with a unique serial number/suffix (-A, -B...) to identify the specific lock/tag.

- A tag (Fig. IV-4) shall be filled out for each location called out on the lockout/tagout sheet.

- Additionally, when post testing is required to ensure the hardware is ready to support facility operations, a Post Test Sheet (Fig. IV-5) will be filled out and placed in the post test section of the Equipment Status Log. The post test will be assigned a sequential post test number independent from the lockout/tagout number. When a post test is not required, an **N** shall be placed in this space and a dash through the Post Test Completion Date entry. In cases where the hardware will be operated nominally to ensure functionality, “Op Test” is appropriate in this column. Other single-word post tests may be used as appropriate such as “PILC.”

- After the lockout/tagout sheet and tags are filled out by the person performing the maintenance, the adequacy of the lockout/tagout coverage, de-energization procedure, and post tests will be verified by the Shot Director or Cyrogenic and Tritium Facility Manager as applicable who will indicate his/her authorization by signing the lockout/tagout sheet.

- Once the lockout/tagout is authorized, the person installing the locks/tags will position the device, install locks/tags, install his/her personal ID tag to the lock (when used), and sign the tags, and when all locks/tags are installed, he/she will sign step 2 of the lockout/tagout sheet and step 5 of the lockout/tagout sheet to verify the hazardous sources are de-energized. Work may then be started.
DANGER
DO NOT OPERATE

Tag No. _____ Required Position ______

Equipment ID

Breaker/Valve ID _________________

Posted (Hung) by _________________

____________________ /

(Signature) (time and date)

Reason for Tag: ________________________________

Under no circumstances will a breaker, switch, or valve that is tagged by a “DANGER DO NOT OPERATE” tag be operated.

Figure IV-4
Post Test Sheet

Number: ____________________________

System or equipment name: __

Post Test [describe what test(s) are to be performed]: ______________________

Components tested:

<table>
<thead>
<tr>
<th>Equipment Identification</th>
<th>Completed Date/Time/Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tested by: ______________________ / ________________________
(time and date)

Figure IV-5

IV-13
• If the maintenance is not completed by the person (the authorized employee) initiating the lockout/tagout, and the maintenance is to be turned over to another authorized employee, the new authorized employee will install his/her lock and personal ID tag and the previous employee will remove their lock and personal ID tag. If maintenance is to be performed by more than one employee, each employee must install their own lock and personal ID tag.

• When work and required inspections are completed, the locks/tags that were hung to support the work will be removed. All tags removed will be delivered to the Shot Director or Cryogenic and Tritium Facility Manager, as applicable, and the person who removed the locks/tags will sign the lockout/tagout sheet to indicate the locks/tags have been removed. The Shot Director or Cryogenic and Tritium Facility Manager will verify all tags listed have been returned and sign the lockout/tagout sheet. He/she will then remove the respective tagout sheet from the active section of the lockout/tagout log and place it in the inactive section of the log. The Shot Director or Cryogenic and Tritium Facility Manager will indicate the maintenance is complete by date stamping the appropriate entry in the OOC log by date stamping the appropriate entry.

• If no post test is required, the Shot Director or Cryogenic and Tritium Facility Manager, as applicable, will also update the Out-of-Commission List by indicating the date the equipment was restored to service.

• If a post test is required, it can now be performed.

• When the post test(s) is/are completed, the person completing the test(s) will inform the Shot Director or CTFM and sign the Post Test Sheet and note the completion date on the OOC. The Shot Director or CTFM will then update the OOC list by indicating the post test was completed and the equipment was restored to service.

• In the event that the post test fails and the equipment must be locked out/tagged out again, a new lockout/tagout sheet will be generated and a new lockout/tagout number assigned. A new line in the OCC will track the status of this tag and the post test number will be reused. The old OCC entry line may be cleared at this point. At the point when the post test succeeds, the Shot Director will return the equipment to commission.

Audit: An audit of the Lockout/Tagout Log will be conducted weekly by the LFM or CTFM as follows:

• Check the OOC List/Tagout Index against the Active Lockout/Tagout sheets to ensure they agree.

• For all Active Lockout/Tagout Sheets, verify by visual inspection that all associated locks/tags are in place, the component is in the proper position, and the lock/tag is properly completed and signed. For all inactive lockout/tagout sheets, verify that they have been properly executed. Any deficiencies in the active lockout/tagouts must be resolved by preparing new lockouts/tagouts as required.
• Upon completion of the audit, the OOC List/Lockout/Tagout Index will be recopied to list only the active items. All Inactive Lockout/Tagout Sheets will be filed for two months before being discarded.

• At least annually, an audit will be performed in accordance with LLE INST 6300 and the results reported, in writing, to the LLE Chief Safety Officer.

4006 Target Chamber Entry

Each target chamber is a space that requires special procedures to ensure safe entry. Additionally, radiation safety procedures must be followed to ensure the protection of personnel and to prevent the release and spread of radioactive contamination. To ensure safety and controlled entry follow the procedures of S-SM-P-395 for OMEGA or S-AB-P-192 for OMEGA EP.

4007 Grating Compression Chamber Entry

The grating compression chamber (GCC) is a space that requires special procedures to ensure safe entry. The OMEGA EP LFM shall conduct access training and maintain a list of qualified individuals who are granted unescorted access into the GCC. Specifically, because it is a Class-100 clean space that contains very expensive optics, special care must be exercised by personnel who enter the GCC. Additionally, because it has free communication with the OMEGA target chamber, tritium contamination is possible. Radiation safety procedures must be followed to ensure the protection of personnel and to prevent the release and spread of radioactive contamination. If no contamination above the limit is detected in the OMEGA to GCC vacuum tube, the GCC may be assumed to be uncontaminated.

4008 Safety

The safe operation of OMEGA, OMEGA EP, and the Cryogenic and Tritium Facility is of paramount importance and will not be jeopardized. It is the responsibility of all personnel to follow applicable safety procedures. The failure to follow established safety procedures may result in appropriate disciplinary action up to and including dismissal. Since general and specific safety precautions, procedures, laws, and regulations exist from several authoritative sources (e.g., University Environmental Health and Safety procedures, state and local electrical and mechanical codes, NYS laser and radiation safety regulations, Facility Manual Volumes II, V, and VIII, etc.), they will not be enumerated here.

The Operations Manager and Cryogenic and Tritium Facility Manager have the overall responsibility for the safe operation of the Laser Facility and Cryogenic and Tritium Facility respectively under the general guidance and oversight of the LLE Chief Safety Officer and the functional safety officers (Chemical, Electrical, Fire, Laser, Mechanical, and Radiological). If a question arises with respect to safety, it should be resolved by
referring to an authoritative reference before proceeding. Should situations arise where procedures are unknown or there are questions of interpretation, the appropriate functional safety officer should be consulted before proceeding. These situations and questions will also be brought to the attention of the LLE Chief Safety Officer before proceeding.

The following policies apply to safety throughout the Laboratory:

No person will willfully operate, energize, or otherwise use any tool, system, or equipment that is known to have a safety defect.

Only personnel who are specifically trained and approved by their Group/Section Leader will perform system or equipment maintenance.

No personnel safety-related interlock, alarm, detector, or device will be overridden or disabled without the specific permission of the LLE Chief Safety Officer.

Safety incidents and potentially unsafe practices or conditions will be reported immediately to the Shot Director/Cryogenic and Tritium Facility Manager who in turn will inform the Laser Facility Manager, Operations Manager, and Omega Facility Director, the appropriate functional safety officer, and the LLE Chief Safety Officer.

No person will intentionally allow him- or herself to be shocked by electricity, to inhale or eat hazardous chemicals or materials including radioactive material, to be exposed to laser radiation without appropriate protection, or to be exposed unnecessarily to nuclear radiation.

Appropriate safety protective equipment shall be worn when required. This includes:

- appropriate goggles when exposed to laser light. NOTE: To ensure that eyewear offers both laser and impact resistant protection, all laser safety eyewear must also be in compliance with ANSI Z87-1-1989 for impact resistance.
- safety glasses, rubber gloves, and laboratory aprons when handling hazardous chemicals or cryogenic fluids
- safety glasses when operating machine tools such as grinders, drills, lathes, milling machines, etc.; and when operating compressed gas systems
- safety harnesses when working aloft, including the top of the GCC
- hard hats in the OMEGA Target Bay and in the area around the OMEGA EP Target Area Structure. NOTE: For evolutions where the wearing of a hard hat interferes with the ability to work effectively, the hard hat requirement may be waived providing (1) there is no potential for objects falling from above and (2) access to the areas above the work area are secured with barriers marked “Do not enter.” NOTE: OMAN optical inspectors are exempted from wearing hard hats during their off-hour inspections of optics provided: (1) the Target Bay has been secured for the day and (2) all other OMAN optical inspectors are working on the same level.
Systems and equipment shall be locked/tagged out in accordance with Sec. 4005 as required.

Only personnel trained and certified to operate machine shop equipment by a full-time LLE machinist will operate such equipment.

All personnel will comply with the electrical and nitrogen safety procedures detailed below.

Outside normal Omega shift hours, at least two people using a “buddy” system must be present in the laser facility.

Hazardous equipment, such as motorized actuators/manipulators, is not to be controlled via a connection outside Omega’s firewall.

Electrical Safety Procedures: Electrical or electronic equipment containing >50 V shall be de-energized prior to performing corrective maintenance. This does not apply to taking readings on, making adjustments to, or trouble shooting electrical or electronic equipment when by equipment or instrument probe design the readings or adjustments can be made without risk of electrical shock. A risk of electrical shock exists if it is possible to inadvertently contact a live electrical circuit. If there is risk of shock and it is necessary to take readings on or perform maintenance adjacent to energized components, then the following procedures for working on energized equipment must be followed:

Permission to work on energized equipment must be received by the cognizant Group/Section Leaders and the LLE Chief Safety Officer or the Electrical Safety Officer. A Work Authorization Procedure shall be used in accordance with Sec. 4003A.

Appropriate PPE shall be used as specified by the WAP and approved by the LLE Chief Safety Officer or Electrical Safety Officer.

The equipment shall be de-energized to the maximum extent possible.

A voltage tester shall be used to verify which circuits are energized and which are de-energized before commencing maintenance.

A minimum of two personnel must be present: one who is actually performing the maintenance and one who acts as a safety monitor.

The safety monitor must be knowledgeable. As a minimum he or she must know how to de-energize the equipment, be in a position to observe the worker, and be in a position to pull the worker free in the event he or she receives an electrical shock. Care should be exercised that the safety monitor is not shocked in the process of freeing a shock victim. To this end, a rope should be used to free the victim.

Someone qualified in CPR shall be available in the Laboratory.

Insulating material should be laid out to the maximum extent practical to insulate the worker from ground and to protect against inadvertent contact with energized components. Electrically insulated tools and instruments shall be used.
Nitrogen Environmental Safety: Spaces that are normally filled with nitrogen when in use, e.g., the large optic test facility, beam transport tubes, etc., may pose asphyxiation hazards if they are not properly vented/monitored. Normally for laser facility systems employing nitrogen, the process of venting or opening them will immediately cause a mixing of room air thereby ensuring sufficient oxygen. Additionally, since the volume of the space into which these systems are vented is so large (e.g., Laser Bay), its environment will be virtually unaffected. This was verified in the safety analysis of each system using nitrogen. However, to ensure safety, any space into which nitrogen is vented that can be occupied or any space that previously contained nitrogen that can be entered must be monitored for oxygen. The oxygen concentration of any occupied space must be verified to be above 19.5%. Additionally, personal oxygen monitors, or their equivalent, must be worn by persons when entering spaces that are designed to be nitrogen purged.

4009 Communication Procedures

The effective and safe operation of OMEGA or OMEGA EP requires that communications be concise, precise, and formal. This applies to all face-to-face, headset, or public address communications. To ensure effective communications, the following standardized procedures apply to all Omega operations:

General

No informal or personal communications will be transmitted on headsets or the public address system.

Headset will normally be worn by all watchstanders and Channel 1 should be the primary operations channel. The Shot Director (SD) may use the speaker at the SD station to allow Control Room visitors to monitor events.

Headset communications must be concise, precise, and formal and idle chatter should not occur. Do not interrupt communications in progress, unless you have an urgent communication affecting operations or safety.

For extended communications relative to troubleshooting, maintenance, or other less formal circumstances, a clear/dedicated channel should be used.

To minimize circuit noise, close your microphone when not in use.

To avoid confusion, first names are not to be used in formal communications; rather watchstation titles should be used or, if not on watch, either the last or full name will be used with title (Dr., Mr., Ms.) if appropriate.

Standard Communication Procedures

All communications that are either directive in nature or allow action to be initiated shall consist of a to/from address, message, and acknowledgment as follows:

To address—the station to which the message is intended, e.g., “Drivers, Beamlines, Shot Director, etc.”
From address—the station that originates the message. The from address is not used for public address system announcements or in other circumstances where the originator of the message is obvious and cannot be confused. For example, when the Shot Director communicates that he/she is ready for completion of the checklist, it is obvious that the Shot Director is the originator. Voice recognition may also make it obvious as to who the originator is, as long as the receiver both recognizes the voice AND has knowledge that the individual is currently assigned to the watchstation from which the communication originated. Both the voice and the authority to issue a directive must be clear (i.e., while a specific individual has authority when actually standing watch, that person does not have authority to issue a directive that changes system status when he/she is not on watch).

Message—the order or informational item to be communicated.

Acknowledgment—the affirmation that a message is received and understood.

- If the message is a directive that requires action—the message must be acknowledged by repeating back the message followed by stating your station title and “aye, understood, roger,” or another clear affirmative word indicating understanding. If the repeat back is in error, the originator will state “wrong” and will repeat the entire message.

- If the message is informational—the message need not be repeated back and may be acknowledged by simply stating your station title and “understood, aye, roger,” or other clear affirmative word indicating understanding.
The following standardized terminology will be used for all communications.

<table>
<thead>
<tr>
<th>Written</th>
<th>Spoken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot Director</td>
<td>Shot Director</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>PI</td>
</tr>
<tr>
<td>Laser Driver Operator</td>
<td>Drivers or LDO</td>
</tr>
<tr>
<td>Laser Sources Operator</td>
<td>Sources or LSO</td>
</tr>
<tr>
<td>Laser Driver Technician</td>
<td>LDT</td>
</tr>
<tr>
<td>Laser Sources Technician</td>
<td>LST</td>
</tr>
<tr>
<td>Beamlines Operator</td>
<td>Beamlines or BO</td>
</tr>
<tr>
<td>IR-Alignment Laser Technician</td>
<td>IR-ALT</td>
</tr>
<tr>
<td>UV-Alignment Laser Technician</td>
<td>UV-ALT</td>
</tr>
<tr>
<td>Alignment Laser Technician</td>
<td>ALT</td>
</tr>
<tr>
<td>Amplifier Technician</td>
<td>AT</td>
</tr>
<tr>
<td>Power Conditioning Operator</td>
<td>Power Conditioning or PCO</td>
</tr>
<tr>
<td>Power Conditioning Technician</td>
<td>PCT</td>
</tr>
<tr>
<td>Experimental System Operator</td>
<td>Experimental or ESO</td>
</tr>
<tr>
<td>Experimental System Technician</td>
<td>EST</td>
</tr>
<tr>
<td>Experimental Cryogenic Technician</td>
<td>Cryo Tech</td>
</tr>
<tr>
<td>Laser Bay</td>
<td>Laser Bay</td>
</tr>
<tr>
<td>Target Bay</td>
<td>Target Bay</td>
</tr>
<tr>
<td>Capacitor Bay</td>
<td>Capacitor Bay</td>
</tr>
<tr>
<td>LaCave (OMEGA)</td>
<td>LaCave</td>
</tr>
<tr>
<td>Diagnostics Bay (OMEGA EP)</td>
<td>Diagnostics Bay</td>
</tr>
<tr>
<td>Pulse Generation Room</td>
<td>PGR</td>
</tr>
<tr>
<td>Driver Equipment Room</td>
<td>DER</td>
</tr>
<tr>
<td>Sources Bay</td>
<td>Sources Bay</td>
</tr>
<tr>
<td>Darkroom</td>
<td>Darkroom</td>
</tr>
<tr>
<td>Vacuum Pump Room</td>
<td>Pump Room</td>
</tr>
<tr>
<td>Fan Room</td>
<td>Fan Room</td>
</tr>
<tr>
<td>Control Room</td>
<td>Control Room</td>
</tr>
<tr>
<td>(the number) 0</td>
<td>Zero</td>
</tr>
</tbody>
</table>
| Alphabet A–Z | Alpha, Bravo, Charlie, Echo, Foxtrot, Golf, Hotel, India, Juliet, Kilo, Lima, Mike, November, Oscar, Papa, Quebec, Romeo, Sierra, Tango, Uniform, Victor, Whiskey, X ray, Yankee, Zulu | (This phonetic alphabet need only be used when necessary to avoid confusion.)
Equipment Nomenclature and Use Full Titles or Accepted Acronyms

<table>
<thead>
<tr>
<th>Equipment Nomenclature</th>
<th>Use Full Titles or Accepted Acronyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g., SSD Large-Aperture Ring Amplifier</td>
<td>SSD LARA</td>
</tr>
<tr>
<td>Number 1 Spatial Filter Pump</td>
<td>Number One Spatial Filter Pump</td>
</tr>
<tr>
<td>To Start</td>
<td>Start</td>
</tr>
<tr>
<td>To Secure (Stop)</td>
<td>Secure</td>
</tr>
<tr>
<td>To Shut (Close)</td>
<td>Shut</td>
</tr>
<tr>
<td>To Open</td>
<td>Open</td>
</tr>
</tbody>
</table>

NOTE:

Many of the elements of the OMEGA system are designated by the “Stage, Cluster, Beam” convention where

- **Stages** are lettered A, B, … F,
- **Clusters** are numbered 1, 2, … 6,
- **Beams** are numbered 10–60.

The phonetic alphabet is generally used to convey the stage letter and the cluster, and beam designation is properly pronounced as an ordered pair; e.g., say “Foxtrot One One,” not “eff eleven.”

The following are several example communications [in the correct sequence: to address/from address/message // acknowledgment (items included in parentheses () are optional in the circumstance portrayed).

NOTE:

The acknowledgment must be a verbatim repeat back of the directive.

- SD: “Drivers/(Shot Director) ready for checklist.”
- LDO: “Ready for checklist, Drivers aye.”

NOTE:

“Aye” is an affirmative statement that means understood. The words “understood” or “roger” may be used in lieu of “aye.”

- LDO: “Beamlines/(Drivers) SSD driver spots available.”
- BO: “SSD spot available, Beamlines aye.”
- BO: “Drivers/(Beamlines) finished with SSD spot.”
- LDO: “Finished with SSD spot, Drivers, aye.”
PI: “Experimental/PI (or name) steer TIM one up one hundred microns.”
ESO: “Steer TIM one up one hundred microns, Experimental, aye.”
PCO: “PCT/(Power Conditioning)/safe PCU’s Echo One Four and Foxtrot Three One.”
PCT: “Safe PCU’s Echo One Four and Foxtrot Three One, PCT, aye.”
PCT: “Power Conditioning/(PCT)/PCU’s Echo One Four and Foxtrot Three One are safed.”
PCO: “PCU’s Echo One Four and Foxtrot Three One are safed, Power Conditioning, aye.”

Example of erroneous repeat back: note the use of the word “**wrong**” and a complete repeat of the entire message.
PCT: “Safe PCU Delta One One, PCT, aye.”
PCO: “**Wrong** PCT/(Power Conditioning)/safe PCU Delta One Zero.”
PCT: “Safe PCU Delta One Zero, PCT, aye.”

4010 Shot Request Forms and Administration

Execution of effective and safe OMEGA and OMEGA EP shots requires complete specification of the laser and diagnostic configuration, extensive advance planning, and many hours of system preparation prior to and during the actual shot day. The Shot Request Form (SRF) for each shot is the primary vehicle for recording and communicating the specifications for a shot. Supplemental tools and forms are used in planning and communicating the sequencing of related shots referred to as campaigns. The SRF is a database object that is created via inputs made at a web-based SRF user interface. This interface consists of a series of pages or screens called “forms” that collect information of various types. The forms include the following:

- **General**
 - PI’s campaign identification, planned date, planned order, …
 - Shot scope: OMEGA only, OMEGA EP only, joint shot.
- **Drivers** – driver line(s), pulse shape, SSD modulation, timing
- **Sources** (OMEGA EP) – one to five sources (including 4ω probe), pulse shape, duration, timing
- **Beams** (OMEGA) – groups defined by energy, pointing, focus, termination
- **Beams** (OMEGA EP) – groups defined by energy, short/long pulse, pointing focus, termination
- **Target diagnostics** – specified via a hierarchical series of location and setup forms.

Each SRF is automatically assigned a unique, sequential, identifying number at the time it is created. Appropriate controls are applied to limit both read and write access to the records.
The SRF can be viewed or printed, in part or whole, to provide a standard format for review and implementation. On shot day, SRF data values are also accessed directly by the Omega Control System and used to assist the operators in preparing for and executing the shot. Once an SRF has been used to specify an experimental target shot, it is considered expended and will not be reused. The SRF data values are retained indefinitely. The SRF values, indexed by the unique identifying number, may be retrieved for data assessment and can be copied to create new SRF’s.

The Principal Investigator (PI) has the primary responsibility for preparation and coordination of the Shot Request Forms that define the shots for which he/she is responsible.

The SRF process may be initiated at any time. The key steps and milestones in the preparation and use of SRF’s are as follows:

- **>Ten weeks prior to the planned shot week** – The PI submits Shot Request Forms to accompany the Proposal Template that define each unique shot configuration to LLE. These SRF’s shall be used as the basis for the approval/rejection of the campaign. For complicated configurations, early submission will ensure that all details are negotiated to match the system capabilities in a timely fashion.

- **Monday, two weeks prior to the planned shot week** – The PI reviews Shot Request Forms that define each unique shot configuration to LLE. This will precede and facilitate the “two-week PI brief.”

- **Monday, one week prior to the planned shot week** – The PI submits final Shot Request Forms for all of the planned shots to the Laser Facility Manager. This will precede and facilitate the “one-week PI brief.” The Laser Facility Manager shall be notified of all subsequent changes.

- **During the interval between submittal and shot day** – designated LLE personnel will review the SRF’s and may edit/modify data values as required with the concurrence of the PI. Personnel authorized to edit/modify SRF’s include diagnostic instruments specialists, the Laser Facility Manager, and the Group members charged with implementing the necessary shot preparations.

- **Shot Day** – The PI shall inform the Shot Director of any change in the planned shot order.

- **Pre-Shot** – The Shot Director, System Scientist, and designated system operators may modify SRF data values for the shot that is currently underway with the concurrence of the PI. These changes shall be for the purpose of dealing with situations or details that could not have been anticipated earlier. All such changes shall be implemented and verified prior to charging for the shot.
• **Post-Shot** – The authorized persons may edit the SRF data to capture the actual shot conditions up to two weeks after the SRF has been used to specify a system shot. This shall be for the purpose of facilitating data interpretation or replication of the shot.
Appendix A

Omega Facility Lockout/Tagout sheet
Omega Facility Lockout/Tagout sheet

Lockout/Tagout Number: _______________ Authorized Worker (coordinator): __________________________
Additional Worker(s): __

1. Describe the equipment/system to be maintained and the specific work to be accomplished (if the maintenance action is described in an approved procedure, include the reference to the procedure): __

2. Specify the procedure (or alternatively the steps on side 2 of this sheet) for shutting down the equipment and verifying that the hazards have been de-energized. Specifying the breakers switches/valves to be Locked/Tagged, in order, including their position. Use the table below to record the installation of locks/tags and their subsequent removal when the maintenance is completed.

<table>
<thead>
<tr>
<th>Procedure ID: ___________________________ or WAP #: ___________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag suffix (-A, -B)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

This section to be filled out after permission obtained, the lock(s)/tag(s) hung, and the hazard mitigation is verified

The above lockout/tagout has been reviewed and permission granted to proceed by:

(Shot Director or Cryo & Tritium Facility Manager) / (Time and Date)

*In cases where responsibility for the lockout must be transferred, the new lock(s) must be installed prior to the off going person removing his/her lock. The transfer is tracked on this form.

Lockout/tagout cleared by:

(Shot Director or Cryo & Tritium Facility Manager) / (Time and Date)
Steps for shutting down equipment and verification that the hazards have been de-energized

Attach additional sheets as necessary